WorldWideScience

Sample records for biologically relevant genes

  1. Biclustering Methods: Biological Relevance and Application in Gene Expression Analysis

    OpenAIRE

    Ali Oghabian; Sami Kilpinen; Sampsa Hautaniemi; Elena Czeizler

    2014-01-01

    DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering) methods where genes (or respectively samples) are grouped together based on the similarity of their expressi...

  2. Biclustering methods: biological relevance and application in gene expression analysis.

    Science.gov (United States)

    Oghabian, Ali; Kilpinen, Sami; Hautaniemi, Sampsa; Czeizler, Elena

    2014-01-01

    DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering) methods where genes (or respectively samples) are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes). An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical) methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1) we examine how well the considered (bi)clustering methods differentiate various sample types; (2) we evaluate how well the groups of genes discovered by the (bi)clustering methods are annotated with similar Gene Ontology categories; (3) we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4) we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples. PMID:24651574

  3. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  4. Gene Network Biological Validity Based on Gene-Gene Interaction Relevance

    OpenAIRE

    Francisco Gómez-Vela; Norberto Díaz-Díaz

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in...

  5. Comparative Analysis of Biologically Relevant Response Curves in Gene Expression Experiments: Heteromorphy, Heterochrony, and Heterometry

    OpenAIRE

    Baker, Stuart G.

    2014-01-01

    To gain biological insights, investigators sometimes compare sequences of gene expression measurements under two scenarios (such as two drugs or species). For this situation, we developed an algorithm to fit, identify, and compare biologically relevant response curves in terms of heteromorphy (different curves), heterochrony (different transition times), and heterometry (different magnitudes). The curves are flat, linear, sigmoid, hockey-stick (sigmoid missing a steady state), transient (sigm...

  6. Comparative Analysis of Biologically Relevant Response Curves in Gene Expression Experiments: Heteromorphy, Heterochrony, and Heterometry

    Directory of Open Access Journals (Sweden)

    Stuart G. Baker

    2014-02-01

    Full Text Available To gain biological insights, investigators sometimes compare sequences of gene expression measurements under two scenarios (such as two drugs or species. For this situation, we developed an algorithm to fit, identify, and compare biologically relevant response curves in terms of heteromorphy (different curves, heterochrony (different transition times, and heterometry (different magnitudes. The curves are flat, linear, sigmoid, hockey-stick (sigmoid missing a steady state, transient (sigmoid missing two steady states, impulse (with peak or trough, step (with intermediate-level plateau, impulse+ (impulse with an extra parameter, step+ (step with an extra parameter, further characterized by upward or downward trend. To reduce overfitting, we fit the curves to every other response, evaluated the fit in the remaining responses, and identified the most parsimonious curves that yielded a good fit. We measured goodness of fit using a statistic comparable over different genes, namely the square root of the mean squared prediction error as a percentage of the range of responses, which we call the relative prediction error (RPE. We illustrated the algorithm using data on gene expression at 14 times in the embryonic development in two species of frogs. Software written in Mathematica is freely available.

  7. Meta-analysis of muscle transcriptome data using the MADMuscle database reveals biologically relevant gene patterns

    Directory of Open Access Journals (Sweden)

    Teusan Raluca

    2011-02-01

    Full Text Available Abstract Background DNA microarray technology has had a great impact on muscle research and microarray gene expression data has been widely used to identify gene signatures characteristic of the studied conditions. With the rapid accumulation of muscle microarray data, it is of great interest to understand how to compare and combine data across multiple studies. Meta-analysis of transcriptome data is a valuable method to achieve it. It enables to highlight conserved gene signatures between multiple independent studies. However, using it is made difficult by the diversity of the available data: different microarray platforms, different gene nomenclature, different species studied, etc. Description We have developed a system tool dedicated to muscle transcriptome data. This system comprises a collection of microarray data as well as a query tool. This latter allows the user to extract similar clusters of co-expressed genes from the database, using an input gene list. Common and relevant gene signatures can thus be searched more easily. The dedicated database consists in a large compendium of public data (more than 500 data sets related to muscle (skeletal and heart. These studies included seven different animal species from invertebrates (Drosophila melanogaster, Caenorhabditis elegans and vertebrates (Homo sapiens, Mus musculus, Rattus norvegicus, Canis familiaris, Gallus gallus. After a renormalization step, clusters of co-expressed genes were identified in each dataset. The lists of co-expressed genes were annotated using a unified re-annotation procedure. These gene lists were compared to find significant overlaps between studies. Conclusions Applied to this large compendium of data sets, meta-analyses demonstrated that conserved patterns between species could be identified. Focusing on a specific pathology (Duchenne Muscular Dystrophy we validated results across independent studies and revealed robust biomarkers and new pathways of interest

  8. Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection.

    Science.gov (United States)

    Pan, Tianhong; Xie, Wenjie; Jankovic, Joseph; Le, Weidong

    2005-03-29

    Pramipexole (PRX) is a non-ergot dopamine (DA) D2/D3 receptor agonist. Experimental studies have provided evidence that PRX may exert neuroprotective effects on the nigro-striatal system. Recent studies have demonstrated a slower decline of DAT density in Parkinson's disease patients treated with PRX as measured by SPECT. The aim of this study is to determine whether PRX has direct biological effects on DAergic neuron-associated genes expression, including DAT, VMAT2, and Nurr1. The human neuroblastoma SH-SY5Y cells were treated with PRX for various time periods and harvested to measure the mRNA and protein products of these genes. Treatment with PRX at 10 microM significantly increased DAT mRNA levels by 54-130% in 4-8 h, VMAT2 mRNA levels by 34% in 4 h, and Nurr1 mRNA levels by 31-39% in 2-4 h, which was the earliest induction among these three genes. The protein levels of DAT, VMAT2, and Nurr1 were markedly increased after PRX treatment, among which the increase of Nurr1 protein level was the highest at first 2 h treatment of PRX. Nafadotride, a D3 DA receptor antagonist, blocked the increase of Nurr1 gene expression induced by PRX, while eticlopride, a D2 DA receptor antagonist, didn't show this effect. Our findings that PRX has biological regulatory effects on DAergic neuron-associated genes may explain both the slower decline of imaged DAT and the neuroprotective effect of PRX. Furthermore, our results suggest that the induction of Nurr1 gene expression by PRX may be mediated by D3 DA receptor. PMID:15740846

  9. Meta-analysis of muscle transcriptome data using the MADMuscle database reveals biologically relevant gene patterns

    OpenAIRE

    Teusan Raluca; Bihouée Audrey; Dubois Emeric; Baron Daniel; Steenman Marja; Jourdon Philippe; Magot Armelle; Péréon Yann; Veitia Reiner; Savagner Frédérique; Ramstein Gérard; Houlgatte Rémi

    2011-01-01

    Abstract Background DNA microarray technology has had a great impact on muscle research and microarray gene expression data has been widely used to identify gene signatures characteristic of the studied conditions. With the rapid accumulation of muscle microarray data, it is of great interest to understand how to compare and combine data across multiple studies. Meta-analysis of transcriptome data is a valuable method to achieve it. It enables to highlight conserved gene signatures between mu...

  10. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance.

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Li

    2006-07-01

    Full Text Available Several "head-to-head" (or "bidirectional" gene pairs have been studied in individual experiments, but genome-wide analysis of this gene organization, especially in terms of transcriptional correlation and functional association, is still insufficient. We conducted a systematic investigation of head-to-head gene organization focusing on structural features, evolutionary conservation, expression correlation and functional association. Of the present 1,262, 1,071, and 491 head-to-head pairs identified in human, mouse, and rat genomes, respectively, pairs with 1- to 400-base pair distance between transcription start sites form the majority (62.36%, 64.15%, and 55.19% for human, mouse, and rat,respectively of each dataset, and the largest group is always the one with a transcription start site distance of 101 to 200 base pairs. The phylogenetic analysis among Fugu, chicken, and human indicates a negative selection on the separation of head-to-head genes across vertebrate evolution, and thus the ancestral existence of this gene organization. The expression analysis shows that most of the human head-to-head genes are significantly correlated,and the correlation could be positive, negative, or alternative depending on the experimental conditions. Finally, head to-head genes statistically tend to perform similar functions, and gene pairs associated with the significant cofunctions seem to have stronger expression correlations. The findings indicate that the head-to-head gene organization is ancient and conserved, which subjects functionally related genes to correlated transcriptional regulation and thus provides an exquisite mechanism of transcriptional regulation based on gene organization. These results have significantly expanded the knowledge about head-to-head gene organization. Supplementary materials for this study are available at http://www.scbit.org/h2h.

  11. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways

    Science.gov (United States)

    Ghosh, Debajyoti; Ding, Lili; Sivaprasad, Umasundari; Geh, Esmond; Biagini Myers, Jocelyn; Bernstein, Jonathan A.; Khurana Hershey, Gurjit K; Mersha, Tesfaye B.

    2015-01-01

    Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease. PMID:26717000

  12. Inferring Biologically Relevant Models: Nested Canalyzing Functions

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting the available data is huge and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory networks. Previously we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of the cell cycle in budding yeast.

  13. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  14. Biology relevant to space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1997-04-30

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration.

  15. Head and neck cancer subtypes with biological and clinical relevance: Meta-analysis of gene-expression data.

    Science.gov (United States)

    De Cecco, Loris; Nicolau, Monica; Giannoccaro, Marco; Daidone, Maria Grazia; Bossi, Paolo; Locati, Laura; Licitra, Lisa; Canevari, Silvana

    2015-04-20

    Head and neck squamous cell carcinoma (HNSCC) is a disease with heterogeneous clinical behavior and response to therapies. Despite the introduction of multimodality treatment, 40-50% of patients with advanced disease recur. Therefore, there is an urgent need to improve the classification beyond the current parameters in clinical use to better stratify patients and the therapeutic approaches. Following a meta-analysis approach we built a large training set to whom we applied a Disease-Specific Genomic Analysis (DSGA) to identify the disease component embedded into the tumor data. Eleven independent microarray datasets were used as validation sets. Six different HNSCC subtypes that summarize the aberrant alterations occurring during tumor progression were identified. Based on their main biological characteristics and de-regulated signaling pathways, the subtypes were designed as immunoreactive, inflammatory, human papilloma virus (HPV)-like, classical, hypoxia associated, and mesenchymal. Our findings highlighted a more aggressive behavior for mesenchymal and hypoxia-associated subtypes. The Genomics Drug Sensitivity Project was used to identify potential associations with drug sensitivity and significant differences were observed among the six subtypes. To conclude, we report a robust molecularly defined subtype classification in HNSCC that can improve patient selection and pave the way to the development of appropriate therapeutic strategies. PMID:25821127

  16. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due to......-dependent information, hierarchical contexts and analog/digital communication, which I think molecular biologists could find of great inspiration. In particular I highlight ten “Batesonean ideas” that may prove to be of great relevance to the field of cellular signal transduction....

  17. Positron Interactions with Biologically Relevant Molecules

    Science.gov (United States)

    Palihawadana, P.; Machacek, J. R.; Anderson, E.; Makochekanwa, C.; Sullivan, J. P.; Garcia, G.; Brunger, M. J.; Buckman, S. J.

    2011-05-01

    A series of measurements of positron interactions with biologically relevant molecules have been undertaken. We present both total scattering and differential scattering cross sections for Uracil (C4H4N2O2) , Tetrahydrofuran or THF (C4H8O), 3-hydroxy-THF(C4H8O2) and Pyrimidine (C4H4N2) . These measurements are absolute and include the positronium formation cross section which is important to investigations of positron transport in biological systems. The energy of the magnetically confined positron beam can be tuned between 1 and 200 eV, and the energy resolution of the beam is between 60 and 100 meV. We will discuss the experimental techniques, the sources of systematic errors which limit the current results, and prospects for the future. This work is supported by the Australian Research Council and the Australian Government's ISL Program.

  18. Transcriptional Profiling of a Cross-Protective Salmonella enterica serovar Typhimurium UK-1 dam Mutant Identifies a Set of Genes More Transcriptionally Active Compared to Wild-Type, and Stably Transcribed across Biologically Relevant Microenvironments

    Directory of Open Access Journals (Sweden)

    Claire B. Miller

    2014-05-01

    Full Text Available Vaccination with Salmonella enterica serovar Typhimurium lacking DNA adenine methyltransferase confers cross-protective immunity against multiple Salmonella serotypes. The mechanistic basis is thought to be associated with the de-repression of genes that are tightly regulated when transiting from one microenvironment to another. This de-repression provides a potential means for the production of a more highly expressed and stable antigenic repertoire capable of inducing cross-protective immune responses. To identify genes encoding proteins that may contribute to cross-protective immunity, we used a Salmonella Typhimurium DNA adenine methyltransferase mutant strain (UK-1 dam mutant derived from the parental UK-1 strain, and assessed the transcriptional profile of the UK-1 dam mutant and UK-1 strain grown under conditions that simulate the intestinal or endosomal microenvironments encountered during the infective process. As expected, the transcriptional profile of the UK-1 dam mutant identified a set of genes more transcriptionally active when compared directly to UK-1, and stably transcribed in biologically relevant culture conditions. Further, 22% of these genes were more highly transcribed in comparison to two other clinically-relevant Salmonella serovars. The strategy employed here helps to identify potentially conserved proteins produced by the UK-1 dam mutant that stimulate and/or modulate the development of cross-protective immune responses toward multiple Salmonella serotypes.

  19. Future development of biologically relevant dosimetry.

    Science.gov (United States)

    Palmans, H; Rabus, H; Belchior, A L; Bug, M U; Galer, S; Giesen, U; Gonon, G; Gruel, G; Hilgers, G; Moro, D; Nettelbeck, H; Pinto, M; Pola, A; Pszona, S; Schettino, G; Sharpe, P H G; Teles, P; Villagrasa, C; Wilkens, J J

    2015-01-01

    Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented. PMID:25257709

  20. [Practice relevant research in biological psychiatry].

    Science.gov (United States)

    Meyer-Lindenberg, A

    2015-11-01

    The practice of psychiatry would be unthinkable without modern psychopharmacology. Drug treatment, especially of severe psychiatric disorders, is often a precondition of community participation, societal reintegration and recovery. Seen in this context it is understandable that biological psychiatry has long been primarily defined by its close interconnection with psychopharmacology and has been perceived this way by practicing physicians. In recent years, however, the concept of what is "biological" has markedly expanded and so has the outreach of this approach into the practice of psychiatry. This article discusses examples showing that biological research methods provide new impulses for individualized medicine, psychotherapy and understanding environmental risks and therefore provide the basis for a preemptive and preventive approach that will be the key to master the challenges posed by the severe burden of mental illness. PMID:26440519

  1. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  2. Classifying transcription factor targets and discovering relevant biological features

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2008-05-01

    Full Text Available Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1 Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4, Ino2(2.6, Yaf1(2.4, and Yap6(2.4. (2 Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3 A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4 An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and

  3. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    Science.gov (United States)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  4. Behavior of nanoceria in biologically-relevant environments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Das, Soumen; Munusamy, Prabhakaran; Self, William; Baer, Donald R.; Sayle, Dean C.; Seal, Sudipta

    2014-09-08

    Cerium oxide nanoparticles (CNPs) have gained a considerable attention in biological research due to their anti-oxidant like behaviour and regenerative nature. The current literature on CNPs reports many successful attempts on harnessing the beneficial therapeutic properties in biology. However studies have also shown toxicity effect with some types of CNPs. This review discusses issues associated with the behaviours of CNPs in biological systems and identifies key knowledge gaps. We explore how salient physicochemical properties (size, surface chemistry, surface stabilizers) contribute to the potential positive and negative aspects of nanoceria in biological systems. Based on variations of results reported in the literature, important issues need to be addressed. Are we really studying the same particles with slight variations in size and physicochemical properties or do the particles being examined have fundamentally different behaviours? Are the variations observed in the result of differences in the initial properties of the particles or the results of downstream effects that emerge as the particles are prepared for specific studies and they interact with biological or other environmental moieties? How should particles be appropriately prepared for relevant environmental/toxicology/safety studies? It is useful to recognize that nanoparticles encompass some of the same complexities and variability associated with biological components

  5. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  6. Measuring Biological Parameters in Rivers: Relevance of the Spatial Scale

    International Nuclear Information System (INIS)

    The analyses of biological parameters in river ecosystems have been traditionally used as indicative of water quality with the advantage over chemical or physical analyses that they integrate the effects of punctual as well as long term effects. However, analyses of biological parameters (such as biomass and metabolism) performed at different spatial scales (from the microbial communities to the whole river) inform about different key processes. At the finer scale, microbial interactions and the structure of the microbial community (biofilm microbial biomass, three dimensional structure, and relevance of polysaccharide matrix) can be detected. At the reach scale, the different stream bed substrate (sediment, rocks, and particulate organic matter accumulation) are shown to play differential and specific roles on the processing of organic and inorganic materials in the flowing water. (Author)

  7. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems

    OpenAIRE

    Besse Philippe; Boitard Simon; Lê Cao Kim-Anh

    2011-01-01

    Abstract Background Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches c...

  8. Medulloblastoma: Tumor Biology and Relevance to Treatment and Prognosis Paradigm.

    Science.gov (United States)

    Coluccia, Daniel; Figuereido, Carlyn; Isik, Semra; Smith, Christian; Rutka, James T

    2016-05-01

    Medulloblastoma is a malignant embryonic brain tumor arising in the posterior fossa and typically occurring in pediatric patients. Current multimodal treatment regimes have significantly improved the survival rates; however, a marked heterogeneity in therapy response is observed, and one third of all patients die within 5 years after diagnosis. Large-scale genetic and transcriptome analysis revealed four medulloblastoma subgroups (WNT, SHH, Group 3, and Group 4) associated with different demographic parameters, tumor manifestation, and clinical behavior. Future treatment protocols will integrate molecular classification schemes to evaluate subgroup-specific intensification or de-escalation of adjuvant therapies aimed to increase tumor control and reduce iatrogenic induced morbidity. Furthermore, the identification of genetic drivers allows assessing target therapies in order to increase the chemotherapeutic armamentarium. This review highlights the biology behind the current classification system and elucidates relevant aspects of the disease influencing forthcoming clinical trials. PMID:27021772

  9. Behavioural biology: an effective and relevant conservation tool.

    Science.gov (United States)

    Buchholz, Richard

    2007-08-01

    'Conservation behaviour' is a young discipline that investigates how proximate and ultimate aspects of the behaviour of an animal can be of value in preventing the loss of biodiversity. Rumours of its demise are unfounded. Conservation behaviour is quickly building a capacity to positively influence environmental decision making. The theoretical framework used by animal behaviourists is uniquely valuable to elucidating integrative solutions to human-wildlife conflicts, efforts to reintroduce endangered species and reducing the deleterious effects of ecotourism. Conservation behaviourists must join with other scientists under the multidisciplinary umbrella of conservation biology without giving up on their focus: the mechanisms, development, function and evolutionary history of individual differences in behaviour. Conservation behaviour is an increasingly relevant tool in the preservation of nature. PMID:17590477

  10. Identifying Biologically Relevant Cues in the Hydrologic Regime

    Science.gov (United States)

    Lovellford, R. M.; Flitcroft, R.; Santelmann, M. V.; Grant, G. E.; Safeeq, M.; Lewis, S.

    2012-12-01

    Seasonal variation in hydrologic discharge and temperature defines the availability, connectivity, and quality of lentic habitats. Native aquatic species are adapted to local hydrologic regimes , eg. magnitudes and rates of change . In recent decades, biologically relevant hydrologic conditions have been identified that are necessary to maintain habitat conditions for aquatic obligate species. Another element of hydrologic regimes important to aquatic species are the cues that inform individuals of seasonal changes that precipitate important physiological or behavioral alterations. There is a need for hydrologists, biologists, and ecologists, to define biologically significant cues within the hydrologic regime. Coho salmon (Onchorhynchus kisutch), an anadromous species of Pacific salmon, offers an example of sensitivity to environmental cues. Examinations of the run-timing of mature adult coho salmon on the North Umpqua River, OR, indicate that migration timing coincides with decreasing fall water temperatures prior to increasing winter discharge. For this species, adults leave the ocean ready to spawn. Adults need to spawn in small headwater streams prior to the onset of intense storm conditions that prohibit effective deposition or fertilization of eggs in redds (salmon nests).Therefore, the timing of spawning must be carefully executed. Understanding the cues that trigger specific behaviors gives insight to the processes that provide ecosystem stability and flexibility over time. Improved understanding of these cues may help us protect freshwater ecosystems and improve management for endangered species.

  11. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  12. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  13. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    Science.gov (United States)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  14. Complexity, Post-genomic Biology and Gene Expression Programs

    Science.gov (United States)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  15. Synthetic Biology: Integrated Gene Circuits

    OpenAIRE

    Nandagopal, Nagarajan; Michael B Elowitz

    2011-01-01

    A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits “from scratch” that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches...

  16. Natural killer cells: Biology, functions and clinical relevance

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction. Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1 killer immunoglobulin like receptors-KIR, 2 C-type lectin receptors,3natural citotoxicity receptors-NCR and 4 Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.

  17. Biological Implications of Gene-Environment Interaction

    Science.gov (United States)

    Rutter, Michael

    2008-01-01

    Gene-environment interaction (G x E) has been treated as both a statistical phenomenon and a biological reality. It is argued that, although there are important statistical issues that need to be considered, the focus has to be on the biological implications of G x E. Four reports of G x E deriving from the Dunedin longitudinal study are used as…

  18. Commentary: Systems Biology and Its Relevance to Alcohol Research

    OpenAIRE

    Guo, Q. Max; Zakhari, Sam

    2008-01-01

    Systems biology, a new scientific discipline, aims to study the behavior of a biological organization or process in order to understand the function of a dynamic system. This commentary will put into perspective topics discussed in this issue of Alcohol Research & Health, provide insight into why alcohol-induced disorders exemplify the kinds of conditions for which a systems biological approach would be fruitful, and discuss the opportunities and challenges facing alcohol researchers.

  19. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  20. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems

    Directory of Open Access Journals (Sweden)

    Besse Philippe

    2011-06-01

    Full Text Available Abstract Background Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs, becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. Results A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. Conclusions sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

  1. STAT3 Target Genes Relevant to Human Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Richard L. [Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710 (United States); Lo, Hui-Wen, E-mail: huiwen.lo@duke.edu [Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710 (United States); Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 (United States)

    2014-04-16

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers.

  2. Reviewing the relevance of fluorescence in biological systems.

    Science.gov (United States)

    Lagorio, M Gabriela; Cordon, Gabriela B; Iriel, Analia

    2015-09-26

    Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature. PMID:26103563

  3. Arbitrary protein−protein docking targets biologically relevant interfaces

    OpenAIRE

    Martin Juliette; Lavery Richard

    2012-01-01

    Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible ...

  4. Classifying transcription factor targets and discovering relevant biological features

    OpenAIRE

    DeLisi Charles; Kon Mark; Holloway Dustin T

    2008-01-01

    Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved r...

  5. Categorization of biologically relevant chemical signals in the medial amygdala

    OpenAIRE

    Samuelsen, Chad L.; Meredith, Michael

    2009-01-01

    Many species employ chemical signals to convey messages between members of the same species (conspecific), but chemosignals may also provide information to another species (heterospecific). Here, we found that conspecific chemosignals (male, female mouse urine) increased immediate early gene-protein (IEG) expression in both anterior and posterior medial amygdala of male mice, whereas most heterospecific chemosignals (e.g.: hamster vaginal fluid, steer urine) increased expression only in anter...

  6. Streptococcus pyogenes biofilms – formation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  7. Student perception of relevance of biology content to everyday life: A study in higher education biology courses

    Science.gov (United States)

    Himschoot, Agnes Rose

    The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is the last science course they will take for life. General biology courses are suspected of discouraging student interest in biology with large enrollment, didactic instruction, covering a huge amount of content in one semester, and are charged with promoting student disengagement with biology by the end of the course. Previous research has been aimed at increasing student motivation and interest in biology as measured by surveys and test results. Various methods of instruction have been tested and show evidence of improved learning gains. This study focused on students' perception of relevance of biology content to everyday life and the methods of instruction that increase it. A quantitative survey was administered to assess perception of relevance pre and post instruction over three topics typically taught in a general biology course. A second quantitative survey of student experiences during instruction was administered to identify methods of instruction used in the course lecture and lab. While perception of relevance dropped in the study, qualitative focus groups provided insight into the surprising results by identifying topics that are more relevant than the ones chosen for the study, conveying the affects of the instructor's personal and instructional skills on student engagement, explanation of how active engagement during instruction promotes understanding of relevance, the roll of laboratory in promoting students' understanding of relevance as well as identifying external factors that affect student engagement. The study also investigated the extent to which gender affected changes in students' perception of

  8. Student Perception of Relevance of Biology Content to Everyday Life: A Study in Higher Education Biology Courses

    Science.gov (United States)

    Himschoot, Agnes Rose

    2012-01-01

    The purpose of this mixed method case study was to examine the effects of methods of instruction on students' perception of relevance in higher education non-biology majors' courses. Nearly ninety percent of all students in a liberal arts college are required to take a general biology course. It is proposed that for many of those students, this is…

  9. Biological Functional Relevance of Asymmetric Dimethylarginine (ADMA in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Sara Franceschelli

    2013-12-01

    Full Text Available There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.

  10. The biology of novel animal genes: Mouse APEX gene knockout

    Energy Technology Data Exchange (ETDEWEB)

    MacInnes, M.; Altherr, M.R.; Ludwig, D. [Los Alamos National Lab., NM (United States); Pedersen, R.; Mold, C. [Univ. of California, San Francisco, CA (United States)

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  11. The collective biology of the gene: Towards genetic dynamics engineering

    International Nuclear Information System (INIS)

    Chromatin dynamics is studied in terms of coupled vibrations (phonon pairing); this is shown to lead to a collective variable Δ, interpreted as a gene inhibition factor, which behaves as a biological switch turned off, not only by enzymatic action or metabolic energy, but also by means of an external probe:irradiation. We discuss the inactivation of the X chromosome and puffing. The relevance of being able to modulate Δ is emphasized, since it is equivalent to controlling chromatin dynamics without interfering with chromatin structure, unlike in the usual recombinant DNA techniques. (author)

  12. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013.

    Science.gov (United States)

    Hastings, Janna; de Matos, Paula; Dekker, Adriano; Ennis, Marcus; Harsha, Bhavana; Kale, Namrata; Muthukrishnan, Venkatesh; Owen, Gareth; Turner, Steve; Williams, Mark; Steinbeck, Christoph

    2013-01-01

    ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now 'is_a' classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization. PMID:23180789

  13. FireDB: a compendium of biological and pharmacologically relevant ligands.

    Science.gov (United States)

    Maietta, Paolo; Lopez, Gonzalo; Carro, Angel; Pingilley, Benjamin J; Leon, Leticia G; Valencia, Alfonso; Tress, Michael L

    2014-01-01

    FireDB (http://firedb.bioinfo.cnio.es) is a curated inventory of catalytic and biologically relevant small ligand-binding residues culled from the protein structures in the Protein Data Bank. Here we present the important new additions since the publication of FireDB in 2007. The database now contains an extensive list of manually curated biologically relevant compounds. Biologically relevant compounds are informative because of their role in protein function, but they are only a small fraction of the entire ligand set. For the remaining ligands, the FireDB provides cross-references to the annotations from publicly available biological, chemical and pharmacological compound databases. FireDB now has external references for 95% of contacting small ligands, making FireDB a more complete database and providing the scientific community with easy access to the pharmacological annotations of PDB ligands. In addition to the manual curation of ligands, FireDB also provides insights into the biological relevance of individual binding sites. Here, biological relevance is calculated from the multiple sequence alignments of related binding sites that are generated from all-against-all comparison of each FireDB binding site. The database can be accessed by RESTful web services and is available for download via MySQL. PMID:24243844

  14. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  15. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  16. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    Science.gov (United States)

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested genes, mRNA…

  17. multiClust: An R-package for Identifying Biologically Relevant Clusters in Cancer Transcriptome Profiles

    Science.gov (United States)

    Lawlor, Nathan; Fabbri, Alec; Guan, Peiyong; George, Joshy; Karuturi, R. Krishna Murthy

    2016-01-01

    Clustering is carried out to identify patterns in transcriptomics profiles to determine clinically relevant subgroups of patients. Feature (gene) selection is a critical and an integral part of the process. Currently, there are many feature selection and clustering methods to identify the relevant genes and perform clustering of samples. However, choosing an appropriate methodology is difficult. In addition, extensive feature selection methods have not been supported by the available packages. Hence, we developed an integrative R-package called multiClust that allows researchers to experiment with the choice of combination of methods for gene selection and clustering with ease. Using multiClust, we identified the best performing clustering methodology in the context of clinical outcome. Our observations demonstrate that simple methods such as variance-based ranking perform well on the majority of data sets, provided that the appropriate number of genes is selected. However, different gene ranking and selection methods remain relevant as no methodology works for all studies. PMID:27330269

  18. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    Science.gov (United States)

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research. PMID:12705657

  19. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    OpenAIRE

    Parida Swarup K; Mukerji Mitali; Singh Ashok K; Singh Nagendra K; Mohapatra Trilochan

    2012-01-01

    Abstract Background Single nucleotide polymorphism (SNP) validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure...

  20. Physical interactions among plant MADS-box transcription factors and their biological relevance

    OpenAIRE

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal expression. In higher eudicot species around 2000 specific transcription factors are present, which can be classified into families based on conserved common domains. The MADS-box transcription factor fa...

  1. Unlocking the treasure trove: from genes to schizophrenia biology.

    Science.gov (United States)

    McCarthy, Shane E; McCombie, W Richard; Corvin, Aiden

    2014-05-01

    Significant progress is being made in defining the genetic etiology of schizophrenia. As the list of implicated genes grows, parallel developments in gene editing technology provide new methods to investigate gene function in model systems. The confluence of these two research fields--gene discovery and functional biology--may offer novel insights into schizophrenia etiology. We review recent advances in these fields, consider the likely obstacles to progress, and consider strategies as to how these can be overcome. PMID:24674812

  2. Endometrial stromal polyps in rodents: biology, etiology, and relevance to disease in women.

    Science.gov (United States)

    Davis, Barbara

    2012-04-01

    Endometrial stromal polyps (ESP) are a common spontaneous reproductive tract lesion in the female rat. However, there is limited information concerning the etiology, biology, and significance of these polyps as an end point in toxicology and carcinogenicity studies. This paper reviews relevant literature to address these aspects of ESP with respect to potential relevance to human uterine tumors. Endometrial stromal polyps in rodents appear as age-related lesions. There are only a few chemicals tested for carcinogenicity in rat and mouse cancer bioassays associated with increased incidence of ESP with no common characteristics or mechanism of action. Uterine endometrial polyps that occur in women and the uterine stromal polyps that occur in rodents have distinct characteristics, although both types of uterine lesions are common, benign, and noncancerous. Human endometrial polyps develop from both endometrial and stromal components, whereas rodent polyps develop from the stromal component of the uterus. Endometrial polyps in women are hormone sensitive, but there is no scientific or experimental evidence to date that suggests that uterine stromal polyps in rodents are hormone sensitive. Therefore, based on differences in their etiology and biology, endometrial stromal polyps observed in rodent toxicity and carcinogenicity studies appear to have limited relevance to human endometrial polyps occurring in women. PMID:22215514

  3. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    Directory of Open Access Journals (Sweden)

    Ma'ayan Avi

    2011-10-01

    Full Text Available Abstract Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  4. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  5. Nuclear Quantum Effects in the Dynamics of Biologically Relevant Systems from First Principles

    Science.gov (United States)

    Rossi, Mariana; Fang, Wei; Michaelides, Angelos

    Understanding the structure and dynamics of biomolecules is crucial for unveiling the physics behind biology-related processes. These molecules are very flexible and stabilized by a delicate balance of weak (quantum) interactions, thus requiring the inclusion of anharmonic entropic contributions and an accurate description of the electronic and nuclear structure from quantum mechanics. We here join state of the art density-functional theory (DFT) and path integral molecular dynamics (PIMD) to gain quantitative insight into biologically relevant systems. Our design of a better and more efficient approximation to quantum time correlation functions based on PIMD (TRPMD) enables the calculation of ab initio TCFs with which we calculate IR/vibrational spectra and diffusion coefficients. In stacked polyglutamine strands (structures often related to amyloid diseases) a combination of NQE and H-bond cooperativity provides a small free energy stabilization that we connect to a softening of high frequency modes, enhanced by nuclear quantum anharmonicity [3].

  6. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay.

    Science.gov (United States)

    Toro, Tasha B; Watt, Terry J

    2015-12-01

    Analysis of the human proteome has identified thousands of unique protein sequences that contain acetylated lysine residues in vivo. These modifications regulate a variety of biological processes and are reversed by the lysine deacetylase (KDAC) family of enzymes. Despite the known prevalence and importance of acetylation, the details of KDAC substrate recognition are not well understood. While several methods have been developed to monitor protein deacetylation, none are particularly suited for identifying enzyme-substrate pairs of label-free substrates across the entire family of lysine deacetylases. Here, we present a fluorescamine-based assay which is more biologically relevant than existing methods and amenable to probing substrate specificity. Using this assay, we evaluated the activity of KDAC8 and other lysine deacetylases, including a sirtuin, for several peptides derived from known acetylated proteins. KDAC8 showed clear preferences for some peptides over others, indicating that the residues immediately surrounding the acetylated lysine play an important role in substrate specificity. Steady-state kinetics suggest that the sequence surrounding the acetylated lysine affects binding affinity and catalytic rate independently. Our results provide direct evidence that potential KDAC8 substrates previously identified through cell based experiments can be directly deacetylated by KDAC8. Conversely, the data from this assay did not correlate well with predictions from previous screens for KDAC8 substrates using less biologically relevant substrates and assay conditions. Combining results from our assay with mass spectrometry-based experiments and cell-based experiments will allow the identification of specific KDAC-substrate pairs and lead to a better understanding of the biological consequences of these interactions. PMID:26402585

  7. The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons

    OpenAIRE

    Muro, E.M.; Mah, N.; Moreno-Hagelsieb, G.; Andrade-Navarro, M A

    2010-01-01

    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae's genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M....

  8. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    Science.gov (United States)

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  9. Building gene co-expression networks using transcriptomics data for systems biology investigations

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Watson-Haigh, Nathan S.

    2012-01-01

    connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT......Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four...... and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to...

  10. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  11. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    OpenAIRE

    Ozhigov, Yuri I.

    2013-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase ...

  12. The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery

    Directory of Open Access Journals (Sweden)

    El-Sayed Najib M

    2010-04-01

    Full Text Available Abstract Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5. Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence

  13. Solid-supported synthesis: From pharmacologically relevant heterocycles to biologically active surfaces

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.

    The present PhD thesis consists of an introduction part and two separate parts covering selected research projects during the PhD study. The introduction part describes the concept of solid-supported synthesis and combinatorial chemistry. The chapter covers recent achievements in materials...... for solid-phase synthesis, methods for on - and off-bead screening of combinatorial libraries and their applic ation to various biological targets. The first part of the thesis is dedicated to the development of methodology for the synthesis of structurally diverse heterocyclic scaffolds via N......-acyliminium intermediates on solid support. In Chapter 1.1, an intermolecular Mannich -type reaction of solid-supported N- acyliminium ions is reported. The method is useful for the solid -supported synthesis of substituted ?-lactames , which constitute a class of pharmacologically relevant small molecule scaffolds...

  14. Biologically relevant molecular transducer with increased computing power and iterative abilities.

    Science.gov (United States)

    Ratner, Tamar; Piran, Ron; Jonoska, Natasha; Keinan, Ehud

    2013-05-23

    As computing devices, which process data and interconvert information, transducers can encode new information and use their output for subsequent computing, offering high computational power that may be equivalent to a universal Turing machine. We report on an experimental DNA-based molecular transducer that computes iteratively and produces biologically relevant outputs. As a proof of concept, the transducer accomplished division of numbers by 3. The iterative power was demonstrated by a recursive application on an obtained output. This device reads plasmids as input and processes the information according to a predetermined algorithm, which is represented by molecular software. The device writes new information on the plasmid using hardware that comprises DNA-manipulating enzymes. The computation produces dual output: a quotient, represented by newly encoded DNA, and a remainder, represented by E. coli phenotypes. This device algorithmically manipulates genetic codes. PMID:23706637

  15. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    Science.gov (United States)

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  16. Modelling low energy electron and positron tracks in biologically relevant media

    Science.gov (United States)

    Blanco, Francisco; Muñoz, Antonio; Almeida, Diogo; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Fuss, Martina C.; Sanz, Ana G.; García, Gustavo

    2013-09-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named “Low Energy Particle Track Simulation (LEPTS)”, which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included.

  17. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    OpenAIRE

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W. Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H. Clifford; Lempicki, Richard A.

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretat...

  18. Biologically supervised hierarchical clustering algorithms for gene expression data.

    Science.gov (United States)

    Boratyn, Grzegorz M; Datta, Susmita; Datta, Somnath

    2006-01-01

    Cluster analysis has become a standard part of gene expression analysis. In this paper, we propose a novel semi-supervised approach that offers the same flexibility as that of a hierarchical clustering. Yet it utilizes, along with the experimental gene expression data, common biological information about different genes that is being complied at various public, Web accessible databases. We argue that such an approach is inherently superior than the standard unsupervised approach of grouping genes based on expression data alone. It is shown that our biologically supervised methods produce better clustering results than the corresponding unsupervised methods as judged by the distance from the model temporal profiles. R-codes of the clustering algorithm are available from the authors upon request. PMID:17947147

  19. Semantic Search among Heterogeneous Biological Databases Based on Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    Shun-Liang CAO; Lei QIN; Wei-Zhong HE; Yang ZHONG; Yang-Yong ZHU; Yi-Xue LI

    2004-01-01

    Semantic search is a key issue in integration of heterogeneous biological databases. In thispaper, we present a methodology for implementing semantic search in BioDW, an integrated biological datawarehouse. Two tables are presented: the DB2GO table to correlate Gene Ontology (GO) annotated entriesfrom BioDW data sources with GO, and the semantic similarity table to record similarity scores derived fromany pair of GO terms. Based on the two tables, multifarious ways for semantic search are provided and thecorresponding entries in heterogeneous biological databases in semantic terms can be expediently searched.

  20. Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Sun, Dianjun; Lv, Yingli

    2016-06-01

    Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms. PMID:26897376

  1. Psychiatric gene discoveries shape evidence on ADHD's biology

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-01-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10−4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  2. Psychiatric gene discoveries shape evidence on ADHD's biology.

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-09-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10(-4)) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  3. Biologic: Gene circuits and feedback in an introductory physics sequence for biology and premedical students

    CERN Document Server

    Cahn, S B

    2013-01-01

    Two synthetic gene circuits -- the genetic toggle switch and the repressilator -- are analyzed quantitatively and discussed in the context of an educational module on gene circuits and feedback that constitutes the final topic of a year-long introductory physics sequence, aimed at biology and premedical undergraduate students. The genetic toggle switch consists of two genes, each of whose protein product represses the other's expression, while the repressilator consists of three genes, each of whose protein product represses the next gene's expression. Analytic, numerical, and electronic treatments of the genetic toggle switch shows that this gene circuit realizes bistability. A simplified treatment of the repressilator reveals that this circuit can realize sustained oscillations. In both cases, a "phase diagram" is obtained, that specifies the region of parameter space in which bistability or oscillatory behavior, respectively, occurs.

  4. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    International Nuclear Information System (INIS)

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  5. Action video game players' visual search advantage extends to biologically relevant stimuli.

    Science.gov (United States)

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. PMID:26071923

  6. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kleine-Boymann, Matthias, E-mail: matthias.kleine-boymann@phys.chemie.uni-giessen.de; Rohnke, Marcus, E-mail: marcus.rohnke@phys.chemie.uni-giessen.de; Henss, Anja, E-mail: anja.henss@phys.chemie.uni-giessen.de; Peppler, Klaus, E-mail: klaus.peppler@phys.chemie.uni-giessen.de; Sann, Joachim, E-mail: joachim.sann@phys.chemie.uni-giessen.de; Janek, Juergen, E-mail: juergen.janek@phys.chemie.uni-giessen.de

    2014-08-01

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  7. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources

    OpenAIRE

    Bleda, Marta; Tarraga, Joaquín; de María, Alejandro; Salavert, Francisco; García-Alonso, Luz; Celma Giménez, Matilde; Martín Mayordomo, Ainoha; Dopazo, Joaquín; Medina, Ignacio

    2012-01-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositori...

