WorldWideScience

Sample records for biologically relevant environment

  1. Other relevant biological papers

    International Nuclear Information System (INIS)

    Shimizu, M.

    1989-01-01

    A considerable number of CRESP-relevant papers concerning deep-sea biology and radioecology have been published. It is the purpose of this study to call attention to them. They fall into three general categories. The first is papers of general interest. They are mentioned only briefly, and include text references to the global bibliography at the end of the volume. The second are papers that are not only mentioned and referenced, but for various reasons are described in abstract form. The last is a list of papers compiled by H.S.J. Roe specifically for this volume. They are listed in bibliographic form, and are also included in the global bibliography at the end of the volume

  2. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  3. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  4. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  5. The Integrin Receptor in Biologically Relevant Bilayers

    DEFF Research Database (Denmark)

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  6. Biology, Genetics, and Environment

    Science.gov (United States)

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  7. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  8. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  9. Value-Relevance of Biological Assets under IFRS

    OpenAIRE

    Rute Gonçalves; Patrícia Lopes

    2015-01-01

    Using 389 firm-year observations of listed firms worldwide in 27 countries that adopted International Financial Reporting Standards (IFRS) until 2010, for the period 2011-2013, the purpose of this paper is to examine the value-relevance of fair value accounting of biological assets. In order to operationalize it as the book value’s ability to explain market equity value, this study adjusts the Ohlson model. The results support that recognized biological assets are value-relevant. After includ...

  10. Biological relevance and synthesis of C-substituted morpholine derivatives

    NARCIS (Netherlands)

    Wijtmans, R.; Vink, M.K.S.; Schoemaker, H.E.; Delft, F.L. van; Blaauw, R.H.; Rutjes, F.P.J.T.

    2004-01-01

    C-Functionalized morpholines are found in a variety of natural products and biologically active compounds, but have also for other reasons been applied in organic synthesis. This review deals with the biological relevance of C-substituted morpholines, their synthesis and important applications in

  11. Dilution thermodynamics of the biologically relevant cation mixtures

    International Nuclear Information System (INIS)

    Kaczyński, Marek; Borowik, Tomasz; Przybyło, Magda; Langner, Marek

    2014-01-01

    Graphical abstract: - Highlights: • Dilution energetics of Ca 2+ can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca 2+ dilution is drastically reduced in the K + presence. • Reduction of the enthalpy change upon Ca 2+ dilution is K + concentration dependent. • The cooperativity of Ca 2+ hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers

  12. Design as a way to develop a relevant urban environment ...

    African Journals Online (AJOL)

    Design as a way to develop a relevant urban environment. ... Futuristic ideas of young designers can become the first stage in solving these challenging tasks. ... the problems of a modern city: from space organization to leisure organization.

  13. Some aspects of research relevant to environment radiochemistry

    International Nuclear Information System (INIS)

    Chen Shi; Ma Mingxie

    1997-01-01

    The authors suggest some research aspects relevant to environmental radiochemistry from the view point of environmental protection and radiation protection: the migration behavior of radionuclides, their interaction with environment medium and their speciation in environment. The status and prospect of these aspects and the relationship between them are discussed

  14. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  15. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  16. The complexity of DNA damage: relevance to biological consequences

    International Nuclear Information System (INIS)

    Ward, J.F.

    1994-01-01

    Ionizing radiation causes both singly and multiply damaged sites in DNA when the range of radical migration is limited by the presence of hydroxyl radical scavengers (e.g. within cells). Multiply damaged sites are considered to be more biologically relevant because of the challenges they present to cellular repair mechanisms. These sites occur in the form of DNA double-strand breaks (dsb) but also as other multiple damages that can be converted to dsb during attempted repair. The presence of a dsb can lead to loss of base sequence information and/or can permit the two ends of a break to separate and rejoin with the wrong partner. (Multiply damaged sites may also be the biologically relevant type of damage caused by other agents, such as UVA, B and/or C light, and some antitumour antibiotics). The quantitative data available from radiation studies of DNA are shown to support the proposed mechanisms for the production of complex damage in cellular DNA, i.e. via scavengable and non-scavengable mechanisms. The yields of complex damages can in turn be used to support the conclusion that cellular mutations are a consequence of the presence of these damages within a gene. (Author)

  17. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  18. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  19. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  20. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  1. Micro/nanofabricated environments for synthetic biology.

    Science.gov (United States)

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  3. Dealing with immunogenicity of biologicals: assessment and clinical relevance

    NARCIS (Netherlands)

    Wolbink, Gerrit J.; Aarden, Lucien A.; Dijkmans, B. A. C.

    2009-01-01

    PURPOSE OF REVIEW: In the last decade, biologicals revolutionized rheumatology. An increasing number of patients benefit from biotherapeuticals. However, some patients do not respond to treatment and others lose their response after a certain time. Immunogenicity is one of the factors linked to

  4. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    OpenAIRE

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but also in single molecule research confocal fluorescence microscopy became a popular technique. In this thesis the possibilities are shown to study a complicated biological process, which is Nucleotide ...

  5. Streptococcus pyogenes biofilms – formation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  6. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  7. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  8. 6,7-dimethoxy-coumarin as a probe of hydration dynamics in biologically relevant systems

    Science.gov (United States)

    Ghose, Avisek; Amaro, Mariana; Kovaricek, Petr; Hof, Martin; Sykora, Jan

    2018-04-01

    Coumarin derivatives are well known fluorescence reporters for investigating biological systems due to their strong micro-environment sensitivity. Despite having wide range of environment sensitive fluorescence probes, the potential of 6,7-dimethoxy-coumarin has not been studied extensively so far. With a perspective of its use in protein studies, namely using the unnatural amino acid technology or as a substrate for hydrolase enzymes, we study acetyloxymethyl-6,7-dimethoxycoumarin (Ac-DMC). We investigate the photophysics and hydration dynamics of this dye in aerosol-OT (AOT) reverse micelles at various water contents using the time dependent fluorescence shift (TDFS) method. The TDFS response in AOT reverse micelles from water/surfactant ratio of 0 to 20 confirms its sensitivity towards the hydration and mobility of its microenvironment. Moreover, we show that the fluorophore can be efficiently quenched by halide ions. Hence, we conclude that the 6,7-dimethoxy-methylcoumarin fluorophore is useful for studying hydration parameters in biologically relevant systems.

  9. Rethinking the central dogma: noncoding RNAs are biologically relevant.

    Science.gov (United States)

    Robinson, Victoria L

    2009-01-01

    Non-coding RNAs (ncRNAs) are a large class of functional molecules with over 100 unique classes described to date. ncRNAs are diverse in terms of their function and size. A relatively new class of small ncRNA, called microRNAs (miRNA), have received a great deal of attention in the literature in recent years. miRNAs are endogenously encoded gene families that demonstrate striking evolutionary conservation. miRNAs serve essential and diverse physiological functions such as differentiation and development, proliferation, maintaining cell type phenotypes, and many others. The discovery and ongoing investigation of miRNAs is part of a revolution in biology that is changing the basic concepts of gene expression and RNA functionality. A single miRNA can participate in controlling the expression of up to several hundred protein-coding genes by interacting with mRNAs, generally in 3' untranslated regions. Our new and developing understanding of miRNAs, and other ncRNAs, promises to lead to significant contributions to medicine. Specifically, miRNAs are likely to serve as the basis for novel therapies and diagnostic tools.

  10. Biological relevance of human papillomaviruses in vulvar cancer.

    Science.gov (United States)

    Halec, Gordana; Alemany, Laia; Quiros, Beatriz; Clavero, Omar; Höfler, Daniela; Alejo, Maria; Quint, Wim; Pawlita, Michael; Bosch, Francesc X; de Sanjose, Silvia