  8. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    OpenAIRE

    Xia Yuannan; Nguyen The V; Lu Guoqing; Fromm Michael

    2006-01-01

    Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quanti...

  9. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer

    OpenAIRE

    Rachinger Andrea; Bartnik Ewa; Kupryjanczyk Jolanta; Bragoszewski Piotr; Ostrowski Jerzy

    2008-01-01

    Abstract Background In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and/or the level of mitochondrial gene expression could influence the clinical course of human ovarian carcinomas. Methods We sequenced a ...

  10. Gene-environment interaction and biological monitoring of occupational exposures

    International Nuclear Information System (INIS)

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants

  11. Enhancing Interpretability of Gene Signatures with Prior Biological Knowledge.

    Science.gov (United States)

    Squillario, Margherita; Barbieri, Matteo; Verri, Alessandro; Barla, Annalisa

    2016-01-01

    Biological interpretability is a key requirement for the output of microarray data analysis pipelines. The most used pipeline first identifies a gene signature from the acquired measurements and then uses gene enrichment analysis as a tool for functionally characterizing the obtained results. Recently Knowledge Driven Variable Selection (KDVS), an alternative approach which performs both steps at the same time, has been proposed. In this paper, we assess the effectiveness of KDVS against standard approaches on a Parkinson's Disease (PD) dataset. The presented quantitative analysis is made possible by the construction of a reference list of genes and gene groups associated to PD. Our work shows that KDVS is much more effective than the standard approach in enhancing the interpretability of the obtained results. PMID:27600081

  12. Study about the relevance and the disclosure of biological assets of listed companies in BM&FBOVESPA

    Directory of Open Access Journals (Sweden)

    Luciana Holtz

    2013-08-01

    Full Text Available The main objective this article is to verify that the information content of biological assets disclosed in the financial statements are relevant and, the secondary objective perform content analysis of the notes verifying the compliance of information supplied by entities with CPC 29. The study sample was composed of publicly traded stock companies listed on the BM & FBOVESPA with data for the year 2010 and 2011. The empirical tests were conducted applying relevance models, using observations of 347 active companies characterizing a study model pooled ordinary least squares – POLS, including companies that have reported biological assets into account specific .The companies that had values of biological assets posted have had analyzed explanatory notes referring to this account. The results provide empirical evidence that the information content of biological assets disclosed by companies is not relevant to the sample. In relation the content analysis of the notes was checked a partial compliance of the standard, there is a disparity in the information disclosure practices by the companies analyzed, as well as an omission of items required by the standard. Can be inferred that loss of the relevance has occurred, in part, by the poor quality of the notes, which may make it difficult for outside users in interpreting the information disclosed.

  13. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    CERN Document Server

    Ozhigov, Yuri I

    2014-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase is the sum of "aspirations" to change the classical states of meta- genes. Each individual life thus becomes one of possible outcomes of the virtual quantum measurement of this function. The evolution of genomes is described by the unitary operator in the space of psi-functions or by Kossovsky-Lindblad equation in the case of open biosystems. This operator contains all the information about specific conditions under which individuals are, and how "aspirations" of their meta- genes may be implemented at the biochemical lev...

  14. Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers.

    Directory of Open Access Journals (Sweden)

    Yingnan Chen

    Full Text Available BACKGROUND: Variegation in flower color is commonly observed in many plant species and also occurs on ornamental peaches (Prunus persica f. versicolor [Sieb.] Voss. Variegated plants are highly valuable in the floricultural market. To gain a global perspective on genes differentially expressed in variegated peach flowers, we performed large-scale transcriptome sequencing of white and red petals separately collected from a variegated peach tree. RESULTS: A total of 1,556,597 high-quality reads were obtained, with an average read length of 445 bp. The ESTs were assembled into 16,530 contigs and 42,050 singletons. The resulting unigenes covered about 60% of total predicted genes in the peach genome. These unigenes were further subjected to functional annotation and biochemical pathway analysis. Digital expression analysis identified a total of 514 genes differentially expressed between red and white flower petals. Since peach flower coloration is determined by the expression and regulation of structural genes relevant to flavonoid biosynthesis, a detailed examination detected four key structural genes, including C4H, CHS, CHI and F3H, expressed at a significantly higher level in red than in white petal. Except for the structural genes, we also detected 11 differentially expressed regulatory genes relating to flavonoid biosynthesis. Using the differentially expressed structural genes as the test objects, we validated the digital expression results by using quantitative real-time PCR, and the differential expression of C4H, CHS and F3H were confirmed. CONCLUSION: In this study, we generated a large EST collection from flower petals of a variegated peach. By digital expression analysis, we identified an informative list of candidate genes associated with variegation in peach flowers, which offered a unique opportunity to uncover the genetic mechanisms underlying flower color variegation.

  15. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    Science.gov (United States)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  16. StrateGene: object-oriented programming in molecular biology.

    Science.gov (United States)

    Carhart, R E; Cash, H D; Moore, J F

    1988-03-01

    This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object. PMID:3164229

  17. A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments

    OpenAIRE

    Min Zhao; Lei Kong; Hong Qu

    2014-01-01

    Although the intelligence quotient (IQ) is the most popular intelligence test in the world, little is known about the underlying biological mechanisms that lead to the differences in human. To improve our understanding of cognitive processes and identify potential biomarkers, we conducted a comprehensive investigation of 158 IQ-related genes selected from the literature. A genomic distribution analysis demonstrated that IQ-related genes were enriched in seven regions of chromosome 7 and the X...

  18. Hope for GWAS: Relevant Risk Genes Uncovered from GWAS Statistical Noise

    Directory of Open Access Journals (Sweden)

    Catarina Correia

    2014-09-01

    Full Text Available Hundreds of genetic variants have been associated to common diseases through genome-wide association studies (GWAS, yet there are limits to current approaches in detecting true small effect risk variants against a background of false positive findings. Here we addressed the missing heritability problem, aiming to test whether there are indeed risk variants within GWAS statistical noise and to develop a systematic strategy to retrieve these hidden variants. Employing an integrative approach, which combines protein-protein interactions with association data from GWAS for 6 common diseases, we found that associated-genes at less stringent significance levels (p < 0.1 with any of these diseases are functionally connected beyond noise expectation. This functional coherence was used to identify disease-relevant subnetworks, which were shown to be enriched in known genes, outperforming the selection of top GWAS genes. As a proof of principle, we applied this approach to breast cancer, supporting well-known breast cancer genes, while pinpointing novel susceptibility genes for experimental validation. This study reinforces the idea that GWAS are under-analyzed and that missing heritability is rather hidden. It extends the use of protein networks to reveal this missing heritability, thus leveraging the large investment in GWAS that produced so far little tangible gain.

  19. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer

    International Nuclear Information System (INIS)

    In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and/or the level of mitochondrial gene expression could influence the clinical course of human ovarian carcinomas. We sequenced a 1320-base-pair DNA fragment of the mitochondrial genome (position 16,000-750) in 54 cancer samples and in 44 corresponding germline control samples. In addition, six transcripts (MT-ATP6, MT-CO1, MT-CYB, MT-ND1, MT-ND6, and MT-RNR1) were quantified in 62 cancer tissues by real-time RT-PCR. Somatic mutations in the D-loop sequence were found in 57% of ovarian cancers. Univariate analysis showed no association between mitochondrial DNA mutation status or mitochondrial gene expression and any of the examined clinicopathologic parameters. A multivariate logistic regression model revealed that the expression of the mitochondrial gene RNR1 might be used as a predictor of tumour sensitivity to chemotherapy. In contrast to many previously published papers, our study indicates rather limited clinical relevance of mitochondrial molecular analyses in ovarian carcinomas. These discrepancies in the clinical utility of mitochondrial molecular tests in ovarian cancer require additional large, well-designed validation studies

  20. Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Rachinger Andrea

    2008-10-01

    Full Text Available Abstract Background In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and/or the level of mitochondrial gene expression could influence the clinical course of human ovarian carcinomas. Methods We sequenced a 1320-base-pair DNA fragment of the mitochondrial genome (position 16,000-750 in 54 cancer samples and in 44 corresponding germline control samples. In addition, six transcripts (MT-ATP6, MT-CO1, MT-CYB, MT-ND1, MT-ND6, and MT-RNR1 were quantified in 62 cancer tissues by real-time RT-PCR. Results Somatic mutations in the D-loop sequence were found in 57% of ovarian cancers. Univariate analysis showed no association between mitochondrial DNA mutation status or mitochondrial gene expression and any of the examined clinicopathologic parameters. A multivariate logistic regression model revealed that the expression of the mitochondrial gene RNR1 might be used as a predictor of tumour sensitivity to chemotherapy. Conclusion In contrast to many previously published papers, our study indicates rather limited clinical relevance of mitochondrial molecular analyses in ovarian carcinomas. These discrepancies in the clinical utility of mitochondrial molecular tests in ovarian cancer require additional large, well-designed validation studies.

  1. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function

    OpenAIRE

    Warde-Farley, David; Sylva L. Donaldson; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George

    2010-01-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis t...

  2. Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Attila Frigyesi

    2008-01-01

    Full Text Available Non-negative matrix factorization (NMF is a relatively new approach to analyze gene expression data that models data by additive combinations of non-negative basis vectors (metagenes. The non-negativity constraint makes sense biologically as genes may either be expressed or not, but never show negative expression. We applied NMF to five different microarray data sets. We estimated the appropriate number metagens by comparing the residual error of NMF reconstruction of data to that of NMF reconstruction of permutated data, thus finding when a given solution contained more information than noise. This analysis also revealed that NMF could not factorize one of the data sets in a meaningful way. We used GO categories and pre defined gene sets to evaluate the biological significance of the obtained metagenes. By analyses of meta- genes specific for the same GO-categories we could show that individual metagenes activated different aspects of the same biological processes. Several of the obtained metagenes correlated with tumor subtypes and tumors with characteristic chromosomal translocations, indicating that metagenes may correspond to specific disease entities. Hence, NMF extracts biological relevant structures of microarray expression data and may thus contribute to a deeper understanding of tumor behavior.

  3. "Evo in the News:" Understanding Evolution and Students' Attitudes toward the Relevance of Evolutionary Biology

    Science.gov (United States)

    Infanti, Lynn M.; Wiles, Jason R.

    2014-01-01

    This investigation evaluated the effects of exposure to the "Evo in the News" section of the "Understanding Evolution" website on students' attitudes toward biological evolution in undergraduates in a mixed-majors introductory biology course at Syracuse University. Students' attitudes toward evolution and changes therein were…

  4. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources

    Science.gov (United States)

    Bleda, Marta; Tarraga, Joaquin; de Maria, Alejandro; Salavert, Francisco; Garcia-Alonso, Luz; Celma, Matilde; Martin, Ainoha; Dopazo, Joaquin; Medina, Ignacio

    2012-01-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information. In addition, data size is increasingly becoming an obstacle when accessing or storing biological data. All these issues make very difficult to extract and integrate information from different sources, to analyze experiments or to access and query this information in a programmatic way. CellBase provides a solution to the growing necessity of integration by easing the access to biological data. CellBase implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. The database is hosted in our servers and is regularly updated. CellBase documentation can be found at http://docs.bioinfo.cipf.es/projects/cellbase. PMID:22693220

  5. Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host-parasite relationship.

    Science.gov (United States)

    Cancela, Martín; Santos, Guilherme B; Carmona, Carlos; Ferreira, Henrique B; Tort, José Francisco; Zaha, Arnaldo

    2015-12-01

    Fasciola hepatica is the causative agent of fasciolosis, a zoonosis with significant impact both in human and animal health. Understanding the basic processes of parasite biology, especially those related to interactions with its host, will contribute to control F. hepatica infections and hence liver pathology. Mucins have been described as important mediators for parasite establishment within its host, due to their key roles in immune evasion. In F. hepatica, mucin expression is upregulated in the mammalian invasive newly excysted juvenile (NEJ) stage in comparison with the adult stage. Here, we performed sequencing of mucin cDNAs prepared from NEJ RNA, resulting in six different cDNAs clusters. The differences are due to the presence of a tandem repeated sequence of 66 bp encoded by different exons. Two groups of apomucins one with three and the other with four repeats, with 459 and 393 bp respectively, were identified. These cDNAs have open reading frames encoding Ser-Thr enriched proteins with an N-terminal signal peptide, characteristic of apomucin backbone. We cloned a 4470 bp gene comprising eight exons and seven introns that encodes all the cDNA variants identified in NEJs. By real time polymerase chain reaction and high-resolution melting approaches of individual flukes we infer that fhemuc-1 is a single-copy gene, with at least two different alleles. Our data suggest that both gene polymorphism and alternative splicing might account for apomucin variability in the fhemuc-1 gene that is upregulated in NEJ invasive stage. The relevance of this variation in host-parasite interplay is discussed. PMID:26440911

  6. System biology approach to detect and assign biological functions and regulator genes to feed efficiency traits in Nellore cattle

    DEFF Research Database (Denmark)

    Alexandre, Pâmela; Kogelman, Lisette; Santana, Miguel; Eler, Joanir; Kadarmideen, Haja; Fukumasu, Heidge

    The objective of this study was to use a system biology approach to identify biological mechanisms involved on feed efficiency in Nellore cattle and its possible regulator genes. Two modules of co-expressed and highly inter-connected genes correlated to feed efficiency were identified as well as ...

  7. A combination of transcriptome and methylation analyses reveals embryologically-relevant candidate genes in MRKH patients

    Directory of Open Access Journals (Sweden)

    Riess Olaf

    2011-05-01

    Full Text Available Abstract Background The Mayer-Rokitansky-Küster-Hauser (MRKH syndrome is present in at least 1 out of 4,500 female live births and is the second most common cause for primary amenorrhea. It is characterized by vaginal and uterine aplasia in an XX individual with normal secondary characteristics. It has long been considered a sporadic anomaly, but familial clustering occurs. Several candidate genes have been studied although no single factor has yet been identified. Cases of discordant monozygotic twins suggest that the involvement of epigenetic factors is more likely. Methods Differences in gene expression and methylation patterns of uterine tissue between eight MRKH patients and eight controls were identified using whole-genome microarray analyses. Results obtained by expression and methylation arrays were confirmed by qRT-PCR and pyrosequencing. Results We delineated 293 differentially expressed and 194 differentially methylated genes of which nine overlap in both groups. These nine genes are mainly embryologically relevant for the development of the female genital tract. Conclusion Our study used, for the first time, a combined whole-genome expression and methylation approach to reveal the etiology of the MRKH syndrome. The findings suggest that either deficient estrogen receptors or the ectopic expression of certain HOXA genes might lead to abnormal development of the female reproductive tract. In utero exposure to endocrine disruptors or abnormally high maternal hormone levels might cause ectopic expression or anterior transformation of HOXA genes. It is, however, also possible that different factors influence the anti-Mullerian hormone promoter activity during embryological development causing regression of the Müllerian ducts. Thus, our data stimulate new research directions to decipher the pathogenic basis of MRKH syndrome.

  8. The Fortymile caribou herd: novel proposed management and relevant biology, 1992-1997

    Directory of Open Access Journals (Sweden)

    Rodney D. Boertje

    2000-04-01

    Full Text Available A diverse, international Fortymile Planning Team wrote a novel Fortymile caribou herd {Rangifer tarandus granti Management Plan in 1995 (Boertje & Gardner, 1996: 56-77. The primary goal of this plan is to begin restoring the Fortymile herd to its former range; >70% of the herd's former range was abandoned as herd size declined. Specific objectives call for increasing the Fortymile herd by at least 5-10% annually from 1998-2002. We describe demographics of the herd, factors limiting the herd, and condition of the herd and range during 1992-1997. These data were useful in proposing management actions for the herd and should be instrumental in future evaluations of the plan's actions. The following points summarize herd biology relevant to management proposed by the Fortymile Planning Team: 1. Herd numbers remained relatively stable during 1990-1995 (about 22 000-23 000 caribou. On 21 June 1996 we counted about 900 additional caribou in the herd, probably a result of increased pregnancy rates in 1996. On 26 June 1997 we counted about 2500 additional caribou in the herd, probably a result of recruitment of the abundant 1996 calves and excellent early survival of the 1997 calves. The Team deemed that implementing management actions during a period of natural growth would be opportune. 2. Wolf (Canis lupus and grizzly bear (Ursus arctos predation were the most important sources of mortality, despite over a decade of the most liberal regulations in the state for harvesting of wolves and grizzly bears. Wolves were the most important predator. Wolves killed between 2000 and 3000 caribou calves annually during this study and between 1000 and 2300 older caribou; 1200-1900 calves were killed from May through September. No significant differences in annual wolf predation rates on calves or adults were observed between 1994 and early winter 1997. Reducing wolf predation was judged by the Team to be the most manageable way to help hasten or stimulate

  9. Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides.

    Science.gov (United States)

    Zhang, Tao; Hu, Xuejiao; Wang, Zhen; Yang, Tiantian; Sun, Hao; Li, Guigen; Lu, Hongjian

    2016-02-24

    An iridium-catalyzed C-H amination of arenes with a wide substrate scope is reported. Benzamides with electron-donating and -withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention. PMID:26712274

  10. An analysis of the positional distribution of DNA motifs in promoter regions and its biological relevance

    OpenAIRE

    Vinga Susana; Casimiro Ana C; Freitas Ana T; Oliveira Arlindo L

    2008-01-01

    Abstract Background Motif finding algorithms have developed in their ability to use computationally efficient methods to detect patterns in biological sequences. However the posterior classification of the output still suffers from some limitations, which makes it difficult to assess the biological significance of the motifs found. Previous work has highlighted the existence of positional bias of motifs in the DNA sequences, which might indicate not only that the pattern is important, but als...

  11. The relevance and potential roles of microphysiological systems in biology and medicine

    OpenAIRE

    Wikswo, John P.

    2014-01-01

    Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and s...

  12. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC50 = 0.490 mg L−1) and embryo-larval development (IC50 = 0.135 mg L−1) tests were above environmental relevant concentrations (ng L−1) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L−1, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  13. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan

    2014-05-12

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  14. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful. PMID:17157770

  15. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and dru

  16. Relevance of EGFR gene mutation with pathological features and prognosis in patients with non-small-cell lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng-De; Wang; Xin-Rong; Wang; Chao-Yang; Wang; Yi-Jun; Tang; Ming-Wen; Hao

    2015-01-01

    Objective:To study the relevance of EGFR gene mutation with pathological features and prognosis in patients with non-small-cell lung carcinoma.Methods:A total of 297 patients from July 2009 to May 2013 were chosen as objects.EGFR gene mutation were detected with fluorescence quantitative PCR.Relevance of EGFR gene mutation with clinical and pathological features was analyzed,and the prognosis of EGFR- mutant-patients and that of EGFR- wide type-patients was compared.Results:In 297 patients.136(45.79%) showed EGFR gene mutation.EGFR gene mutation had no significant relevance with age.gender,smoking history,family history of cancer and clinical stage(P>0.05);there was significant relevance between EGFR gene mutation and blood type,pathologic types,differentiation and diameter of cancer(P<0.05).The difference between prognosis of EGFR- mutant-patients and that of EGFR- wide type-patients was statistical significance(P<0.05).Conclusions:EGFR gene mutation has significant relevance with pathological features,the prognosis of EGFRmutant-paticnts is better than that of EGFR- wide type-patients.

  17. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    OpenAIRE

    Hill, D. P.; Adams, N.; Bada, M.; Batchelor, C.; Berardini, T. Z.; H. Dietze; Drabkin, H.J.; Ennis, M.; Foulger, R. E.; Harris, M. A.; Hastings, J.; Kale, N. S.; Matos, P.; Mungall, C. J.; Owen, G.

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Inte...

  18. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments (Final Report)

    Science.gov (United States)

    This technical paper provides defensible approximations for what the depth of the biologically active zone, or “biotic zone” is within certain environments. The methods used in this study differ somewhat between Part 1 (Terrestrial Biotic Zone) and Part 2 (Aquatic Biotic Zone). ...

  19. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport

    DEFF Research Database (Denmark)

    Bonne, Thomas Christian; Lundby, Carsten; Lundby, Anne Kristine;

    2015-01-01

    The impact of altitude training on haematological parameters and the Athlete Biological Passport (ABP) was evaluated in international-level elite athletes. One group of swimmers lived high and trained high (LHTH, n = 10) for three to four weeks at 2130 m or higher whereas a control group (n = 10)...

  20. Is 'class effect' relevant when assessing the benefit/risk profile of a biologic agent?

    NARCIS (Netherlands)

    Sterry, W.; Kerkhof, P.C.M. van de

    2012-01-01

    Psoriasis is a chronic, genetically predisposed skin disorder, characterised by thickened scaly plaques. Although no therapy is recognised as curative, therapies aimed at symptom control include biologic agents that are generally designed to block molecular activation of cellular pathways of a patho

  1. Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature

    OpenAIRE

    Hayes, J.; Thygesen, H., Helene; Tumilson, C; Droop, A; Boissinot, M; Hughes, TA; Westhead, D; Alder, JE; Shaw, L; Short, SC; Lawler, SE

    2015-01-01

    Background: Glioblastoma is the most aggressive primary brain tumor, and is associated with a very poor prognosis. In this study we investigated the potential of microRNA expression profiles to predict survival in this challenging disease. Methods: MicroRNA and mRNA expression data from glioblastoma (n=475) and grade II and III glioma (n=178) were accessed from The Cancer Genome Atlas. LASSO regression models were used to identify a prognostic microRNA signature. Functionally relevant targets...

  2. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    Science.gov (United States)

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  3. Biological, clinical and population relevance of 95 loci for blood lipids

    DEFF Research Database (Denmark)

    Teslovich, Tanya M; Musunuru, Kiran; Smith, Albert V;

    2010-01-01

    in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken...

  4. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa

    OpenAIRE

    Akinbo, Olalekan; Hancock, James F.; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, ce...

  5. The biology and clinical relevance of somatostatin receptor scintigraphy in adrenal tumor management.

    OpenAIRE

    Kennedy, J.W.; Dluhy, R G

    1997-01-01

    Somatostatin receptors are present in the normal adrenal cortex and medulla. These receptors are also expressed by tumors that cause Cushing's syndrome and by pheochromocytomas. Somatostatin analogues such as octreotide have been developed to target somatostatin receptors for diagnostic and therapeutic purposes. This article reviews the current knowledge of the biology of somatostatin receptors in the normal adrenal gland and in adrenal tumors and defines the current role of the somatostatin ...

  6. A Boolean-based systems biology approach to predict novel genes associated with cancer: Application to colorectal cancer

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2011-02-01

    Full Text Available Abstract Background Cancer has remarkable complexity at the molecular level, with multiple genes, proteins, pathways and regulatory interconnections being affected. We introduce a systems biology approach to study cancer that formally integrates the available genetic, transcriptomic, epigenetic and molecular knowledge on cancer biology and, as a proof of concept, we apply it to colorectal cancer. Results We first classified all the genes in the human genome into cancer-associated and non-cancer-associated genes based on extensive literature mining. We then selected a set of functional attributes proven to be highly relevant to cancer biology that includes protein kinases, secreted proteins, transcription factors, post-translational modifications of proteins, DNA methylation and tissue specificity. These cancer-associated genes were used to extract 'common cancer fingerprints' through these molecular attributes, and a Boolean logic was implemented in such a way that both the expression data and functional attributes could be rationally integrated, allowing for the generation of a guilt-by-association algorithm to identify novel cancer-associated genes. Finally, these candidate genes are interlaced with the known cancer-related genes in a network analysis aimed at identifying highly conserved gene interactions that impact cancer outcome. We demonstrate the effectiveness of this approach using colorectal cancer as a test case and identify several novel candidate genes that are classified according to their functional attributes. These genes include the following: 1 secreted proteins as potential biomarkers for the early detection of colorectal cancer (FXYD1, GUCA2B, REG3A; 2 kinases as potential drug candidates to prevent tumor growth (CDC42BPB, EPHB3, TRPM6; and 3 potential oncogenic transcription factors (CDK8, MEF2C, ZIC2. Conclusion We argue that this is a holistic approach that faithfully mimics cancer characteristics, efficiently predicts

  7. Gene dosage as a relevant mechanism contributing to the determination of ovarian function in Turner syndrome

    Science.gov (United States)

    Castronovo, Chiara; Rossetti, Raffaella; Rusconi, Daniela; Recalcati, Maria P.; Cacciatore, Chiara; Beccaria, Elena; Calcaterra, Valeria; Invernizzi, Pietro; Larizza, Daniela; Finelli, Palma; Persani, Luca

    2014-01-01

    array-CGH analysis and confirmed by real-time quantitative PCR, including a BMP15 gene duplication at Xp11.22, a deletion interrupting the PAPPA gene at 9q33.1, and an intragenic duplication involving the PDE8A gene at 15q25.3. LIMITATIONS, REASONS FOR CAUTION This is a pilot study on a relatively small sample size and confirmation in larger TS cohorts may be required. The ovarian tissue could not be studied in any patients and in a subgroup of patients, the mosaicism was estimated in tissues of different embryonic origin. WIDER IMPLICATIONS OF THE FINDINGS The combined determination of X chromosome mosaicism by molecular and molecular-cytogenetic techniques may become useful for the prediction of SM in TS. The detection of CNVs in both X-linked and autosomal ovary-related genes further suggests gene dosage as a relevant mechanism contributing to the ovarian phenotype of TS patients. These CNVs may pinpoint novel candidates relevant to female fertility and generate further insights into the mechanisms contributing to ovarian function. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Telethon Foundation (grant no: GGP09126 to L.P.), the Italian Ministry of the University and Research (grant number: 2006065999 to P.F.) and a Ministry of Health grant ‘Ricerca Corrente’ to IRCCS Istituto Auxologico Italiano (grant number: 08C704-2006). The authors have no conflict of interest to declare. PMID:24324027

  8. Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans.

    Science.gov (United States)

    Fekete, Erzsébet; Orosz, Anita; Kulcsár, László; Kavalecz, Napsugár; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    In Aspergillus nidulans, uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene (lacpA) reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for lacpB appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double lacpA/lacpB-deletant strains are unable to produce new biomass from lactose. Although transcription of both lacp genes was strongly induced by lactose, their inducer profiles differ markedly. lacpA but not lacpB expression was high in d-galactose cultures. However, lacpB responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any lacpA response. Nevertheless, lacpB transcript was induced to higher levels on cellobiose in strains that lack the lacpA gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in lacpA deletants. In contrast, in lacpB knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in A. nidulans prominently involves hitherto unknown transport systems. PMID:26935851

  9. Biologically relevant 3D tumor arrays: treatment response and the importance of stromal partners

    Science.gov (United States)

    Rizvi, Imran; Celli, Jonathan P.; Xu, Feng; Evans, Conor L.; Abu-Yousif, Adnan O.; Muzikansky, Alona; Elrington, Stefan A.; Pogue, Brian W.; Finkelstein, Dianne M.; Demirci, Utkan; Hasan, Tayyaba

    2011-02-01

    The development and translational potential of therapeutic strategies for cancer is limited, in part, by a lack of biological models that capture important aspects of tumor growth and treatment response. It is also becoming increasingly evident that no single treatment will be curative for this complex disease. Rationally-designed combination regimens that impact multiple targets provide the best hope of significantly improving clinical outcomes for cancer patients. Rapidly identifying treatments that cooperatively enhance treatment efficacy from the vast library of candidate interventions is not feasible, however, with current systems. There is a vital, unmet need to create cell-based research platforms that more accurately mimic the complex biology of human tumors than monolayer cultures, while providing the ability to screen therapeutic combinations more rapidly than animal models. We have developed a highly reproducible in vitro three-dimensional (3D) tumor model for micrometastatic ovarian cancer (OvCa), which in conjunction with quantitative image analysis routines to batch-process large datasets, serves as a high throughput reporter to screen rationally-designed combination regimens. We use this system to assess mechanism-based combination regimens with photodynamic therapy (PDT), which sensitizes OvCa to chemo and biologic agents, and has shown promise in clinic trials. We show that PDT synergistically enhances carboplatin efficacy in a sequence dependent manner. In printed heterocellular cultures we demonstrate that proximity of fibroblasts enhances 3D tumor growth and investigate co-cultures with endothelial cells. The principles described here could inform the design and evaluation of mechanism-based therapeutic options for a broad spectrum of metastatic solid tumors.

  10. Extracting biologically significant patterns from short time series gene expression data

    Directory of Open Access Journals (Sweden)

    McGinnis Thomas

    2009-08-01

    Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.

  11. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  12. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    Science.gov (United States)

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  13. What does biologically meaningful mean? A perspective on gene regulatory network validation

    OpenAIRE

    Walhout, Albertha JM

    2011-01-01

    Gene regulatory networks (GRNs) are rapidly being delineated, but their quality and biological meaning are often questioned. Here, I argue that biological meaning is challenging to define and discuss reasons why GRN validation should be interpreted cautiously.

  14. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMDmdx/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmdmdx/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  15. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    Science.gov (United States)

    Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M

    2016-02-01

    By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening. PMID:26844980

  16. BIOLOGICAL THERAPY AND INFECTIONS IN PATIENTS WITH RHEUMATOID ARTHRITIS: RELEVANCE AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    B. S. Belov

    2014-01-01

    Full Text Available The past decades are marked by the obvious progress in rheumatology, which is related to the practical introduction of biological agents. At the same time the use of these drugs is associated with the increasing risk of infections of different nature and locations, including opportunistic ones (invasive mycoses, Pneumocystis pneumonia, etc., and with the greater risk of reactivation of latent infection, primary with that of tuberculosis. Beyond that point, there are cases of severe infections (pneumonia, sepsis, bacterial arthritis, skin and soft tissue lesions, etc., including those with a fatal outcome. This review analyzes mainly the past 3-year literature data on the rate and location of infections treated with biologics, which have been obtained in the placebo-controlled and direct comparative studies of patients with rheuma- toid arthritis. It characterizes the importance of different infections (tuberculosis, pneumonia, chronic viral hepati- tides, herpesvirus infections, etc. for treatment policy in the above patients. This underlines the need for wider immu- nization with different vaccines (chiefly against pneumococcus and influenza in patients with autoimmune inflam- matory rheumatic diseases. 

  17. Collisions between low-energy electrons and small polyatomic targets of biological relevance

    Science.gov (United States)

    Hargreaves, Leigh

    2016-05-01

    Over the last decade, cross section measurements and calculations for DNA prototype molecules have received significant attention from the collisions community, due to the potential applications of this data in modelling electron transport through biological matter with a view to improving radiation dosimetry. Such data are additionally interesting from a fundamental aspect, as small carbon-based molecules are ideal targets for considering effects including target conformation, long-range dynamical interactions and coupling effects between the various degrees of freedom on the scattering properties of the target. At the California State University Fullerton, we have made a series of measurements of the elastic, vibrationally inelastic and electronically inelastic cross sections for a variety of small polyatomic targets, including water and the basic alcohols, ethylene, toluene and several fluorinated alkanes. These processes are important in a range of applications, primarily for modelling electron transport and thermalization, and energy deposition to a biological media. The data were obtained using a high resolution electron energy-loss spectrometer, operating in a crossed beam configuration with a moveable aperture gas source. The gas source design facilitates both an expedient and highly accurate method of removing background signal, and removes uncertainties from the data due to uncertainties in the beam profile. We have also performed scattering calculations employing the Schwinger Multichannel method, in collaboration with the California institute of technology, to compare with our measurements. In this talk, I will present an overview of our recent data and future research plans.

  18. The relevance of nanoscale biological fragments for ice nucleation in clouds

    Science.gov (United States)

    O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.

    2015-01-01

    Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.

  19. The classification of gene products in the molecular biology domain: Realism, objectivity, and the limitations of the Gene Ontology

    OpenAIRE

    Mayor, Charlie

    2012-01-01

    Background: Controlled vocabularies in the molecular biology domain exist to facilitate data integration across database resources. One such tool is the Gene Ontology (GO), a classification designed to act as a universal index for gene products from any species. The Gene Ontology is used extensively in annotating gene products and analysing gene expression data, yet very little research exists from a library and information science perspective exploring the design principles, philosophy and s...

  20. Solid state structures of cadmium complexes with relevance for biological systems.

    Science.gov (United States)

    Carballo, Rosa; Castiñeiras, Alfonso; Domínguez-Martín, Alicia; García-Santos, Isabel; Niclós-Gutiérrez, Juan

    2013-01-01

    This chapter provides a review of the literature on structural information from crystal structures determined by X-ray diffractometry of cadmium(II) complexes containing ligands of potential biological interest. These ligands fall into three broad classes, (i) those containing N-donors such as purine or pyrimidine bases and derivatives of adenine, guanine or cytosine, (ii) those containing carboxylate groups such as α-amino acids, in particular the twenty essential ones, the water soluble vitamins (B-complex) or the polycarboxylates of EDTA type ligands, and (iii) S-donors such as thiols/thiolates or dithiocarbamates. A crystal and molecular structural analysis has been carried out for some representative complexes of these ligands, specifically addressing the coordination mode of ligands, the coordination environment of cadmium and, in some significant cases, the intermolecular interactions. PMID:23430774

  1. Characterization of free radical-induced base damage in DNA at biologically relevant levels

    International Nuclear Information System (INIS)

    DNA damage induced by oxygen radicals, e.g., hydroxyl radicals generated in living cells either by cellular metabolism or external agents such as ionizing radiations, appears to play an important role in mutagenesis, carcinogenesis, and aging. Elucidation of the chemical nature of such DNA lesions at biologically significant quantities is required for the assessment of their biological consequences and repair. For this purpose, a sensitive method using gas chromatography-mass spectrometry with the selected-ion-monitoring technique (GC-MS/SIM) was developed in the present work. DNA was exposed to hydroxyl radicals and hydrogen atoms produced by ionizing radiation in N2O-saturated aqueous solution. DNA samples were subsequently hydrolyzed with formic acid, trimethylsilylated, and analyzed by GC-MS/SIM. Characteristic ions from previously known mass spectra of DNA base products as their trimethylsilyl derivatives were recorded and the area counts of each ion were integrated. From these acquired data, a partial mass spectrum of each product was generated and then compared with those of authentic materials. This technique permitted the detection and characterization of a large number of free radical-induced based products of DNA, i.e., 5,6-dihydrothymine, 5-hydroxy-5,6-dihydrothymine, 5-hydroxymethyluracil, 5-hydroxyuracil, 5-hydroxycytosine, thymine glycol, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine, simultaneously in a single sample after radiation doses from 0.1 to 10 Gy. Detectable amounts of the base products were found to be as low as approximately 10 fmol per injection

  2. Gene-Set Local Hierarchical Clustering (GSLHC--A Gene Set-Based Approach for Characterizing Bioactive Compounds in Terms of Biological Functional Groups.

    Directory of Open Access Journals (Sweden)

    Feng-Hsiang Chung

    Full Text Available Gene-set-based analysis (GSA, which uses the relative importance of functional gene-sets, or molecular signatures, as units for analysis of genome-wide gene expression data, has exhibited major advantages with respect to greater accuracy, robustness, and biological relevance, over individual gene analysis (IGA, which uses log-ratios of individual genes for analysis. Yet IGA remains the dominant mode of analysis of gene expression data. The Connectivity Map (CMap, an extensive database on genomic profiles of effects of drugs and small molecules and widely used for studies related to repurposed drug discovery, has been mostly employed in IGA mode. Here, we constructed a GSA-based version of CMap, Gene-Set Connectivity Map (GSCMap, in which all the genomic profiles in CMap are converted, using gene-sets from the Molecular Signatures Database, to functional profiles. We showed that GSCMap essentially eliminated cell-type dependence, a weakness of CMap in IGA mode, and yielded significantly better performance on sample clustering and drug-target association. As a first application of GSCMap we constructed the platform Gene-Set Local Hierarchical Clustering (GSLHC for discovering insights on coordinated actions of biological functions and facilitating classification of heterogeneous subtypes on drug-driven responses. GSLHC was shown to tightly clustered drugs of known similar properties. We used GSLHC to identify the therapeutic properties and putative targets of 18 compounds of previously unknown characteristics listed in CMap, eight of which suggest anti-cancer activities. The GSLHC website http://cloudr.ncu.edu.tw/gslhc/ contains 1,857 local hierarchical clusters accessible by querying 555 of the 1,309 drugs and small molecules listed in CMap. We expect GSCMap and GSLHC to be widely useful in providing new insights in the biological effect of bioactive compounds, in drug repurposing, and in function-based classification of complex diseases.

  3. Gene-Set Local Hierarchical Clustering (GSLHC)--A Gene Set-Based Approach for Characterizing Bioactive Compounds in Terms of Biological Functional Groups.

    Science.gov (United States)

    Chung, Feng-Hsiang; Jin, Zhen-Hua; Hsu, Tzu-Ting; Hsu, Chueh-Lin; Liu, Hsueh-Chuan; Lee, Hoong-Chien

    2015-01-01

    Gene-set-based analysis (GSA), which uses the relative importance of functional gene-sets, or molecular signatures, as units for analysis of genome-wide gene expression data, has exhibited major advantages with respect to greater accuracy, robustness, and biological relevance, over individual gene analysis (IGA), which uses log-ratios of individual genes for analysis. Yet IGA remains the dominant mode of analysis of gene expression data. The Connectivity Map (CMap), an extensive database on genomic profiles of effects of drugs and small molecules and widely used for studies related to repurposed drug discovery, has been mostly employed in IGA mode. Here, we constructed a GSA-based version of CMap, Gene-Set Connectivity Map (GSCMap), in which all the genomic profiles in CMap are converted, using gene-sets from the Molecular Signatures Database, to functional profiles. We showed that GSCMap essentially eliminated cell-type dependence, a weakness of CMap in IGA mode, and yielded significantly better performance on sample clustering and drug-target association. As a first application of GSCMap we constructed the platform Gene-Set Local Hierarchical Clustering (GSLHC) for discovering insights on coordinated actions of biological functions and facilitating classification of heterogeneous subtypes on drug-driven responses. GSLHC was shown to tightly clustered drugs of known similar properties. We used GSLHC to identify the therapeutic properties and putative targets of 18 compounds of previously unknown characteristics listed in CMap, eight of which suggest anti-cancer activities. The GSLHC website http://cloudr.ncu.edu.tw/gslhc/ contains 1,857 local hierarchical clusters accessible by querying 555 of the 1,309 drugs and small molecules listed in CMap. We expect GSCMap and GSLHC to be widely useful in providing new insights in the biological effect of bioactive compounds, in drug repurposing, and in function-based classification of complex diseases. PMID:26473729

  4. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA. PMID:27070761

  5. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  6. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    Science.gov (United States)

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water. PMID:21394332

  7. Regulatory T Cells in Colorectal Cancer: From Biology to Prognostic Relevance

    International Nuclear Information System (INIS)

    Regulatory T cells (Tregs) were initially described as “suppressive” lymphocytes in the 1980s. However, it took almost 20 years until the concept of Treg-mediated immune control in its present form was finally established. Tregs are obligatory for self-tolerance and defects within their population lead to severe autoimmune disorders. On the other hand Tregs may promote tolerance for tumor antigens and even hamper efforts to overcome it. Intratumoral and systemic accumulation of Tregs has been observed in various types of cancer and is often linked to worse disease course and outcome. Increase of circulating Tregs, as well as their presence in mesenteric lymph nodes and tumor tissue of patients with colorectal cancer de facto suggests a strong involvement of Tregs in the antitumor control. This review will focus on the Treg biology in view of colorectal cancer, means of Treg accumulation and the controversies regarding their prognostic significance. In addition, a concise overview will be given on how Tregs and their function can be targeted in cancer patients in order to bolster an inherent immune response and/or increase the efficacy of immunotherapeutic approaches

  8. Regulatory T Cells in Colorectal Cancer: From Biology to Prognostic Relevance

    Energy Technology Data Exchange (ETDEWEB)

    Mougiakakos, Dimitrios [Department of Oncology and Pathology, Immune and Gene Therapy Unit, Cancer Centre Karolinska, CCK R8:01, 17176 Stockholm (Sweden)

    2011-03-29

    Regulatory T cells (Tregs) were initially described as “suppressive” lymphocytes in the 1980s. However, it took almost 20 years until the concept of Treg-mediated immune control in its present form was finally established. Tregs are obligatory for self-tolerance and defects within their population lead to severe autoimmune disorders. On the other hand Tregs may promote tolerance for tumor antigens and even hamper efforts to overcome it. Intratumoral and systemic accumulation of Tregs has been observed in various types of cancer and is often linked to worse disease course and outcome. Increase of circulating Tregs, as well as their presence in mesenteric lymph nodes and tumor tissue of patients with colorectal cancer de facto suggests a strong involvement of Tregs in the antitumor control. This review will focus on the Treg biology in view of colorectal cancer, means of Treg accumulation and the controversies regarding their prognostic significance. In addition, a concise overview will be given on how Tregs and their function can be targeted in cancer patients in order to bolster an inherent immune response and/or increase the efficacy of immunotherapeutic approaches.

  9. A genetic contribution to cooperation: dopamine-relevant genes are associated with social facilitation.

    Science.gov (United States)

    Walter, Nora T; Markett, Sebastian A; Montag, Christian; Reuter, Martin

    2011-01-01

    Social loafing and social facilitation are stable behavioral effects that describe increased or decreased motivation, as well as effort and cooperation in teamwork as opposed to individual working situations. Recent twin studies demonstrate the heritability of cooperative behavior. Brain imaging studies have shown that reciprocity, cooperativeness, and social rewards activate reward processing areas with strong dopaminergic input, such as the ventral striatum. Thus, candidate genes for social behavior are hypothesized to affect dopaminergic neurotransmission. In the present study, we investigated the dopaminergic genetic contribution to social cooperation, especially to social loafing and social facilitation. N = 106 healthy, Caucasian subjects participated in the study and were genotyped for three polymorphisms relevant to the dopaminergic system (COMTval158met, DRD2 c957t, DRD2 rs#2283265). In addition to a main effect indicating an increased performance in teamwork situations, we found a significant interaction between a haplotype block covering both DRD2 single nucleotide polymorphisms (SNPs) (rs#6277 and rs#2283265), henceforth referred to as the DRD2-haplotype block, and the COMT val158met polymorphism (rs#4680) with social facilitation. Carriers of the DRD2 CT-haplotype block and at least one Val-allele showed a greater increase in performance in teamwork settings when compared with carriers of the CT-haplotype block and the Met/Met-genotype. Our results suggest that epistasis between COMTval158met and the two DRD2 SNPs contributes to individual differences in cooperativeness in teamwork settings. PMID:21061227

  10. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  11. Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Squamous cell carcinoma of the oral cavity (OSCC) is a common cancer form with relatively low 5-year survival rates, due partially to late detection and lack of complementary molecular markers as targets for treatment. Molecular profiling of head and neck cancer has revealed biological similarities with basal-like breast and lung carcinoma. Recently, we showed that 16 genes were consistently altered in invasive breast tumors displaying varying degrees of aggressiveness. To extend our findings from breast cancer to another cancer type with similar characteristics, we performed an integrative analysis of transcriptomic and proteomic data to evaluate the prognostic significance of the 16 putative breast cancer-related biomarkers in OSCC using independent microarray datasets and immunohistochemistry. Predictive models for disease-specific (DSS) and/or overall survival (OS) were calculated for each marker using Cox proportional hazards models. We found that CBX2, SCUBE2, and STK32B protein expression were associated with important clinicopathological features for OSCC (peritumoral inflammatory infiltration, metastatic spread to the cervical lymph nodes, and tumor size). Consequently, SCUBE2 and STK32B are involved in the hedgehog signaling pathway which plays a pivotal role in metastasis and angiogenesis in cancer. In addition, CNTNAP2 and S100A8 protein expression were correlated with DSS and OS, respectively. Taken together, these candidates and the hedgehog signaling pathway may be putative targets for drug development and clinical management of OSCC patients

  12. The scaling law of climate change and its relevance to assessing (palaeo)biological responses

    Science.gov (United States)

    Kiessling, Wolfgang; Eichenseer, Kilian

    2014-05-01

    interglacials, are not monotonic, but punctuated by short-term cooling intervals. The fossil record tells us that biodiversity responded dramatically to ancient intervals of climate warming. We can now see that the apparently slower rates of change in some mass extinctions (Permian-Triassic, Triassic-Jurassic) were greater than today when the scaling law is considered. This reassures us that studying deep time patterns of organismic response to climate change is a worthwhile endeavor that is relevant for predicting the future. References Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.: The pace of shifting climate in marine and terrestrial ecosystems, Science, 334, 652-655, 2011. Gingerich, P. D.: Quantification and comparison of evolutionary rates, American Journal of Science, 293A, 453-478, 1993. Sadler, P. M.: Sediment accumulation rates and the completeness of stratigraphic sections, Journal of Geology, 89, 569-584, 1981. Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366-370, 2012.

  13. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...... heat shock. Stress response genes, particularly HSP70, are now the major candidates in the gene-longevity association studies....

  14. Quantum Dots: An Insight and Perspective of Their Biological Interaction and How This Relates to Their Relevance for Clinical Use

    Directory of Open Access Journals (Sweden)

    Martin J. D. Clift, Vicki Stone

    2012-01-01

    Full Text Available Due to their novel physico-chemical characteristics, semi-conductor nanocrystal quantum dots (QDs provide an advantageous perspective towards numerous different consumer and medical applications. The most notable potential application of QDs is their use as therapeutic and diagnostic tools in nanomedicine. Despite the many benefits posed by QDs, the proposed, intentional exposure to humans has raised concerns towards their potential impact upon human health. These concerns are predominantly based upon the heterogeneous composition of QDs, which most commonly comprises of a cadmium-based core and zinc sulphide shell. Whilst other nanoparticle (NP types possess a similar structure to QDs (i.e. core-shell technology (e.g. Fe2O3, Au and superparamagnetic iron oxide NPs, the importance of the concerns surrounding human exposure to QDs is amplified further since, due to the sophisticated chemical and light-emitting properties of QDs, the use of these NPs within any (nanomedical setting/application could be suggested as realistic, rather than simply an advantageous possibility. It is therefore imperative that a thorough understanding of how QDs interact with various biological systems, predominantly those relative to humans and what the consequences of such interactions are is gained with extreme alacrity. It is the aim of this review to highlight the current knowledge base of QD-biological system interactions, where the knowledge gaps (still remain and how the understanding of this interaction relates to the most notable of applications for QDs; their clinical relevance.

  15. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells.

    NARCIS (Netherlands)

    Dittmer, A.; Vetter, M.; Schunke, D.; Span, P.N.; Sweep, C.G.J.; Thomssen, C.; Dittmer, J.

    2006-01-01

    The effect of endogenous parathyroid hormone-related protein (PTHrP) on gene expression in breast cancer cells was studied. We suppressed PTHrP expression in MDA-MB-231 cells by RNA interference and analyzed changes in gene expression by microarray analysis. More than 200 genes showed altered expres

  16. Unlocking the treasure trove: From genes to schizophrenia biology

    OpenAIRE

    Corvin, Aiden

    2014-01-01

    PUBLISHED Cited By :1 Export Date: 3 March 2015 Significant progress is being made in defining the genetic etiology of schizophrenia. As the list of implicated genes grows, parallel developments in gene editing technology provide new methods to investigate gene function in model systems. The confluence of these two research fields—gene discovery and functional biology—may offer novel insights into schizophrenia etiology. We review recent advances in these fields, consider the likely obs...

  17. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...

  18. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  19. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm

    OpenAIRE

    Tchagang Alain B; Phan Sieu; Famili Fazel; Shearer Heather; Fobert Pierre; Huang Yi; Zou Jitao; Huang Daiqing; Cutler Adrian; Liu Ziying; Pan Youlian

    2012-01-01

    Abstract Background Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in th...

  20. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis. PMID:18751532

  1. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Paisse, Sandrine; Duran, Robert; Goni-Urriza, Marisol [Pau Univ. (France). Equipe Environnement et Microbiologie-UMR IPREM5254; Coulon, Frederic [Cranfield Univ. (United Kingdom). Centre for Resource Management and Efficiency

    2011-11-15

    The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination. (orig.)

  2. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  3. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  4. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  5. Genome-Wide Identification of Genes Probably Relevant to the Uniqueness of Tea Plant (Camellia sinensis) and Its Cultivars

    OpenAIRE

    Wei, Yan; Jing, Wang; Youxiang, Zhou; Mingming, Zhao; Yan, Gong; Hua, Ding; Lijun, Peng; Dingjin, Hu

    2015-01-01

    Tea (Camellia sinensis) is a popular beverage all over the world and a number of studies have focused on the genetic uniqueness of tea and its cultivars. However, molecular mechanisms underlying these phenomena are largely undefined. In this report, based on expression data available from public databases, we performed a series of analyses to identify genes probably relevant to the uniqueness of C. sinensis and two of its cultivars (LJ43 and ZH2). Evolutionary analyses showed that the evoluti...

  6. DGIdb 2.0: mining clinically relevant drug-gene interactions.

    Science.gov (United States)

    Wagner, Alex H; Coffman, Adam C; Ainscough, Benjamin J; Spies, Nicholas C; Skidmore, Zachary L; Campbell, Katie M; Krysiak, Kilannin; Pan, Deng; McMichael, Joshua F; Eldred, James M; Walker, Jason R; Wilson, Richard K; Mardis, Elaine R; Griffith, Malachi; Griffith, Obi L

    2016-01-01

    The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that consolidates disparate data sources describing drug-gene interactions and gene druggability. It provides an intuitive graphical user interface and a documented application programming interface (API) for querying these data. DGIdb was assembled through an extensive manual curation effort, reflecting the combined information of twenty-seven sources. For DGIdb 2.0, substantial updates have been made to increase content and improve its usefulness as a resource for mining clinically actionable drug targets. Specifically, nine new sources of drug-gene interactions have been added, including seven resources specifically focused on interactions linked to clinical trials. These additions have more than doubled the overall count of drug-gene interactions. The total number of druggable gene claims has also increased by 30%. Importantly, a majority of the unrestricted, publicly-accessible sources used in DGIdb are now automatically updated on a weekly basis, providing the most current information for these sources. Finally, a new web view and API have been developed to allow searching for interactions by drug identifiers to complement existing gene-based search functionality. With these updates, DGIdb represents a comprehensive and user friendly tool for mining the druggable genome for precision medicine hypothesis generation. PMID:26531824

  7. Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder

    OpenAIRE

    Holmans, Peter; Green, Elaine K; Pahwa, Jaspreet Singh; Ferreira, Manuel A.R.; Purcell, Shaun M; Sklar, Pamela; Owen, Michael J.; O'Donovan, Michael C.; Craddock, Nick

    2009-01-01

    We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data set. At a general level, the biological basis of CD is relatively well known for a complex genetic ...

  8. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases

    OpenAIRE

    Wessagowit, Vesarat; Nalla, Vijay K.; Rogan, Peter K; McGrath, John A

    2005-01-01

    The process of excising introns from pre-mRNA complexes is directed by specific genomic DNA sequences at intron—exon borders known as splice sites. These regions contain well-conserved motifs which allow the splicing process to proceed in a regulated and structured manner. However, as well as conventional splicing, several genes have the inherent capacity to undergo alternative splicing, thus allowing synthesis of multiple gene transcripts, perhaps with different functional properties. Within...

  9. Isolation and Expression Profile Analysis of Genes Relevant to Chilling Stress During Seed Imbibition in Soybean [Glycine max (L.) Meer.

    Institute of Scientific and Technical Information of China (English)

    CHENG Li-bao; LI Shu-yan; HE Guang-yuan

    2009-01-01

    Germination of soybean seed is always arrested by chilling imbibitional stress,and this phenomenon is widespread in the plant seed kingdom,but has not been studied at molecular level.In this experiment,eDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied to isolate genes relevant to chilling stress (4~C) during soybean seed imbibition.Eight genes were found to be up-regulated and two were down-regulated during chilling stress respectively.Four up-regulated genes were selected to analyze the expression profiles during imbibition under chilling condition.It was demonstrated that the four genes were induced significantly by 4℃ for 24 h,and decreased when the temperature was shifted from 4 to 22℃.GMCHI,a highly chilling stress-induced gene which responded to abseisic acid (ABA),polyethylene glycol (PEG) and NaCl,showed great stress-resistance according to published reports.Cos78 was identified to be induced by PEG.However,Cos66 and Cos36 transcription showed no change to ABA,PEG,and NaCl.From the characteristic of genes isolated from the embryonic axis,we concluded that soybean seeds have different pathways to adapt to various biotic and abiotic stresses by regulating many signal transduction pathways.

  10. geneLAB: Expanding the Impact of NASA's Biological Research in Space

    Science.gov (United States)

    Rayl, Nicole; Smith, Jeffrey D.

    2014-01-01

    The geneLAB project is designed to leverage the value of large 'omics' datasets from molecular biology projects conducted on the ISS by making these datasets available, citable, discoverable, interpretable, reusable, and reproducible. geneLAB will create a collaboration space with an integrated set of tools for depositing, accessing, analyzing, and modeling these diverse datasets from spaceflight and related terrestrial studies.

  11. V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond.

    Science.gov (United States)

    Schmidt, Christian; Breyer, Felicitas; Blum, Marc-Michael; Thiermann, Horst; Worek, Franz; John, Harald

    2014-08-01

    Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and μ-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (μHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the ε-amino group of a formerly phosphonylated

  12. Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn.

    Directory of Open Access Journals (Sweden)

    Libao Cheng

    Full Text Available Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root.

  13. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes.

    Science.gov (United States)

    Senthil-Kumar, Muthappa; Kumar, Ganesh; Srikanthbabu, Venkatachalayya; Udayakumar, Makarla

    2007-02-01

    High-temperature stress affects all growth stages of crops and ultimately yields. This is further aggravated by other environmental stresses like intermittent drought and high light. Management options are few and hence developing intrinsically tolerant plants is essential to combat the situation. As thermotolerance is a multigenic trait, emphasis needs to be on relevant approaches to assess genetic variability in basal and acquired tolerance. This is in fact the major aspect in crop improvement programmes. The relevance of temperature induction (acclimation) response (TIR), a high throughput approach to identify thermotolerant individuals and its utility as potential screening method is described here. This is based on the concept that stress-responsive genes are expressed only during initial stages of stress (acclimation stress) and bring about requisite changes in cell metabolism for adaptation. The fact that acclimation response is ubiquitous has been demonstrated in different crop plants in our studies and by others. Significance of acclimation in acquired tolerance and thus in assessing genetic variability in thermotolerance is discussed. The limitations of present approaches to validate the relevance of specific stress genes either in transgenics or in mutants or knock downs have been analyzed and the need to characterize transformants under conditions that trigger acquired tolerance is also highlighted. This review also focuses on the potential of exploiting acclimation response approach to improve the thermotolerance of crop plants by suitable breeding strategies. PMID:17207553

  14. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    Science.gov (United States)

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  15. Design, Development, and Psychometric Analysis of a General, Organic, and Biological Chemistry Topic Inventory Based on the Identified Main Chemistry Topics Relevant to Nursing Clinical Practice

    Science.gov (United States)

    Brown, Corina E.

    2013-01-01

    This two-stage study focused on the undergraduate nursing course that covers topics in general, organic, and biological (GOB) chemistry. In the first stage, the central objective was to identify the main concepts of GOB chemistry relevant to the clinical practice of nursing. The collection of data was based on open-ended interviews of both nursing…

  16. Categorizer: a tool to categorize genes into user-defined biological groups based on semantic similarity

    OpenAIRE

    Na, Dokyun; Son, Hyungbin; Gsponer, Jörg

    2014-01-01

    Background Communalities between large sets of genes obtained from high-throughput experiments are often identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis tools used for these enrichment analyses assume that GO terms are independent and the semantic distances between all parent–child terms are identical, which is not true in a biological sense. In addition these tools output lists of often redundant or too specific GO terms, which a...

  17. Effect of Normalization on Statistical and Biological Interpretation of Gene Expression Profiles

    OpenAIRE

    Qin, Shaopu; Kim, Jinhee; Arafat, Dalia; Gibson, Greg

    2013-01-01

    An under-appreciated aspect of the genetic analysis of gene expression is the impact of post-probe level normalization on biological inference. Here we contrast nine different methods for normalization of an Illumina bead-array gene expression profiling dataset consisting of peripheral blood samples from 189 individual participants in the Center for Health Discovery and Well Being study in Atlanta, quantifying differences in the inference of global variance components and covariance of gene e...

  18. Mining large collections of gene expression data to elucidate transcriptional regulation of biological processes

    OpenAIRE

    Curry, Edward William James

    2011-01-01

    A vast amount of gene expression data is available to biological researchers. As of October 2010, the GEO database has 45,777 chips of publicly available gene expression pro ling data from the Affymetrix (HGU133v2) GeneChip platform, representing 2.5 billion numerical measurements. Given this wealth of data, `meta-analysis' methods allowing inferences to be made from combinations of samples from different experiments are critically important. This thesis explores the applicatio...

  19. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens

    Directory of Open Access Journals (Sweden)

    Schirmacher Peter

    2008-09-01

    Full Text Available Abstract Background Invasion-related genes over-expressed by tumor cells as well as by reacting host cells represent promising drug targets for anti-cancer therapy. Such candidate genes need to be validated in appropriate animal models. Results This study examined the suitability of a murine model (CT26/Balb/C of colorectal liver metastasis to represent clinical liver metastasis specimens using a global gene expression approach. Cross-species similarity was examined between pure liver, liver invasion, tumor invasion and pure tumor compartments through overlap of up-regulated genes and gene ontology (GO-based biological themes on the level of single GO-terms and of condensed GO-term families. Three out of four GO-term families were conserved in a compartment-specific way between the species: secondary metabolism (liver, invasion (invasion front, and immune response (invasion front and liver. Among the individual GO-terms over-represented in the invasion compartments in both species were "extracellular matrix", "cell motility", "cell adhesion" and "antigen presentation" indicating that typical invasion related processes are operating in both species. This was reflected on the single gene level as well, as cross-species overlap of potential target genes over-expressed in the combined invasion front compartments reached up to 36.5%. Generally, histopathology and gene expression correlated well as the highest single gene overlap was found to be 44% in syn-compartmental comparisons (liver versus liver whereas cross-compartmental overlaps were much lower (e.g. liver versus tumor: 9.7%. However, single gene overlap was surprisingly high in some cross-compartmental comparisons (e.g. human liver invasion compartment and murine tumor invasion compartment: 9.0% despite little histolopathologic similarity indicating that invasion relevant genes are not necessarily confined to histologically defined compartments. Conclusion In summary, cross

  20. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells.

    Directory of Open Access Journals (Sweden)

    Maja Vukić

    Full Text Available Vitamin D3 has transcriptome- and genome-wide effects and activates, via the binding of its metabolite 1α,25-dihydroxyvitamin D3 to the transcription factor vitamin D receptor (VDR, several hundred target genes. Using samples from a 5-month vitamin D3 intervention study (VitDmet, we recently reported that the expression of 12 VDR target genes in peripheral blood mononuclear cells (PBMCs as well as 12 biochemical and clinical parameters of the study participants are significantly triggered by vitamin D3. In this study, we performed a more focused selection of further 12 VDR target genes and demonstrated that changes of their mRNA expression in PBMCs of VitDmet subjects significantly correlate with alterations of 25-hydroxyvitamin D3 serum levels. Network and self-organizing map analysis of these datasets together with that of the other 24 parameters was followed by relevance calculations and identified changes in parathyroid hormone serum levels and the expression of the newly selected genes STS, BCL6, ITGAM, LRRC25, LPGAT1 and TREM1 as well as of the previously reported genes DUSP10 and CD14 as the most relevant parameters for describing vitamin D responsiveness in vivo. Moreover, parameter relevance ranking allowed the segregation of study subjects into high and low responders. Due to the long intervention period the vitamin D response was not too prominent on the level of transcriptional activation. Therefore, we performed in the separate VitDbol trial a short-term but high dose stimulation with a vitamin D3 bolus. In PBMCs of VitDbol subjects we observed direct transcriptional effects on the selected VDR target genes, such as an up to 2.1-fold increase already one day after supplementation onset. In conclusion, both long-term and short-term vitamin D3 supplementation studies allow monitoring the vitamin D responsiveness of human individuals and represent new types of human in vivo vitamin D3 investigations.

  1. GeneWeaver: data driven alignment of cross-species genomics in biology and disease.

    Science.gov (United States)

    Baker, Erich; Bubier, Jason A; Reynolds, Timothy; Langston, Michael A; Chesler, Elissa J

    2016-01-01

    The GeneWeaver data and analytics website (www.geneweaver.org) is a publically available resource for storing, curating and analyzing sets of genes from heterogeneous data sources. The system enables discovery of relationships among genes, variants, traits, drugs, environments, anatomical structures and diseases implicitly found through gene set intersections. Since the previous review in the 2012 Nucleic Acids Research Database issue, GeneWeaver's underlying analytics platform has been enhanced, its number and variety of publically available gene set data sources has been increased, and its advanced search mechanisms have been expanded. In addition, its interface has been redesigned to take advantage of flexible web services, programmatic data access, and a refined data model for handling gene network data in addition to its original emphasis on gene set data. By enumerating the common and distinct biological molecules associated with all subsets of curated or user submitted groups of gene sets and gene networks, GeneWeaver empowers users with the ability to construct data driven descriptions of shared and unique biological processes, diseases and traits within and across species. PMID:26656951

  2. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Nguyen, Vu H. [Chonnam National University Medical School, Gwangju (Korea, Republic of); Gambhir, Sanjiv S. [Stanford University, California(United States)

    2010-04-15

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  3. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    International Nuclear Information System (INIS)

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  4. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea;

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target...

  5. Variables Predicting Prospective Biology Teachers' Acceptance Perceptions Regarding Gene Technology

    Science.gov (United States)

    Yilmaz, Mirac; Demirhan, Haydar

    2014-01-01

    The different opinions on products and applications of gene technology (GT) draw attention to the training and education activities related to GT. The purpose of this study is to review some variables predicting the acceptance perception regarding GT, and to investigate their changes at levels. The prospective teachers' subjective knowledge and…

  6. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    Science.gov (United States)

    Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580

  7. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan;

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would be to......Evolutionary games have been applied as simple mathematical models of populations where interactions between individuals control the dynamics. Recently, it has been proposed to use this type of model to describe the evolution of tumour cell populations with interactions between cells. We extent the...... analysis to allow for synergistic effects between cells. A mathematical model of a tumour cell population is presented in which population-level synergy is assumed to originate through the interaction of triplets of cells. A threshold of two cooperating cells is assumed to be required to produce a...

  8. Screening for mutations of the cationic trypsinogen gene: are they of relevance in chronic alcoholic pancreatitis?

    OpenAIRE

    TEICH, N; MOSSNER;, J; Keim, V

    1999-01-01

    BACKGROUND—In hereditary pancreatitis mutations of exons 2 (N21I) and 3 (R117H) of the cationic trypsinogen gene have been described. 
AIMS—To investigate whether the same mutations can also be found in patients with chronic alcoholic pancreatitis. 
METHODS—Leucocyte DNA was prepared from 23 patients with chronic alcoholic pancreatitis, 21 with alcoholic liver cirrhosis, 34 individuals from seven independent families with hereditary pancreatitis, and 15 healthy controls. DNA...

  9. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer

    OpenAIRE

    Leygue, Etienne

    2007-01-01

    The steroid receptor RNA activator (SRA) is a unique modulator of steroid receptor transcriptional activity, as it is able to mediate its coregulatory effects as a RNA molecule. Recent findings, however, have painted a more complex picture of the SRA gene (SRA1) products. Indeed, even though SRA was initially thought to be noncoding, several RNA isoforms have now been found to encode an endogenous protein (SRAP), which is well conserved among Chordata. Although the function of SRAP remains la...

  10. Expression of the Autoimmune Regulator Gene and Its Relevance to the Mechanisms of Central and Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Roberto Perniola

    2012-01-01

    Full Text Available The autoimmune polyendocrine syndrome type 1 (APS-1 is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIRE expression in genetically transmitted and acquired diseases other than APS-1 may contribute to further forms of autoimmunity. As AIRE and its murine homolog are also expressed in the secondary lymphoid organs, the extent and relevance of AIRE participation in the mechanisms of peripheral tolerance need to be thoroughly defined.

  11. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Science.gov (United States)

    Zielinski, Brian L; Allen, Andrew E; Carpenter, Edward J; Coles, Victoria J; Crump, Byron C; Doherty, Mary; Foster, Rachel A; Goes, Joaquim I; Gomes, Helga R; Hood, Raleigh R; McCrow, John P; Montoya, Joseph P; Moustafa, Ahmed; Satinsky, Brandon M; Sharma, Shalabh; Smith, Christa B; Yager, Patricia L; Paul, John H

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  12. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  13. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall. Infected by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Saijie Gong

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE. Thousands of differentially expressed genes (DEGs were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.

  14. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    Science.gov (United States)

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  15. Muscle Biological Characteristics of Differentially Expressed Genes in Wujin and Landrace Pigs

    Institute of Scientific and Technical Information of China (English)

    XU Hong; HUANG Ying; LI Wei-zhen; YANG Ming-hua; GE Chang-rong; ZHANG Xi; LI Liu-an; GAO Shi-zheng; ZHAO Su-mei

    2014-01-01

    The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression proifle and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression proifle of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also conifrmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to conifrm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.

  16. Physical-chemical characterization of nanoparticles in relevant biological environments and their interactions with the cell surface

    OpenAIRE

    Di Silvio, Desire

    2015-01-01

    Nanoparticles (NPs) are versatile tools for nanomedicine and tuning features such as material, size and charge, imaging and targeting can be accomplished. However, NPs behaviour in vivo is modified upon interaction with the biological matter and formation of a protein corona (PC) coating the NP. The PC determines the NP biological identity and it is the ultimate interface with the surrounding environment. Therefore, a deep characterization of the NPs in biological media is important to predic...

  17. Articles selected by Faculty of 1000 Biology: genetically identical SNPs; detailed histone modification mapping; plant gene-expression diversity; photosynthesis gene evolution; ε-Proteobacteria diversity.

    OpenAIRE

    2005-01-01

    A selection of evaluations from Faculty of 1000 Biology covering genetically identical SNPs; detailed histone modification mapping; plant gene-expression diversity; photosynthesis gene evolution; ε-Proteobacteria diversity

  18. Endogenous expression of ASLV viral proteins in specific pathogen free chicken embryos: relevance for the developmental biology research field

    Directory of Open Access Journals (Sweden)

    Canto-Soler M Valeria

    2010-10-01

    Full Text Available Abstract Background The use of Specific Pathogen Free (SPF eggs in combination with RCAS retrovirus, a member of the Avian Sarcoma-Leukosis Virus (ASLV family, is of standard practice to study gene function and development. SPF eggs are certified free of infection by specific pathogen viruses of either exogenous or endogenous origin, including those belonging to the ASLV family. Based on this, SPF embryos are considered to be free of ASLV viral protein expression, and consequently in developmental research studies RCAS infected cells are routinely identified by immunohistochemistry against the ASLV viral proteins p19 and p27. Contrary to this generally accepted notion, observations in our laboratory suggested that certified SPF chicken embryos may endogenously express ASLV viral proteins p19 and p27. Since these observations may have significant implications for the developmental research field we further investigated this possibility. Results We demonstrate that certified SPF chicken embryos have transcriptionally active endogenous ASLV loci (ev loci capable of expressing ASLV viral proteins, such as p19 and p27, even when those loci are not capable of producing viral particles. We also show that the extent of viral protein expression in embryonic tissues varies not only among flocks but also between embryos of the same flock. In addition, our genetic screening revealed significant heterogeneity in ev loci composition even among embryos of the same flock. Conclusions These observations have critical implications for the developmental biology research field, since they strongly suggest that the current standard methodology used in experimental studies using the chick embryo and RCAS vectors may lead to inaccurate interpretation of results. Retrospectively, our observations suggest that studies in which infected cells have been identified simply by pan-ASLV viral protein expression may need to be considered with caution. For future studies, they

  19. Comparative genomics study of polyhydroxyalkanoates (PHA and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships

    Directory of Open Access Journals (Sweden)

    Cai Lei

    2011-11-01

    Full Text Available Abstract Background Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far. Results The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA, was analyzed through computational methods to reveal the osmoregulation mechanism and the evolutionary relationship of the enzymes relevant to PHA and ectoine syntheses. Genes involved in the metabolism of PHA and osmolytes were annotated and studied in silico. Although PHA synthase, depolymerase, regulator/repressor and phasin were all involved in PHA metabolic pathways, they demonstrated different horizontal gene transfer (HGT events between the genomes of different strains. In contrast, co-occurrence of ectoine genes in the same genome was more frequently observed, and ectoine genes were more likely under coincidental horizontal gene transfer than PHA related genes. In addition, the adjacent organization of the homologues of PHA synthase phaC1 and PHA granule binding protein phaP was conserved in the strain TD01, which was also observed in some halophiles and non-halophiles exclusively from γ-proteobacteria. In contrast to haloarchaea, the proteome of Halomonas sp. TD01 did not show obvious inclination towards acidity relative to non-halophilic Escherichia coli MG1655, which signified that Halomonas sp. TD01 preferred the accumulation of organic osmolytes to ions in order to balance the intracellular osmotic pressure with the environment. Conclusions The accessibility of genome information would facilitate research on the genetic engineering of halophilic bacteria including Halomonas sp. TD01.

  20. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  1. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. PMID:26701126

  2. How the FMR1 gene became relevant to female fertility and reproductive medicine

    Directory of Open Access Journals (Sweden)

    Norbert eGleicher

    2014-08-01

    Full Text Available This manuscript describes the 6-year evolution of our center’s research into ovarian functions of the FMR1 gene, which led to the identification of a new normal CGGn range of 26-34. This new normal range, in turn, led to definitions of different alleles (haplotypes based on whether no, one or both alleles are within range. Specific alleles then were demonstrated to represent distinct ovarian aging patterns, suggesting an important FMR1 function in follicle recruitment and ovarian depletion of follicles. So called low alleles, characterized by CGGn34 alleles. Because low FMR1 alleles present in approximately 25% of all females, FMR1 testing at young ages may offer an opportunity for earlier diagnosis of OPOI than current practice allows. Earlier diagnosis of OPOI, in turn, would give young women the options of reassessing their reproductive schedules and/or pursue fertility preservation via oocyte cryopreservation when most effective.

  3. Unsupervised Placental Gene Expression Profiling Identifies Clinically Relevant Subclasses of Human Preeclampsia.

    Science.gov (United States)

    Leavey, Katherine; Benton, Samantha J; Grynspan, David; Kingdom, John C; Bainbridge, Shannon A; Cox, Brian J

    2016-07-01

    Preeclampsia (PE) is a complex, hypertensive disorder of pregnancy, demonstrating considerable variability in maternal symptoms and fetal outcomes. Unfortunately, prior research has not accounted for this variability, resulting in a lack of robust biomarkers and effective treatments for PE. Here, we created a large (N=330) clinically relevant human placental microarray data set, consisting of 7 previously published studies and 157 highly annotated new samples from a single BioBank. Applying unsupervised clustering to this combined data set identified 3 clinically significant probable etiologies of PE: "maternal", with healthy placentas and term deliveries; "canonical", exhibiting expected clinical, ontological, and histopathologic features of PE; and "immunologic" with severe fetal growth restriction and evidence of maternal antifetal rejection. Moreover, these groups could be distinguished using a small quantitative polymerase chain reaction panel and demonstrated varying influence of maternal factors on PE development. An additional subclass of PE placentas was also revealed to form because of chromosomal abnormalities in these samples, supported by array-based comparative genomic hybridization analysis. Overall, our findings represent a new paradigm in our understanding of the origins and maternal-placental contributions to the pathology of PE. The study of PE represents a unique opportunity to access human tissue associated with a complex hypertensive disorder, and our novel approach could be applied to other hypertensive and heterogeneous human diseases. PMID:27160201

  4. Evaluating Emotional Sensitivity and Tolerance Factors in the Prediction of Panic-Relevant Responding to a Biological Challenge

    OpenAIRE

    Kutz, Amanda; Marshall, Erin; Bernstein, Amit; Zvolensky, Michael J.

    2010-01-01

    The current study investigated anxiety sensitivity, distress tolerance (Simons & Gaher, 2005), and discomfort intolerance (Schmidt, Richey, Cromer, & Buckner, 2007) in relation to panic-relevant responding (i.e., panic attack symptoms and panic-relevant cognitions) to a 10% carbon-dioxide enriched air challenge. Participants were 216 adults (52.6% female; M age = 22.4, SD = 9.0). A series of hierarchical multiple regressions was conducted with covariates of negative affectivity and past-year ...

  5. Flight Results from the GeneSat-1 Biological Microsatellite Mission

    OpenAIRE

    Kitts, Christopher; Ronzano, Karolyn; Rasay, Richard; Mas, Ignacio; Williams, Phelps; Mahacek, Paul; Minelli, Giovanni; Hines, John; Agasid, Elwood; Friedericks, Charlie; Piccini, Matthew; Parra, Macarena; Timucin, Linda; Beasley, C.; Henschke, Mike

    2007-01-01

    The mission of the GeneSat-1 technology demonstration spacecraft is to validate the use of research-quality instrumentation for in situ biological research and processing. To execute this mission, the GeneSat-1 satellite was launched on December 16, 2006 from Wallops Flight Facility as a secondary payload off of a Minotaur launch vehicle. During the first week of operation, the core biological growth test was successfully executed, and by the end of the first month of operation all primary sc...

  6. An Improved Pearson’s Correlation Proximity-Based Hierarchical Clustering for Mining Biological Association between Genes

    OpenAIRE

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the assoc...

  7. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    Science.gov (United States)

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  8. Molecular biology of Lea genes of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains our progress to date in determining the function of the D-7 Lea proteins in cotton embryos. We have completely sequenced the D-7 gene and established {ital E. coli} transformants which synthesize reasonable amounts of the D-7 protein. Two-dimensional electrophoresis was required to assay fractions for D-7 protein during purification to homogeneity, since D-7 has no known enzymatic activity, contains no Trp, and little Phe or Tyr, and {ital E. coli} has several proteins of similar molecular weight to D-7. Purified D-7 was used to generate monospecific antibodies which are being used for determination of the cellular distribution of D-7, and also for exact quantitation of D-7 in late-stage cotton embryos. Computerized modelling of D-7 has shown similarities to proteins with a coiled-coil structure, but fitting D-7 to this structure resulted in a violation of the handedness rule. If the pitch of the helix is changed from 3.6 to 3.667, however, a three dimensional structure (not a coiled coil) is generated which has overall energetics of formation nearly as favorable as the traditional {alpha} helix. The driving force for the change in pitch is proposed to result from favorable energetics of dimerization. Preliminary evidence indicates that D-7 does indeed dimerize in solution. Future experiments will determine the exact 3D structure of D-7 and the related protein D-29, as well as test the hypothesis that D-7 and D-29 are involved in mitigating dehydration of embryos and plants through sequestering phosphate or other ions in sufficient quantity to prevent ion precipitation or crystallization. 13 refs., 3 figs. (MHB)

  9. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  10. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    expression, combined with novel specificities that will arise form advances in genomic and combinatorial approaches to target discovery, will usher in a new era of recombinant antibodies for biological imaging

  11. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  12. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Science.gov (United States)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  13. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  14. Sex Differences in Panic-Relevant Responding to a 10% Carbon Dioxide-Enriched Air Biological Challenge

    OpenAIRE

    Nillni, Yael I.; Berenz, Erin C.; Kelly J. Rohan; Zvolensky, Michael J.

    2011-01-01

    The current study examined sex differences in psychological (i.e., self-reported anxiety, panic symptoms, and avoidance) and physiological (i.e., heart rate and skin conductance level) response to, and recovery from, a laboratory biological challenge. Participants were a community-recruited sample of 128 adults (63.3% women; Mage = 23.2 years, SD = 8.9) who underwent a 4-minute 10% CO2-enriched air biological challenge. As predicted, women reported more severe physical panic symptoms and avoi...

  15. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder.

    Science.gov (United States)

    Holmans, Peter; Green, Elaine K; Pahwa, Jaspreet Singh; Ferreira, Manuel A R; Purcell, Shaun M; Sklar, Pamela; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick

    2009-07-01

    We present a method for testing overrepresentation of biological pathways, indexed by gene-ontology terms, in lists of significant SNPs from genome-wide association studies. This method corrects for linkage disequilibrium between SNPs, variable gene size, and multiple testing of nonindependent pathways. The method was applied to the Wellcome Trust Case-Control Consortium Crohn disease (CD) data set. At a general level, the biological basis of CD is relatively well known for a complex genetic trait, and it thus acted as a test of the method. The method, known as ALIGATOR (Association LIst Go AnnoTatOR), successfully detected biological pathways implicated in CD. The method was also applied to a meta-analysis of bipolar disorder, and it implicated the modulation of transcription and cellular activity, including that which occurs via hormonal action, as an important player in pathogenesis. PMID:19539887

  16. Classical conditioning of sexual arousal in women and men: effects of varying awareness and biological relevance of the conditioned stimulus.

    Science.gov (United States)

    Hoffmann, Heather; Janssen, Erick; Turner, Stefanie L

    2004-02-01

    Classical conditioning of sexual arousal has previously been demonstrated in human males but not in females. This study explored the role of classical (Pavlovian) conditioning in the activation of genital sexual arousal in both women and men, and assessed the effects of varying conditioned stimulus (CS) duration (subliminal/conscious) and relevance (sexually relevant/irrelevant). Twenty-seven female and 29 male participants received either subliminal or conscious presentations of a photograph of either a sexually relevant (abdomen of the opposite sex) or irrelevant (gun) CS+, which was followed by the unconditioned stimulus (US-erotic film clip). A CS-, a stimulus not paired with the US, was also included in the 11 conditioning trials. Ten participants were assigned to a control group that received unpaired presentations of the CS+, CS-, and the US. Both women and men showed more evidence of conditioning to the abdomen than to the gun when the CS was presented subliminally. When consciously perceived CSs were used, however, gender differences emerged. Men again showed the expected cue-to-consequence specificity but women showed the opposite effect, that is, conditioned arousal to the sexually irrelevant rather than to the relevant CS. The latter finding may be due to increased autonomic nervous system arousal associated with the irrelevant CS (gun). Skin conductance responses indicated more general arousal to the gun than to the male abdomen in women. This is the first study to compare the effects of a subliminal and conscious CS and to find classical conditioning of sexual arousal in women. PMID:14739689

  17. The Interaction of Nicotine Withdrawal and Panic Disorder in the Prediction of Panic-relevant Responding to a Biological Challenge

    OpenAIRE

    Leyro, Teresa M.; Zvolensky, Michael J.

    2012-01-01

    The current investigation evaluated nicotine withdrawal symptoms elicited by 12 hours of smoking deprivation on anxious and fearful responding to bodily sensations among daily smokers with and without Panic Disorder (PD). It was hypothesized that smokers with PD who were experiencing greater levels of nicotine withdrawal would experience the greatest levels of fearful responding to, and delayed recovery from, a 10% carbon dioxide-enriched air (CO2) biological challenge procedure. Participants...

  18. Phosphorylation Status of the Parvovirus Minute Virus of Mice Particle: Mapping and Biological Relevance of the Major Phosphorylation Sites

    OpenAIRE

    Maroto, Beatriz; Ramírez, Juan C.; Almendral, José M.

    2000-01-01

    The core of the VP-1 and VP-2 proteins forming the T=1 icosahedral capsid of the prototype strain of the parvovirus minute virus of mice (MVMp) share amino acids sequence and a common three-dimensional structure; however, the roles of these polypeptides in the virus infection cycle differ. To gain insights into this paradox, the nature, distribution, and biological significance of MVMp particle phosphorylation was investigated. The VP-1 and VP-2 proteins isolated from purified empty capsids a...