    2017-04-01

    The carcinogenic role of high-risk human papillomavirus (HR-HPV) types in the increasing subset of vulvar intraepithelial neoplasia and vulvar cancer in young women has been established. However, the actual number of vulvar cancer cases attributed to HPV is still imprecisely defined. In an attempt to provide a more precise definition of HPV-driven vulvar cancer, we performed HPV-type-specific E6*I mRNA analyses available for 20 HR-/possible HR (pHR)-HPV types, on tissue samples from 447 cases of vulvar cancer. HPV DNA genotyping was performed using SPF10-LiPA 25 assay due to its high sensitivity in formalin-fixed paraffin-embedded tissues. Data on p16 INK4a expression was available for comparative analysis via kappa statistics. The use of highly sensitive assays covering the detection of HPV mRNA in a broad spectrum of mucosal HPV types resulted in the detection of viral transcripts in 87% of HPV DNA+ vulvar cancers. Overall concordance between HPV mRNA+ and p16 INK4a upregulation (strong, diffuse immunostaining in >25% of tumor cells) was 92% (K=0.625, 95% confidence interval (CI)=0.531-0.719). Among these cases, 83% were concordant pairs of HPV mRNA+ and p16 INK4a + and 9% were concordant pairs of HPV mRNA- and p16 INK4a -. Our data confirm the biological role of HR-/pHR-HPV types in the great majority of HPV DNA+ vulvar cancers, resulting in an HPV-attributable fraction of at least 21% worldwide. Most HPV DNA+ vulvar cancers were associated with HPV16 (85%), but a causative role for other, less frequently occurring mucosal HPV types (HPV26, 66, 67, 68, 70 and 73) was also confirmed at the mRNA level for the first time. These findings should be taken into consideration for future screening options as HPV-associated vulvar preneoplastic lesions have increased in incidence in younger women and require different treatment than vulvar lesions that develop from rare autoimmune-related mechanisms in older women.

  11. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli

    OpenAIRE

    Sakaki, Michiko; Niki, N.; Mather, M.

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for bio...

  12. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.

    Science.gov (United States)

    Sarkar, Rupa; Ghosh, Manoranjan; Pal, Samir Kumar

    2005-02-01

    We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.

  13. Relevance of Education & Training in a Business Environment.

    Science.gov (United States)

    Whiteman, Jo Ann M.

    Today's workplace must employ knowledgeable, flexible, efficient, and adaptable workers who are lifelong learners. Adult learners need to be updated on the latest changes in the structure of the business environment. Business programs must respond to corporate and personal development needs by designing curriculum that embraces the management…

  14. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzi Cortez, Fernando, E-mail: lecotox@unisanta.br [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil); Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Dias Seabra Pereira, Camilo [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Ramos Santos, Aldo Ramos [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Cesar, Augusto; Choueri, Rodrigo Brasil [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Martini, Gisela de Assis [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Bohrer-Morel, Maria Beatriz [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC{sub 50} = 0.490 mg L{sup -1}) and embryo-larval development (IC{sub 50} = 0.135 mg L{sup -1}) tests were above environmental relevant concentrations (ng L{sup -1}) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L{sup -1}, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: Black-Right-Pointing-Pointer Triclosan causes biological adverse effects at environmental relevant concentrations. Black-Right-Pointing-Pointer Mechanisms of action oriented assays were more sensitive to detect biological damages. Black-Right-Pointing-Pointer Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  15. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Sanzi Cortez, Fernando; Dias Seabra Pereira, Camilo; Ramos Santos, Aldo Ramos; Cesar, Augusto; Choueri, Rodrigo Brasil; Martini, Gisela de Assis; Bohrer-Morel, Maria Beatriz

    2012-01-01

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC 50 = 0.490 mg L −1 ) and embryo-larval development (IC 50 = 0.135 mg L −1 ) tests were above environmental relevant concentrations (ng L −1 ) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L −1 , demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  16. FISCALITY – RELEVANT FACTOR INFLUENCING THE BUSINESS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ionel MĂNDESCU

    2013-06-01

    Full Text Available Main tool for macroeconomic management - fiscal policy consists in establishing the levels of taxation and spending in order to influence macroeconomic performance. Fiscal policy, promoted by the government authorities of any contemporary state, is directed usually to achieving microeconomic and macroeconomic goals deriving from the roles the state must fulfill in the economy, respectively the allocative role, distributive, regulatory and the stabilizer role. Governmental authorities, through the production and supply of public goods that are financed at the expense of taxes or duties, or on the public debt, affect both individuals’ utility functions and production functions of economic agents in the private sector. At the macroeconomic level, fiscal policy decisions of governmental authorities relating to either public spending or taxation can be directed towards the stimulation of development. Fiscality is a business cost in investment, where the decisions are taken by representatives of the business environment.

  17. Exploring Marine Environments To Unravel Tolerance Mechanisms To Relevant Compounds

    DEFF Research Database (Denmark)

    Machado, Henrique; Cavaleiro, Mafalda; Nørholm, Morten

    2015-01-01

    Production of biofuels and chemicals using microorganisms has been a research driver in the last decades. The approach started with the engineering of metabolic pathways for production of compounds of interest, but it was soon realized that tolerance to the compounds being produced was one...... of interest, HPLC analyses were performed in order to distinguish between compound-degrading and tolerant bacteria. This led to the identification of seven tolerant and non-degrading isolates, the most interesting ones belonging to the genera Bacillus and Pseudomonas. These will be studied using genomic...... and transcriptomic approaches to identify the tolerance mechanisms used. Exploring new ecological niches, as contaminated marine environments allows the identification of naturally tolerant bacteria to the compounds of interest and most likely to the discovery of new mechanisms of tolerance....

  18. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  19. Action video game players' visual search advantage extends to biologically relevant stimuli.

    Science.gov (United States)

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The relevance of the natural magnetic environment for life

    International Nuclear Information System (INIS)

    Morariu, V. Vasile

    2001-01-01

    Life on Earth evolved in a natural magnetic environment also known as the geomagnetic field (GMF). Since several decades it has been suggested that GMF and its variations may affect life. This became a more serious issue when it was suggested that mass extinction of species may have a connection with the GMF reversals. Such events involved exposure to possible large fluctuations but also to almost zero magnetic field (ZMF) for periods of say of at least hundreds of years. The present era of the space conquest also rise the interest for the behavior of life in conditions of ZMF since this is the characteristic of the interplanetary space. The strategy for investigation of the GMF role for terrestrial life is a) to look at the effects of the GMF fluctuations on various life related phenomena. This is a matter of correlating various statistical data (in the form of time series) and the corresponding time series for the geomagnetic activity and, b) to investigate in laboratory conditions the exposure of various species to ZMF conditions. While the first approach has the advantage that we may look into relatively long terms effects extending over several years or even tens of years, the second approach is limited to short term effects of days, weeks or several months at most. We use both types of approaches in our investigations. Our goal is twofold: 1) to identify the basic phenomena related to life which are influenced by ZMF and, 2) to sort out the species according to their sensitivity to ZMF. At present time we lack basic understanding of the role of GMF for life. According to our results, gathered for almost a decade of work, there is an inhibiting effect on the activity of some enzymes yet there are enzymes which are not sensitive to ZMF. We are trying to understand whether the conformation of some proteins or the kinetics of enzyme may change under such conditions. Among bacteria there is a clear diversity of responses as well as among various plant species but

  1. Arsenic in the environment: Biology and chemistry

    Science.gov (United States)

    Bhattacharya, Prosun; Welch, Alan H.; Stollenwerk, Kenneth G.; McLaughlin , Mike J.; Bundschuh, Jochen; Panaullah, G.

    2007-01-01

    Arsenic (As) distribution and toxicology in the environment is a serious issue, with millions of individuals worldwide being affected by As toxicosis. Sources of As contamination are both natural and anthropogenic and the scale of contamination ranges from local to regional. There are many areas of research that are being actively pursued to address the As contamination problem. These include new methods of screening for As in the field, determining the epidemiology of As in humans, and identifying the risk of As uptake in agriculture. Remediation of As-affected water supplies is important and research includes assessing natural remediation potential as well as phytoremediation. Another area of active research is on the microbially mediated biogeochemical interactions of As in the environment.In 2005, a conference was convened to bring together scientists involved in many of the different areas of As research. In this paper, we present a synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference. This contribution provides a backdrop to the issues raised at the conference together with an overview of contemporary and historical issues of As contamination and health impacts.

  2. A study of ruthenium complexes of some biologically relevant a-N ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 3. A study of ruthenium complexes of some biologically relevant ∙ -N-heterocyclic ... Author Affiliations. P Sengupta1 S Ghosh1. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India ...

  3. A concept for biological valuation in the marine environment

    Directory of Open Access Journals (Sweden)

    Eric Willem Maria Stienen

    2007-03-01

    Full Text Available In order to develop management strategies for sustainable useand conservation in the marine environment, reliable and meaningful,but integrated ecological information is needed. Biological valuationmaps that compile and summarize all available biological andecological information for a study area, and that allocate anoverall biological value to subzones, can be used as baselinemaps for future spatial planning at sea. This paper providesa concept for marine biological valuation which is based on aliterature review of existing valuation criteria and the consensusreached by a discussion group of experts.