  19. ModiifedBfat-1 gene and its biological veriifcation in mice by hydrodynamic tail vein injection

    Institute of Scientific and Technical Information of China (English)

    GAO Xue; DU Xin-hua; ZHANG Lu-pei; CHEN Yan; GAO Hui-jiang; XU Shang-zhong; LI Jun-ya

    2016-01-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are essential components required for normal celular function and have been shown to have important therapeutic and nutritional beneifts in humans. But humans or mammals cannot naturaly produce ω-3 PUFAs, due to the lack of the ω-3 fatty acid desaturase gene (fat-1 gene). Previously,fat-1 gene has been cloned fromCaenorhabditis elegans and transferred into mice, pigs and sheep, but not yet into beef cattle. We attempt to transfer it into beef cattle. The object of this paper is to edit thefat-1 gene fromC. elegansto express more efifciently in beef cattle and verify its biological function in mice model. As a result, thefat-1 gene fromC. eleganswas modiifed by synonymous codon usage and named it Bfat-1. We have demonstrated that degree of codon bias ofBfat-1 gene was in-creased in beef cattle. Moreover,Bfat-1gene could be transiently expressed in mouse liver and muscle, the ω-6/ω-3 PUFAs ratio of 18 and 20 carbon was decreased signiifcantly in liver (P<0.05), and the ratio of 20 carbon decreased signiifcantly in muscle 24 and 72 h after injection (P<0.05).This conifrms that theBfat-1gene modiifcation was successful, and the protein encoded was able to catalyze the conversion of ω-6 PUFAs to ω-3 PUFAs.

  20. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm

    Directory of Open Access Journals (Sweden)

    Tchagang Alain B

    2012-04-01

    Full Text Available Abstract Background Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST. Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. Results We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster, for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi, systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Conclusions Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.

  1. MAGNUM OPUS: CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS BIOLOGY AND PROKARYOTIC GENE SILENCING

    Directory of Open Access Journals (Sweden)

    Prem Saran Tirumalai

    2013-01-01

    Full Text Available Gene Silencing was a technology that was established in eukaryotic system a decade ago and is being used as a research tool widely. However, prokaryotic gene silencing was not workable, till recently a team of researchers from the University of Georgia have proved it possible. Where they have shown that short motif sequences determines the targets of the prokaryotic Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR defence system is regulated by RNA guided Cas protein complex. Thus role of CRISPR system in microbial defense against foreign genetic material (Plasmid or Phages is an important milestone in the field of microbial molecular biology/biotechnology. These findings will make it easier to understand the significance of a gene, metabolically or physiologically. The revelation by this novel finding by core group of researcher is indeed, Mangum opus. This article is a commentary, to bring to light, prokaryotic gene silencing as one of the latest advances in prokaryotic science.

  2. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates. PMID:24303294

  3. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  4. Biological Significance of Gene Expression Data using Similarity based Biclustering Algorithm

    Directory of Open Access Journals (Sweden)

    Bagyamani J

    2011-02-01

    Full Text Available Unlocking the complexity of a living organism’s biological processes, functionsand genetic network is vital in learning how to improve the health of humankind.Genetic analysis, especially biclustering, is a significant step in this process.Though many biclustering methods exist, only few provide a query basedapproach for biologists to search the biclusters which contain a certain gene ofinterest. This proposed query based biclustering algorithm SIMBIC+ firstidentifies a functionally rich query gene. After identifying the query gene, sets ofgenes including query gene that show coherent expression patterns acrosssubsets of experimental conditions is identified. It performs simultaneousclustering on both row and column dimension to extract biclusters using Topdown approach. Since it uses novel ‘ratio’ based similarity measure, biclusterswith more coherence and with more biological meaning are identified. SIMBIC+uses score based approach with an aim of maximizing the similarity of thebicluster. Contribution entropy based condition selection and multiple row /column deletion methods are used to reduce the complexity of the algorithm toidentify biclusters with maximum similarity value. Experiments are conducted onYeast Saccharomyces dataset and the biclusters obtained are compared withbiclusters of popular MSB (Maximum Similarity Bicluster algorithm. Thebiological significance of the biclusters obtained by the proposed algorithm andMSB are compared and the comparison proves that SIMBIC+ identifies biclusterswith more significant GO (Gene Ontology.

  5. Prokaryotic Expression and Biological Activity Analysis of Human Ar-resten Gene

    Institute of Scientific and Technical Information of China (English)

    SONG Zifang; ZHENG Qichang; LI Wei; XIONG Jun; SHANG Dan; SHU Xiaogang

    2005-01-01

    To express recombinant arresten in Escherichia coli (E. Coli) and investigate its biological activity, prokaryotic expression vector of human arresten gene was constructed by gene engineering. Human arresten gene was amplified from recombinant plasmid pGEMArr by polymerase chain reaction (PCR), and inserted into prokaryotic expression vector pRSET containing T7 promoter. Restriction analysis and DNA sequencing verified that the arresten gene was correctly cloned into the expression vector. The recombinant plasmid pRSETAt was subsequently transformed into E. Coli BL21 (DE3), and the target gene was expressed under induction of IPTG. SDS-PAGE analysis revealed that the recombinant protein with a molecular weight of 29 kD (1 kD=0. 992 1 ku) amounted to 29 % of the total bacterial proteins. After purification and renaturation, the recombinant protein could significantly suppress the proliferation of human umbilical vein endothelial cells (HUVECs). These results suggested that the expression of a biologically active form of human arresten in the pRSET expression system laid a foundation for further study on the mechanistic insight into arresten action on angiogenesis and the development of powerful anti-cancer drugs.

  6. A substrate dependent biological containment systems for Pseudomonas putida based on the Escherichia coli gef gene

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Ramos, J. L.; Kaneva, Z.;

    1993-01-01

    operon (Pm) and the lacI gene, encoding the Lac repressor, plus xylS2, coding for a positive regulator of Pm. In liquid culture under optimal growth conditions and in sterile and nonsterile soil microcosms, P. putida KT2440 (pWWO) bearing the containment system behaves as designed. In the presence of a......A model substrate-dependent suicide system to biologically contain Pseudomonas putida KT2440 is reported. The system consists of two elements. One element carries a fusion between a synthetic lac promoter (PA1-04/03) and the gef gene, which encodes a killing function. This element is contained...

  7. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    Science.gov (United States)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  8. Molecular cloning and biological characterization of the human excision repair gene ERCC-3.

    OpenAIRE

    Weeda, G; van Ham, R C; Masurel, R; Westerveld, A; Odijk, H; Wit, J.; Bootsma, D; van der Eb, A J; Hoeijmakers, J. H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent m...

  9. Neocryptolepine: A Promising Indoloisoquinoline Alkaloid with Interesting Biological Activity. Evaluation of the Drug and its Most Relevant Analogs.

    Science.gov (United States)

    Larghi, Enrique L; Bracca, Andrea B J; Arroyo Aguilar, Abel A; Heredia, Daniel A; Pergomet, Jorgelina L; Simonetti, Sebastian O; Kaufman, Teodoro S

    2015-01-01

    Plants are one of the most important resources for the discovery of new drugs. The potential of natural compounds as new drug leads is clearly illustrated by the discovery and development of many modern medicines. This is an encouraging factor that drives natural products research in the vegetable kingdom. Neocryptolepine is a tetracyclic nitrogen heterocycle isolated from the African climber Cryptolepis sanguinolenta, which is widely used in traditional African medicine in many countries of Central and West Africa. The natural product is one of the representative examples of the small family of indolo[2,3-b]quinoline alkaloids, being endowed of multiple biological activities, including DNA-binding and inhibition of the enzyme topoisomerase II. It is also cytotoxic, antibacterial, antifungal and molluscicidal, also displaying antiprotozoal activity, particularly as antitrypanosomal, antileishmanial, antischistosomal and antiplasmodial. Some of these activities have been related to the product's ability to bind to DNA and to inhibit topoisomerase II; however, the exact mechanisms behind all of the observed bioactivities have not been comprehensively clarified. Major research activities regarding neocryptolepine have been focused into two seemingly opposite fields, related to its cytotoxic and antimalarial properties. Optimization of the natural product as a cytotoxic agent implied improvements in its bioavailability and activity, while the need of non-cytotoxic compounds guided the design and optimization of antimalarial agents. Therefore, the aim of the present article is to systematically review the current knowledge about the diversity of the biological activities related to neocryptolepine, its analogs and derivatives. PMID:25915612

  10. Effect of CXCR4 gene overexpression mediated by lentiviral vector on the biological characteristics of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    陈伟

    2013-01-01

    Objective To construct mouse CXC chemokine receptor type 4 (Cxcr4) gene overexpressing lentiviral vector and to evaluate its biological effect on mouse mesenchymal stem cells (MSCs) .Methods Cxcr4 gene was amplified and subcloned into pCR-Blunt vector.Cxcr4gene and enhanced green fluorescent protein (EGFP)

  11. Improving biological relevancy of transcriptional biomarkers experiments by applying the MIQE guidelines to pre-clinical and clinical trials.

    Science.gov (United States)

    Dooms, M; Chango, A; Barbour, E; Pouillart, P; Abdel Nour, A M

    2013-01-01

    The "Minimum Information for the Publication of qPCR Experiments" (MIQE [3]) guidelines are very much targeted at basic research experiments and have to our knowledge not been applied to qPCR assays carried out in the context of clinical trials. This report details the use of the MIQE qPCR app for iPhone (App Store, Apple) to assess the MIQE compliance of one clinical and five pre-clinical trials. This resulted in the need to include 14 modifications that make the guidelines more relevant for the assessment of this special type of application. We also discuss the need for flexibility, since while some parameters increase experimental quality, they also require more reagents and more time, which is not always feasible in a clinical setting. PMID:22910527

  12. Biological Significance of Gene Expression Data using Similarity based Biclustering Algorithm

    OpenAIRE

    Bagyamani J; Thangavel; Rathipriya R

    2011-01-01

    Unlocking the complexity of a living organism’s biological processes, functionsand genetic network is vital in learning how to improve the health of humankind.Genetic analysis, especially biclustering, is a significant step in this process.Though many biclustering methods exist, only few provide a query basedapproach for biologists to search the biclusters which contain a certain gene ofinterest. This proposed query based biclustering algorithm SIMBIC+ firstidentifies a functionally rich quer...

  13. Classification of Time Series Gene Expression in Clinical Studies via Integration of Biological Network

    OpenAIRE

    Liwei Qian; Haoran Zheng; Hong Zhou; Ruibin Qin; Jinlong Li

    2013-01-01

    The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture mode...

  14. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    Science.gov (United States)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  15. Ontological realism, concepts and classification in molecular biology: Development and application of the gene ontology

    OpenAIRE

    Mayor, C.; Robinson, L.

    2014-01-01

    Purpose – The purpose of this article is to evaluate the development and use of the gene ontology (GO), a scientific vocabulary widely used in molecular biology databases, with particular reference to the relation between the theoretical basis of the GO, and the pragmatics of its application. Design/methodology/approach – The study uses a combination of bibliometric analysis, content analysis and discourse analysis. These analyses focus on details of the ways in which the terms of the ont...

  16. Systems Biology Profiling of AMD on the Basis of Gene Expression

    OpenAIRE

    Abu-Asab, Mones S; Jose Salazar; Jingsheng Tuo; Chi-Chao Chan

    2013-01-01

    Genetic pathways underlying the initiation and progression of age-related macular degeneration (AMD) have not been yet sufficiently revealed, and the correlations of AMD’s genotypes, phenotypes, and disease spectrum are still awaiting resolution. We are tackling both problems with systems biology phylogenetic parsimony analysis. Gene expression data (GSE29801: NCBI, Geo) of macular and extramacular specimens of the retinas and retinal pigment epithelium (RPE) choroid complexes representing dr...

  17. Discovering biological connections between experimental conditions based on common patterns of differential gene expression

    Directory of Open Access Journals (Sweden)

    Spira Avrum

    2011-09-01

    Full Text Available Abstract Background Identifying similarities between patterns of differential gene expression provides an opportunity to identify similarities between the experimental and biological conditions that give rise to these gene expression alterations. The growing volume of gene expression data in open data repositories such as the NCBI Gene Expression Omnibus (GEO presents an opportunity to identify these gene expression similarities on a large scale across a diverse collection of datasets. We have developed a fast, pattern-based computational approach, named openSESAME (Search of Expression Signatures Across Many Experiments, that identifies datasets enriched in samples that display coordinate differential expression of a query signature. Importantly, openSESAME performs this search without prior knowledge of the phenotypic or experimental groups in the datasets being searched. This allows openSESAME to identify perturbations of gene expression that are due to phenotypic attributes that may not have been described in the sample annotation included in the repository. To demonstrate the utility of openSESAME, we used gene expression signatures of two biological perturbations to query a set of 75,164 human expression profiles that were generated using Affymetrix microarrays and deposited in GEO. The first query, using a signature of estradiol treatment, identified experiments in which estrogen signaling was perturbed and also identified differences in estrogen signaling between estrogen receptor-positive and -negative breast cancers. The second query, which used a signature of silencing of the transcription factor p63 (a key regulator of epidermal differentiation, identified datasets related to stratified squamous epithelia or epidermal diseases such as melanoma. Conclusions openSESAME is a tool for leveraging the growing body of publicly available microarray data to discover relationships between different biological states based on common patterns of

  18. Predictive variables for the biological behaviour of basal cell carcinoma of the face: relevance of morphometry of the nuclei.

    Science.gov (United States)

    Appel, T; Bierhoff, E; Appel, K; von Lindern, J-J; Bergé, S; Niederhagen, B

    2003-06-01

    We did a morphometric analysis of 130 histological sections of basal cell carcinoma (BCC) of the face to find out whether morphometric variables in the structure of the nuclei of BCC cells could serve as predictors of the biological behaviour. We considered the following variables: maximum and minimum diameters, perimeter, nuclear area and five form factors that characterise and quantify the shape of a structure (axis ratio, shape factor, nuclear contour index, nuclear roundness and circumference ratio). We did a statistical analysis of primary and recurring tumours and four histology-based groups (multifocal superficial BCCs, nodular BCCs, sclerosing BCCs and miscellaneous forms) using a two-sided t test for independent samples. Multifocal superficial BCCs showed significantly smaller values for the directly measured variables (maximum and minimum diameters, perimeter and nuclear area). Morphometry could not distinguish between primary and recurring tumours. PMID:12804537

  19. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  20. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  1. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  2. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    Science.gov (United States)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  3. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  4. Cross-study analysis of gene expression data for intermediate neuroblastoma identifies two biological subtypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2007-05-01

    Full Text Available Abstract Background Neuroblastoma patients show heterogeneous clinical courses ranging from life-threatening progression to spontaneous regression. Recently, gene expression profiles of neuroblastoma tumours were associated with clinically different phenotypes. However, such data is still rare for important patient subgroups, such as patients with MYCN non-amplified advanced stage disease. Prediction of the individual course of disease and optimal therapy selection in this cohort is challenging. Additional research effort is needed to describe the patterns of gene expression in this cohort and to identify reliable prognostic markers for this subset of patients. Methods We combined gene expression data from two studies in a meta-analysis in order to investigate differences in gene expression of advanced stage (3 or 4 tumours without MYCN amplification that show contrasting outcomes (alive or dead at five years after initial diagnosis. In addition, a predictive model for outcome was generated. Gene expression profiles from 66 patients were included from two studies using different microarray platforms. Results In the combined data set, 72 genes were identified as differentially expressed by meta-analysis at a false discovery rate (FDR of 8.33%. Meta-analysis detected 34 differentially expressed genes that were not found as significant in either single study. Outcome prediction based on data of both studies resulted in a predictive accuracy of 77%. Moreover, the genes that were differentially expressed in subgroups of advanced stage patients without MYCN amplification accurately separated MYCN amplified tumours from low stage tumours without MYCN amplification. Conclusion Our findings support the hypothesis that neuroblastoma consists of two biologically distinct subgroups that differ by characteristic gene expression patterns, which are associated with divergent clinical outcome.

  5. Cross-study analysis of gene expression data for intermediate neuroblastoma identifies two biological subtypes

    International Nuclear Information System (INIS)

    Neuroblastoma patients show heterogeneous clinical courses ranging from life-threatening progression to spontaneous regression. Recently, gene expression profiles of neuroblastoma tumours were associated with clinically different phenotypes. However, such data is still rare for important patient subgroups, such as patients with MYCN non-amplified advanced stage disease. Prediction of the individual course of disease and optimal therapy selection in this cohort is challenging. Additional research effort is needed to describe the patterns of gene expression in this cohort and to identify reliable prognostic markers for this subset of patients. We combined gene expression data from two studies in a meta-analysis in order to investigate differences in gene expression of advanced stage (3 or 4) tumours without MYCN amplification that show contrasting outcomes (alive or dead) at five years after initial diagnosis. In addition, a predictive model for outcome was generated. Gene expression profiles from 66 patients were included from two studies using different microarray platforms. In the combined data set, 72 genes were identified as differentially expressed by meta-analysis at a false discovery rate (FDR) of 8.33%. Meta-analysis detected 34 differentially expressed genes that were not found as significant in either single study. Outcome prediction based on data of both studies resulted in a predictive accuracy of 77%. Moreover, the genes that were differentially expressed in subgroups of advanced stage patients without MYCN amplification accurately separated MYCN amplified tumours from low stage tumours without MYCN amplification. Our findings support the hypothesis that neuroblastoma consists of two biologically distinct subgroups that differ by characteristic gene expression patterns, which are associated with divergent clinical outcome

  6. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  7. The nonconservative property of dissolved molybdenum in the western Taiwan Strait: Relevance of submarine groundwater discharges and biological utilization

    Science.gov (United States)

    Wang, Deli; Xia, Weiwei; Lu, Shuimiao; Wang, Guizhi; Liu, Qian; Moore, Willard S.; Arthur Chen, Chen-Tung

    2016-01-01

    This study examined dissolved Mo and sedimentary Mo along with hydrochemical parameters in the western Taiwan Strait (WTS) in May and August 2012. The results demonstrate that dissolved Mo could be depleted of as high as 10-20 nM during our May sampling period when the nutrient-enriched Min-Zhe coastal current ceased and spring blooms developed. The negative correlation between Chl-a and dissolved Mo suggests the possible involvement of high algal productivity in removing dissolved Mo out of the water column. Specific oceanographic settings (little currents) permitted a high sedimentary enrichment of Mo (>6 µg/g Mo) within the highly productive waters outside the Jiulong River mouth. Possibly, the high algal productivities and consequent organic matter sinks provide a pathway of Mo burial from water columns into sediments. Dissolved Mo was relatively high in groundwater samples, but we observed that submarine groundwater discharges (SGDs) only contributed to a relatively small percentage of the total dissolved Mo pool in WTS. It is probably attributable to the immediate removal of SGD-released Mo ions via adsorption onto newly formed Mn oxides once exposed to oxygenated seawater, followed by an elevated sedimentary Mo accumulation near the SGDs (˜5 µg/g). In addition to metal oxide particle scavenging and sulfide precipitation, we estimated that biological uptake along with Mo adsorption onto organic matter carriers could finally provide more than 10% of the annual sedimentary Mo accumulation in WTS.

  8. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology

    Directory of Open Access Journals (Sweden)

    Lazic Stanley E

    2008-07-01

    Full Text Available Abstract Background Analysis of variance (ANOVA is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis – even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. Results An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159. This will be true in general, and the reasons for this are discussed. Conclusion There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  9. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.

    Science.gov (United States)

    Ballesteros, Daniel; Walters, Christina

    2011-11-01

    Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. PMID:21831210

  10. Next-Generation Transcriptome Profiling of the Salmon Louse Caligus rogercresseyi Exposed to Deltamethrin (AlphaMax™): Discovery of Relevant Genes and Sex-Related Differences.

    Science.gov (United States)

    Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2015-12-01

    Sea lice are one of the main parasites affecting the salmon aquaculture industry, causing significant economic losses worldwide. Increased resistance to traditional chemical treatments has created the need to find alternative control methods. Therefore, the objective of this study was to identify the transcriptome response of the salmon louse Caligus rogercresseyi to the delousing drug deltamethrin (AlphaMax™). Through bioassays with different concentrations of deltamethrin, adult salmon lice transcriptomes were sequenced from cDNA libraries in the MiSeq Illumina platform. A total of 78 million reads for females and males were assembled in 30,212 and 38,536 contigs, respectively. De novo assembly yielded 86,878 high-quality contigs and, based on published data, it was possible to annotate and identify relevant genes involved in several biological processes. RNA-seq analysis in conjunction with heatmap hierarchical clustering evidenced that pyrethroids modify the ectoparasitic transcriptome in adults, affecting molecular processes associated with the nervous system, cuticle formation, oxidative stress, reproduction, and metabolism, among others. Furthermore, sex-related transcriptome differences were evidenced. Specifically, 534 and 1033 exclusive transcripts were identified for males and females, respectively, and 154 were shared between sexes. For males, estradiol 17-beta-dehydrogenase, sphingolipid delta4-desaturase DES1, ketosamine-3-kinase, and arylsulfatase A, among others, were discovered, while for females, vitellogenin 1, glycoprotein G, transaldolase, and nitric oxide synthase were among those identified. The shared transcripts included annotations for tropomyosin, γ-crystallin A, glutamate receptor-metabotropic, glutathione S-transferase, and carboxipeptidase B. The present study reveals that deltamethrin generates a complex transcriptome response in C. rogercresseyi, thus providing valuable genomic information for developing new delousing drugs. PMID

  11. Synthesis of fluorophore encapsulated silica nanoparticles for the evaluation of the biological fate and toxicity of food relevant nanoparticles

    Science.gov (United States)

    Zane, Andrew Paul

    fluorophores, rhodamine 6G and rhodamine 800, into silica shells for direct monitoring in intestinal epithelial cells and tissues of exposed mice. We show that, for small nanoparticles, a typical Stober-type ammonia driven synthesis does not yield stable fluorescence. This has been observed in literature and is attributed to incompletely hydrolyzed silica precursor causing partial dissolution of the silica shell. We remedy this by applying an arginine driven silica shell synthesis, which is known to produce a denser and more stable product at smaller particle sizes. We show that all three fluorophores can be coated in a simple generalized procedure, and the resulting particles all show stable fluorescence with no evidence of dye leakage. Using these particles, we demonstrate that silica nanoparticles can be observed internalizing into C2BBe1 intestinal epithelial cells, and in the tissues of mice that were fed the particles by gavage. We find direct evidence that the particles are absorbed into circulation and subsequently localize in organs throughout the body. Future efforts will attempt to better quantify this accumulation, as well as generalize the procedure to other food relevant nanoparticles such as TiO2.

  12. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  13. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  14. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  15. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  16. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Lewis, R. M.;

    2015-01-01

    % and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could be...

  17. Gene flow and biological conflict systems in the origin and evolution of eukaryotes.

    Science.gov (United States)

    Aravind, L; Anantharaman, Vivek; Zhang, Dapeng; de Souza, Robson F; Iyer, Lakshminarayan M

    2012-01-01

    The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations. PMID:22919680

  18. A substrate dependent biological containment systems for Pseudomonas putida based on the Escherichia coli gef gene

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Ramos, J. L.; Kaneva, Z.; Molin, Søren

    1993-01-01

    A model substrate-dependent suicide system to biologically contain Pseudomonas putida KT2440 is reported. The system consists of two elements. One element carries a fusion between a synthetic lac promoter (PA1-04/03) and the gef gene, which encodes a killing function. This element is contained...... within a transposaseless mini-Tn5 transposon so that it can be integrated at random locations on the Pseudomonas chromosome. The second element, harbored by plasmid pCC102, is designed to control the first and bears a fusion between the promoter of the P. putida TOL plasmid-encoded meta-cleavage pathway...... operon (Pm) and the lacI gene, encoding the Lac repressor, plus xylS2, coding for a positive regulator of Pm. In liquid culture under optimal growth conditions and in sterile and nonsterile soil microcosms, P. putida KT2440 (pWWO) bearing the containment system behaves as designed. In the presence of a...

  19. Genome reconstruction and gene expression of "Candidatus Accumulibacter phosphatis" Clade IB performing biological phosphorus removal.

    Science.gov (United States)

    Mao, Yanping; Yu, Ke; Xia, Yu; Chao, Yuanqing; Zhang, Tong

    2014-09-01

    We report the first integrated metatranscriptomic and metagenomic analysis of enhanced biological phosphorus removal (EBPR) sludge. A draft genome of Candidatus Accumulibacter spp. strain HKU-1, a member of Clade IB, was retrieved. It was estimated to be ∼90% complete and shared average nucleotide identities of 83% and 88% with the finished genome CAP IIA UW-1 and the draft genome CAP IA UW-2, respectively. Different from CAP IIA UW-1, the phosphotransferase (pap) in polyphosphate metabolism and V-ATPase in orthophosphate transport were absent from CAP IB HKU-1. Additionally, unlike CAP IA UW-2, CAP IB HKU-1 carried the genes for carbon fixation and nitrogen fixation. Despite these differences, the key genes required for acetate uptake, glycolysis and polyhydroxyalkanoate (PHA) synthesis were conserved in all these Accumulibacter genomes. The preliminary metatranscriptomic results revealed that the most significantly up-regulated genes of CAP IB HKU-1 from the anaerobic to the aerobic phase were responsible for assimilatory sulfate reduction, genetic information processing and phosphorus absorption, while the down-regulated genes were related to N2O reduction, PHA synthesis and acetyl-CoA formation. This study yielded another important Accumulibacter genome, revealed the functional difference within the Accumulibacter Type I, and uncovered the genetic responses to EBPR stimuli at a higher resolution. PMID:25089581

  20. Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2008-08-01

    Full Text Available Abstract Background With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. Results The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8 (p ≈ 0, desmin (DES (p = 2.71 × 10-6 and enolase 1 (ENO1 (p = 4.19 × 10-5], while two novel hub genes [RNA binding motif protein 9 (RBM9 (p = 1.50 × 10-4 and ribosomal protein L30 (RPL30 (p = 1.50 × 10-4] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO based analysis of the colon cancer-specific gene network and

  1. Comparative Evaluation of Two Serial Gene Expression Experiments | Division of Cancer Prevention

    Science.gov (United States)

    Stuart G. Baker, 2014 Introduction This program fits biologically relevant response curves in comparative analysis of the two gene expression experiments involving same genes but under different scenarios and at least 12 responses. The program outputs gene pairs with biologically relevant response curve shapes including flat, linear, sigmoid, hockey stick, impulse and step curves. |

  2. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    Science.gov (United States)

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions. PMID:24579087

  3. Classification of time series gene expression in clinical studies via integration of biological network.

    Directory of Open Access Journals (Sweden)

    Liwei Qian

    Full Text Available The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that integration of biological networks into our method significantly improves prediction performance. Moreover, we compared our approach with several state-of-the-art algorithms and found that our method outperformed previous approaches with regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential of our method for practical prediction.

  4. Classification of time series gene expression in clinical studies via integration of biological network.

    Science.gov (United States)

    Qian, Liwei; Zheng, Haoran; Zhou, Hong; Qin, Ruibin; Li, Jinlong

    2013-01-01

    The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that integration of biological networks into our method significantly improves prediction performance. Moreover, we compared our approach with several state-of-the-art algorithms and found that our method outperformed previous approaches with regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential of our method for practical prediction. PMID:23516469

  5. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  6. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    Science.gov (United States)

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins

  7. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Systems Biology Approach

    Science.gov (United States)

    Ensuring chemical safety and sustainability form a main priority of the U.S. Environmental Protection Agency. This entails efforts on multiple fronts to characterize the potential hazard posed by chemicals currently in use and those to be commercialized in the future. The use of ...

  8. Use of Rats Mesenchymal Stem Cells Modified with mHCN2 Gene to Create Biologic Pacemakers

    Institute of Scientific and Technical Information of China (English)

    马金; 张存泰; 黄深; 王国强; 全小庆

    2010-01-01

    The possibility of rats mesenchymal stem cells (MSCs) modified with murine hyperpolarization-activated cyclic nucleotide-gated 2 (mHCN2) gene as biological pacemakers in vitro was studied. The cultured MSCs were transfected with pIRES2-EGFP plasmid carrying enhanced green fluorescent protein (EGFP) gene and mHCN2 gene. The identification using restriction enzyme and sequencing indicated that the mHCN2 gene was inserted to the pIRES2-EGFP. Green fluorescence could be seen in MSCs after transfection for 24-48...

  9. Anti-viral state segregates two molecular phenotypes of pancreatic adenocarcinoma: potential relevance for adenoviral gene therapy

    Directory of Open Access Journals (Sweden)

    Chiorini Jay A

    2010-01-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma (PDAC remains a leading cause of cancer mortality for which novel gene therapy approaches relying on tumor-tropic adenoviruses are being tested. Methods We obtained the global transcriptional profiling of primary PDAC using RNA from eight xenografted primary PDAC, three primary PDAC bulk tissues, three chronic pancreatitis and three normal pancreatic tissues. The Affymetrix GeneChip HG-U133A was used. The results of the expression profiles were validated applying immunohistochemical and western blot analysis on a set of 34 primary PDAC and 10 established PDAC cell lines. Permissivity to viral vectors used for gene therapy, Adenovirus 5 and Adeno-Associated Viruses 5 and 6, was assessed on PDAC cell lines. Results The analysis of the expression profiles allowed the identification of two clearly distinguishable phenotypes according to the expression of interferon-stimulated genes. The two phenotypes could be readily recognized by immunohistochemical detection of the Myxovirus-resistance A protein, whose expression reflects the activation of interferon dependent pathways. The two molecular phenotypes discovered in primary carcinomas were also observed among established pancreatic adenocarcinoma cell lines, suggesting that these phenotypes are an intrinsic characteristic of cancer cells independent of their interaction with the host's microenvironment. The two pancreatic cancer phenotypes are characterized by different permissivity to viral vectors used for gene therapy, as cell lines expressing interferon stimulated genes resisted to Adenovirus 5 mediated lysis in vitro. Similar results were observed when cells were transduced with Adeno-Associated Viruses 5 and 6. Conclusion Our study identified two molecular phenotypes of pancreatic cancer, characterized by a differential expression of interferon-stimulated genes and easily recognized by the expression of the Myxovirus-resistance A protein. We

  10. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  11. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  12. Correlation between γ-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    We examined the degree of correlation between γ-ray-induced lethality and DNA double-strand breaks (dsbs) after biologically relevant doses of radiation. Radiation lethality was modified by treating 14C-labelled Chinese hamster ovary cells with either of two aminothiols (WR-1065 or WR-255591) and the associated effect on dsb induction was determined by pulsed-field gel electrophoresis (PFGE). The use of phosphorimaging to analyse the distribution of 14C-activity in the gel greatly improved the low-dose resolution of the PFGE assay. Both WR-1065 and WR-255591 protected against dsb induction and lethality to a similar extent after low doses of radiation. although this correlation broke down when supralethal doses were used to induce dsbs. Thus, the level of dsbs induced in these cells as measured by PFGE after survival-curve doses of γ-radiation is consistently predictive of the degree of lethality obtained, implying a cause-effect relationship between these two parameters and confirming previous results obtained using the neutral filter elution assay for dsbs. (author)

  13. Biological sensor for sucrose availability: relative sensitivities of various reporter genes.

    Science.gov (United States)

    Miller, W G; Brandl, M T; Quiñones, B; Lindow, S E

    2001-03-01

    A set of three sucrose-regulated transcriptional fusions was constructed. Fusions p61RYTIR, p61RYlac, and p61RYice contain the scrR sucrose repressor gene and the promoterless gfp, lacZ, and inaZ reporter genes, respectively, fused to the scrY promoter from Salmonella enterica serovar Typhimurium. Cells of Erwinia herbicola containing these fusions are induced only in media amended with sucrose, fructose, or sorbose. While a large variation in sucrose-dependent reporter gene activity was observed in cells harboring all gene fusions, fusions to the inaZ reporter gene yielded a much wider range of activity and were responsive to lower levels of sucrose than either lacZ or gfp. The lacZ reporter gene was found to be more efficient than gfp, requiring approximately 300-fold fewer cells for a detectable response over all concentrations of sucrose. Similarly, inaZ was found to be more efficient than lacZ, requiring 30-fold fewer cells at 1.45 microM sucrose and 6,100-fold fewer cells at 29 mM sucrose for a quantifiable response. The fluorescence of individual cells containing p61RYTIR was quantified following epifluorescence microscopy in order to relate the fluorescence exhibited by populations of cells in batch cultures with that of individual cells in such cultures. While the mean fluorescence intensity of a population of individual cells increased with increasing concentrations of sucrose, a wide range of fluorescence intensity was seen among individual cells. For most cultures the distribution of fluorescence intensity among individual cells was log-normally distributed, but cells grown in intermediate concentrations of sucrose exhibited two distinct populations of cells, one having relatively low fluorescence and another with much higher fluorescence. When cells were inoculated onto bean leaves, whole-cell ice nucleation and gfp-based biological sensors for sucrose each indicated that the average concentration of sucrose on moist leaf surfaces was about 20 micro

  14. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    Science.gov (United States)

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-01-01

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. PMID:27220405

  15. Relevance of GSTM1, GSTT1 and GSTP1 Gene Polymorphism to Breast Cancer Susceptibility in Mizoram Population, Northeast India.

    Science.gov (United States)

    Kimi, Lalro; Ghatak, Souvik; Yadav, Ravi Prakash; Chhuani, Lalhma; Lallawmzuali, Doris; Pautu, Jeremy L; Senthil Kumar, Nachimuthu

    2016-02-01

    The enzymes encoded by glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genes are involved in the metabolism of wide range of carcinogens that are ubiquitous in the environment. Homozygous deletions of the GSTM1 and GSTT1 genes are commonly found and result in lack of enzyme activity. This study was undertaken to evaluate the association between GSTM1, GSTT1 and GSTP1 gene polymorphism and breast cancer risk in Mizoram population. Odd ratio (OR) and 95% confidence interval (CI) from conditional logistic regression model were used to estimate the association between genetic polymorphism and breast cancer risk. The GSTM1 and GSTT1 null genotypes were associated with an increased risk of breast cancer [OR = 10.80 (95% CI 1.16-100.43)]. The risk of breast cancer associated with the GSTT1 null genotype was observed to be low among postmenopausal women. When considered together, GSTM1 and GSTT1 genotypes were found to be associated with an increased risk of breast cancer. The relationship between GSTM1 and GSTT1 gene deletions and breast cancer risk was substantially altered by consumption of Smoked Meat/Vegetable. In the present study, GSTP1Ile105Val (rs1695) polymorphism was related to breast cancer susceptibility or phenotype. Our data provides evidence for substantially increased risk of breast cancer associated with GSTM1 and/or GSTT1 homozygous gene deletions in Mizoram population. PMID:26407578

  16. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants

    DEFF Research Database (Denmark)

    van den Eede, G.; Aarts, H. J.; Buhk, H. J.;

    2004-01-01

    crops are described. Next, HGT mechanisms and its possible evolutionary role are described. The use of marker genes is presented in detail as a special case for genes that may pose a risk. Furthermore, the exposure to GMOs and in particular to genetically modified (GM) deoxyribonucleic acid (DNA) is......In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost...... action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established...

  17. Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Brentani Helena

    2004-08-01

    Full Text Available Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE, "Digital Northern" or Massively Parallel Signature Sequencing (MPSS, is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries" and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.

  18. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. PMID:26721629

  19. SYSTEMS BIOLOGY ANALYSES OF GENE EXPRESSION AND GENOME WIDE ASSOCIATION STUDY DATA IN OBSTRUCTIVE SLEEP APNEA

    Science.gov (United States)

    LIU, YU; PATEL, SANJAY; NIBBE, ROD; MAXWELL, SEAN; CHOWDHURY, SALIM A.; KOYUTURK, MEHMET; ZHU, XIAOFENG; LARKIN, EMMA K.; BUXBAUM, SARAH G; PUNJABI, NARESH M.; GHARIB, SINA A.; REDLINE, SUSAN; CHANCE, MARK R.

    2015-01-01

    The precise molecular etiology of obstructive sleep apnea (OSA) is unknown; however recent research indicates that several interconnected aberrant pathways and molecular abnormalities are contributors to OSA. Identifying the genes and pathways associated with OSA can help to expand our understanding of the risk factors for the disease as well as provide new avenues for potential treatment. Towards these goals, we have integrated relevant high dimensional data from various sources, such as genome-wide expression data (microarray), protein-protein interaction (PPI) data and results from genome-wide association studies (GWAS) in order to define sub-network elements that connect some of the known pathways related to the disease as well as define novel regulatory modules related to OSA. Two distinct approaches are applied to identify sub-networks significantly associated with OSA. In the first case we used a biased approach based on sixty genes/proteins with known associations with sleep disorders and/or metabolic disease to seed a search using commercial software to discover networks associated with disease followed by information theoretic (mutual information) scoring of the sub-networks. In the second case we used an unbiased approach and generated an interactome constructed from publicly available gene expression profiles and PPI databases, followed by scoring of the network with p-values from GWAS data derived from OSA patients to uncover sub-networks significant for the disease phenotype. A comparison of the approaches reveals a number of proteins that have been previously known to be associated with OSA or sleep. In addition, our results indicate a novel association of Phosphoinositide 3-kinase, the STAT family of proteins and its related pathways with OSA. PMID:21121029

  20. Multicentre evaluation of a real-time PCR assay to detect genes encoding clinically relevant carbapenemases in cultured bacteria.

    Science.gov (United States)

    Ellington, Matthew J; Findlay, Jacqueline; Hopkins, Katie L; Meunier, Danièle; Alvarez-Buylla, Adela; Horner, Carolyne; McEwan, Ashley; Guiver, Malcolm; McCrae, Li-Xu; Woodford, Neil; Hawkey, Peter

    2016-02-01

    The performance and portability of a multiplex real-time PCR assay to detect KPC, NDM, OXA-48-like and VIM carbapenemase gene families from bacterial isolates was assessed using Rotor-Gene Q and ABI 7500 instruments. Gram-negative bacterial isolates (n=502) were comprised of 100 isolates each with KPC, NDM, VIM or OXA-48-like carbapenemases (including 17 with OXA-181) and 2 isolates with NDM+OXA-48-like enzymes (including 1 with OXA-181) as well as 100 assay-negative isolates comprised of 24 IMP-producers, 24 carbapenem-resistant isolates with no known carbapenemase gene and 52 extended-spectrum β-lactamase-producing carbapenem-susceptible isolates. A multicentre evaluation was carried out in five laboratories using a subset of 100 isolates comprised of 22 isolates each with KPC, NDM, OXA-48-like or VIM alleles and 12 isolates that were negative for the assay targets. Initial validation of the assay on both the Rotor-Gene Q and ABI 7500 instruments demonstrated 100% sensitivity amongst the 402 isolates that were positive for KPC, NDM, OXA-48-like (including OXA-181) and VIM carbapenemase genes, whilst the 100 assay-negative samples were correctly identified indicating 100% specificity. During the multicentre evaluation the same 100% level of sensitivity and specificity was observed in each of the five centres that participated. Neither invalid nor false-positive results were observed. In conclusion, the assay offers a portable and reliable option for the detection of bacteria carrying clinically significant carbapenemases encoded by KPC, NDM, VIM and OXA-48-like carbapenemase genes using either of the two most common real-time PCR instrument platforms. PMID:26795023

  1. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    OpenAIRE

    Verma Mansi; Lal Devi; Lal Rup

    2011-01-01

    Abstract Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplemen...

  2. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  3. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  4. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-01

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  5. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    OpenAIRE

    Chou Jeff W; Bushel Pierre R

    2009-01-01

    Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to...

  6. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    OpenAIRE

    Kadarmideen, Haja N; Watson-Haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared ...

  7. Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development.