  4. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  5. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    Science.gov (United States)

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  6. Acoustic fine structure may encode biologically relevant information for zebra finches.

    Science.gov (United States)

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  7. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  8. The physical environment and its relevance to customer satisfaction in boutique hotels; Hotel Haven, Helsinki

    OpenAIRE

    Jysmä, Ekaterina

    2012-01-01

    Object of this research is physical environment of the boutique hotel named Haven. As there is lack of the researches concerning physical environment role in the boutique hotels, this paper could be useful both for the studied hotel as well as for the other boutique hotels managers and owners. Moreover, it could be useful for the potential customers of Hotel Haven. Main topic of this research is the importance and relevance of the physical environment in Hotel Haven, mostly its impact o...

  9. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    Science.gov (United States)

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.

  10. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research.

    Science.gov (United States)

    Abraham, Parvin; Maliekal, Tessy Thomas

    2017-04-01

    Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.

  11. Employee health-relevant personality traits are associated with the psychosocial work environment and leadership.

    Science.gov (United States)

    Villaume, Karin; Hasson, Dan

    2017-01-01

    Little is known about personality in relation to assessments of the psychosocial work environment and leadership. Therefore the objective of this study is to explore possible associations and differences in mean values between employee health-relevant personality traits and assessments of the psychosocial work environment and leadership behaviors. 754 survey responses from ten organizations were selected from a large-scale intervention study. The Health-relevant Personality 5 inventory was used to assess personality. Five dimensions of the psychosocial work environment were assessed with 38 items from the QPS Nordic and 6 items from the Developmental Leadership Questionnaire were used to assess leadership behavior. Positive correlations were found between Hedonic capacity (facet of Extraversion) and perceptions of the psychosocial work environment and leadership behavior. Negative correlations were found for Negative affectivity (facet of Neuroticism), Antagonism (facet of Agreeableness), Impulsivity (facet of Conscientiousness) and Alexithymia (facet of Openness). There were also significant differences in mean values of all work environment indicators between levels of health-relevant personality traits. Those with higher levels of hedonic capacity had higher (better) perceptions compared to those with lower levels. Those with higher levels of negative affectivity had lower (worse) perceptions compared to those with lower levels. The findings show a clear association between employee health-relevant personality traits and assessments of the psychosocial work environment and leadership behavior. Personality can be important to take into consideration for leaders when interpreting survey results and when designing organizational interventions.

  12. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  13. The asymmetric hetero-Diels-Alder reaction in the syntheses of biologically relevant compounds.

    Science.gov (United States)

    Eschenbrenner-Lux, Vincent; Kumar, Kamal; Waldmann, Herbert

    2014-10-13

    The hetero-Diels-Alder reaction is one of the most powerful transformations in the chemistry toolbox for the synthesis of aza- and oxa-heterocycles embodying multiple stereogenic centers. However, as compared to other cycloadditions, in particular the dipolar cycloadditions and the Diels-Alder reaction, the hetero-Diels-Alder reaction has been much less explored and exploited in organic synthesis. Nevertheless, this powerful transformation has opened up efficient and creative routes to biologically relevant small molecules and different natural products which contain six-membered oxygen or nitrogen ring systems. Recent developments in this field, in particular in the establishment of enantioselectively catalyzed hetero-Diels-Alder cycloadditions steered by a plethora of different catalysts and the application of the resulting small molecules in chemical biology and medicinal chemistry research, are highlighted in this Minireview. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  15. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    Science.gov (United States)

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  16. Environmental biodosimetry: a biologically relevant tool for ecological risk assessment and biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, B. E-mail: ulshb@mcmaster.ca; Hinton, T.G.; Congdon, J.D.; Dugan, L.C.; Whicker, F.W.; Bedford, J.S

    2003-07-01

    Biodosimetry, the estimation of received doses by determining the frequency of radiation-induced chromosome aberrations, is widely applied in humans acutely exposed as a result of accidents or for clinical purposes, but biodosimetric techniques have not been utilized in organisms chronically exposed to radionuclides in contaminated environments. The application of biodosimetry to environmental exposure scenarios could greatly improve the accuracy, and reduce the uncertainties, of ecological risk assessments and biomonitoring studies, because no assumptions are required regarding external exposure rates and the movement of organisms into and out of contaminated areas. Furthermore, unlike residue analyses of environmental media environmental biodosimetry provides a genetically relevant biomarker of cumulative lifetime exposure. Symmetrical chromosome translocations can impact reproductive success, and could therefore prove to be ecologically relevant as well. We describe our experience in studying aberrations in the yellow-bellied slider turtle as an example of environmental biodosimetry.

  17. Comparison of the perceived relevance of oral biology reported by students and interns of a Pakistani dental college.

    Science.gov (United States)

    Farooq, I; Ali, S

    2014-11-01

    The purpose of this study was to analyse and compare the perceived relevance of oral biology with dentistry as reported by dental students and interns and to investigate the most popular teaching approach and learning resource. A questionnaire aiming to ask about the relevance of oral biology to dentistry, most popular teaching method and learning resource was utilised in this study. Study groups encompassed second-year dental students who had completed their course and dental interns. The data were obtained and analysed statistically. The overall response rate for both groups was 60%. Both groups reported high relevance of oral biology to dentistry. Perception of dental interns regarding the relevance of oral biology to dentistry was higher than that of students. Both groups identified student presentations as the most important teaching method. Amongst the most important learning resources, textbooks were considered most imperative by interns, whereas lecture handouts received the highest importance score by students. Dental students and interns considered oral biology to be relevant to dentistry, although greater relevance was reported by interns. Year-wise advancement in dental education and training improves the perception of the students about the relevance of oral biology to dentistry. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Inorganic concepts relevant to metal binding, activity, and toxicity in a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, J.D. (Warner-Lambert Co., Ann Arbor, MI (USA). Parke-Davis Pharmaceutical Research Div.); Turner, J.E.; England, M.W. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    The purpose of this paper is to review selected physical and inorganic concepts and factors which might be important in assessing and/or understanding the fact and disposition of a metal system in a biological environment. Hopefully, such inquiries will ultimately permit us to understand, rationalize, and predict differences and trends in biological effects as a function of the basic nature of a metal system and, in optimal cases, serve as input to a system of guidelines for the notion of Chemical Dosimetry.'' The plan of this paper is to first review, in general terms, the basic principles of the Crystal Field Theory (CFT), a unifying theory of bonding in metal complexes. This will provide the necessary theoretical background for the subsequent discussion of selected concepts and factors. 21 refs., 7 figs., 6 tabs.

  19. Review of Antimicrobial Resistance in the Environment and its Relevance to Environmental Regulators

    Directory of Open Access Journals (Sweden)

    Andrew C Singer

    2016-11-01

    Full Text Available The environment is increasingly being recognised for the role it might play in the global spread of clinically-relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, biocides. Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: 1 AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and 2 AMR Action Plans are deficient, in part, because the science to inform policy is lacking and this needs to be addressed.

  20. On the Relevance of Using OpenWireless Sensor Networks in Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Antoine B. Bagula

    2009-06-01

    Full Text Available This paper revisits the problem of the readiness for field deployments of wireless- sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that finetunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  1. 'Fish matters': the relevance of fish skin biology to investigative dermatology.

    Science.gov (United States)

    Rakers, Sebastian; Gebert, Marina; Uppalapati, Sai; Meyer, Wilfried; Maderson, Paul; Sell, Anne F; Kruse, Charli; Paus, Ralf

    2010-04-01

    Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.

  2. The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms.

    Science.gov (United States)

    Schimmack, Simon; Lawrence, Ben; Svejda, Bernhard; Alaimo, Daniele; Schmitz-Winnenthal, Hubertus; Fischer, Lars; Büchler, Markus W; Kidd, Mark; Modlin, Irvin