    Science.gov (United States)

    Fiorino, Antonio; Manenti, Giacomo; Gamba, Beatrice; Bucci, Gabriele; De Cecco, Loris; Sardella, Michele; Buscemi, Giacomo; Ciceri, Sara; Radice, Maria T; Radice, Paolo; Perotti, Daniela

    2016-09-01

    Retina-derived POU domain Factor 1 (RPF-1), a member of POU transcription factor family, is encoded by POU6F2 gene, addressed by interstitial deletions at chromosome 7p14 in Wilms tumor (WT). Its expression has been detected in developing kidney and nervous system, suggesting an early role for this gene in regulating development of these organs. To investigate into its functions and determine its role in transcriptional regulation, we generated an inducible stable transfectant from HEK293 cells. RPF-1 showed nuclear localization, elevated stability, and transactivation of promoters featuring POU consensus sites, and led to reduced cell proliferation and in vivo tumor growth. By addressing the whole transcriptome regulated by its induction, we could detect a gross alteration of gene expression that is consistent with promoter occupancy predicted by genome-wide Chip-chip analysis. Comparison of bound regulatory regions with differentially expressed genes allowed identification of 217 candidate targets. Enrichment of divergent octamers in predicted regulatory regions revealed promiscuous binding to bipartite POUS and POUH consensus half-sites with intervening spacers. Gel-shift competition assay confirmed the specificity of RPF-1 binding to consensus motifs, and demonstrated that the Ser-rich region upstream of the POU domain is indispensable to achieve DNA-binding. Promoter-reporter activity addressing a few target genes indicated a dependence by RPF-1 on transcriptional response. In agreement with its expression in developing kidney and nervous system, the induced transcriptome appears to indicate a function for this protein in early renal differentiation and neuronal cell fate, providing a resource for understanding its role in the processes thereby regulated. PMID:27425396

  8. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    OpenAIRE

    Higuera-Matas, A.; Montoya, G. L; Coria, S.M; Miguéns, M.; García-Lecumberri, C.; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fi...

  9. Identification of "pathologs" (disease-related genes from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Directory of Open Access Journals (Sweden)

    Socha Luis A

    2004-04-01

    Full Text Available Abstract Background A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%, hereditary (24%, immunological (5%, cardio-vascular (4%, or other (14%, disorders. Conclusions Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.

  10. BIO-PROGRAMMING PROSPECTS OF JAVA: A COMPUTATIONAL MOVE TOWARDS THE UNDERSTANDING OF THE BIOLOGICAL ASPECTS OF GENES AND PROTEINS

    Directory of Open Access Journals (Sweden)

    KALPANA RAJA

    2011-12-01

    Full Text Available Java is a powerful object oriented programming language that dominates many other programming languages for more than a decade. It is well designed and available as many executable technologies for software development such as Java Swing, Java Beans, Java Applets, Java Web Start, Java Database Connectivity (JDBC, Java Server Pages (JSP and Java 2 Enterprise Edition (J2EE. Beyond its usage in the IT sector, the language is prominent even in the new emerging fields including bioinformatics and computational biology.The biological data (genes and proteins from the biological and medical research is immense and require software professionals to mine them for new knowledge discovery. The knowledge to merge the programming concepts of Java to understand a wide range of biological concepts opens a new career challenge for many IT professionals. This paper introduces the implementation of the coding knowledge of Java in the field ofmolecular biology.

  11. Interleukin-2 (IL-2) dependent expression of biologically relevant IL-2 receptors: uncoupling of anti-T3 induced receptor expression with cyclosporin

    International Nuclear Information System (INIS)

    Human peripheral blood T cell expression of IL-2 receptors (IL-2R), detected by both immunocytofluorometry and 125I-IL-2 binding, was studied using lymphocytes stimulated with monoclonal anti-T3 antibodies (Leu-4, OKT3). Lymphocytes, isolated from healthy individuals, were prescreened and classified as Leu-4 responders or non-responders according to 72 h 3H-thymidine incorporation experiments. Leu-4 non-responder lymphocytes, though capable of normal IL-2R expression and IL-2 secretion when cultured with OKT3 (IgG2a), expressed little to no IL-2R nor secreted IL-2 when stimulated with Leu-4 (IgG1). In addition, the amount of IL-2 secreted by Leu-4 stimulated, Leu-4 responder cells, was one-third- to one-fifth of that detected when OKT3 was used as the stimulant. The addition of recombinant IL-2 (rIL-2) to a Leu-4 stimulated, Leu-4 non-responder lymphocyte culture, resulted in the expression of IL-2R and cellular proliferation, indicating that IL-2 upregulated its biologically relevant receptor. As expected, cyclosporin-A (CSA) inhibited the secretion of IL-2 and subsequent proliferation of Leu-4 stimulated, Leu-4 responder cells. Unexpectedly, however, the expression of IL-2R was also blocked. Exogenous rIL-2 partially reversed the effect of CSA on IL-2R expression and proliferation. The results indicate that IL-2 may provide an additional, required signal for optimal IL-2R expression

  12. Effect of Organic Solvents and Biologically Relevant Ions on the Light-Induced DNA Cleavage by Pyrene and Its Amino and Hydroxy Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2002-09-01

    Full Text Available Abstract: Polycyclic aromatic hydrocarbons (PAHs are a class of carcinogenic compounds that are both naturally and artificially produced. Many PAHs are pro-carcinogens that require metabolic activation. Recently, it has been shown that PAH can induce DNA single strand cleavage and formation of PAH-DNA covalent adduct upon irradiation with UVA light. The light-induced DNA cleavage parallels phototoxicity in one instance. The DNA photocleavage efficiency depends on the structure of the PAHs. This article reports the effect of both organic solvents and the presence of biologically relevant ions, Na+, Mg2+, Ca2+, K+, Fe3+, Cu2+, Zn+2, Mn2+, and I-, on the light-induced DNA cleavage by pyrene, 1-hydroxypyrene and 1-aminopyrene. Since both 1-hydroxypyrene (0.6 μM and 1-aminopyrene (6 μM dissolve well in the minimum organic solvents used (2% methanol, dimethylsulfoxide, and dimethylformamide, increasing the amount of the organic solvent resulted in the decrease of the amount of DNA single strand cleavage caused by the combination effect of 1-hydroxy or 1-aminopyrene and UVA light. The result with the less watersoluble pyrene shows that increase of the amount of the organic solvent can increase the amount of DNA single strand DNA photocleavage cause by the combination of pyrene and UVA light. Therefore, there are two effects by the organic solvents: (i to dissolve PAH and (ii to quench DNA photocleavage. The presence of Fe3+ and Zn2+ enhances, while the presence of Ca2+ and Mn2+ inhibits the DNA photocleavage caused by 1-aminopyrene and UVA light. Other metal ions have minimal effect. This means that the effect of ions on DNA photocleavage by PAHs is complex. The presence of KI enhances DNA photocleavage. This indicates that the triplet-excited state of 1-aminopyrene is involved in causing DNA cleavage

  13. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-01-01

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters. PMID:27311441

  14. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    Science.gov (United States)

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms. PMID:22324908

  15. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays

    OpenAIRE

    Serrot, Patricia H.; Sabater, Bartolomé; Martín, Mercedes

    2012-01-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the ...

  16. Gene Expression in Aminergic and Peptidergic Cells During Aggression and Defeat: Relevance to Violence, Depression and Drug Abuse

    OpenAIRE

    Miczek, Klaus A.; Nikulina, Ella M.; Takahashi, Aki; Covington, Herbert E.; Yap, Jasmine. J.; Boyson, Christopher O.; Shimamoto, Akiko; de Almeida, Rosa M. M.

    2011-01-01

    In this review, we examine how experiences in social confrontations alter gene expression in mesocorticolimbic cells. The focus is on the target of attack and threat due to the prominent role of social defeat stress in the study of coping mechanisms and victimization. The initial operational definition of the socially defeated mouse by Ginsburg and Allee (1942) enabled the characterization of key endocrine, cardiovascular, and metabolic events during the initial response to an aggressive oppo...

  17. Polymorphism in the IGF-I gene: clinical relevance for short children born small for gestational age (SGA)

    OpenAIRE

    Johnston, Linda; Ridder, Maria; Savage, Martin; Clark, Adrian; Duijn, Cock; Hokken-Koelega, Anita; Arends, Nicolette

    2002-01-01

    textabstractLow birth weight is associated with an increased risk in adult life of type 2 diabetes, hypertension and cardiovascular disease (CVD). The fetal insulin hypothesis postulates that genes involving insulin resistance could effect birth weight and disease in later life (Hattersley, 1999). Besides insulin, there is extensive evidence that insulin-like growth factor-I and -II (IGF-I, IGF-II) play an important role in fetal growth. We hypothesized that minor genetic variation in the IGF...

  18. Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn)

    OpenAIRE

    Cheng, Libao; Li, Shuyan; Yin, Jingjing; Li, Liangjun; Chen, Xuehao

    2013-01-01

    Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag...

  19. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?

    OpenAIRE

    Païssé, Sandrine; Duran, Robert; Coulon, Frederic; Goni-Urriza, Marisol

    2011-01-01

    The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expres- sion and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were main- tained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and t...

  20. De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg (Coleoptea: Coccinellidae.

    Directory of Open Access Journals (Sweden)

    Liang-De Tang

    Full Text Available The ladybird Propylaea japonica (Thunberg is one of most important natural enemies of aphids in China. This species is threatened by the extensive use of insecticides but genomics-based information on the molecular mechanisms underlying insecticide resistance is limited. Hence, we analyzed the transcriptome and expression profile data of P. japonica in order to gain a deeper understanding of insecticide resistance in ladybirds. We performed de novo assembly of a transcriptome using Illumina's Solexa sequencing technology and short reads. A total of 27,243,552 reads were generated. These were assembled into 81,458 contigs and 33,647 unigenes (6,862 clusters and 26,785 singletons. Of the unigenes, 23,965 (71.22% have putative homologues in the non-redundant (nr protein database from NCBI, using BLASTX, with a cut-off E-value of 10(-5. We examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Digital gene expression (DGE libraries showed differences in gene expression profiles between two insecticide resistant strains. When compared with an insecticide susceptible profile, a total of 4,692 genes were significantly up- or down- regulated in a moderately resistant strain. Among these genes, 125 putative insecticide resistance genes were identified. To confirm the DGE results, 16 selected genes were validated using quantitative real time PCR (qRT-PCR. This study is the first to report genetic information on P. japonica and has greatly enriched the sequence data for ladybirds. The large number of gene sequences produced from the transcriptome and DGE sequencing will greatly improve our understanding of this important insect, at the molecular level, and could contribute to the in-depth research into insecticide resistance mechanisms.

  1. 22. Proteomic Analysis of Differential Protein Expression in vero Cell with Antisense Blocking of Relevant Gene Involved in inhibition of Nontargeted Mutagenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. But its mechanism is still unknown. A cDNA fragment (fragment 9) has been isolated in MNNG-exposed vero cell by mRNA differential display in this lab. After antisense blocking the expression of its relevant gene (fragment 9 related gene, FNR gene), we found that nontargeted mutation frequency induced by MNNG was enhanced significantly. which implicated that the product of the blocked gene may be involved in the inhibition of nontargeted mutation. In order to elucidate the functional mechanism of the FNR gene, we try to separate the proteins from the established cell line expressing antisense fragment 9 to find out the FNR gene-coded protein. Method: The total cellular proteins of MNNG-exposed vero cell transfected with antisense RNA expression plasmid (vero-pM-amp--9-) and those with vector DNA (vero-pM-amp-) were separated by two-dimensional gel electrophoresis, and the resulting maps were analyzed with 2-D analysis software packages to find out the differentially expressed protein spots. Then the related 2-D PAGE database (http://biobase.dk/cgi-bin/celis/) was searched according to the protein spots information obtained from 2-DE including the position in the gel, isoelectric point (pl) and molecular weight (Mr). Result: Twelve proteins were specifically expressed only in vero-pM-amp-, and 2 proteins in vero-pM-amp--9-. In addition, there were 24 proteins expressed in higher level in vero-pM-amp--9- as compared with vero-pM-amp- (P<0.05), among them the expression of 7 proteins were enhanced by greater than 5 folds. On the other hand, no sequence similarity was found by homology analysis in GenBank through comparing the fragment 9 with the cDNA sequences of those proteins found in this study. Conclusion: Gene expression alterations bave occurred after antisense blocking of the FNR gene expression as demonstrated by

  2. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  3. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  4. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  5. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea.

    Science.gov (United States)

    Das, Shouvik; Singh, Mohar; Srivastava, Rishi; Bajaj, Deepak; Saxena, Maneesha S; Rana, Jai C; Bansal, Kailash C; Tyagi, Akhilesh K; Parida, Swarup K

    2016-02-01

    The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (Caq(a)PN4.1: 867.8 kb and Caq(a)PN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (Caq(b)PN4.1: 637.5 kb and Caq(b)PN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby

  6. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, V.; Thomassen, Mads; Kruse, T.A.;

    2012-01-01

    The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...

  7. Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Kiss Nimrod B

    2012-09-01

    Full Text Available Abstract Background In this study we aimed to quantify tumor suppressor gene (TSG promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP in other tumor types. Methods The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. Results Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2 was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. Conclusions/significance The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.

  8. Combined mutation and rearrangement screening by quantitative PCR high-resolution melting: is it relevant for hereditary recurrent Fever genes?

    Directory of Open Access Journals (Sweden)

    Nathalie Pallares-Ruiz

    Full Text Available The recent identification of genes implicated in hereditary recurrent fevers has allowed their specific diagnosis. So far however, only punctual mutations have been identified and a significant number of patients remain with no genetic confirmation of their disease after routine molecular approaches such as sequencing. The possible involvement of sequence rearrangements in these patients has only been examined in familial Mediterranean fever and was found to be unlikely. To assess the existence of larger genetic alterations in 3 other concerned genes, MVK (Mevalonate kinase, NLRP3 (Nod like receptor family, pyrin domain containing 3 and TNFRSF1A (TNF receptor superfamily 1A, we adapted the qPCR-HRM method to study possible intragenic deletions and duplications. This single-tube approach, combining both qualitative (mutations and quantitative (rearrangement screening, has proven effective in Lynch syndrome diagnosis. Using this approach, we studied 113 unselected (prospective group and 88 selected (retrospective group patients and identified no intragenic rearrangements in the 3 genes. Only qualitative alterations were found with a sensitivity similar to that obtained using classical molecular techniques for screening punctual mutations. Our results support that deleterious copy number alterations in MVK, NLRP3 and TNFRSF1A are rare or absent from the mutational spectrum of hereditary recurrent fevers, and demonstrate that a routine combined method such as qPCR-HRM provides no further help in genetic diagnosis. However, quantitative approaches such as qPCR or SQF-PCR did prove to be quick and effective and could still be useful after non contributory punctual mutation screening in the presence of clinically evocative signs.

  9. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. PMID:27480682

  10. The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP).

    Science.gov (United States)

    Ren, Chunhua; Chen, Ting; Jiang, Xiao; Wang, Yanhong; Hu, Chaoqun

    2014-12-01

    Translationally controlled tumor protein (TCTP) is a multifunctional protein that existed ubiquitously in different eukaryote species and distributed widely in various tissues and cell types. In this study, the gene structure and biological function of TCTP were first characterized in echinoderm. An echinoderm TCTP named StmTCTP was identified from sea cucumber (Stichopus monotuberculatus) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The StmTCTP cDNA is 1219 bp in length, containing a 5'-untranslated region (UTR) of 77 bp, a 3'-UTR of 623 bp and an open reading frame (ORF) of 519 bp that encoding a protein of 172 amino acids with a deduced molecular weight of 19.80 kDa and a predicted isolectric point of 4.66. Two deduced signal signatures termed TCTP1 and TCTP2, a microtubule binding domain, a Ca(2+) binding domain and the conserved residues forming Rab GTPase binding surface were found in the StmTCTP amino acid sequence. For the gene structure, StmTCTP contains four exons separated by three introns. The anti-oxidation and heat shock protein activities of recombinant TCTP protein were also demonstrated in this study. In addition, the expression of StmTCTP was found to be significantly upregulated by polyriboinosinic polyribocytidylic acid [poly (I:C)], lipopolysaccharides (LPS) or inactivated bacteria challenge in in vitro primary culture experiments of coelomocytes, suggested that the sea cucumber TCTP might play critical roles not only in the defense against oxidative and thermal stresses, but also in the innate immune defense against bacterial and viral infections. PMID:25193395

  11. Codon 201 Mutation of DCC Gene and Tumor Biologic Behavior in Human Colorectal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To explore the relationship between a point mutation of codon 201 in deleted in colorectal carcinoma ( DCC) gene and the biological behavior of colorectal carcinoma. Methods Tumor tissues and matched adjacent normal colon mucosa collected in 35 patients during surgical resection for colorectal carcinoma were analyzed. Forty normal colon mucosa tissues obtained by biopsy from patients who had neither colorectal tumor nor a family history of colorectal cancer during colonscop ic examination were used as control. Codon 201 mutatian was detected with allele-specific PCR and a restriction enzyme digestion method. The tumors were reviewed as clinical data, tumor location, histology,metastasis, and pathological staging (Dukes classification). Results The frequency of mutation at codon 201 in tumor tissue and corresponding adjacent normal mucosa was 71.4 % and 60 %, respectively, and either of the rates was significantly higher than that of normal control(32.5 % ). The point mutation rate in tumor tissues did not differ from that in the corresponding normal adjacent tissues. Statistic analysis showed that the mutation rate had no relationship to the sex, age of the patients, the histological pattern , differentiation, and invasion depth of the tumors. However, 93. 8 % of the mutation rate in colorectal cancer with lymph node invasion and/or distant metastasis is significantly higher than 52. 6 % of mutant rate in colorectal cancer uithout lymph nodes invasion or metastasis ( P <0. 05). Conclusion The point mutation at codon 201 of DCC gene is an early genetic event in colorectal cancer, and play some role in invasion and metastasis of colorectal carcinoma. It may serve as a useful genetic marker for identifying higher risk patients with colorectal carcinoma.

  12. Codon 201 Mutation of DCC Gene and Tumor Biologic Behavior in Human Colorectal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To explore the relationship between a point mutation of codon 201 in deleted in colorectal carcinoma ( DCC) gene and the biological behavior of colorectal carcinoma. Methods Tumor tissues and matched adjacent normal colon mucosa collected in 35 patients during surgical resection for colorectal carcinoma were analyzed. Forty normal colon mucosa tissues obtained by biopsy from patients who had neither colorectal tumor nor a family history of colorectal cancer during colonscop ic examination were used as control. Codon 201 mutatian was detected with allele-specific PCR and a restriction enzyme digestion method. The tumors were reviewed as clinical data, tumor location, histology,metastasis, and pathological staging (Dukes classification). Results The frequency of mutation at codon 201 in tumor tissue and corresponding adjacent normal mucosa was 71.4 % and 60 %, respectively, and either of the rates was significantly higher than that of normal control(32.5 % ). The point mutation rate in tumor tissues did not differ from that in the corresponding normal adjacent tissues. Statistic analysis showed that the mutation rate had no relationship to the sex, age of the patients, the histological pattern , differentiation, and invasion depth of the tumors. However, 93. 8 % of the mutation rate in colorectal cancer with lymph node invasion and/or distant metastasis is significantly higher than 52. 6 % of mutant rate in colorectal cancer uithout lymph nodes invasion or metastasis ( P <0. 05). Conclusion The point mutation at codon 201 of DCC gene is an early genetic event in colorectal cancer, and play some role in invasion and metastasis of colorectal carcinoma. It may serve as a useful genetic marker for identifying higher risk patients with colorectal carcinoma.

  13. Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes

    Directory of Open Access Journals (Sweden)

    Chou Jeff W

    2009-06-01

    Full Text Available Abstract Background Hepatotoxicity is a form of liver injury caused by exposure to stressors. Genomic-based approaches have been used to detect changes in transcription in response to hepatotoxicants. However, there are no straightforward ways of using co-expressed genes anchored to a phenotype or constrained by the experimental design for discerning mechanisms of a biological response. Results Through the analysis of a gene expression dataset containing 318 liver samples from rats exposed to hepatotoxicants and leveraging alanine aminotransferase (ALT, a serum enzyme indicative of liver injury as the phenotypic marker, we identified biological processes and molecular pathways that may be associated with mechanisms of hepatotoxicity. Our analysis used an approach called Coherent Co-expression Biclustering (cc-Biclustering for clustering a subset of genes through a coherent (consistency measure within each group of samples representing a subset of experimental conditions. Supervised biclustering identified 87 genes co-expressed and correlated with ALT in all the samples exposed to the chemicals. None of the over-represented pathways related to liver injury. However, biclusters with subsets of samples exposed to one of the 7 hepatotoxicants, but not to a non-toxic isomer, contained co-expressed genes that represented pathways related to a stress response. Unsupervised biclustering of the data resulted in 1 four to five times more genes within the bicluster containing all the samples exposed to the chemicals, 2 biclusters with co-expression of genes that discerned 1,4 dichlorobenzene (a non-toxic isomer at low and mid doses from the other chemicals, pathways and biological processes that underlie liver injury and 3 a bicluster with genes up-regulated in an early response to toxic exposure. Conclusion We obtained clusters of co-expressed genes that over-represented biological processes and molecular pathways related to hepatotoxicity in the rat. The

  14. Fibroblasts Express Immune Relevant Genes and Are Important Sentinel Cells during Tissue Damage in Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, Carlo Gunnar; Lindenstrom, Thomas;

    2010-01-01

    local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1 beta, IL-8 and TGF-beta already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but......Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF) was shown to be responsive to PAMPs and DAMPs after stimulation with LPS...... significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the...

  15. Human genes with a greater number of transcript variants tend to show biological features of housekeeping and essential genes

    DEFF Research Database (Denmark)

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    Alternative splicing is a process observed in gene expression that results in a multi-exon gene to produce multiple mRNA variants which might have different functions and activities. Although physiologically important, many aspects of genes with different number of transcript variants (or splice...... variants) still remain to be characterized. In this study, we provide bioinformatic evidence that genes with a greater number of transcript variants are more likely to play functionally important roles in cells, compared with those having fewer transcript variants. Among 21 983 human genes, 3728 genes were...... 64 vertebrate species as orthologs, subjected to regulations by transcription factors and microRNAs, and showed hub node-like properties in the human protein-protein interaction network. These findings were also confirmed by metabolic simulations of 60 cancer metabolic models. All these results...

  16. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  17. Why are we doing this? The role of personal relevance in developing biological information literacy using cyber Peer-led Team Learning

    OpenAIRE

    Radloff, Jeffrey D; Maybee, C; Slebodnik, Maribeth; Pelaez, Nancy

    2014-01-01

    Student-centered learning necessitates that students engage with an array of materials to develop their own understandings, often requiring students to find and critically engage with biological information. This project describes a course (BIOL 131; Biology II: Development, Structure and Function of Organisms) that utilizes cyber Peer-led Team Learning (cPLTL) as a student-centered approach to enhance students’ biological information literacy. Emphasizing the social aspects of learning, stud...

  18. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation.

    Science.gov (United States)

    Hériché, Jean-Karim; Lees, Jon G; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M Julia; Hossain, M Julius; Adler, Priit; Fernández, José M; Krallinger, Martin; Haering, Christian H; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A; Orengo, Christine; Ellenberg, Jan

    2014-08-15

    The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  19. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species. PMID:23832493

  20. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    Science.gov (United States)

    Medhasi, Sadeep; Pasomsub, Ekawat; Vanwong, Natchaya; Ngamsamut, Nattawat; Puangpetch, Apichaya; Chamnanphon, Montri; Hongkaew, Yaowaluck; Limsila, Penkhae; Pinthong, Darawan; Sukasem, Chonlaphat

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese population. These data are important for further research to investigate the interpatient variability in pharmacokinetics and pharmacodynamics of drugs in clinical practice. PMID:27110117

  1. Variant at serotonin transporter gene predicts increased imitation in toddlers: relevance to the human capacity for cumulative culture.

    Science.gov (United States)

    Schroeder, Kari Britt; Asherson, Philip; Blake, Peter R; Fenstermacher, Susan K; Saudino, Kimberly J

    2016-04-01

    Cumulative culture ostensibly arises from a set of sociocognitive processes which includes high-fidelity production imitation, prosociality and group identification. The latter processes are facilitated by unconscious imitation or social mimicry. The proximate mechanisms of individual variation in imitation may thus shed light on the evolutionary history of the human capacity for cumulative culture. In humans, a genetic component to variation in the propensity for imitation is likely. A functional length polymorphism in the serotonin transporter gene, the short allele at 5HTTLPR, is associated with heightened responsiveness to the social environment as well as anatomical and activational differences in the brain's imitation circuity. Here, we evaluate whether this polymorphism contributes to variation in production imitation and social mimicry. Toddlers with the short allele at 5HTTLPR exhibit increased social mimicry and increased fidelity of demonstrated novel object manipulations. Thus, the short allele is associated with two forms of imitation that may underlie the human capacity for cumulative culture. The short allele spread relatively recently, possibly due to selection, and its frequency varies dramatically on a global scale. Diverse observations can be unified via conceptualization of 5HTTLPR as influencing the propensity to experience others' emotions, actions and sensations, potentially through the mirror mechanism. PMID:27072408

  2. Expression of TP53, BCL-2, and VEGFA Genes in Esophagus Carcinoma and its Biological Significance

    OpenAIRE

    Wei, Wei; Wang, Yanqin; YU, XIAOMING; Ye, Lan; Jiang, Yuhua; Cheng, Yufeng

    2015-01-01

    Background The pathogenesis of esophagus carcinoma involves a cascade process consisting of multiple factors and accumulation of gene mutations. It is known that vascular endothelial growth factor (VEGF) mainly regulates de novo vascular formation while B-cell lymphoma-2 (BCL-2) gene exerts a tumor-suppressing effect. The prominent expression of VEGFA and BCL-2 genes, along with the most famous tumor-suppressor gene, TP53, raise the possibly of gene interaction. This study therefore investiga...

  3. [Investigation of pollution characteristics of erythromycin resistance genes in a sewage treatment plant and the relevant selective factors].

    Science.gov (United States)

    Li, Kan-Zhu; Wu, Li-Le; Huang, Sheng-Lin; He, Shi; Liu, Zhen-Hong; Xue, Gang; Gao, Pin

    2014-12-01

    Occurrence and distribution of twelve pharmaceutical and personal care products (PPCPs) were investigated in a sewage treatment plant in Shanghai using solid-phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS). Quantitative PCR (qPCR) was used to determine the distribution and removal of seven erythromycin resistance genes (ERY-ARGs). The results showed that five PPCPs including sulfamethoxazole, erythromycin, tetracycline, carbamazepine and triclosan were detected in the collected wastewater samples with concentrations in the ranges of 24.5- 38.7, 47.5-49.2, 43.1-85.4, 2.5-3.9 and 423.2-8 973.3 ng x L(-1), respectively. During the wastewater treatment process, a significant reduction of triclosan was observed, but the removal efficiencies for the other detected PPCPs were relatively low. Additionally, all target ERY-ARGs were detected in the wastewater samples ranging from 9.28 x 10(3) (ermA) to 1.83 x 10(8) (ereA) copies x L(-1) in raw influent. Though significant reductions (1.19 log-3.97 log) of ERY-ARGs were obtained, their concentrations found in the final effluent were still high. Moreover, the concentration of ERY-ARGs exhibited significant positive correlation with the concentration of erythromycin and triclosan (P < 0.05), respectively, elucidating that erythromycin played an important role in the occurrence and spread of ERY-ARGs, while triclosan may confer cross-selection for ERY-ARGs. PMID:25826929

  4. A parallel algorithm for finding small sets of genes that are enough to distinguish two biological states

    Directory of Open Access Journals (Sweden)

    Martha Torres

    2004-01-01

    Full Text Available GCLASS is an algorithm which explores small samples of two distinct biological states for finding small sets of genes, which form a feature vector that is enough to separate these two states. A typical sample is a set of 60 microarrays, 30 for each biological state, with several thousand genes. The technique consists of the following: a spreading model defined in the space of small sets of genes studied and centered in each feature vector considered; the designing of optimal linear classifiers under this spreading model; and ranking the designed classifiers, based on their error and robustness relative to the spreading. The feature vectors used in the best classifiers are considered the best feature vectors. Due to the great number of potential feature sets, a parallel implementation is a good option for reducing the procedure execution time. This paper presents a parallel solution of GCLASS and shows some performance results. The experimental results show that the proposed solution provides quasi linear speedup if compared to the sequential implementation. For example, using 60 genes as the complete feature space and 6 genes as the small feature space, our parallel version with 11 processors is approximately 10.98 times faster than the sequential version.

  5. Relevancy 101

    Science.gov (United States)

    Lynnes, Chris; Newman, Doug

    2016-01-01

    Where we present an overview on why relevancy is a problem, how important it is and how we can improve it. The topic of relevancy is becoming increasingly important in earth data discovery as our audience is tuned to the accuracy of standard search engines like Google.

  6. Effect of small interfering RNA targeting survivin gene on biological behaviour of bladder cancer

    Institute of Scientific and Technical Information of China (English)

    HOU Jian-quan; HE Jun; WANG Xiao-lin; WEN Duan-gai; CHEN Zi-xing

    2006-01-01

    Background Bladder cancer is the most common type of urinary system tumours. It is frequently associated with genetic mutations that deregulate the cell cycle and render these tumours resistant to apoptosis. Survivin, a newly discovered member inhibitor of apoptosis protein (IAP) family in several human cancers, by inducing cell proliferation and inhibiting apoptosis is frequently activated in bladder cancer. We studied the influence of small interfering RNA (siRNA) targeting survivin on the biological behaviour of bladder cancer cells.Methods A double strand survivin target sequence specific siRNA was designed and synthesized. After transfection of bladder cancer cell line T24 by siRNA/liposome complex with increasing concentrations(50-200 nmol/L), the transfectant cells were intratumourally injected at different doses (5 μg or 50μg). The effects were measured in vitro and in vivo.Results The selected siRNA efficiently down-regulated survivin mRNA expression in a dose and time dependent manner. The maximal effect was achieved at the concentration of 100 nmol/L, at which survivin expression level was down-regulated by 75.91%. The inhibition rate of cell growth was 55.29% (P<0.01) and the markedly increased apoptotic rate was 45.70% (P<0.01). In vivo intratumoural injection of 50 μg siRNA-survivin could notably prevent the growth of bladder cancer (P<0.01) in xenografted animals.Conclusion The application of siRNA-survivin could markedly inhibit survivin expression in bladder cancer cell line by inducing apoptosis and inhibiting the growth of the tumour. It may become a new gene therapy tool for bladder cancer.

  7. Genes are information, so information theory is coming to the aid of evolutionary biology.

    Science.gov (United States)

    Sherwin, William B

    2015-11-01

    Speciation is central to evolutionary biology, and to elucidate it, we need to catch the early genetic changes that set nascent taxa on their path to species status (Via 2009). That challenge is difficult, of course, for two chief reasons: (i) serendipity is required to catch speciation in the act; and (ii) after a short time span with lingering gene flow, differentiation may be low and/or embodied only in rare alleles that are difficult to sample. In this issue of Molecular Ecology Resources, Smouse et al. (2015) have noted that optimal assessment of differentiation within and between nascent species should be robust to these challenges, and they identified a measure based on Shannon's information theory that has many advantages for this and numerous other tasks. The Shannon measure exhibits complete additivity of information at different levels of subdivision. Of all the family of diversity measures ('0' or allele counts, '1' or Shannon, '2' or heterozygosity, F(ST) and related metrics) Shannon's measure comes closest to weighting alleles by their frequencies. For the Shannon measure, rare alleles that represent early signals of nascent speciation are neither down-weighted to the point of irrelevance, as for level 2 measures, nor up-weighted to overpowering importance, as for level 0 measures (Chao et al. 2010, )2015. Shannon measures have a long history in population genetics, dating back to Shannon's PhD thesis in 1940 (Crow 2001), but have received only sporadic attention, until a resurgence of interest in the last ten years, as reviewed briefly by Smouse et al. (2015). PMID:26452559

  8. Statistical and biological gene-lifestyle interactions of MC4R and FTO with diet and physical activity on obesity: new effects on alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Dolores Corella

    Full Text Available BACKGROUND: Fat mass and obesity (FTO and melanocortin-4 receptor (MC4R and are relevant genes associated with obesity. This could be through food intake, but results are contradictory. Modulation by diet or other lifestyle factors is also not well understood. OBJECTIVE: To investigate whether MC4R and FTO associations with body-weight are modulated by diet and physical activity (PA, and to study their association with alcohol and food intake. METHODS: Adherence to Mediterranean diet (AdMedDiet and physical activity (PA were assessed by validated questionnaires in 7,052 high cardiovascular risk subjects. MC4R rs17782313 and FTO rs9939609 were determined. Independent and joint associations (aggregate genetic score as well as statistical and biological gene-lifestyle interactions were analyzed. RESULTS: FTO rs9939609 was associated with higher body mass index (BMI, waist circumference (WC and obesity (P<0.05 for all. A similar, but not significant trend was found for MC4R rs17782313. Their additive effects (aggregate score were significant and we observed a 7% per-allele increase of being obese (OR=1.07; 95%CI 1.01-1.13. We found relevant statistical interactions (P<0.05 with PA. So, in active individuals, the associations with higher BMI, WC or obesity were not detected. A biological (non-statistical interaction between AdMedDiet and rs9939609 and the aggregate score was found. Greater AdMedDiet in individuals carrying 4 or 3-risk alleles counterbalanced their genetic predisposition, exhibiting similar BMI (P=0.502 than individuals with no risk alleles and lower AdMedDiet. They also had lower BMI (P=0.021 than their counterparts with low AdMedDiet. We did not find any consistent association with energy or macronutrients, but found a novel association between these polymorphisms and lower alcohol consumption in variant-allele carriers (B+/-SE: -0.57+/-0.16 g/d per-score-allele; P=0.001. CONCLUSION: Statistical and biological interactions with PA

  9. Global gene expression profiling data analysis reveals key gene families and biological processes inhibited by Mithramycin in sarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Kirti K. Kulkarni

    2015-03-01

    Full Text Available The role of Mithramycin as an anticancer drug has been well studied. Sarcoma is a type of cancer arising from cells of mesenchymal origin. Though incidence of sarcoma is not of significant percentage, it becomes vital to understand the role of Mithramycin in controlling tumor progression of sarcoma. In this article, we have analyzed the global gene expression profile changes induced by Mithramycin in two different sarcoma lines from whole genome gene expression profiling microarray data. We have found that the primary mode of action of Mithramycin is by global repression of key cellular processes and gene families like phosphoproteins, kinases, alternative splicing, regulation of transcription, DNA binding, regulation of histone acetylation, negative regulation of gene expression, chromosome organization or chromatin assembly and cytoskeleton.

  10. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems

    OpenAIRE

    ClaudiaAngelini; ValerioCosta

    2014-01-01

    The availability of omic data produced from international consortia, as well as from worldwide laboratories, is offering the possibility both to answer long-standing questions in biomedicine/molecular biology and to formulate novel hypotheses to test. However, the impact of such data is not fully exploited due to a limited availability of multi-omic data integration tools and methods. In this paper, we discuss the interplay between gene expression and epigenetic markers/transcription factors....

  11. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Laura Näätsaari

    Full Text Available Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts.

  12. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology.

    Science.gov (United States)

    Näätsaari, Laura; Mistlberger, Beate; Ruth, Claudia; Hajek, Tanja; Hartner, Franz S; Glieder, Anton

    2012-01-01

    Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts. PMID:22768112

  13. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  14. Organization and Biology of the Porcine Serum Amyloid A (SAA) Gene Cluster: Isoform Specific Responses to Bacterial Infection

    DEFF Research Database (Denmark)

    Olsen, Helle G; Skovgaard, Kerstin; Nielsen, Ole L;

    2013-01-01

    Serum amyloid A (SAA) is a prominent acute phase protein. Although its biological functions are debated, the wide species distribution of highly homologous SAA proteins and their uniform behavior in response to injury or inflammation in itself suggests a significant role for this protein. The pig...... is increasingly being used as a model for the study of inflammatory reactions, yet only little is known about how specific SAA genes are regulated in the pig during acute phase responses and other responses induced by pro-inflammatory host mediators. We designed SAA gene specific primers and...... quantified the gene expression of porcine SAA1, SAA2, SAA3, and SAA4 by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in liver, spleen, and lung tissue from pigs experimentally infected with the Gram-negative swine specific bacterium Actinobacillus pleuropneumoniae, as well as from...

  15. Is p53 gene mutation an indicatior of the biological behaviors of recurrence of hepatocellular carcinoma?

    Institute of Scientific and Technical Information of China (English)

    I-Shyan Sheen; Kuo-Shyang Jeng; Ju-Yann Wu

    2003-01-01

    AIM: To evaluate mutant p53 gene in primary hepatocellular carcinoma and to investigate the correlation between it and the recurrence of hepatocellular carcinoma.METHODS: Mutations of p53 gene were examined using antihuman p53 monoclonal antibody and immunohistochemical staining in 79 resected hepatocellular carcinomas. The correlations among variables of p53 positivity and invasiveness, disease free interval and survival were studied.In addition, in those who developed recurrence, the correlation among p53 positivity, clinical features and postrecurrence survival were also studied.RESULTS: Of these 79 cases, 64 (81%) had p53 mutation.Those patients with mutant p53 positivityhad significantly more tumor recurrence (76.6 % vs 40.0 %, P=0.0107).However, the COX proportional hazards model showed that p53 overexpression had only weak correlations with recurrence free interval and survival time (P=0.088 and 0.081), which was probably related to the short duration of follow-up. The invasiveness variables may be predictors of HCC recurrence. On univariate analysis, more patients with mutant p53 positivity had vascular permeation [78.1vs 40.0 %, P=0.0088, O.R. (odds ratio) =5.3], grade Ⅱ-ⅣV differentiation (98.4 vs 80.0 %, P=0.0203, O.R. =15.7), no complete capsule (82.8 vs 53.3 %, P=0.0346, O.R. =4.2)and daughter nodules (60.9 vs. 33.3 %, P=0.0527, O.R.=3.1) than patients with negative p53 staining. Onmultivariate analysis, only vascular permeation and grade of differentiation remained significant (P=0.042 and 0.012).There was no statistically significant correlation betweenthe status of p53 in the primary lesion and the clinical features of recurrent hepatocellular carcinomas examined,including extrahepatic metastasis (P=0.1103) and the number of recurrent tumors (P= 1.000) except for diseaseover more than one segment in the extent of recurrent tumors (P=0.0043). The post-recurrence median survival was lower in patients in whom p53 mutation had been detected in the

  16. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    Science.gov (United States)

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  17. A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule"

    Directory of Open Access Journals (Sweden)

    Nero Damion

    2009-06-01

    Full Text Available Abstract Background Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO3- signaling. Results Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N-treatment backgrounds (i.e. nitrogen treatments under different growth conditions using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126 genes was selected for further analysis, as it was shown to be reproducibly responsive to NO3- as a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i genes controlled by NO3- only vs. ii genes controlled by both NO3- and hormones. The genes in the latter group showed a NO3- response that is significantly enhanced, compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE (E2F, HSE potentially involved the interplay between NO3- and hormonal signals. Conclusion This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.

  18. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures

    OpenAIRE

    Poole, Matthew; Kentzoglanakis, Kyriakos

    2011-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modelling the dynamical behaviour of gene regulatory systems. More specifically, ACO is used for searching the discre...

  19. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    OpenAIRE

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-prote...