    2012-05-15

    Although gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) exhibit widely divergent behavior, limited biologic information (apart from Ki-67) is available to characterize malignancy. Therefore, the identification of alternative biomarkers is a key unmet need. Given the role of internexin alpha (INA) in neuronal development, the authors assessed its function in neuroendocrine cell systems and the clinical implications of its expression as a GEP-NEN biomarker. Functional assays were undertaken to investigate the mechanistic role of INA in the pancreatic BON cell line. Expression levels of INA were investigated in 50 pancreatic NENs (43 primaries, 7 metastases), 43 small intestinal NENs (25 primaries, 18 metastases), normal pancreas (n = 10), small intestinal mucosa (n = 16), normal enterochromaffin (EC) cells (n = 9), mouse xenografts (n = 4) and NEN cell lines (n = 6) using quantitative polymerase chain reaction, Western blot, and immunostaining analyses. In BON cells, decreased levels of INA messenger RNA and protein were associated with the inhibition of both proliferation and mitogen-activated protein kinase (MAPK) signaling. INA was not expressed in normal neuroendocrine cells but was overexpressed (from 2-fold to 42-fold) in NEN cell lines and murine xenografts. In pancreatic NENs, INA was overexpressed compared with pancreatic adenocarcinomas and normal pancreas (27-fold [P = .0001], and 9-fold [P = .02], respectively). INA transcripts were correlated positively with Ki-67 (correlation coefficient [r] = 0.5; P biologic information relevant to delineation of both pancreatic NEN tumor phenotypes and clinical behavior. Copyright © 2011 American Cancer Society.

  3. A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean

    Science.gov (United States)

    Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew

    2017-12-01

    Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.

  4. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  5. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    Science.gov (United States)

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  6. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  7. The relevance of nanoscale biological fragments for ice nucleation in clouds

    Science.gov (United States)

    O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.

    2015-01-01

    Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.

  8. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  9. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Science.gov (United States)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  10. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Laura E.; Giacomelli, Carla E., E-mail: giacomel@fcq.unc.edu.ar [Universidad Nacional de Córdoba, Ciudad Universitaria, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas (Argentina)

    2017-05-15

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag{sup +} and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H{sub 2}O{sub 2}). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H{sub 2}O{sub 2}-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag{sup +} from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  11. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  12. Momentum Transfer and Viscosity from Proton-Hydrogen Collisions Relevant to Shocks and Other Astrophysical Environments

    International Nuclear Information System (INIS)

    Schultz, David Robert; Krstic, Predrag S.; Lee, Teck G.; Raymond, J.C.

    2008-01-01

    The momentum transfer and viscosity cross sections for proton-hydrogen collisions are computed in the velocity range of ∼200-20,000 km s -1 relevant to a wide range of astrophysical environments such as SNR shocks, the solar wind, winds within young stellar objects or accretion disks, and the interstellar protons interacting with the heliosphere. A variety of theoretical approaches are used to arrive at a best estimate of these cross sections in this velocity range that smoothly connect with very accurate results previously computed for lower velocities. Contributions to the momentum transfer and viscosity cross sections from both elastic scattering and charge transfer are included

  13. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  14. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  15. High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula

    Science.gov (United States)

    Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard

    2018-06-01

    Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

  16. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  17. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  18. Adsorption of biometals to monosodium titanate in biological environments

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D.T.; MESSER, R. L. W.; LEWIS, J. B.; CLICK, D. R. LOCKWOOD, P. E.; WATAHA, J. C.

    2005-06-06

    Monosodium titanate (MST) is an inorganic sorbent/ion exchanger developed for the removal of radionuclides from nuclear wastes. We investigated the ability of MST to bind Cd(II), Hg(II), or Au(III) to establish the utility of MST for applications in environmental decontamination or medical therapy (drug delivery). Adsorption isotherms for MST were determined at pH 7-7.5 in water or phosphate-buffered saline. The extent of metal binding was determined spectroscopically by measuring the concentrations of the metals in solution before and after contact with the MST. Cytotoxic responses to MST were assessed using THP1 monocytes and succinate dehydrogenase activity. Monocytic activation by MST was assessed by TNF{alpha} secretion (ELISA) with or without lipopolysaccharide (LPS) activation. MST sorbed Cd(II), Hg(II), and Au(III) under conditions similar to that in physiological systems. MST exhibited the highest affinity for Cd(II) followed by Hg(II) and Au (III). MST (up to 100 mg/L) exhibited only minor (< 25% suppression of succinate dehydrogenase) cytotoxicity and did not trigger TNF{alpha} secretion nor modulate LPS-induced TNF{alpha} secretion from monocytes. MST exhibits high affinity for biometals with no significant biological liabilities in these introductory studies. MST deserves further scrutiny as a substance with the capacity to decontaminate biological environments or deliver metals in a controlled fashion.