  20. Biological role and clinical implications of homeobox genes in serous epithelial ovarian cancer.

    Science.gov (United States)

    Miller, Katherine R; Patel, Jai N; Ganapathi, Mahrukh K; Tait, David L; Ganapathi, Ram N

    2016-06-01

    Homeobox (HOX) genes are a family of transcription factors that are essential regulators of development. HOX genes play important roles in normal reproductive physiology, as well as in the development and progression of serous carcinomas, the predominant and most aggressive subtype of epithelial ovarian cancer (EOC). This review discusses aberrant HOX gene expression in serous EOC and its impact on tumor development and progression. Further identification of HOX target genes may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of patients with serous EOC. PMID:26957480

  1. Ontologies for molecular biology.

    Science.gov (United States)

    Schulze-Kremer, S

    1998-01-01

    Molecular biology has a communication problem. There are many databases using their own labels and categories for storing data objects and some using identical labels and categories but with a different meaning. A prominent example is the concept "gene" which is used with different semantics by major international genomic databases. Ontologies are one means to provide a semantic repository to systematically order relevant concepts in molecular biology and to bridge the different notions in various databases by explicitly specifying the meaning of and relation between the fundamental concepts in an application domain. Here, the upper level and a database branch of a prospective ontology for molecular biology (OMB) is presented and compared to other ontologies with respect to suitability for molecular biology (http:/(/)igd.rz-berlin.mpg.de/approximately www/oe/mbo.html). PMID:9697223

  2. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of iBFM-SG

    OpenAIRE

    Harrison, Christine J; Haas, Oskar A.; Harbott, W; Biondi, Andrea; Stanulla, Martin; Trka, Jan; Izraeli, Shai

    2010-01-01

    Abstract Treatment of childhood acute lymphoblastic leukaemia (ALL) has improved considerably in recent years. A contributing factor has been the improved stratification for treatment according to a number of factors including genetic determinants of outcome. Here we review the current diagnostic criteria of genetic abnormalities in precursor B-ALL (BCP-ALL), including the relevant technical approaches and the application of the most appropriate methods for the detection of each ab...

  3. Design-Based Learning for Biology: Genetic Engineering Experience Improves Understanding of Gene Expression

    Science.gov (United States)

    Ellefson, Michelle R.; Brinker, Rebecca A.; Vernacchio, Vincent J.; Schunn, Christian D.

    2008-01-01

    Gene expression is a difficult topic for students to learn and comprehend, at least partially because it involves various biochemical structures and processes occurring at the microscopic level. Designer Bacteria, a design-based learning (DBL) unit for high-school students, applies principles of DBL to the teaching of gene expression. Throughout…

  4. Biologically active A-chain of the plant toxin ricin expressed from a synthetic gene in Escherichia coli.

    Science.gov (United States)

    Shire, D; Bourrié, B J; Carillon, C; Derocq, J M; Dousset, P; Dumont, X; Jansen, F K; Kaghad, M; Legoux, R; Lelong, P

    1990-09-14

    To assess the biological activity and pharmacokinetic properties of nonglycosylated ricin A-chain (RA), we have obtained the polypeptide following expression of a synthetic 842-bp RA gene in Escherichia coli. Expression of the gene was carried out using the phage T5 PN25 promoter fused to the E. coli lac operator. The RA polypeptide was synthesized in a completely soluble form and was purified in one step by immunoabsorption. It was shown to be as cytotoxic for a human cell line as both native RA and chemically deglycosylated native RA. Reconstituted whole ricin and an immunotoxin containing the recombinant RA were also biologically active. Immunotoxins made with recombinant and deglycosylated RA had similar clearance rates in vivo showing, after a short period of rapid elimination, stabilities far higher than that of an immunotoxin made with native RA. Our results show that the complete elimination of sugar side chains from the RA is not sufficient to entirely eradicate the rapid initial in vivo clearance of RA-based biologicals. PMID:2227433

  5. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.

    Science.gov (United States)

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs). We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3, and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3 and RPS15 in

  6. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    Directory of Open Access Journals (Sweden)

    Wenchuan eXie

    2015-10-01

    Full Text Available Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs. We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA and Support Vector Machine (SVM method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3 and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3

  7. Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes

    Science.gov (United States)

    Chan, Ainsley C.; Khan, Deirdre; Girard, Ian J.; Becker, Michael G.; Millar, Jenna L.; Sytnik, David; Belmonte, Mark F.

    2016-01-01

    The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research. PMID:27194740

  8. Effects of 5-azacytidine on RUNX3 gene expression and the biological behavior of esophageal carcinoma cells.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Wang, Zhou; Chen, Hua-Xia

    2014-04-01

    The present study investigated the effects of 5-azacytidine (5-azaC) on the expression level of the human runt-related transcription factor 3 (RUNX3) gene and the biological behavior of esophageal carcinoma Eca109 cells. The effect of the demethylation reagent 5-azaC on the viability of Eca109 cells was detected by the MTT assay, which demonstrated that 5-azaC inhibited the viability of Eca109 cells in a time- and dose-dependent manner. Although demethylation of other genes may occur following treatment with 5-azaC, we focused on the RUNX3 gene. When treated with 5-azaC at hypoxic levels, the expression of RUNX3 increased and the methylation degree of the RUNX3 gene was decreased significantly in Eca109 cells. 5-azaC at 50 µM demonstrated the highest RUNX3-induction activity, inducing RUNX3 mRNA and protein expression, and decreasing the degree of methylation of the RUNX3 gene. Methylation specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. The abilities of migration and invasion of Eca109 cells were inhibited by 5-azaC. The growth of Eca109 cells treated with 5-azaC in vivo was detected by a tumorigenesis experiment. 5-azaC inhibited the growth of Eca109 xenografts in nude mice. Taken together, our findings demonstrated that the RUNX3 gene is hypermethylated in Eca109 cells and that 5-azaC induces the expression of the RUNX3 gene by demethylation, which inhibits the proliferation, migration and invasion of Eca109 cells. PMID:24535051

  9. Biological Sensor for Sucrose Availability: Relative Sensitivities of Various Reporter Genes

    OpenAIRE

    Miller, William G; Brandl, Maria T; Quiñones, Beatriz; Lindow, Steven E.

    2001-01-01

    A set of three sucrose-regulated transcriptional fusions was constructed. Fusions p61RYTIR, p61RYlac, and p61RYice contain the scrR sucrose repressor gene and the promoterless gfp, lacZ, and inaZ reporter genes, respectively, fused to the scrY promoter from Salmonella enterica serovar Typhimurium. Cells of Erwinia herbicola containing these fusions are induced only in media amended with sucrose, fructose, or sorbose. While a large variation in sucrose-dependent reporter gene activity was obse...

  10. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed

    Science.gov (United States)

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives. PMID:26959240

  11. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Medhasi S

    2016-04-01

    Full Text Available Sadeep Medhasi,1–3 Ekawat Pasomsub,4 Natchaya Vanwong,1,2 Nattawat Ngamsamut,5 Apichaya Puangpetch,1,2 Montri Chamnanphon,1,2 Yaowaluck Hongkaew,1,2 Penkhae Limsila,5 Darawan Pinthong,3 Chonlaphat Sukasem1,2 1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 2Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 3Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; 4Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 5Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakarn, Thailand Abstract: Single-nucleotide polymorphisms (SNPs among drug-metabolizing enzymes and transporters (DMETs influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese

  12. Towards the integration of computational systems biology and high-throughput data: a way to support differential analysis of microarray gene expression data

    OpenAIRE

    Segata, Nicola; Blanzieri, Enrico; Priami, Corrado

    2007-01-01

    The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction framework. In this work we show that the new relation between systems biology models and high-throughput data permits new integrations on the systemic scale like the use of in silico predictions to support the mining of gene ex...

  13. From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer

    OpenAIRE

    Knox Sarah S

    2010-01-01

    Abstract Background Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development. Hypothesis The hypothesis put forth in this paper add...

  14. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes

    OpenAIRE

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis...

  15. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    OpenAIRE

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Thomas J Montine; Saykin, Andrew J; Crane, Paul K.

    2014-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative t...

  16. A developmental biological study of aldolase gene expression in Xenopus laevis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source, aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism.We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that its promoter (ca. 2 kb)contains regions necessary for tissue-specific expression and also a GC rich region which is essential for basal transcriptional activity.

  17. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  18. Design and construction of a first-generation high-throughput integrated molecular biology platform for production of optimized synthetic genes and improved industrial strains

    Science.gov (United States)

    The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...

  19. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  20. Feasibility study on the investigation of age-dependent effects of high-fre quency electromagnetic fields based on relevant biophysical and biological parameters. Final report

    International Nuclear Information System (INIS)

    Based on a comprehensive literature study on the potential health hazard for children due to high frequency electromagnetic fields compared to adults the actual status of scientific knowledge is compiled and documented. The analysis of the available scientific literature can neither divert nor confirm indications on age dependent effects of electromagnetic fields. Concerning dosimetry the open questions result mainly from the missing representative detailed anatomic body or head models for children and missing data on possible age dependent dielectric tissue properties. There is also missing information on the maximum transmission power fluctuation range and the maximum antenna current close to the head of children using the mobile telephone which is dependent on the telephone type. The dosimetry related open questions can be defined and categorized, - the questions concerning the biological effects are more complicated, since up to now no assured low-dose mechanism is available. The so far published papers are controversial and were performed mostly with small animals and whole-body exposure. Due to the multitude of open questions concerning doses and biological effects it is not yet clear whether the health hazards for children due to HF fields are higher compared to adults or not. The study recommends the main research fields to be treated in the next future

  1. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles.

    Directory of Open Access Journals (Sweden)

    Martin Převorovský

    Full Text Available Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped.Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1 and stress-activated MAP kinase (Sty1p38 pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets.Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast.

  2. From Genes to Genomes Chances and boundaries of the New Biology

    CERN Document Server

    Winnaker, E L

    1997-01-01

    The goal of my lecture is to show the new dimensions of genome research. It is replacing classic recombinant DNA technologies. The search for single genes is being replaced by the analysis of gene activities of whole cells, organs or organisms. This development changes radically basic biomedical research and points to new therapeutic strategies (examples:cancer,Alzheimer's disease). I will also show the rapid changes of our understanding of gene activity. Mendel's definition of genes is now replaced by molecular terms which teach us how gene expression is regulated and controlled. Finally I will try to outline the limits of genetic analysis and how it raises ethical and moral questions. If the analysis of changes in the genetic read-out are related to diseases for which there is no therapy or if such knowledge only predisposes to genetic diseases the handling of such information requires extraordinary care. The genome projects thus have to be and are being pursued in conjunction with careful ethical analyses ...

  3. Biological characterization of liver fatty acid binding gene from miniature pig liver cDNA library.

    Science.gov (United States)

    Gao, Y H; Wang, K F; Zhang, S; Fan, Y N; Guan, W J; Ma, Y H

    2015-01-01

    Liver fatty acid binding proteins (L-FABP) are a family of small, highly conserved, cytoplasmic proteins that bind to long-chain fatty acids and other hydrophobic ligands. In this study, a full-length enriched cDNA library was successfully constructed from Wuzhishan miniature pig, and then the L-FABP gene was cloned from this cDNA library and an expression vector (pEGFP-N3-L-FABP) was constructed in vitro. This vector was transfected into hepatocytes to test its function. The results of western blotting analysis demonstrated that the L-FABP gene from our full-length enriched cDNA library regulated downstream genes, including the peroxisome proliferator-activated receptor family in hepatocytes. This study provides a theoretical basis and experimental evidence for the application of L-FABP for the treatment of liver injury. PMID:26345909

  4. Activation T-DNA tagging. Gene isolation and molecular dissection of complex biological pathways

    International Nuclear Information System (INIS)

    Activation tagging is a powerful means of isolating plant genes whose products are involved in complex biochemical processes. The dominant mutation produced allows direct selection for a defined phenotype. Plasmid rescue can be used to recover both the T-DNA and the flanking plant sequences containing the tagged gene. Activation tagging has been used to create a number of differing tobacco mutants, including those whose cells are characterized by their ability to grow in culture in the absence of auxin in the media. The tagged genes in this case are, in effect, cellular proto-oncogenes and are likely to play a role in the auxin biosynthetic and perception pathway. (author). 16 refs

  5. Biological characteristics of Bacillus thuringiensis strain Btll and identification of its cry-type genes

    Institute of Scientific and Technical Information of China (English)

    Tinghui LIU; Wei GUO; Weiming SUN; Yongxiang SUN

    2009-01-01

    A novel strain of Bacillus thuringiensis Bt11, isolated from soil samples in China, was classified and characterized in terms of its crystal proteins, cry genes content. The Bt11 strain showed high toxicity against Spodoptera exigua and Helicoverpa armigera neonates. Btll strain shares morphological and biochemical characteristics with the previously described Bacillus thuringiensis subsp. kurstaki. SDS-polyacrylamide gel electrophoresis revealed that crystals were composed of several polypeptides ranging from 20 to 130 kDa, of which the 35, 80, and 130 kDa proteins were the major components. PCR-RFLP with total DNA from strain Btll and specific primers for cryl, cry2, cry3, cry4/10, cry7, cry8, cry9, and cryll genes revealed that crylAa, crylAb, crylla, and cry9Ea genes were present.

  6. Relevant Agents

    Czech Academy of Sciences Publication Activity Database

    Bílková, Marta; Majer, Ondrej; Peliš, Michal; Restall, G.

    London: College Publications, 2010 - (Beklemishev, L.; Goranko, V.; Shehtman, V.), s. 22-38. (8). ISBN 978-1-84890-013-4. [Advances in Modal Logic. Moscow (RU), 24.08.2010-27.08.2010] R&D Projects: GA ČR GEICC/08/E018; GA AV ČR IAA900090703 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z90090514 Keywords : modal logic * epistemic logic * relevant logic * substructural logic * frame semantics Subject RIV: BA - General Mathematics

  7. Post-transcriptional gene regulation in the biology and virulence of Candida albicans.

    Science.gov (United States)

    Verma-Gaur, Jiyoti; Traven, Ana

    2016-06-01

    In the human fungal pathogen Candida albicans, remodelling of gene expression drives host adaptation and virulence. Recent studies revealed that in addition to transcription, post-transcriptional mRNA control plays important roles in virulence-related pathways. Hyphal morphogenesis, biofilm formation, stress responses, antifungal drug susceptibility and virulence in animal models require post-transcriptional regulators. This includes RNA binding proteins that control mRNA localization, decay and translation, as well as the cytoplasmic mRNA decay pathway. Comprehensive understanding of how modulation of gene expression networks drives C. albicans virulence will necessitate integration of our knowledge on transcriptional and post-transcriptional mRNA control. PMID:26999710

  8. Chitosan Nanoparticles-Mediated Wild-Type p53 Gene Delivery for Cancer Gene Therapy: Improvement in Pharmaceutical & Biological Properties (Enhance in Loading, Release, Expression and Stability of P53 Plasmid and Induction of Apoptosis in Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Mehrdad Hamidi

    2008-05-01

    Full Text Available Efficient non-viral vectors for gene delivery based on chitosan polymer is dependent on a variety of factors, e.g. loading and lelease capacity, stability in biological system and complex size. This system may have low loading, release and stability capacity. Biodegradable and biocompatible nanoparticles formulated using a chitosan polymer has the potential for sustained and controlled gene delivery. Our hypothesis is that nanoparticles-mediated wild-type p53 gene delivery would result in sustained gene expression, and hence better efficacy with a therapeutic gene. In this study, we have determined the pharmaceutical and biological characterization of Chitosan nanoparticles containing wild-type p53. Nanoparticles containing plasmid were formulated using a microemulsion reverse micellar and ionic gelation techniques. In conclusion, chitosan nanoparticles- p53 complex gene delivery results in sustained and better antiproliferative activity, which could be therapeutically beneficial in cancer treatment.

  9. Bacteriophage lambda: Early pioneer and still relevant.

    Science.gov (United States)

    Casjens, Sherwood R; Hendrix, Roger W

    2015-05-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  10. Psyllid biology: expressed genes in adult Asian citrus psyllids, Diaphorina citri

    Science.gov (United States)

    These results advance the field of psyllid research by identifying genes and their proteins which function in: physiology, feeding, disease transmission, and the development of insecticide resistance. This was accomplished by using the molecular approach of a large-scale 5' end sequencing project of...

  11. Gene expression in midgut tissues of Diaphorina citri: Application to biology and vector control

    Science.gov (United States)

    We produced a gene expression dataset from the midgut tissues of the Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae). The AsCP is the primary vector associated with the spread of a devastating citrus trees disease, huanglongbing (HLB). The occurrence and spread of the AsCP and H...

  12. Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution

    OpenAIRE

    Werner Arber

    2014-01-01

    This is a contribution to the history of scientific advance in the past 70 years concerning the identification of genetic information, its molecular structure, the identification of its functions and the molecular mechanisms of its evolution. Particular attention is thereby given to horizontal gene transfer among microorganisms, as well as to biosafety considerations with regard to beneficial applications of acquired scientific knowledge.

  13. Hybrid Deterministic Views about Genes in Biology Textbooks: A Key Problem in Genetics Teaching

    Science.gov (United States)

    dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel Nino

    2012-01-01

    A major source of difficulties in promoting students' understanding of genetics lies in the presentation of gene concepts and models in an inconsistent and largely ahistorical manner, merely amalgamated in hybrid views, as if they constituted linear developments, instead of being built for different purposes and employed in specific contexts. In…

  14. WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications

    Directory of Open Access Journals (Sweden)

    Zhu Qian

    2010-08-01

    Full Text Available Abstract Background In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine for Non-obvious Drug Information that attempts to find non-obvious relationships between a query compound and scholarly publications, biological properties, genes and diseases using multiple information sources. Results We have created an aggregate web service that takes a query compound as input, calls multiple web services for computation and database search, and returns an XML file that aggregates this information. We have also developed a client application that provides an easy-to-use interface to this web service. Both the service and client are publicly available. Conclusions Initial testing indicates this tool is useful in identifying potential biological applications of compounds that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We encourage feedback on the tool to help us refine it further. We are now developing further tools based on this model.

  15. Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer

    OpenAIRE

    Ming Shi; Shan Wang; Yuanfei Yao; Yiqun Li; Hao Zhang; Fang Han; Huan Nie; Jie Su; Zeyu Wang; Lei Yue; Jingyan Cao; Yu Li

    2014-01-01

    Epigenetic silence in cancer frequently altered signal-transduction pathways during the early stages of tumor development. Recent progress in the field of cancer epigenetics has led to new opportunities for diagnosis and treatment of cancer. We previously demonstrated that novel identified nuclear factor MARVELD1 was widely expressed in human tissues, but down-regulated by promoter methylation in multiple cancers. This study was carried out to determine the biological and clinical significanc...

  16. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes

    OpenAIRE

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I.; Wellenreuther, Maren

    2014-01-01

    Background There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architectu...

  17. A Candidate Gene for a Biological Marker of Schizophrenia in Mice

    OpenAIRE

    Watanabe, Akiko; Toyota, Tomoko; Owada, Yuji; Hayashi, Takeshi; Iwayama, Yoshimi; Matsumata, Miho; Ishitsuka, Yuichi; Nakaya, Akihiro; Maekawa, Motoko; Ohnishi, Tetsuo; Arai, Ryoichi; Sakurai, Katsuyasu; Yamada, Kazuo; Kondo, Hisatake; Hashimoto, Kenji

    2007-01-01

    Author Summary A startle response to an unexpected, strong startling stimulus can be suppressed by an immediately preceding low-intensity stimulus, thereby eliciting little behavioral response. This phenomenon, called prepulse inhibition (PPI), has been observed in all mammals tested and is thought to reflect sensory-motor gating functions in organisms. PPI is diminished in human schizophrenia, raising the possibility that PPI might serve as a potential biological marker for the disease. Once...

  18. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  19. Stress-sensitive neurosignalling in depression: an integrated network biology approach to candidate gene selection for genetic association analysis

    Directory of Open Access Journals (Sweden)

    J. Anke M. van Eekelen

    2012-07-01

    Full Text Available Genetic risk for depressive disorders is poorly understood despite consistent suggestions of a high heritable component. Most genetic studies have focused on risk associated with single variants, a strategy which has so far only yielded small (often non-replicable risks for depressive disorders. In this paper we argue that more substantial risks are likely to emerge from genetic variants acting in synergy within and across larger neurobiological systems (polygenic risk factors. We show how knowledge of major integrated neurobiological systems provides a robust basis for defining and testing theoretically defensible polygenic risk factors. We do this by describing the architecture of the overall stress response. Maladaptation via impaired stress responsiveness is central to the aetiology of depression and anxiety and provides a framework for a systems biology approach to candidate gene selection. We propose principles for identifying genes and gene networks within the neurosystems involved in the stress response and for defining polygenic risk factors based on the neurobiology of stress-related behaviour. We conclude that knowledge of the neurobiology of the stress response system is likely to play a central role in future efforts to improve genetic prediction of depression and related disorders.

  20. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin.

    Science.gov (United States)

    Kosinová, Lucie; Veverka, Václav; Novotná, Pavlína; Collinsová, Michaela; Urbanová, Marie; Moody, Nicholas R; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M; Žáková, Lenka

    2014-06-01

    The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin-insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1-B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the "classical" T-state and that a substantial flexibility of the B1-B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin-IR interaction. PMID:24819248

  1. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    Science.gov (United States)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  2. Constitutive gene expression and specification of tissue identity in adult planarian biology

    OpenAIRE

    Reddien, Peter W.

    2011-01-01

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulati...

  3. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene

    OpenAIRE

    Xie, Cui; Wang, Zeng Chan; Liu, Xiao Feng; Yang, Mao Sheng

    2009-01-01

    The lipoprotein lipase (LPL) gene encodes a rate-limiting enzyme protein that has a key role in the hydrolysis of triglycerides. Hypertriglyceridemia, one widely prevalent syndrome of LPL deficiency and dysfunction, may be a risk factor in the development of dyslipidemia, type II diabetes (T2D), essential hypertension (EH), coronary heart disease (CHD) and Alzheimer's disease (AD). Findings from earlier studies indicate that LPL may have a role in the pathology of these diseases and therefore...

  4. Molecular biology of rotaviruses. VIII. Quantitative analysis of regulation of gene expression during virus replication.

    OpenAIRE

    Johnson, M A; McCrae, M A

    1989-01-01

    A sensitive and quantitative solution hybridization assay recently developed in this laboratory has been applied to the study of the regulation of viral gene expression in rotavirus-infected cells. Measurement of the cumulative level of viral plus-strand (mRNA) synthesis at hourly intervals throughout the growth cycle has provided evidence for both quantitative and qualitative regulation of transcription. Qualitative control was found only when cycloheximide was used to block protein synthesi...

  5. Using gene expression and systems biology to interrogate auditory hallucinations in schizophrenic patients

    OpenAIRE

    López-Campos, Guillermo; Gilabert Juan, Javier; Sebastiá Ortega, Noelia; González Martínez, Rocío; Nácher Roselló, Juan Salvador; Sanjuán Arias, Julio; Moltó Ruiz, María Dolores

    2015-01-01

    Schizophrenia is a severe mental disorder affecting around 1% of the opulation. This disease presents a complex aetiology that has not been completely unveiled yet. Auditory hallucinations are a very significant and disruptive symptom of schizophrenia affecting between 60% and 80% of schizophrenic patients. In this paper we have used a network-based transcriptomic analysis aiming to identify differences in gene expression between schizophrenic patients with and without auditory hallucinations...

  6. A paradigm shift in EPH receptor interaction: biological relevance of EPHB6 interaction with EPHA2 and EPHB2 in breast carcinoma cell lines.

    Science.gov (United States)

    Fox, Brian P; Kandpal, Raj P

    2011-01-01

    EPH receptors are the largest known family of receptor tyrosine kinases characterized in humans. These proteins are involved in axon guidance, tissue organization, synaptic plasticity, vascular development and the progression of various diseases including cancer. The varied biological effects of EPH receptors are mediated in part by the expression of these proteins and their intracellular binding proteins. The ability of EPH molecules to form heterodimers within their own class has been suggested, although not exhaustively characterized. We have clarified this phenomenon by showing that EPHB6, a kinase-deficient receptor, can interact with EPHB2 in mammalian cells, and more significantly EPHB6 interacts with EPHA2. However, EPHB6 does not interact with another kinase-deficient receptor, EPHA10. The interaction between EPHB6 and EPHA2 is the first demonstration of an A-type receptor interacting with a B-type receptor. Furthermore, we correlated relative expression of EPHB6, EPHB2 and EPHA2 with non-invasive and invasive phenotypes of breast tumor cell lines. Our results indicate that tumor invasiveness-suppressing activity of EPHB6 is mediated by its ability to sequester other kinase-sufficient and oncogenic EPH receptors. These observations suggest that cellular phenotypes may, in part, be attributed to a combinatorial expression of EPH receptors and heteromeric interactions among the same class, as well as between two classes, of EPH receptors. Our results also suggest that EPHA10 may transduce signals by interacting with other kinase-sufficient receptors in a similar manner. PMID:21737611

  7. Organization and biology of the porcine serum amyloid A (SAA gene cluster: isoform specific responses to bacterial infection.

    Directory of Open Access Journals (Sweden)

    Helle G Olsen

    Full Text Available Serum amyloid A (SAA is a prominent acute phase protein. Although its biological functions are debated, the wide species distribution of highly homologous SAA proteins and their uniform behavior in response to injury or inflammation in itself suggests a significant role for this protein. The pig is increasingly being used as a model for the study of inflammatory reactions, yet only little is known about how specific SAA genes are regulated in the pig during acute phase responses and other responses induced by pro-inflammatory host mediators. We designed SAA gene specific primers and quantified the gene expression of porcine SAA1, SAA2, SAA3, and SAA4 by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR in liver, spleen, and lung tissue from pigs experimentally infected with the Gram-negative swine specific bacterium Actinobacillus pleuropneumoniae, as well as from pigs experimentally infected with the Gram-positive bacterium Staphylococcus aureus. Our results show that: 1 SAA1 may be a pseudogene in pigs; 2 we were able to detect two previously uncharacterized SAA transcripts, namely SAA2 and SAA4, of which the SAA2 transcript is primarily induced in the liver during acute infection and presumably contributes to circulating SAA in pigs; 3 Porcine SAA3 transcription is induced both hepatically and extrahepatically during acute infection, and may be correlated to local organ affection; 4 Hepatic transcription of SAA4 is markedly induced in pigs infected with A. pleuropneumoniae, but only weakly in pigs infected with S. aureus. These results for the first time establish the infection response patterns of the four porcine SAA genes which will be of importance for the use of the pig as a model for human inflammatory responses, e.g. within sepsis, cancer, and obesity research.

  8. The proctolin gene and biological effects of proctolin in the blood-feeding bug, Rhodnius prolixus.

    Directory of Open Access Journals (Sweden)

    Ian eOrchard

    2011-10-01

    Full Text Available We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is highly expressed in the central nervous system (CNS with some low expression associated with peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive organs, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically-important bug.

  9. Multicenter Evaluation of a New DNA Microarray for Rapid Detection of Clinically Relevant bla Genes from ? -Lactam-Resistant Gram-Negative Bacteria

    OpenAIRE

    Bogaerts, P.; Hujer, A.M.; Naas, T.; de Castro, R. R.; A. Endimiani; Nordmann, P.; Glupczynski, Y.; Bonomo, R.A.

    2011-01-01

    A new commercial low-density microarray which identifies common extended-spectrum β-lactamase plasmid-mediated cephalosporinase genes, as well as carbapenemase (blaKPC and blaNDM) genes, was evaluated. We tested 207 clinical and reference/collection isolates of the Enterobacteriaceae possessing different bla genes. Overall, the sensitivity and specificity of the microarray were 100% for the detection of the plasmid-mediated blaAmpC, blaKPC, and blaNDM genes using bla gene sequencing as the re...

  10. Gene Expression and Epigenetics: the Link Between Biology, Physiology and Behavior

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Human speech is considered a specifically human trait. Languages are part of human culture, and are transmitted from parents to offspring. However, language has a strong genetic component too, which has only now begun to be understood more precisely. This paper summarizes some of the recent groundbreaking results on the organization and regulation of our genes and genome and presents some of the challenges that research will need to tackle in the near future. The author argues that scientific progress in this complex field requires an interdisciplinary approach in which the specific competences of philosophers, psychologists, sociologists, biologists, etc. are combined to reach the final objective.

  11. Effect of deleted pancreatic cancer locus 4 gene transfection on biological behaviors of human colorectal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    De-Sheng Xiao; Ji-Fang Wen; Jing-He Li; Zhong-Liang Hu; Hui Zheng; Chun-Yah Fu

    2005-01-01

    AIMS: To investigate the effect of deleted pancreatic cancer locus 4 (DPC4) gene transfection on biological behaviors of human colorectal carcinoma cells and the role of DPC4 gene in colorectal carcinogenesis.METHODS: PcDNA3.1-DPC4 plasmid was re-constructed by gene-recombination technology. SW620 cells, a human colorectal carcinoma cell line, were transfected with PcDNA3.1-DPC4 plasmid using lipofectamine transfecting technique. Transfected cells were selected with G418.Expression of Smad4 protein was detected in cells transfected with DPC4 gene by immunohistochemistry and Western blot. Biological characterristics of transfected cells were evaluated by population-doubling time and cloning efficiency. Alterations of percentage of S phage cells (S%) and apoptosis rate were determined by flowcytometry.RESULTS: PcDNA3.1-DPC4 plasmid was constructed successfully. SW620 cells transfected with PcDNA3.1-DPC4plasmid (DPC4+-SW620 cells) showed a strong intracellular expression of Smad4 protein, and the positive signal was localized in cytoplasm and nuclei, mainly in cytoplasm,where the expressions of Smad4 protein in SW620 cells transfected with PcDNA3.1 plasmid (PcDNA3.1-SW620 cells)and non-transfected SW620 cells (SW620 cells) were weaker than those in DPC4+-SW620 cells. The populationdoubling time in DPC4+-SW620 cells (116 h) was significantly longer than that in SW620 cells (31 h) and PcDNA3.1-Sw620 cells (29 h) (P<0.01). The cloning efficiencies of DPC4+-SW620 cells (12%) were markedly lower than those of SW620 cells (69%) and PcDNA3.1-Sw620 cells (67%) (P<0.01). Compared with SW620 cells and PcDNA3.1-Sw620 cells, the G0-G1% of DPC4+-SW620cells was obviously higher and the S% was markedly lower (P<0.05). Apoptosis rate of DPC4+-SW620 cells was significantly higher than that of SW620 cells and PcDNA3.1-SW620 cells.CONCLUSION: PcDNA3.1-DPC4 plasmid can be successfully re-constructed and stably transfected into human SW620 cells, thereby the cells can steadily

  12. MDR1 Gene Polymorphisms and Clinical Relevance%MDR1基因多态性及其临床相关性研究进展

    Institute of Scientific and Technical Information of China (English)

    李艳红; 王永华; 李燕; 杨凌

    2006-01-01

    体内外研究证明,人体中P-gp在药物的吸收、分布、代谢和排泄(ADME)过程中发挥了非常重要的作用.多药耐药基因MDR1(ABCB1)是P-gp的编码基因.药物基因组学和遗传药理学研究发现在不同个体中MDR1基因多态性与P-gp表达和功能的改变密切相关,而且这些多态位点存在基因型分布和等位基因频率的种族差异性.近几年,已陆续发现在MDR1基因中有50处单核苷酸多态性(SNPs)和3处插入与缺失多态性.随后,大量文献报道某些位点的SNPs如C3435T会使个体患病的易感性增加.因此人们相信,深入研究MDR1基因多态性与P-gp的生理和生化方面的相关性将对个体医疗有着非常深远的意义.文章总结了国外最新的研究进展并结合本实验室的工作着重讨论了4个方面:1)P-gp对药代动力学性质的影响;2)MDR1基因多态性及其对遗传药理学性质的影响;3)MDR1C3435T的单核苷酸多态性与P-gp表达和功能之间的相关性;4)MDR1基因多态性与人类某些疾病之间的相关性.%In vivo and in vitro studies have demonstrated that P-glycoprotein (P-gp) plays a very significant role in the ADME processes (absorption, distribution, metabolism, excretion) and drug-drug interaction (DDI) of drugs in humans. P-gp is the product of multidrug resistance gene (MDR1/ABCB1). Pharmacogenomics and pharmacogenetics studies have revealed that genetic polymorphisms of MDR1 are associated with alteration in P-gp expression and function in different ethnicities and subjects. By now, 50single nucleotide polymorphisms (SNPs) and 3 insertion/deletion polymorphisms have been found in the MDR1 gene. Some of them, such as C3435T, have been identified to be a risk factor for numerous diseases. It is believed that further understanding of the physiology and biochemistry of P-gp with respect to its genetic variations may be important for individualized pharmacotherapy.Therefore, based on the latest public information

  13. Prediction of Associations between microRNAs and Gene Expression in Glioma Biology.

    Directory of Open Access Journals (Sweden)

    Stefan Wuchty

    Full Text Available Despite progress in the determination of miR interactions, their regulatory role in cancer is only beginning to be unraveled. Utilizing gene expression data from 27 glioblastoma samples we found that the mere knowledge of physical interactions between specific mRNAs and miRs can be used to determine associated regulatory interactions, allowing us to identify 626 associated interactions, involving 128 miRs that putatively modulate the expression of 246 mRNAs. Experimentally determining the expression of miRs, we found an over-representation of over(under-expressed miRs with various predicted mRNA target sequences. Such significantly associated miRs that putatively bind over-expressed genes strongly tend to have binding sites nearby the 3'UTR of the corresponding mRNAs, suggesting that the presence of the miRs near the translation stop site may be a factor in their regulatory ability. Our analysis predicted a significant association between miR-128 and the protein kinase WEE1, which we subsequently validated experimentally by showing that the over-expression of the naturally under-expressed miR-128 in glioma cells resulted in the inhibition of WEE1 in glioblastoma cells.

  14. The Portable Dictionary of the Mouse Genome: a personal database for gene mapping and molecular biology.

    Science.gov (United States)

    Williams, R W

    1994-06-01

    The Portable Dictionary of the Mouse Genome is a database for personal computers that contains information on approximately 10,000 loci in the mouse, along with data on homologs in several other mammalian species, including human, rat, cat, cow, and pig. Key features of the dictionary are its compact size, its network independence, and the ability to convert the entire dictionary to a wide variety of common application programs. Another significant feature is the integration of DNA sequence accession data. Loci in the dictionary can be rapidly resorted by chromosomal position, by type, by human homology, or by gene effect. The dictionary provides an accessible, easily manipulated set of data that has many uses--from a quick review of loci and gene nomenclature to the design of experiments and analysis of results. The Portable Dictionary is available in several formats suitable for conversion to different programs and computer systems. It can be obtained on disk or from Internet Gopher servers (mickey.utmen.edu or anat4.utmen.edu), an anonymous FTP site (nb.utmem.edu in the directory pub/genedict), and a World Wide Web server (http://mickey.utmem.edu/front.html). PMID:8043953

  15. Eco-systems biology-From the gene to the stream

    International Nuclear Information System (INIS)

    This review considers the implications for environmental health and ecosystem sustainability, of new developments in radiobiology and ecotoxicology. Specifically it considers how the non-targeted effects of low doses of radiation, which are currently being scrutinized experimentally, not only mirror similar effects from low doses of chemical stressors but may actually lead to unpredictable emergent effects at higher hierarchical levels. The position is argued that non-targeted effects are mechanistically important in coordinating phased hierarchical transitions (i.e. transitions which occur in a regulated sequence). The field of multiple stressors (both radiation and chemical) is highly complex and agents can interact in an additive, antagonist or synergistic manner. The outcome following low dose multiple stressor exposure also is impacted by the context in which the stressors are received, perceived or communicated by the organism or tissue. Modern biology has given us very sensitive methods to examine changes following stressor interaction with biological systems at several levels of organization but the translation of these observations to ultimate risk remains difficult to resolve. Since multiple stressor exposure is the norm in the environment, it is essential to move away from single stressor-based protection and to develop tools, including legal instruments, which will enable us to use response-based risk assessment. Radiation protection in the context of multiple stressors includes consideration of humans and non-humans as separate groups requiring separate assessment frameworks. This is because for humans, individual survival and prevention of cancer are paramount but for animals, it is considered sufficient to protect populations and cancer is not of concern. The need to revisit this position is discussed not only from the environmental perspective but also from the human health perspective because the importance of 'pollution' (a generic term for

  16. Eco-systems biology-From the gene to the stream

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, Carmel, E-mail: mothers@mcmaster.ca [Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Seymour, Colin [Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

    2010-05-01

    This review considers the implications for environmental health and ecosystem sustainability, of new developments in radiobiology and ecotoxicology. Specifically it considers how the non-targeted effects of low doses of radiation, which are currently being scrutinized experimentally, not only mirror similar effects from low doses of chemical stressors but may actually lead to unpredictable emergent effects at higher hierarchical levels. The position is argued that non-targeted effects are mechanistically important in coordinating phased hierarchical transitions (i.e. transitions which occur in a regulated sequence). The field of multiple stressors (both radiation and chemical) is highly complex and agents can interact in an additive, antagonist or synergistic manner. The outcome following low dose multiple stressor exposure also is impacted by the context in which the stressors are received, perceived or communicated by the organism or tissue. Modern biology has given us very sensitive methods to examine changes following stressor interaction with biological systems at several levels of organization but the translation of these observations to ultimate risk remains difficult to resolve. Since multiple stressor exposure is the norm in the environment, it is essential to move away from single stressor-based protection and to develop tools, including legal instruments, which will enable us to use response-based risk assessment. Radiation protection in the context of multiple stressors includes consideration of humans and non-humans as separate groups requiring separate assessment frameworks. This is because for humans, individual survival and prevention of cancer are paramount but for animals, it is considered sufficient to protect populations and cancer is not of concern. The need to revisit this position is discussed not only from the environmental perspective but also from the human health perspective because the importance of 'pollution' (a generic term

  17. Mathematical and Biological Modelling of RNA Secondary Structure and Its Effects on Gene Expression

    Directory of Open Access Journals (Sweden)

    T. A. Hughes

    2006-01-01

    Full Text Available Secondary structures within the 5′ untranslated regions of messenger RNAs can have profound effects on the efficiency of translation of their messages and thereby on gene expression. Consequently they can act as important regulatory motifs in both physiological and pathological settings. Current approaches to predicting the secondary structure of these RNA sequences find the structure with the global-minimum free energy. However, since RNA folds progressively from the 5′ end when synthesised or released from the translational machinery, this may not be the most probable structure. We discuss secondary structure prediction based on local-minimisation of free energy with thermodynamic fluctuations as nucleotides are added to the 3′ end and show that these can result in different secondary structures. We also discuss approaches for studying the extent of the translational inhibition specified by structures within the 5′ untranslated region.

  18. Regulatory networks, genes and glycerophospholipid biosynthesis pathway in schistosomiasis: a systems biology view for pharmacological intervention.

    Science.gov (United States)

    Shinde, Sonali; Mol, Milsee; Singh, Shailza

    2014-10-25

    Understanding network topology through embracing the global dynamical regulation of genes in an active state space rather than traditional one-gene-one trait approach facilitates the rational drug development process. Schistosomiasis, a neglected tropical disease, has glycerophospholipids as abundant molecules present on its surface. Lack of effective clinical solutions to treat pathogens encourages us to carry out systems-level studies that could contribute to the development of an effective therapy. Development of a strategy for identifying drug targets by combined genome-scale metabolic network and essentiality analyses through in silico approaches provides tantalizing opportunity to investigate the role of protein/substrate metabolism. A genome-scale metabolic network model reconstruction represents choline-phosphate cytidyltransferase as the rate limiting enzyme and regulates the rate of phosphatidylcholine (PC) biosynthesis. The uptake of choline was regulated by choline concentration, promoting the regulation of phosphocholine synthesis. In Schistosoma, the change in developmental stage could result from the availability of choline, hampering its developmental cycle. There are no structural reports for this protein. In order to inhibit the activity of choline-phosphate cytidyltransferase (CCT), it was modeled by homology modeling using 1COZ as the template from Bacillus subtilis. The transition-state stabilization and catalytic residues were mapped as 'HXGH' and 'RTEGISTT' motif. CCT catalyzes the formation of CDP-choline from phosphocholine in which nucleotidyltransferase adds CTP to phosphocholine. The presence of phosphocholine permits the parasite to survive in an immunologically hostile environment. This feature endeavors development of an inhibitor specific for cytidyltransferase in Schistosoma. Flavonolignans were used to inhibit this activity in which hydnowightin showed the highest affinity as compared to miltefosine. PMID:25149020

  19. LigerCat: Using “MeSH Clouds” from Journal, Article, or Gene Citations to Facilitate the Identification of Relevant Biomedical Literature

    OpenAIRE

    Sarkar, Indra Neil; Schenk, Ryan; Miller, Holly; Norton, Catherine N.

    2009-01-01

    The identification of relevant literature from within large collections is often a challenging endeavor. In the context of indexed resources, such as MEDLINE, it has been shown that keywords from a controlled vocabulary (e.g., MeSH) can be used in combination to retrieve relevant search results. One effective strategy for identifying potential search terms is to examine a collection of documents for frequently occurring terms. In this way, “Tag clouds” are a popular mechanism for ascertaining...

  20. Effect of NHE1 antisense gene transfection on the biological behavior of SGC-7901 human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Liu; Xiao-Chun Teng; Jing-Chen Zheng; Gang Chen; Xing-Wei Wang

    2008-01-01

    AIM: To study the effect of type 1 Na+/H+ exchanger (NHE1) antisense human gene transfection on the biological behavior of gastric carcinoma cell line SGC-7901.METHODS: Antisense NHE1 eukaryotic expression on vector pcDNA3.1 was constructed by recombinant DNA technique and transfected into gastric carcinoma cell line SGC-7901 with DOTAP liposome transfection method.Morphological changes of cells were observed with optic and electron microscopes. Changes in cell proliferative capacity, apoptosis, intracellular pH (pH1), cell cycle,clone formation in two-layer soft agar, and tumorigenicity in nude mice were examined.RESULTS: Antisense eukaryotic expressing vectors were successfully constructed and transfected into 5GC-7901.The transfectant obtained named 7901-antisense (7901-,45) stablely produced antisense NHE1. There was a significant difference between the pH1 of 7901-AS cells (6.77 ± 0.05) and that of 7901-zeo cells and SGC-7901 cells (7.24 ± 0.03 and 7.26 ± 0.03, P < 0.01). Compared with SGC-7901 and 7901-zeo cells, 7901-AS cells mostly showed cell proliferation inhibition, G1/Go phase arrest, increased cell apoptotic rate, recovery of contact inhibition, and density contact. The tumorigenicity in nude mice and cloning efficiency in the two-layer soft agar were dearly inhibited.CONCLUSION: NHE1 antisense gene significantly restrains the malignant behavior of human gastric carcinoma cells, suppresses cell growth and induces cell apoptosis, and partially reverses the malignant phenotypes of SGC-7901. These results suggest a potential role for human tumor gene therapy.

  1. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation

    Science.gov (United States)

    Guilmatre, Audrey; Dubourg, Christèle; Mosca, Anne-Laure; Legallic, Solenn; Goldenberg, Alice; Drouin-Garraud, Valérie; Layet, Valérie; Rosier, Antoine; Briault, Sylvain; Bonnet-Brilhault, Frédérique; Laumonnier, Frédéric; Odent, Sylvie; Le Vacon, Gael; Joly-Helas, Géraldine; David, Véronique; Bendavid, Claude; Pinoit, Jean-Michel; Henry, Céline; Impallomeni, Caterina; Germano, Eva; Tortorella, Gaetano; Di Rosa, Gabriella; Barthelemy, Catherine; Andres, Christian; Faivre, Laurence; Frébourg, Thierry; Saugier Veber, Pascale; Campion, Dominique

    2009-01-01

    Context Comparative genomic hybridization (array-CGH) studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the etiology of mental retardation (MR), autism spectrum disorders (ASD) and schizophrenia. Objective The goal of the present paper was (i) to provide an estimate of the collective frequency of a set of recurrent/overlapping CNVs in three different groups of patients as compared with healthy controls and (ii) to assess whether each CNV is present in more than one clinical category. Design, setting and population We have investigated 28 candidate loci previously identified by array-CGH studies for gene dosage alteration in 247 subjects with MR, 260 with ASD, 236 with schizophrenia or schizoaffective disorder and 236 healthy controls. Main outcome measures Collective and individual frequency of the analyzed CNVs in patients as compared with controls. Results Recurrent or overlapping CNVs were found in patients at 40% of the selected loci. We show that the collective frequency of CNVs at these loci is significantly increased in autistic patients, patients with schizophrenia and patients with MR as compared with controls (p= 0.005, p< 0.001 and p= 0.001 respectively, Fisher exact test). Individual significance (p= 0.02) was reached for association between autism and a 350 kb deletion located in 22q11 and spanning the PRODH gene. Conclusions These results support the hypothesis that weakly to moderately recurrent CNVs, either transmitted or occurring de novo, are causing or contributory factors for these diseases. Second, we show that most of these CNVs, which contain genes involved in neurotransmission or synapse formation and maintenance, are present in the 3 pathological conditions, supporting the existence of shared biological pathways between these neurodevelopmental disorders. PMID:19736351

  2. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission.

    Science.gov (United States)

    Dawe, Angus L; Nuss, Donald L

    2013-01-01

    The idea that viruses can be used to control fungal diseases has been a driving force in mycovirus research since the earliest days. Viruses in the family Hypoviridae associated with reduced virulence (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, have held a prominent place in this research. This has been due in part to the severity of the chestnut blight epidemics in North America and Europe and early reports of hypovirulence-mediated mitigation of disease in European forests and successful application for control of chestnut blight in chestnut orchards. A more recent contributing factor has been the development of a hypovirus/C. parasitica experimental system that has overcome many of the challenges associated with mycovirus research, stemming primarily from the exclusive intracellular lifestyle shared by all mycoviruses. This chapter will focus on hypovirus molecular biology with an emphasis on the development of the hypovirus/C. parasitica experimental system and its contributions to fundamental and practical advances in mycovirology and the broader understanding of virus-host interactions and fungal pathogenesis. PMID:23498905

  3. Statistical and biological gene-lifestyle interactions of MC4R and FTO with diet and physical activity on obesity: new effects on alcohol consumption

    Science.gov (United States)

    Fat mass and obesity (FTO) and melanocortin-4 receptor (MC4R) and are relevant genes associated with obesity. This could be through food intake, but results are contradictory. Modulation by diet or other lifestyle factors is also not well understood. To investigate whether MC4R and FTO associations ...

  4. Multi-agent System for Obtaining Relevant Genes in Expression Analysis between Young and Older Women with Triple Negative Breast Cancer.

    Science.gov (United States)

    González-Briones, Alfonso; Ramos, Juan; De Paz, Juan Francisco; Corchado, Juan Manuel

    2015-01-01

    Triple negative breast cancer is an aggressive form of breast cancer. Despite treatment with chemotherapy, relapses are frequent and response to these treatments is not the same in younger women as in older women. Therefore, the identification of genes that cause this difference is required. The identification of therapeutic targets is one of the sought after goals to develop new drugs. Within the range of different hybridization techniques, the developed system uses expression array analysis to measure the expression of the signal levels of thousands of genes in a given sample. Probesets of Gene 1.0 ST GeneChip arrays provide categorical genome transcript coverage, providing a measurement of the expression level of the sample. This paper proposes a multi-agent system to manage information of expression arrays, with the goal of providing an intuitive system that is also extensible to analyze and interpret the results. The roles of agent integrate different types of techniques, statistical and data mining methods that select a set of genes, searching techniques that find pathways in which such genes participate, and an information extraction procedure that applies a CBR system to check if these genes are involved in the disease. PMID:26673929

  5. Electron attachment to biological relevant molecules

    International Nuclear Information System (INIS)

    Full text: The interaction of low energy electrons with compounds of DNA/RNA leading to negative ions gives insight into radiation damage processes in human cells. We demonstrate that electrons at sub excitation energies (- with X = T, C, U or G. This observation has significant consequences for the molecular picture of radiation damage, i.e. genotoxic effects or damage of living cells due to the secondary component of high energy radiation. The present experiment is performed in a crossed electron/neutral molecule beam arrangement. A highly monochromatized electron beam, generated by an electrostatic hemispherical electron monochromator, interacts with an effusive molecular beam of biomolecules. Negative ions are extracted from the collision region and focused into a quadrupole mass spectrometer, where they are mass analyzed and detected by single pulse counting electronics. In the present measurements the dominant negative ions formed via electron attachment (EA) reaction to T, C, U and G, are (T-H)-, (C-H)-, (U-H)- and (G-H)-. Using a simple calibration procedure, values for the respective partial EA cross section for (T-H)-, (C-H)-, (U-H)-, and (G-H)- could be determined yielding a peak value of σ (1.05 eV) = 1.2 x 10-19 m2, σ (1.54 eV) = 2.3 x 10-20 m2, σ (1.0 eV) = 3 x 10-20 m2, σ (1.3 eV) = 5 x 10-20 m2 , respectively. At higher electron energies, we observe further product anions, but at significantly lower cross sections. (author)

  6. Prion biology relevant to bovine spongiform encephalopathy.

    Science.gov (United States)

    Novakofski, J; Brewer, M S; Mateus-Pinilla, N; Killefer, J; McCusker, R H

    2005-06-01

    Bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD) of deer and elk are a threat to agriculture and natural resources, as well as a human health concern. Both diseases are transmissible spongiform encephalopathies (TSE), or prion diseases, caused by autocatalytic conversion of endogenously encoded prion protein (PrP) to an abnormal, neurotoxic conformation designated PrPsc. Most mammalian species are susceptible to TSE, which, despite a range of species-linked names, is caused by a single highly conserved protein, with no apparent normal function. In the simplest sense, TSE transmission can occur because PrPsc is resistant to both endogenous and environmental proteinases, although many details remain unclear. Questions about the transmission of TSE are central to practical issues such as livestock testing, access to international livestock markets, and wildlife management strategies, as well as intangible issues such as consumer confidence in the safety of the meat supply. The majority of BSE cases seem to have been transmitted by feed containing meat and bone meal from infected animals. In the United Kingdom, there was a dramatic decrease in BSE cases after neural tissue and, later, all ruminant tissues were banned from ruminant feed. However, probably because of heightened awareness and widespread testing, there is growing evidence that new variants of BSE are arising "spontaneously," suggesting ongoing surveillance will continue to find infected animals. Interspecies transmission is inefficient and depends on exposure, sequence homology, TSE donor strain, genetic polymorphism of the host, and architecture of the visceral nerves if exposure is by an oral route. Considering the low probability of interspecies transmission, the low efficiency of oral transmission, and the low prion levels in nonnervous tissues, consumption of conventional animal products represents minimal risk. However, detection of rare events is challenging, and TSE literature is characterized by subsequently unsupported claims of species barriers or absolute tissue safety. This review presents an overview of TSE and summarizes recent research on pathogenesis and transmission. PMID:15890824

  7. Bipolar spectrum: Relevant psychological and biological factors

    OpenAIRE

    Terao, Takeshi

    2012-01-01

    The bipolar spectrum is a concept which bridges bipolar I disorder and unipolar depression. As Kraepelin described, there may be continuity across mood disorders. If this is the case, why should we discriminate for drug choice For example, it is generally accepted that mood stabilizers should be used for the bipolar spectrum, whereas antidepressants are for unipolar depression. If these disorders are diagnostically continuous, it is possible that the same drug could be effective in treating b...

  8. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS

    Science.gov (United States)

    The GacA/Rsm signal transduction system and the stationary phase sigma factor RpoS have both been shown to affect secondary metabolite production and biological control in Pseudomonas protegens Pf-5 and related strains. Microarray analysis of Pf-5 grown on pea seed surfaces showed that 595 genes ar...

  9. Gene Transfer to the CNS Is Efficacious in Immune-primed Mice Harboring Physiologically Relevant Titers of Anti-AAV Antibodies

    OpenAIRE

    Treleaven, Christopher M; Tamsett, Thomas J.; BU, JIE; Fidler, Jonathan A; Sardi, S. Pablo; Hurlbut, Gregory D; Woodworth, Lisa A; Cheng, Seng H.; Passini, Marco A.; Shihabuddin, Lamya S.; Dodge, James C.

    2012-01-01

    Central nervous system (CNS)-directed gene therapy with recombinant adeno-associated virus (AAV) vectors has been used effectively to slow disease course in mouse models of several neurodegenerative diseases. However, these vectors were typically tested in mice without prior exposure to the virus, an immunological scenario unlikely to be duplicated in human patients. Here, we examined the impact of pre-existing immunity on AAV-mediated gene delivery to the CNS of normal and diseased mice. Ant...

  10. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium

    OpenAIRE

    Lagergren, K; Ek, WE; D Levine; Chow, W-H; Bernstein, L; Casson, AG; Risch, HA; Shaheen, NJ; Bird, NC; Reid, BJ; Corley, DA; Hardie, LJ; Wu, AH; Fitzgerald, RC; Pharoah, P

    2015-01-01

    Background: The strong male predominance in oesophageal adenocarcinoma (OAC) and Barrett’s oesophagus (BO) continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute. Methods: This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1), receptor beta (ESR2), and aromatase (CYP19A1)), and 3 key genes of the oxytocin pathway (the o...

  11. Translating the evidence for gene association with depression into mouse models of depression-relevant behaviour: current limitations and future potential

    OpenAIRE

    Pryce, Christopher R.; Klaus, Federica

    2013-01-01

    Depression is characterised by high prevalence and complex, heterogeneous psychopathology. At the level of aetio-pathology, considerable research effort has been invested to identify specific gene polymorphisms associated with increased depression prevalence. Genome-wide association studies have not identified any risk polymorphisms, and candidate gene case-control studies have identified a small number of risk polymorphisms. It is increasingly recognised that interaction between genotype and...

  12. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium.

    Directory of Open Access Journals (Sweden)

    Katarina Lagergren

    Full Text Available The strong male predominance in oesophageal adenocarcinoma (OAC and Barrett's oesophagus (BO continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute.This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1, receptor beta (ESR2, and aromatase (CYP19A1, and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR, oxytocin protein (OXT, and cyclic ADP ribose hydrolase glycoprotein (CD38, were analysed using a gene-based approach, versatile gene-based test association study (VEGAS.Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058 and an increased risk of OAC and BO combined in males (p = 0.0023. Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035 and in males (p = 0.0012. We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only.Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed.

  13. Applications of Recombinant DNA Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part A: Eukaryotic Gene Structure and DNA Replication

    OpenAIRE

    Wild, Gary E; Papalia, Patrizia; Ropeleski, Mark J.; Faria, Julio; Thomson, Alan BR

    2000-01-01

    Progress in the basic sciences of cell and molecular biology has provided an exciting dimension that has translated into clinically relevant information in every medical subspecialty. Importantly, the application of recombinant DNA technology has played a major role in unravelling the intricacies related to the molecular pathophysiology of disease. This series of review articles constitutes a framework for the integration of the database of new information into the core knowledge base of conc...

  14. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways

    NARCIS (Netherlands)

    Deelen, J.; Uh, H.W.; Monajemi, R.; Heemst, D. van; Thijssen, P.E.; Bohringer, S.; Akker, E.B. van den; Craen, A.J. de; Rivadeneira, F.; Uitterlinden, A.G.; Westendorp, R.G.J.; Goeman, J.J.; Slagboom, P.E.; Houwing-Duistermaat, J.J.; Beekman, M.

    2013-01-01

    In genome-wide association studies (GWAS) of complex traits, single SNP analysis is still the most applied approach. However, the identified SNPs have small effects and provide limited biological insight. A more appropriate approach to interpret GWAS data of complex traits is to analyze the combined

  15. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  16. The UL47 gene of avian infectious laryngotracheitis virus is not essential for in vitro replication but is relevant for virulence in chickens.

    Science.gov (United States)

    Helferich, Dorothee; Veits, Jutta; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2007-03-01

    The genome of infectious laryngotracheitis virus (ILTV) exhibits several differences from those of other avian and mammalian alphaherpesviruses. One of them is the translocation of the conserved UL47 gene from the unique long (UL) to the unique short (US) genome region, where UL47 is inserted upstream of the US4 gene homologue. As in other alphaherpesviruses, UL47 encodes a major tegument protein of ILTV particles, whereas the US4 gene product is a non-structural glycoprotein, gG, which is secreted from infected cells. For functional characterization, an ILTV recombinant was isolated in which US4 together with the 3'-terminal part of UL47 was replaced by a reporter gene cassette encoding green fluorescent protein. From this virus, UL47 and US4 single-gene deletion mutants without foreign sequences were derived and virus revertants were also generated. In vitro studies revealed that both genes were non-essential for ILTV replication in cultured cells. Whereas US4-negative ILTV exhibited no detectable growth defects, maximum virus titres of the double deletion mutant and of UL47-negative ILTV were reduced about 10-fold compared with those of wild-type virus and rescued virus. Experimental infection of chickens demonstrated that UL47-negative ILTV was significantly attenuated in vivo and was shed in reduced amounts, whereas wild-type and rescued viruses caused severe disease and high mortality rates. As all immunized animals were protected against subsequent challenge infection with virulent ILTV, the UL47 deletion mutant might be suitable as a live-virus vaccine. PMID:17325345

  17. Association Between a Prognostic Gene Signature and Functional Gene Sets

    Science.gov (United States)

    Hummel, Manuela; Metzeler, Klaus H.; Buske, Christian; Bohlander, Stefan K.; Mansmann, Ulrich

    2008-01-01

    Background The development of expression-based gene signatures for predicting prognosis or class membership is a popular and challenging task. Besides their stringent validation, signatures need a functional interpretation and must be placed in a biological context. Popular tools such as Gene Set Enrichment have drawbacks because they are restricted to annotated genes and are unable to capture the information hidden in the signature’s non-annotated genes. Methodology We propose concepts to relate a signature with functional gene sets like pathways or Gene Ontology categories. The connection between single signature genes and a specific pathway is explored by hierarchical variable selection and gene association networks. The risk score derived from an individual patient’s signature is related to expression patterns of pathways and Gene Ontology categories. Global tests are useful for these tasks, and they adjust for other factors. GlobalAncova is used to explore the effect on gene expression in specific functional groups from the interaction of the score and selected mutations in the patient’s genome. Results We apply the proposed methods to an expression data set and a corresponding gene signature for predicting survival in Acute Myeloid Leukemia (AML). The example demonstrates strong relations between the signature and cancer-related pathways. The signature-based risk score was found to be associated with development-related biological processes. Conclusions Many authors interpret the functional aspects of a gene signature by linking signature genes to pathways or relevant functional gene groups. The method of gene set enrichment is preferred to annotating signature genes to specific Gene Ontology categories. The strategies proposed in this paper go beyond the restriction of annotation and deepen the insights into the biological mechanisms reflected in the information given by a signature. PMID:19812786

  18. Expression of micro-RNAs and immune-relevant genes in rainbow trout (Oncorhynchus mykiss Walbaum) upon vaccination with a Viral Haemorrhagic Septicemia Virus

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    2012-01-01

    Development of strategies to alleviate potential disease outbreaks in sea-farmed rainbow trout (Oncorhynchus mykiss Walbaum) due to wildlife marine reservoir of Viral hemorrhagic septicemia virus (VHSV) remains imperative. A DNA vaccine expressing VHSV glycoprotein (G) gene has been developed and...

  19. Characterization and biological role of the O-polysaccharide gene cluster of Yersinia enterocolitica serotype O : 9

    DEFF Research Database (Denmark)

    Skurnik, Mikael; Biedzka-Sarek, Marta; Lubeck, Peter S.;

    2007-01-01

    an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode...... glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential...

  20. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  1. An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition

    Directory of Open Access Journals (Sweden)

    Demange Liliane

    2011-09-01

    Full Text Available Abstract Background Germ-line mutations in the BRCA1 and BRCA2 genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the BRCA2 gene than in BRCA1. We report, here, the first total deletion of exon 3 in the BRCA2 gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for BRCA2 large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic. Methods Large BRCA2 rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments or MLPA (Multiplex Ligation-Dependent Probe Amplification. The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the BRCA2 gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR. Results Large rearrangements of BRCA2 were detected in six index cases out of 2058 tested (3% of all deleterious BRCA2 mutations. This study reports the first large rearrangement of the BRCA2 gene that includes all of exon 3 and leads to an in frame deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of BRCA2 are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 BRCA2 transcripts (low, moderate and exclusive. Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion. Conclusion This paper highlights that large

  2. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  3. Impact of glutathione-S-transferases (GST polymorphisms and hypermethylation of relevant genes on risk of prostate cancer biochemical recurrence: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Rui Chen

    Full Text Available INTRODUCTION: Accurate prediction of the biochemical recurrence (BCR is critical for patients after intended curative therapy like radical prostatectomy (RP or definitive radiotherapy for prostate cancer. Glutathione-S-transferases polymorphisms as well as hypermethylation of GSTP1 and functional genes in carcinogenesis, including tumor suppression gene (APC, hormone receptor that regulates cell growth and differentiation gene (RARbeta were reported to be associated with BCR. Nevertheless, the reported results are inconsistent. To evaluate the relationship between glutathione-S-transferases polymorphisms and hypermethylation of these genes and the risk of prostate cancer BCR, we carried out a meta-analysis of the published studies. METHODS AND MATERIALS: We performed a search in Medline, Embase and CNKI database with GST, APC, RARbeta in combination with single nucleotide polymorphism, hypermethylation, prostate cancer and recurrence. Languages were restricted to English and Chinese. RESULTS: Our study included 4 case-control studies and 7 cohort studies including 12 data sets and 3,037 prostate cancer patients. We confirmed that APC hypermethylation is associated with a modest hazard for biochemical recurrence after RP (HR = 1.85, 95%CI = 1.12-3.06. We also suggest GSTP1 polymorphism and CpG hypermethylation tested in serum are associated with BCR (HR = 1.94, 95%CI = 1.13-3.34. We also identified a possible association between GSTM1 null polymorphism and prostate cancer biochemical recurrence risk with borderline significance (HR = 1.29, 95%CI = 0.97-1.71. CONCLUSION: To our knowledge, this is the first meta-analysis evaluating the relationship of polymorphisms and hypermethylation in GSTs and biochemical recurrence. GSTM1, GSTP1 polymorphisms and hypermethylation of GSTP1, APC may be potential biomarkers for the evaluation of the probability of BCR. Further studies are warranted to validate these findings in larger cohorts with longer follow-up.

  4. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

    OpenAIRE

    Song, Alin; Li, Ping; Fan, Fenliang; LI, ZHAOJUN; LIANG, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were d...

  5. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth

    OpenAIRE

    Waters, Katrina M.; Jon M Jacobs; Gritsenko, Marina A.; Karin, Norman J.

    2011-01-01

    Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24 hours in t...

  6. An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yamamoto Yusuke

    2011-11-01

    Full Text Available Abstract Background Acquisition of drug-resistance in cancer has led to treatment failure, however, their mechanisms have not been clarified yet. Recent observations indicated that aberrant expressed microRNA (miRNA caused by chromosomal alterations play a critical role in the initiation and progression of cancer. Here, we performed an integrated genomic analysis combined with array-based comparative hybridization, miRNA, and gene expression microarray to elucidate the mechanism of drug-resistance. Results Through genomic approaches in MCF7-ADR; a drug-resistant breast cancer cell line, our results reflect the unique features of drug-resistance, including MDR1 overexpression via genomic amplification and miRNA-mediated TP53INP1 down-regulation. Using a gain of function study with 12 miRNAs whose expressions were down-regulated and genome regions were deleted, we show that miR-505 is a novel tumor suppressive miRNA and inhibits cell proliferation by inducing apoptosis. We also find that Akt3, correlate inversely with miR-505, modulates drug sensitivity in MCF7-ADR. Conclusion These findings indicate that various genes and miRNAs orchestrate to temper the drug-resistance in cancer cells, and thus acquisition of drug-resistance is intricately controlled by genomic status, gene and miRNA expression changes.

  7. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck).

    Science.gov (United States)

    Huang, Dingquan; Zhao, Yihong; Cao, Minghao; Qiao, Liang; Zheng, Zhi-Liang

    2016-01-01

    Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control. PMID:27092171

  8. Gene and DNA concepts by UNIFAL-MG entering students and the effectiveness of drama as a Molecular Biology teaching strategy

    Directory of Open Access Journals (Sweden)

    Marina Isidoro Silva

    2014-10-01

    Full Text Available The Molecular Biology concepts comprehension is important for understanding several Biological processes as well as to establish correlations and interrelations among cell processes and its interaction with the environment. The aim of this work was to evaluate the undergraduate students from the Universidade Federal de Alfenas-MG (UNIFAL-MG knowledge about gene and DNA concepts as well as to evaluate the effectiveness of drama as an innovative teaching strategy. This strategy was evaluated by the students` knowledge gain and scholar performance. The results showed the UNIFAL-MG beginners’ students presented defective concepts about gene and DNA composition and structure, probably due to deficient teaching-learning process before the University entrance. Drama was an efficient strategy to induce learning gain and to improve scholar performance of classes with a good initial level of knowledge.

  9. Characterization of flgK gene and FlgK protein required for H pylori Colonization-from cloning to clinical relevance

    Institute of Scientific and Technical Information of China (English)

    Jiunn-Jong Wu; Bor-Shyang Sheu; Ay-Huey Huang; Shin-Ting Lin; Hsiao-Bai Yang

    2006-01-01

    AIM: To characterize the role of flgK and its protein product in H pylori colonization.METHODS: The PCR cloning method identified the flgK gene. An isogenic flgK mutant was constructed by gene replacement and confirmed by Southern blot analysis and PCR analysis. The recombinant FlgK protein (r-FlgK) was purified. Electron microscopy (EM) was applied to demonstrate the flagella of H pylori. An in vitro motility test was assessed in semisolid medium. The densities of H pylori colonization with either the wild-type strain or its flgK mutant were compared among BALB/c mice with or without pre-immunization with r-FlgK. The serological responses to r-FlgK were analyzed for 70 clinical patients with different densities of H pylori colonization.RESULTS: From a duodenal ulcer strain, the flgK gene was cloned and it contained 1821 bp, with a 95.7% identity to the published sequences. No flagella were observed under EM for the mutant strain, which had a loss of motility. H pylori density was lower in the BALB/c mice inoculated by the mutant or with pre-immunization with r-FlgK compared to unimmunized mice or mice inoculated by the wild-type strain (P < 0.05). In the H pylori-infected patients, the serological responses to r-FlgK were uniformly low in titer.CONCLUSION: FlgK encoded by flgK is important for flagella formation and H pylori motility. Deficiency in FlgK or an enhanced serological response to r-FlgK can interfere with H pylori colonization. FlgK of Hpylori could be a novel target for vaccination.

  10. Prognostic relevance of Wilms tumor 1 (WT1) gene Exon 7 mutations in-patient with cytogenetically normal acute myeloid leukemia

    OpenAIRE

    Aref, Salah; El Sharawy, Solafa; Sabry, Mohamed; Azmy, Emad; Raouf, Dalia Abdel

    2013-01-01

    This study aimed to assess the prognostic influences of Wilms tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML) among Egyptian patients. Exon 7 of WT1 was screened for mutations in samples from 82 CN-AML patients out of 203 newly diagnosed AML patients, using a high-resolution capillary electrophoresis. Seven out of 82 AML patients (8.3 %) harbored WT1 mutations. There was no significant difference between the mutant WT1 and wild type AML patients as regar...

  11. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri i.p. vaccination

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    The immune response in rainbow trout against a bacterin of Yersinia ruckeri, a bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout were immunized by i.p. injection of a Y. ruckeri (serotype O1) water based bacterin and compared to control...... groups injected with phosphate buffered saline (PBS). Blood and tissue samples (spleen and head-kidney) were taken for subsequent analysis using solid phase enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RQ-PCR), respectively. The up-regulation of cytokine genes was generally faster and...

  12. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth.

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Jacobs, Jon M.; Gritsenko, Marina A.; Karin, Norman J.

    2011-02-26

    Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24h in the presence or absence of LPA. We identified 932 transcripts that displayed statistically significant changes in abundance of at least 1.25-fold in response to LPA treatment. Gene ontology (GO) analysis revealed that the regulated gene products were linked to diverse cellular processes, including DNA repair, response to unfolded protein, ossification, protein-RNA complex assembly, and amine biosynthesis. Gene products associated with the regulation of actin microfilament dynamics displayed the most robust expression changes, and LPA-induced dendritogenesis in vitro was blocked by the stress fiber inhibitor cytochalasin D. Mass spectrometry-based proteomic analysis of MLO-Y4 cells revealed significant LPA-induced changes in the abundance of 284 proteins at 6h and 844 proteins at 24h. GO analysis of the proteomic data linked the effects of LPA to cell processes that control of protein distribution and membrane outgrowth, including protein localization, protein complex assembly, Golgi vesicle transport, cytoskeleton-dependent transport, and membrane invagination/endocytosis. Dendrites were isolated from LPA-treated MLO-Y4 cells and subjected to proteomic analysis to quantitatively assess the subcellular distribution of proteins. Sets of 129 and 36 proteins were enriched in the dendrite fraction as compared to whole cells after 6h and 24h of LPA exposure, respectively. Protein markers indicated that membranous organelles were largely excluded from the dendrites. Highly represented among

  13. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans.

    OpenAIRE

    Nabel, G J; Nabel, E. G.; Z.Y. Yang; Fox, B A; Plautz, G E; Gao, X.; Huang, L.; Shu, S.; Gordon, D.; Chang, A.E. (Alfred E.)

    1993-01-01

    Direct gene transfer offers the potential to introduce DNA encoding therapeutic proteins to treat human disease. Previously, gene transfer in humans has been achieved by a cell-mediated ex vivo approach in which cells from the blood or tissue of patients are genetically modified in the laboratory and subsequently returned to the patient. To determine the feasibility and safety of directly transferring genes into humans, a clinical study was performed. The gene encoding a foreign major histoco...

  14. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects

    International Nuclear Information System (INIS)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  15. Phospholipase C Produced by Clostridium botulinum Types C and D:Comparison of Gene, Enzymatic, and Biological Activities with Those of Clostridium perfringens Alpha-toxin

    Directory of Open Access Journals (Sweden)

    Sakurai,Jun

    2013-02-01

    Full Text Available Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs, the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  16. Research on the Relevance between Job Burnout and Anxiety and Their Biological Basis%职业倦怠与焦虑的相关性及其生物学基础研究

    Institute of Scientific and Technical Information of China (English)

    刘姣姣; 奚耕思; 刘倩; 薛丽娟

    2012-01-01

    Burnout of employees is a popular social psychological phenomenon, and its mechanism may mainly be due to the same long-term excessive stress-related nervous system disorders. Burnout and anxiety are closely related with each other and both are regulated by the nervous system and endocrine system. The abnormalities of neurotransmitters and relevant receptors in nervous system such as 5-hydroxytryptamine, norepinephrine and dopamine may lead to anxiety, and further to induce burnout. This paper was expounded the occurrence of job burnout and anxiety in the aspects of hormone level, molecular level and gene level, as well as the interaction of the two. It provided some biomedicine related basic theories for job burnout psychological prevention and gene therapy, and also laid biomedicine related foundation for the research of the mechanism of the causes of anxiety for the job burnout-sensitive crowd, especially for the female job burnout-sensitive crowd.%职业倦怠作为当前社会从业人员普遍存在的心理现象,其生理机制主要与长期过度应激引起神经系统的紊乱相关,焦虑与职业倦怠关系密切,都受到神经系统和内分泌系统共同调节.神经系统中神经递质及其受体:如5-羟色胺,去甲肾上腺素和多巴胺的异常,导致焦虑的发生,可能诱发了职业倦怠.本文从激素水平、分子水平、基因水平三个方面分别阐述了职业倦怠发生和焦虑发生的机制以及两者之间相互作用的生物原理,为今后职业倦怠的心理预防以及基因治疗提供了生物医学研究相关的基础理论,也为职业倦怠易感人群,尤其是女性易感人群的焦虑情绪产生的机制研究奠定了详尽的生物医学方面的基础.

  17. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  18. Analyzing Change in Students' Gene-to-Evolution Models in College-Level Introductory Biology

    Science.gov (United States)

    Dauer, Joseph T.; Momsen, Jennifer L.; Speth, Elena Bray; Makohon-Moore, Sasha C.; Long, Tammy M.

    2013-01-01

    Research in contemporary biology has become increasingly complex and organized around understanding biological processes in the context of systems. To better reflect the ways of thinking required for learning about systems, we developed and implemented a pedagogical approach using box-and-arrow models (similar to concept maps) as a foundational…

  19. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  20. The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Directory of Open Access Journals (Sweden)

    Li Destri Giovanni

    2009-04-01

    Full Text Available Abstract Background Apoptosis is a critical biological phenomenon, executed under the guidance of the Apoptotic Machinery (AM, which allows the physiologic elimination of terminally differentiated, senescent or diseased cells. Because of its relevance to BioMedicine, we have sought to obtain a detailed characterization of AM Omics in Homo sapiens, namely its Genomics and Evolution, Transcriptomics, Proteomics, Interactomics, Oncogenomics, and Pharmacogenomics. Methods This project exploited the methodology commonly used in Computational Biology (i.e., mining of many omics databases of the web as well as the High Throughput biomolecular analytical techniques. Results In Homo sapiens AM is comprised of 342 protein-encoding genes (possessing either anti- or pro-apoptotic activity, or a regulatory function and 110 MIR-encoding genes targeting them: some have a critical role within the system (core AM nodes, others perform tissue-, pathway-, or disease-specific functions (peripheral AM nodes. By overlapping the cancer type-specific AM mutation map in the fourteen most frequent cancers in western societies (breast, colon, kidney, leukaemia, liver, lung, neuroblastoma, ovary, pancreas, prostate, skin, stomach, thyroid, and uterus to their transcriptome, proteome and interactome in the same tumour type, we have identified the most prominent AM molecular alterations within each class. The comparison of the fourteen mutated AM networks (both protein- as MIR-based has allowed us to pinpoint the hubs with a general and critical role in tumour development and, conversely, in cell physiology: in particular, we found that some of these had already been used as targets for pharmacological anticancer therapy. For a better understanding of the relationship between AM molecular alterations and pharmacological induction of apoptosis in cancer, we examined the expression of AM genes in K562 and SH-SY5Y after anticancer treatment. Conclusion We believe that our data

  1. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  2. Gene prioritization for livestock diseases by data integration

    DEFF Research Database (Denmark)

    Jiang, Li; Sørensen, Peter; Thomsen, Bo Stjerne;

    2012-01-01

    bovine mastitis. Gene-associated phenome profile and transcriptome profile in response to Escherichia coli infection in the mammary gland were integrated to make a global inference of bovine genes involved in mastitis. The top ranked genes were highly enriched for pathways and biological processes...... underlying inflammation and immune responses, which supports the validity of our approach for identifying genes that are relevant to animal health and disease. These gene-associated phenotypes were used for a local prioritization of candidate genes located in a QTL affecting the susceptibility to mastitis...

  3. Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data

    Directory of Open Access Journals (Sweden)

    J. Sunil Rao

    2007-01-01

    Full Text Available In gene selection for cancer classifi cation using microarray data, we define an eigenvalue-ratio statistic to measure a gene’s contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalueratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.

  4. 利用元基因组学方法从瘤胃中筛选的功能酶及酶基因研究进展%Research Progress of Enzyme and Relevant Gene Screened from Rumen by Metagenomic Approach

    Institute of Scientific and Technical Information of China (English)

    张俊; 赵圣国; 王加启; 金迪; 卜登攀

    2015-01-01

    瘤胃微生物群落是一个复杂、庞大的生物体系,其生物多样性极为丰富,蕴藏着巨大的基因和生态资源,是酶制剂开发的重要宝库.元基因组学方法避免了微生物培养条件的限制,通过直接对未培养微生物进行DNA提取、基因筛选与表达,从而不断扩大自然界中的基因数据库,为新型生物催化剂的开发及筛选提供了可能.对元基因组学技术及利用此技术从瘤胃中筛选的功能酶类及酶基因的研究进展进行了综述.%Rumen microbial community is a complex biological system with extremely rich biodiversity and large amount of genetic and ecological resources, and it is also an important treasury for the development of enzyme. Using metagenomic approach could avoid the restriction of microbial culturing, with directly extracting DNA, gene screening and expressing the uncultured microbes to enlarge the database of genes, which provides possibility for the development of novel biocatalyst. The study explained metagenomic approach, and summarized the application of metagenomic approach in screening functional enzymes and studying relevant genes from rumen.

  5. Research Progress of Enzyme and Relevant Gene Screened from Rumen by Metagenomic Approach%利用元基因组学方法从瘤胃中筛选的功能酶及酶基因研究进展

    Institute of Scientific and Technical Information of China (English)

    张俊; 赵圣国; 王加启; 金迪; 卜登攀

    2015-01-01

    Rumen microbial community is a complex biological system with extremely rich biodiversity and large amount of genetic and ecological resources, and it is also an important treasury for the development of enzyme. Using metagenomic approach could avoid the restriction of microbial culturing, with directly extracting DNA, gene screening and expressing the uncultured microbes to enlarge the database of genes, which provides possibility for the development of novel biocatalyst. The study explained metagenomic approach, and summarized the application of metagenomic approach in screening functional enzymes and studying relevant genes from rumen.%瘤胃微生物群落是一个复杂、庞大的生物体系,其生物多样性极为丰富,蕴藏着巨大的基因和生态资源,是酶制剂开发的重要宝库.元基因组学方法避免了微生物培养条件的限制,通过直接对未培养微生物进行DNA提取、基因筛选与表达,从而不断扩大自然界中的基因数据库,为新型生物催化剂的开发及筛选提供了可能.对元基因组学技术及利用此技术从瘤胃中筛选的功能酶类及酶基因的研究进展进行了综述.

  6. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  7. Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish

    International Nuclear Information System (INIS)

    In natural environments fish are exposed to endocrine disrupting compounds (EDCs) present at low concentrations and with different modes of actions. Here, adult zebrafish of both sexes were exposed for 21 days to an estrogenic mixture (Mix) of eleven EDCs previously quantified in Douro River estuary (Portugal) and to 100 ng/L 17α-ethinylestradiol (EE2) as positive control. Vitellogenin mRNA and HSI in males confirmed both exposure regimes as physiologically active. Potential candidates for estrogenic disturbance of steroidogenesis were identified (StAR, 17β-HSD1, cyp19a1), but Mix only affected cyp19a1 in females. Significant differences in the response of FSHβ, cypa19a2, 20β-HSD were observed between EE2 and Mix. Mtf-1 and tfap2c transcription factor binding sites were discovered in the putative promoter regions and corresponding transcription factors were found to be differentially expressed in response to Mix and EE2. The results suggest that “non-classical effects” of estrogenic EDC in fish are mediated via transcription factors. - Highlights: ► Zebrafish were exposed to an estrogenic mixture (Mix) and to EE2 as positive control. ► Both exposure regimes were confirmed as physiologically active. ► Different disturbances on steroidogenesis were observed in males and females. ► A male gene expression pattern suggested a differential interference of Mix and EE2. ► Non-classical effects of Mix seem to be mediated via transcription factors. - An estrogenic mixture revealed different effects on specific transcription factors than EE2, probably due to multiple modes of actions of the chosen compounds.

  8. Facilitated diffusion buffers noise in gene expression

    OpenAIRE

    Schoech, Armin; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both ...

  9. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium.

    Science.gov (United States)

    Vitorino Carvalho, A; Eozenou, C; Healey, G D; Forde, N; Reinaud, P; Chebrout, M; Gall, L; Rodde, N; Padilla, A Lesage; Delville, C Giraud; Leveugle, M; Richard, C; Sheldon, I M; Lonergan, P; Jolivet, G; Sandra, O

    2016-03-01

    Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation. PMID:25116692

  10. 基于相关向量机的赖氨酸反应过程参数软测量%Soft Sensor of Lysien Fermentation Biological Parameters Based on Relevance Vector Machine

    Institute of Scientific and Technical Information of China (English)

    嵇小辅; 张孟尧; 王博; 黄丽

    2013-01-01

    针对支持向量机(SVM)计算复杂度高、参数不容易确定等局限性,提出一种基于相关向量机(RVM)的赖氨酸反应过程关键参量的软测量方法.根据过程经验,确定发酵液的溶解氧浓度、pH值、二氧化碳释放率、氧吸收率和葡萄糖流加速率为辅助变量,利用相关支持向量机的拟合与泛化能力,建立了赖氨酸反应过程基质浓度、菌体浓度、产物浓度等不可直接测量参量的软测量模型.基于L-赖氨酸反应过程开展的试验研究表明:所建立的相关向量机软测量模型拟合精度高、泛化能力强,较好地满足了赖氨酸反应过程的控制要求.%To overcome the high computational complexity and difficulty in design kernel parameters of support vector machine, the soft sensor model of lysien fermentation biological parameters is proposed based on relevance vector machine. According to procedure experience, dissolved oxygen, the parameters of pH value, discharge rate of CO2, absorption rate of O2, and flow acceleration rate of glucose are chosen as auxiliary variables, and the concentration of matrix, thallus and product are chosen as primary variables. The soft sensor of lysien fermentation procedure is built using the fitting and generalization capacity. The experiments results show that the obtained soft sensor is with high fitting precision and generalization capacity, which well satisfies the control requirement of lysien fermentation procedure.

  11. Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance.

    Directory of Open Access Journals (Sweden)

    Sangeeta Khare

    Full Text Available Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection, processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i early (30 min and 1 hr post-infection, ii intermediate (2, 4 and 8 hrs post-infection, and iii late (12 hrs post-infection. We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed

  12. Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements.

    Science.gov (United States)

    Mecham, Brigham H; Klus, Gregory T; Strovel, Jeffrey; Augustus, Meena; Byrne, David; Bozso, Peter; Wetmore, Daniel Z; Mariani, Thomas J; Kohane, Isaac S; Szallasi, Zoltan

    2004-01-01

    Cancer derived microarray data sets are routinely produced by various platforms that are either commercially available or manufactured by academic groups. The fundamental difference in their probe selection strategies holds the promise that identical observations produced by more than one platform prove to be more robust when validated by biology. However, cross-platform comparison requires matching corresponding probe sets. We are introducing here sequence-based matching of probes instead of gene identifier-based matching. We analyzed breast cancer cell line derived RNA aliquots using Agilent cDNA and Affymetrix oligonucleotide microarray platforms to assess the advantage of this method. We show, that at different levels of the analysis, including gene expression ratios and difference calls, cross-platform consistency is significantly improved by sequence- based matching. We also present evidence that sequence-based probe matching produces more consistent results when comparing similar biological data sets obtained by different microarray platforms. This strategy allowed a more efficient transfer of classification of breast cancer samples between data sets produced by cDNA microarray and Affymetrix gene-chip platforms. PMID:15161944

  13. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates.

    Directory of Open Access Journals (Sweden)

    Ida Elken Sønderby

    Full Text Available BACKGROUND: Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. METHODOLOGY/PRINCIPAL FINDINGS: MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL, as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. CONCLUSIONS/SIGNIFICANCE: It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to

  14. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers

    International Nuclear Information System (INIS)

    Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) 60Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1β, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-α, macrophage-CSF (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1β, IL-3, TNF-α, and G-CSF at day 1 than any other BRM. When challenged with 2 LD50/30 of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas ≤30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab

  15. Non-viral gene delivery strategies for gene therapy: a 'menage a trois' among nucleic acids, materials, and the biological environment

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Daniele; Candiani, Gabriele, E-mail: gabriele.candiani@polimi.it [INSTM (National Interuniversity Consortium of Materials Science and Technology), Research Unit Milano Politecnico (Italy)

    2013-03-15

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription-translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  16. Non-viral gene delivery strategies for gene therapy: a “ménage à trois” among nucleic acids, materials, and the biological environment

    International Nuclear Information System (INIS)

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription–translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  17. Defining origins of malignant B cells: a new circulating normal human IgM(+)D(+) B-cell subset lacking CD27 expression and displaying somatically mutated IGHV genes as a relevant memory population.

    Science.gov (United States)

    Weston-Bell, N; Townsend, M; Di Genova, G; Forconi, F; Sahota, S S

    2009-11-01

    In probing the cell of origin in malignant B cells, an imprint of somatic hypermutation (SHM) in immunoglobulin (Ig) variable (V) region genes delineates antigen encounter, and identifying the precise pathway generating SHM in the normal B-cell counterpart becomes relevant. SHM remains the definitive memory imprint in normal human B cells, but CD27 expression also delineates memory. Recently, dye extrusion adenosine triphosphate-binding transporter assays identified circulating isotype-switched memory B cells that lacked CD27, yet exhibited low levels of SHM. To extend findings, we report a pre-switched CD27(-ve) circulating memory B-cell population in normal blood using comparable assays, and isolated CD19(+)IgM(+)D(+)CD27(-ve) cells (>99% purity) for the analysis of IGHV5/IGHV3-IGHM transcripts. Of these (n=334), approximately 78% were germ line and naive B cell derived. Strikingly, 21.9% of the transcripts were mutated. They showed 3-5 mutations (13.5% of sequences) and >5 mutations (8.4% of sequences) per transcript. Accrual of mutations in a subset of CD19(+)IgM(+)D(+)CD27(-ve) cells define a new circulating pre-switched memory B-cell pool, present in substantial numbers in the population harboring naive B cells. These CD19(+)IgM(+)D(+)CD27(-ve) memory B cells may have a distinct lineage and function, and seem relevant to understanding origins of malignant B cells, in particular those of hairy cell leukemia cells, which display mutated V genes yet lack CD27 expression. PMID:19776762

  18. Biological efficiency of the Brookhaven Medical Research Reactor mixed neutron beam estimated from gene mutations in Tradescantia stamen hair cells assay

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) of low energy neutrons for the induction of various abnormalities in Tradescantia stamen hair mutation (Trad-SH) assay was studied using two clones (T-4430 and T-02), heterozygous for flower color. Dose response relationship for gene mutations induced in somatic cells of Trad-SH were investigated after irradiation with a mixed neutron beam of the Brookhaven Medical Research Reactor (BMRR), currently used in a clinical trial of boron neutron capture therapy (BNCT) for glioblastoma. To establish the RBE of the BMRR beam in the induction of various biological end-points in Tradescantia, irradiation with various doses of γ-rays was also performed. After irradiation all plants were cultivated several days at Brookhaven National Laboratory (BNL), then transported to Poland for screening the biological end-points. Due to the post-exposure treatment, all plants showed high levels of lethal events and alteration of the cell cycle. Plants of clone 4430 were more reactive to post-treatment conditions, resulting in decreased blooming efficiency that affected the statistics. Slope coefficients estimated from the dose response curves for gene mutation frequencies allowed the evaluation of ranges for the maximal RBE values of the applied beam vs. γ rays as 6.0 and 5.4 for the cells of T-02 and T-4430, respectively. Estimated fraction of doses from neutrons and corresponding biological effects for the clones T-02 and T-4430 allowed to evaluate the RBE values for neutrons part in the beam as 32.3 and 45.4, respectively. (author)

  19. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    a new dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article...

  20. A bi-ordering approach to linking gene expression with clinical annotations in gastric cancer

    OpenAIRE

    Leckie Christopher; Shi Fan; MacIntyre Geoff; Haviv Izhak; Boussioutas Alex; Kowalczyk Adam

    2010-01-01

    Abstract Background In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in a single assay, provide abundant information for the investigation of interesting genes or biological pathways. However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes. Moreover, systematic tests are needed to validate the ...

  1. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases

    OpenAIRE

    Di Lena, Pietro; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2015-01-01

    Background Enrichment analysis is a widely applied procedure for shedding light on the molecular mechanisms and functions at the basis of phenotypes, for enlarging the dataset of possibly related genes/proteins and for helping interpretation and prioritization of newly determined variations. Several standard and Network-based enrichment methods are available. Both approaches rely on the annotations that characterize the genes/proteins included in the input set; network based ones also include...

  2. Peripheral blood involvement in non-Hodgkin's lymphoma detected by clonal gene rearrangement as a biological prognostic marker.

    OpenAIRE

    Hiorns, L R; Nicholls, J; Sloane, J P; Horwich, A.; Ashley, S.; Brada, M.

    1994-01-01

    Peripheral blood from 67 patients with non-Hodgkin's lymphoma was examined at initial diagnosis for the presence of circulating lymphoma cells by DNA hybridisation using immunoglobulin and T-cell receptor gene probes. Clonal gene rearrangement was found in 31% (21/67) of patients and correlated with clinical stage, histological grade and bone marrow involvement. Clinical stage and the presence of lymphoma cells in peripheral blood were prognostic factors for progression-free survival in all p...

  3. Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships

    OpenAIRE

    Cai Lei; Tan Dan; Aibaidula Gulsimay; Dong Xin-Ran; Chen Jin-Chun; Tian Wei-Dong; Chen Guo-Qiang

    2011-01-01

    Abstract Background Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA) and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far. Results The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA), w...

  4. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  5. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  6. HLA-DRB1和HLA-DQB1基因与肿瘤的关联性研究%A relevance between tumor and HLA-DRB1 and HLA-DQB1 gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    周秀英; 于雅宁; 刘辉

    2013-01-01

    Objective To study the relevance between tumor and HLA-DRB1 and HLA-DQB1 gene polymorphism via analyzing 18 alleles of HLA-H gene locus of some tumor patients.Methods 18 alleles ofHLA-Ⅱ gene locus of 42 tumor patients were analyzed and compared.with those of 100 healthy people using PCR-SSP (polymerase chain reaction-sequence specific primers) technology.Results The HLA-DQB1 * 03 frequency of the tumor group was 65.5%,it was significantly higher than the 42.0% of the control group,RR =2.62,P <0.0001; the HLA-DQB1 * 06 frequency of tumor group was 10.7%,it was significantly lower than 24.0% of the control group,RR =0.38,P value was of 0.010.Condusion It is suggested that HLA-DQB1 * 03 may be the susceptibility gene of tumor,HLA-DQB1 * 06 may be the resistance genes of tumor.%目的 通过对42例肿瘤患者HLA-DRB1和HLA-DQB1座位的18个等位基因位点的检测,探讨HLA-DRB1和HLA-DQB1基因多态性与肿瘤的关联性.方法 采用PCR-SSP技术,检测42例肿瘤患者的HLA-DRB1和HLA-DQBI基因位点18个,并以100例健康人作为对照.结果 肿瘤HLA-DQB1* 03型频率的65.5%,高于对照组的42.0%,RR =2.62,P<0.0001;肿瘤组HLA-DQB1* 06型频率为10.7%,明显低于对照组的24.0%,RR =0.38,P=0.010.结论 HLA-DQB1* 03可能是肿瘤的易感基因,HLA-DQB1* 06可能是肿瘤的抗性基因.

  7. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation.

    Science.gov (United States)

    Balint, Eva; Lapointe, David; Drissi, Hicham; van der Meijden, Caroline; Young, Daniel W; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2003-05-15

    Understanding physiological control of osteoblast differentiation necessitates characterization of the regulatory signals that initiate the events directing a cell to lineage commitment and establishing competency for bone formation. The bone morphogenetic protein, BMP-2, a member of the TGFbeta superfamily, induces osteoblast differentiation and functions through the Smad signal transduction pathway during in vivo bone formation. However, the molecular targets of BMP-mediated gene transcription during the process of osteoblast differentiation have not been comprehensively identified. In the present study, BMP-2 responsive factors involved in the early stages of commitment and differentiation to the osteoblast phenotype were analyzed by microarray gene expression profiling in samples ranging from 1 to 24 h following BMP-2 dependent differentiation of C2C12 premyoblasts into the osteogenic lineage. A total of 1,800 genes were responsive to BMP-2 and expression was modulated from 3- to 14-fold for less than 100 genes during the time course. Approximately 50% of these 100 genes are either up- or downregulated. Major events associated with phenotypic changes towards the osteogenic lineage were identified from hierarchical and functional clustering analyses. BMP-2 immediately responsive genes (1-4 h), which exhibited either transient or sustained expression, reflect activation and repression of non-osseous BMP-2 developmental systems. This initial response was followed by waves of expression of nuclear proteins and developmental regulatory factors including inhibitors of DNA binding, Runx2, C/EBP, Zn finger binding proteins, forkhead, and numerous homeobox proteins (e.g., CDP/cut, paired, distaless, Hox) which are expressed at characterized stages during osteoblast differentiation. A sequential profile of genes mediating changes in cell morphology, cell growth, and basement membrane formation is observed as a secondary transient early response (2-8 h). Commitment to the

  8. A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology

    NARCIS (Netherlands)

    Seidl, M.F.; Schneider, A.; Govers, F.; Snel, B.

    2013-01-01

    Background - Associations between proteins are essential to understand cell biology. While this complex interplay between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight pathogen Phytophthora infestans. Results - We present an integrative prob

  9. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  10. Effect of antisense transfecting of monocarboxylate transporter gene on biological characteristics of lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-zhi; HUANG Gui-jun; GUO Xian-jian; QIAN Gui-sheng

    2002-01-01

    Objective: To study the influence of transfecting antisense expression vector of the first subtype of the monocarboxylate transporter (MCT1) gene into lung cancer cells on pHi regulation, lactate transportation and cell growth, Methods: MCT1 antisense gene recombinant vector was introduced into human lung cancer cell line A549 by electroporation. The transfected A549 cells resistant to G418 were selected. Positive clones were examined by using PCR. The changes of intracellular pH and lactate were examined with spectrophotometric method. Cell growth was studied with cell growth curve. Results: Intracellular pH and lactate were remarkably decreased in the cells transfected pLXSN-MCT1 in comparison with A549 cells without transfection (P<0. 001). The growth of A549 cells transfected pLXSN-MCT1 was also inhibited remarkably. Conclusion: MCT1 gene may play an important role in pHi regulation, lactate transportation and cell growth in tumor cells.

  11. Study on the Relevance between Cirrhosis Syndrome Types of TCM and Biological Detection Indexes%肝硬化证型与生物学指标相关性研究

    Institute of Scientific and Technical Information of China (English)

    刘倩; 王晓素

    2012-01-01

    Objective:Chromic hepatitis B liver cirrhosis differentiation of symptoms and signs for classification of syndrome and relevance of biological indicators were studied, so as to provide some reference for liver cirrhosis differentiation of symptoms and signs for classification of syndrome. Methods: 170 liver cirrhosis patients chosen by adoption standards were investigated systematically. General states of health, case history, general state of health were collected for syndrome differentiation. Liver function ( ALT, AST, AKP, GGT, Alb, PA, STB, CB, BA ), HA, PT, lipid ( CHO, TG, HDL, LDL, Apo-Al ), and other indicators of modern medicine were detected simultaneously. Information database was established to understand the distribution characteristics of the disease. One-factor ANOVA was applied to investigate the relevance between the differentiation of symptoms and signs for classification of syndrome and objective index. Results : Endoretention of damp-heat and hepatic and renal yin deficiency are most common in syndrome types of TCM distribution. For endoretention of damp-heat and asdthenic splenonephro-yang, AST is higher. While for splenic asthenia phlegmatic hygrosis, AST is very low. The difference between endoretention of damp-heat and splenic asthenia phlegmatic hygrosis is significant (P hepatic and renal yin deficiency> blood stasis resistanre> endoretention of damp-heat> splenic asthenia phlegmatic hygrosis> asdthenic splenonephro-yang (P blood stasis resistance> splenic asthenia phlegmatic hygrosis> stagnation of liver-QI> hepatic and renal yin deficiency> endoretention of damp heat (P endoretention of damp heat> splenic asthenia phlegmatic hygrosis> blood stasis resistance> hepatic and renal yin deficiency> stagnation of liver-QI (P asdthenic splenonephro-yang >blood stasis resistance> splenic asthenia phlegmatic hygrosis> hepatic and renal yin deficiency> depression of liver-QI. Stagnation of liver-QI, hepatic and renal yin deficiency, splenic

  12. Bacterial Diversity Studies Using the 16S rRNA Gene Provide a Powerful Research-Based Curriculum for Molecular Biology Laboratory

    Directory of Open Access Journals (Sweden)

    Sarah M. Boomer

    2009-12-01

    Full Text Available We have developed a ten-week curriculum for molecular biology that uses 16S ribosomal RNA genes to characterize and compare novel bacteria from hot spring communities in Yellowstone National Park. The 16S rRNA approach bypasses selective culture-based methods. Our molecular biology course offered the opportunity for students to learn broadly applicable methods while contributing to a long-term research project. Specifically, students isolated and characterized clones that contained novel 16S rRNA inserts using restriction enzyme, DNA sequencing, and computer-based phylogenetic methods. In both classes, students retrieved novel bacterial 16S rRNA genes, several of which were most similar to Green Nonsulfur bacterial isolates. During class, we evaluated student performance and mastery of skills and concepts using quizzes, formal lab notebooks, and a broad project assignment. For this report, we also assessed student performance alongside data quality and discussed the significance, our goal being to improve both research and teaching methods.

  13. Bacterial Diversity Studies Using the 16S rRNA Gene Provide a Powerful Research-Based Curriculum for Molecular Biology Laboratory

    Directory of Open Access Journals (Sweden)

    Bryan E. Dutton

    2002-12-01

    Full Text Available We have developed a ten-week curriculum for molecular biology that uses 16S ribosomal RNA genes to characterize and compare novel bacteria from hot spring communities in Yellowstone National Park. The 16S rRNA approach bypasses selective culture-based methods. Our molecular biology course offered the opportunity for students to learn broadly applicable methods while contributing to a long-term research project. Specifically, students isolated and characterized clones that contained novel 16S rRNA inserts using restriction enzyme, DNA sequencing, and computer-based phylogenetic methods. In both classes, students retrieved novel bacterial 16S rRNA genes, several of which were most similar to Green Nonsulfur bacterial isolates. During class, we evaluated student performance and mastery of skills and concepts using quizzes, formal lab notebooks, and a broad project assignment. For this report, we also assessed student performance alongside data quality and discussed the significance, our goal being to improve both research and teaching methods.

  14. A review of biological processes within oceanic water columns relevant to the assessment of the safety of disposal of waste, notably radioactive isotopes on or within the sea bed

    International Nuclear Information System (INIS)

    Pelagic biological processes and their connotations in the assessment of possible dispersal mechanisms of contaminants released on the deep oceanic seabed are reviewed. Biological gradients tend to be from the surface down so the search is for processes which run counter to these general gradients. Observed profiles of standing crop of both plankton and micronekton show that below 2000 m biological activity would have to be exceptionally dynamic to have an influence that will even approach within an order of magnitude of the dispersive effect of physical mixing. Examination of all forms of known migration mechanisms fails to reveal such dynamic activity. Nor have any critical pathways been identified within the present or foreseeable pattern of exploitation of the oceans. However, a major gap in knowledge is whether the pattern of these biological processes changes substantially in the region of continental slopes. (author)

  15. Small molecule intercalation with double stranded DNA: Implications for normal gene regulation and for predicting the biological efficacy and genotoxicity of drugs and other chemicals

    International Nuclear Information System (INIS)

    The binding of small molecules to double stranded DNA including intercalation between base pairs has been a topic of research for over 40 years. For the most part, however, intercalation has been of marginal interest given the prevailing notion that binding of small molecules to protein receptors is largely responsible for governing biological function. This picture is now changing with the discovery of nuclear enzymes, e.g. topoisomerases that modulate intercalation of various compounds including certain antitumor drugs and genotoxins. While intercalators are classically flat, aromatic structures that can easily insert between base pairs, our laboratories reported in 1977 that a number of biologically active compounds with greater molecular thickness, e.g. steroid hormones, could fit stereospecifically between base pairs. The hypothesis was advanced that intercalation was a salient feature of the action of gene regulatory molecules. Two parallel lines of research were pursued: (1) development of technology to employ intercalation in the design of safe and effective chemicals, e.g. pharmaceuticals, nutraceuticals, agricultural chemicals; (2) exploration of intercalation in the mode of action of nuclear receptor proteins. Computer modeling demonstrated that degree of fit of certain small molecules into DNA intercalation sites correlated with degree of biological activity but not with strength of receptor binding. These findings led to computational tools including pharmacophores and search engines to design new drug candidates by predicting desirable and undesirable activities. The specific sequences in DNA into which ligands best intercalated were later found in the consensus sequences of genes activated by nuclear receptors implying intercalation was central to their mode of action. Recently, the orientation of ligands bound to nuclear receptors was found to match closely the spatial locations of ligands derived from intercalation into unwound gene sequences

  16. Small molecule intercalation with double stranded DNA: Implications for normal gene regulation and for predicting the biological efficacy and genotoxicity of drugs and other chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Lawrence B. [Accelerated Pharmaceuticals Inc., Augusta, GA (United States)], E-mail: lhendry@comcast.net; Mahesh, Virendra B.; Bransome, Edwin D.; Ewing, Douglas E. [Accelerated Pharmaceuticals Inc., Augusta, GA (United States)

    2007-10-01

    The binding of small molecules to double stranded DNA including intercalation between base pairs has been a topic of research for over 40 years. For the most part, however, intercalation has been of marginal interest given the prevailing notion that binding of small molecules to protein receptors is largely responsible for governing biological function. This picture is now changing with the discovery of nuclear enzymes, e.g. topoisomerases that modulate intercalation of various compounds including certain antitumor drugs and genotoxins. While intercalators are classically flat, aromatic structures that can easily insert between base pairs, our laboratories reported in 1977 that a number of biologically active compounds with greater molecular thickness, e.g. steroid hormones, could fit stereospecifically between base pairs. The hypothesis was advanced that intercalation was a salient feature of the action of gene regulatory molecules. Two parallel lines of research were pursued: (1) development of technology to employ intercalation in the design of safe and effective chemicals, e.g. pharmaceuticals, nutraceuticals, agricultural chemicals; (2) exploration of intercalation in the mode of action of nuclear receptor proteins. Computer modeling demonstrated that degree of fit of certain small molecules into DNA intercalation sites correlated with degree of biological activity but not with strength of receptor binding. These findings led to computational tools including pharmacophores and search engines to design new drug candidates by predicting desirable and undesirable activities. The specific sequences in DNA into which ligands best intercalated were later found in the consensus sequences of genes activated by nuclear receptors implying intercalation was central to their mode of action. Recently, the orientation of ligands bound to nuclear receptors was found to match closely the spatial locations of ligands derived from intercalation into unwound gene sequences

  17. Gene Amplification by PCR and Subcloning into a GFP-Fusion Plasmid Expression Vector as a Molecular Biology Laboratory Course

    Science.gov (United States)

    Bornhorst, Joshua A.; Deibel, Michael A.; Mulnix, Amy B.

    2004-01-01

    A novel experimental sequence for the advanced undergraduate laboratory course has been developed at Earlham College. Utilizing recent improvements in molecular techniques for a time-sensitive environment, undergraduates were able to create a chimera of a selected gene and green fluorescent protein (GFP) in a bacterial expression plasmid over the…

  18. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene.

    Science.gov (United States)

    Marino, Natascia; Nakayama, Joji; Collins, Joshua W; Steeg, Patricia S

    2012-12-01

    Metastatic disease is the major cause of death among cancer patients. A class of genes, named metastasis suppressors, has been described to specifically regulate the metastatic process. The metastasis suppressor genes are downregulated in the metastatic lesion compared to the primary tumor. In this review, we describe the body of research surrounding the first metastasis suppressor identified, Nm23. Nm23 overexpression in aggressive cancer cell lines reduced their metastatic potential in vivo with no significant reduction in primary tumor size. A complex mechanism of anti-metastatic action is unfolding involving several known Nm23 enzymatic activities (nucleotide diphosphate kinase, histidine kinase, and 3'-5' exonuclease), protein-protein interactions, and downstream gene regulation properties. Translational approaches involving Nm23 have progressed to the clinic. The upregulation of Nm23 expression by medroxyprogesterone acetate has been tested in a phase II trial. Other approaches with significant preclinical success include gene therapy using traditional or nanoparticle delivery, and cell permeable Nm23 protein. Recently, based on the inverse correlation of Nm23 and LPA1 expression, a LPA1 inhibitor has been shown to both inhibit metastasis and induce metastatic dormancy. PMID:22706779

  19. Effect and Regulatory Mechanism of Clock Gene Per1 on Biological Behaviors of Human Oral Squamous Carcinoma Cell.

    Science.gov (United States)

    Han-Xue, L I; Kai, Yang; Xiao-Juan, F U; Qin, Zhao

    2016-04-10

    Objective To investigate the effect and regulatory mechanism of clock gene Per1 on the proliferation,apoptosis,migration,and invasion of human oral squamous carcinoma SCC15 cells. Methods RNA interference was used to knock down Per1 gene in human oral squamous cell carcinoma SCC15 cell line. Changes of cell proliferation and apoptosis were analyzed by flow cytometry. Transwell assay was carried out to assess cell migration and invasion. Real-time polymerase chain reaction was used to detect the mRNA expressions of Ki-67,murine double minute 2(MDM2),c-Myc,p53,Bax,Bcl-2,metalloproteinase (MMP)2,MMP9,and vascular endothelial growth factor (VEGF). Results shRNA-mediated knockdown of Per1 promoted the proliferation,migration and invasion capacity,and inhibited cell apoptosis capacity of SCC15 cells (all PKi-67,MDM2,Bcl-2,MMP2,and MMP9 and decreased the mRNA expressions of c-Myc,p53,and Bax (all P0.05). Conclusions Clock gene Perl can regulate important tumor-related genes downstream such as Ki-67,MDM2,c-Myc,p53,Bax,Bcl-2,MMP2,and MMP9,and the aberrant expression of Per1 can affect tumor cell proliferation,apoptosis,migration and invasion. An in-depth study of Per1 may further clarify the mechanism of tumorigenesis and tumor development and thus provides new effective molecular targets for cancer treatment. PMID:27181891

  20. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    Directory of Open Access Journals (Sweden)

    Bahl Hubert

    2011-01-01

    Full Text Available Abstract Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7 acids are the dominant product while at low pH (pH 4.5 this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  1. Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer.

    Science.gov (United States)

    Das, Kakoli; Lorena, Pia D N; Ng, Lai Kuan; Lim, Diana; Shen, Liang; Siow, Woei Yun; Teh, Ming; Reichardt, Juergen K V; Salto-Tellez, Manuel

    2010-09-01

    The biological role of steroid 5alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGFalpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 muM). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. PMID:20519274

  2. WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications

    OpenAIRE

    Zhu Qian; Lajiness Michael S; Ding Ying; Wild David J

    2010-01-01

    Abstract Background In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. I...

  3. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    SacconePhD, Scott F [Washington University, St. Louis; Chesler, Elissa J [ORNL; Bierut, Laura J [Washington University, St. Louis; Kalivas, Peter J [Medical College of South Carolina, Charleston; Lerman, Caryn [University of Pennsylvania; Saccone, Nancy L [Washington University, St. Louis; Uhl, George R [Johns Hopkins University; Li, Chuan-Yun [Peking University; Philip, Vivek M [ORNL; Edenberg, Howard [Indiana University; Sherry, Steven [National Center for Biotechnology Information; Feolo, Michael [National Center for Biotechnology Information; Moyzis, Robert K [Johns Hopkins University; Rutter, Joni L [National Institute of Drug Abuse

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  4. Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-bin; WANG Juan; LU Chun; TANG Gui-xia

    2005-01-01

    Background Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta superfamily, are powerful regulators of cartilage and bone formation. This study investigated the biological changes of NIH3T3 cells incubated with secretive BMP2 that was induced by gene transfection through transwell. Methods Eukaryonic expression vector (pcDNA3.1-B2) was transfered into NIH3T3 cells with SofastTM,a positive compound transfection agent. The positive cell clones were selected with G418. The cytoplasmic and extracellular expressions of BMP2 were determined by immunohistochemical stain and enzyme-linked immunosorbent assay. NIH3T3 cells were co-cultured with hBMP2 gene transfecting cells through transwell, and the ultrastructure, alkaline phosphatase activity and the expression of osteocalcin (the marker of osteogenetic differentiation) changes were observed. Results There were cytoplasmic and extracellular expressions of BMP2 in transfecting NIH3T3 cells. The ultrastructural changes, the high activity of alkaline phosphatase and the positive stain of osteocalcin suggested the osteogenetic differentiation tendency of NIH3T3 cells co-cultured with transfecting NIH3T3 cells. Conclusion Secretive BMP2 that is induced by gene transfection could promote the osteogenetic differentiation of fibroblast cells.

  5. Investigations on biological functions of heat shock transcription factor 1 (HSF1) using a gene knock out mouse model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HSF1 is the major heat shock transcription factor that binds heat shock element (HSE) in the promoter of heat shock proteins (HSPs) and controls rapid HSP induction in cells subjected to various stresses such as elevated temperature, chemicals, or exposure to toxins. Although at least four members of the vertebrate HSF have been cloned, details of their individual physiological roles remain relatively obscure. To clarify the exact in vivo functions of HSF1 and assess whether HSF1 exhibits redundant or unique roles, we have created homozygous Hsf1-/- mice using standard gene targeting techniques and isolated Hsf1-/- embryonic fibroblasts. Here we demonstrate that heat shock response (HSR) was not attainable in Hsf1-/- embryonic fibroblasts, and this response was required for thermotolerance and protection against heat-induced apoptosis, and that homozygous Hsf1-/- mice, which survived to adulthood according to genetic background, exhibited multiple phenotypes including: (1) placental defects that reduced embryonic viability after late midgestation (day 13.5); (2) growth retardation; (3) female infertility caused by preimplantation lethality, and (4) increased mortality (+/+ vs -/-, P<0.05) and exaggerated production of proinflammatory cytokine, TNF α (+/- vs -/-, P<0.05) after endotoxin challenge. Interestingly, although Hsf1-/- mice exhibited placental defects and embryonic death, basal HSP expression is not appreciably altered during embryonic development by the HSF1 null mutation, suggesting this factor might be involved in regulating some non-HSP genes or signaling pathways which may be important for development. Taken together, our results established direct causal effects for the HSF1 transactivator in regulating diverse physiological and pathophysiological conditions such as developnent, growth, reproduction, apoptosis and sepsis. The present work also provided a useful mammalian model for further investigating the implications of Hsf1 and its target

  6. Purification of the inlB Gene Product of Listeria monocytogenes and Demonstration of Its Biological Activity

    OpenAIRE

    Müller, Simone; Hain, Torsten; Pashalidis, Philippos; Lingnau, Andreas; Domann, Eugen; Chakraborty, Trinad; Wehland, Jürgen

    1998-01-01

    Entry of Listeria monocytogenes into nonphagocytic cells requires the inlAB gene products. InlA and InlB are bacterial cell wall-associated polypeptides that can be released by sodium dodecyl sulfate treatment. By applying more gentle extraction methods, we have purified InlB in its native form. Treatment of bacteria with various nondenaturating agents including mutanolysin, thiol reagents, sodium chloride, and detergents like Triton X-100 or 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanes...

  7. Mithramycin Is a Gene-Selective Sp1 Inhibitor That Identifies a Biological Intersection between Cancer and Neurodegeneration

    OpenAIRE

    Sleiman, Sama F.; Langley, Brett C.; Basso, Manuela; Berlin, Jill; Xia, Li; Payappilly, Jimmy B.; Kharel, Madan K.; Guo, Hengchang; Marsh, J. Lawrence; Thompson, Leslie Michels; Mahishi, Lata; Ahuja, Preeti; MacLellan, W Robb; Geschwind, Daniel H.; Coppola, Giovanni

    2011-01-01

    Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington’s disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent n...

  8. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells

    OpenAIRE

    Özgür Çakir; Murat Pekmez; Elif Çepni; Bilgin Candar; Kerem Fidan

    2014-01-01

    Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibi...

  9. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer.

    Science.gov (United States)

    Klenova, Elena M; Morse, Herbert C; Ohlsson, Rolf; Lobanenkov, Victor V

    2002-10-01

    CTCF is a ubiquitous 11 zinc finger (ZF) protein with highly versatile functions: in addition to transcriptional silencing or activating in a context-dependent fashion, it organizes epigenetically controlled chromatin insulators that regulate imprinted genes in soma. Recently, we have identified a CTCF paralogue, termed BORIS for Brother of the Regulator of Imprinted Sites, that is expressed only in the testis. BORIS has the same exons encoding the 11 ZF domain as mammalian CTCF genes, and hence interacts with similar cis elements, but encodes amino and carboxy termini distinct from those in CTCF. Normally, CTCF and BORIS are expressed in a mutually exclusive pattern that correlates with re-setting of methylation marks during male germ cell differentiation. The antagonistic features of these two gene siblings are underscored by showing that while CTCF overexpression blocks cell proliferation, expression of BORIS in normally BORIS-negative cells promotes cell growth which can lead to transformation. The suggestion that BORIS directs epigenetic reprogramming at CTCF target sites impinges on the observations that human BORIS is not only abnormally activated in a wide range of human cancers, but also maps to the cancer-associated amplification region at 20q13. The sibling rivalry occasioned by aberrant expression of BORIS in cancer may interfere with normal functions of CTCF including growth suppression, and contribute to epigenetic dysregulation which is a common feature in human cancer. PMID:12191639

  10. Sobre moléculas, genes y plantas. Biología molecular del endospermo de los cereales

    OpenAIRE

    García Olmedo, Francisco; Carbonero Zalduegui, Pilar; Aragoncillo Ballesteros, Cipriano; Salcedo Duran, Gabriel; Hernandez Lucas, Carlos; Sánchez-Monge Laguna de Rins, Rosa; Delibes Castro, Angeles; Paz Ares, Javier; Ponz Ascaso, Fernando

    1985-01-01

    El presente articulo revisa sucintamente un conjunto de investigaciones sobre la biología molecular de un tejido vegetal, el endospermo de los cereales, que puede considerarse el producto comestible mas importante a escala mundial. en dichas investigaciones se han utilizado técnicas bioquímicas, citogeneticas y de ingeniería genética para el conocimiento básico y la manipulación practica del conjunto de especies cultivadas denominadas cereales. los estudios realizados han abarcado los siguien...

  11. Gene expression trees in lymphoid development

    Directory of Open Access Journals (Sweden)

    Schliep Alexander

    2007-10-01

    Full Text Available Abstract Background The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational support for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes. Results We present the first statistical framework designed to analyze gene expression data as it is collected in the course of lymphoid development through clusters of co-expressed genes and additional heterogeneous data. We introduce dependence trees for continuous variates, which model the inherent dependencies during the differentiation process naturally as gene expression trees. Several trees are combined in a mixture model to allow inference of potentially overlapping clusters of co-expressed genes. Additionally, we predict microRNA targets. Conclusion Computational results for several data sets from the lymphoid system demonstrate the relevance of our framework. We recover well-known biological facts and identify promising novel regulatory elements of genes and their functional assignments. The implementation of our method (licensed under the GPL is available at http://algorithmics.molgen.mpg.de/Supplements/ExpLym/.

  12. Fuzziness and Relevance Theory

    Institute of Scientific and Technical Information of China (English)

    Grace Qiao Zhang

    2005-01-01

    This paper investigates how the phenomenon of fuzzy language, such as `many' in `Mary has many friends', can be explained by Relevance Theory. It is concluded that fuzzy language use conforms with optimal relevance in that it can achieve the greatest positive effect with the least processing effort. It is the communicators themselves who decide whether or not optimal relevance is achieved, rather than the language form (fuzzy or non-fuzzy) used. People can skillfully adjust the deployment of different language forms or choose appropriate interpretations to suit different situations and communication needs. However, there are two challenges to RT: a. to extend its theory from individual relevance to group relevance; b. to embrace cultural considerations (because when relevance principles and cultural protocols are in conflict, the latter tends to prevail).

  13. Relevance Theory in Translation

    Institute of Scientific and Technical Information of China (English)

    Shao Jun; Jiang Min

    2008-01-01

    In perspective of relevance theory, translation is regarded as communication. According to relevance theory, communication not only requires encoding, transfer and decoding processes, but also involves inference in addition. As communication, translation decision-making is also based on the human beings' inferential mental faculty. Concentrating on relevance theory, this paper tries to analyze and explain some translation phenomena in two English versions of Cai Gen Tan-My Crude Philosophy of Life.

  14. Biological activities of some Acacia spp. (Fabaceae) against new clinical isolates identified by ribosomal RNA gene-based phylogenetic analysis.

    Science.gov (United States)

    Mahmoud, Mahmoud Fawzy; Alrumman, Sulaiman Abdullah; Hesham, Abd El-Latif

    2016-01-01

    Nowadays,most of the pathogenic bacteria become resistant to antibiotics. Therefore,the pharmaceutical properties of the natural plant extracts have become of interest to researchers as alternative antimicrobial agents. In this study,antibacterial activities of extract gained from Acacia etbaica, Acacia laeta, Acacia origena and Acacia pycnantha have been evaluated against isolated pathogenic bacteria (Strains MFM-01, MFM-10 and AH-09) using agar well diffusion methods.The bacterial strains were isolated from infected individuals,and their exact identification was detected on the basis of 16S rRNA gene amplification and sequence determination. Alignment results and the comparison of 16 SrRN A gene sequences of the isolates to 16 SrRN A gene sequences available in Gen Bank data base as well as the phylogenetic analysis confirmed the accurate position of the isolates as Klebsiella oxytoca strain MFM-01, Staphylococcus aureus strain MFM-10 and Klebsiella pneumoniae strain AH-09. Except for cold water, all tested solvents (Chloroform, petroleum ether, methanol, diethyl ether, and acetone) showed variation in their activity against studied bacteria. GC-MS analysis of ethanol extracts showed that four investigated Acacia species have different phyto components. Eight important pharmaceutical components were found in the legume of Acacia etbaica, seven in the legume of Acacia laeta, fifteen in the legume of Acacia origena and nine in the leaves of Acacia pycnantha. A dendrogram was constructed based on chemical composition, revealed that Acacia laeta is more closely related to Acacia etbaica forming on eclade, whereas Acacia origena less similar to other species. Our results demonstrated that, investigated plants and chemical compounds present could be used as promising antibacterial agents. PMID:26826814

  15. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  16. Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene.

    OpenAIRE

    Xiao, W; Derfler, B; J. Chen; Samson, L

    1991-01-01

    We previously identified and characterized biochemically an O6-methylguanine (O6MeG) DNA repair methyltransferase (MTase) in the yeast Saccharomyces cerevisiae and showed that it recognizes both O6MeG and O4-methylthymine (O4MeT) in vitro. Here we characterize the cloned S. cerevisiae O6MeG DNA MTase gene (MGT1) and determine its in vivo role in protecting yeast from DNA alkylation damage. We isolated a yeast DNA fragment that suppressed alkylation-induced killing and mutation in Escherichia ...

  17. Delivery system for creation of one-step in vivo lac gene fusions in Pseudomonas spp. involved in biological control.

    OpenAIRE

    O'Sullivan, D J; O'Gara, F

    1988-01-01

    The suicide plasmid pVA838 carrying the operon fusion transposon Tn5-lac was used as a delivery system to introduce Tn5-lac into Pseudomonas sp. strain M114. Random, in vivo lac gene fusions were successfully isolated in a one-step conjugation approach with this vector system. Tn5-lac-containing exconjugants were recovered at a frequency of approximately 10(-7) per recipient. However, when the mating temperature was increased from the normal growth temperature (28 degrees C) to 34 degrees C, ...

  18. Mining the Human Phenome Using Allelic Scores That Index Biological Intermediates

    NARCIS (Netherlands)

    D.M. Evans (David); M.-J. Brion (Maria); L. Paternoster (Lavinia); J.P. Kemp (John); G. Mcmahon (George); M.R. Munafò (Marcus); J. Whitfield (John); S.E. Medland; G.W. Montgomery (Grant); N. Timpson (Nicholas); B. St Pourcain (Beate); D.A. Lawlor (Debbie); N.G. Martin (Nicholas); A. Dehghan (Abbas); J.N. Hirschhorn (Joel); G. Davey-Smith (George)

    2013-01-01

    textabstractIt is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in

  19. Mining the human phenome using allelic scores that index biological intermediates

    NARCIS (Netherlands)

    Evans, D.M.; Brion, M.J.; Paternoster, L.; Kemp, J.P.; McMahon, G.; Munafo, M.; Whitfield, J.B.; Medland, S.E.; Montgomery, G.W.; Consortium, G.; Consortium, C.R.P.; Consortium, T.A.G.; Timpson, N.J.; Pourcain, B. St; Lawlor, D.A.; Martin, N.G.; Dehghan, A.; Hirschhorn, J.; Smith, G.; Kiemeney, L.A.L.M.

    2013-01-01

    It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aet

  20. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells

    Directory of Open Access Journals (Sweden)

    Özgür Çakir

    2014-06-01

    Full Text Available Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL and the shoot (0.5 mg/mL extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.