  19. PRESERVATION OF ARCHAEOLOGICAL MATERIALS IN ARID ENVIRONMENTS RELEVANT TO YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    N. Chapman, A. Dansie, C. McCombie

    2006-01-01

    The objective of this study was to evaluate archaeological materials from underground openings or shallow burial in arid environments relevant to Yucca Mountain and to draw conclusions about how their state and their environment of preservation could be of relevance to design and operational aspects of the high-level waste repository. The study has evaluated materials from cultures in the arid regions of the ancient Middle East and compared them with the preservation of ancient materials in dry cave sites in the Great Basin desert area of Nevada. The emphasis has been on materials found in undisturbed underground openings such as caves and un-backfilled tombs. Long-term preservation of such materials in underground openings and the stability of the openings themselves provide useful analogue information that serves as a reference point for considering the operation and evolution of the Yucca Mountain repository. Being able to shed light, by close physical and environmental analogy, on what happens in underground openings over many thousands of years provides valuable underpinning to illustrations of expected system performance and offers pointers towards optimizing repository system and operational design

  20. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

  1. A review of electrochemistry of relevance to environment-assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Turnbull, A.; Psaila-Dombrowski, M.

    1992-01-01

    The electrochemistry of relevance to environment-assisted cracking in high temperature, low conductivity water is critically reviewed. The review covers corrosion potential and electrochemical polarisation measurements, thermodynamics, and also experimental measurements and mathematical modelling of the electrochemistry in cracks and crevices. There is a lack of critical data in relation to the electrode kinetics of relevant cathodic reduction reactions, namely H + , H 2 O, O 2 , H 2 O 2 and steady-state anodic reaction data are limited. Transient anodic current measurements, associated with initially film-free metal, have been made for a range of conditions but there is uncertainty regarding the role of fluid flow and transport processes on the current decay characteristics. A number of experimental measurements of potential and pH in crevices and cracks have been made but the experiments are difficult to carry out reliably and hence the range of data of relevance to practical conditions is very limited. Recent developments in mathematical modelling have significantly enhanced the qualitative understanding of the processes controlling the local electrochemistry in cracks and crevices but the reliability of the quantitative predictions is limited by the paucity of reliable input data. (Author)

  2. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant.

    Science.gov (United States)

    Davids, Keith; Baker, Joseph

    2007-01-01

    The historical debate on the relative influences of genes (i.e. nature) and environment (i.e. nurture) on human behaviour has been characterised by extreme positions leading to reductionist and polemic conclusions. Our analysis of research on sport and exercise behaviours shows that currently there is little support for either biologically or environmentally deterministic perspectives on elite athletic performance. In sports medicine, recent molecular biological advances in genomic studies have been over-interpreted, leading to a questionable 'single-gene-as-magic-bullet' philosophy adopted by some practitioners. Similarly, although extensive involvement in training and practice is needed at elite levels, it has become apparent that the acquisition of expertise is not merely about amassing a requisite number of practice hours. Although an interactionist perspective has been mooted over the years, a powerful explanatory framework has been lacking. In this article, we propose how the complementary nature of degenerate neurobiological systems might provide the theoretical basis for explaining the interactive influence of genetic and environmental constraints on elite athletic performance. We argue that, due to inherent human degeneracy, there are many different trajectories to achieving elite athletic performance. While the greatest training responses may be theoretically associated with the most favourable genotypes being exposed to highly specialised training environments, this is a rare and complex outcome. The concept of degeneracy provides us with a basis for understanding why each of the major interacting constraints might act in a compensatory manner on the acquisition of elite athletic performance.

  3. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-06-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological particles present in the air of urban environments. [Int Microbiol 19(2):69-80(2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  5. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    Science.gov (United States)

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We

  6. Study about the relevance and the disclosure of biological assets of listed companies in BM&FBOVESPA

    Directory of Open Access Journals (Sweden)

    Luciana Holtz

    2013-08-01

    Full Text Available The main objective this article is to verify that the information content of biological assets disclosed in the financial statements are relevant and, the secondary objective perform content analysis of the notes verifying the compliance of information supplied by entities with CPC 29. The study sample was composed of publicly traded stock companies listed on the BM & FBOVESPA with data for the year 2010 and 2011. The empirical tests were conducted applying relevance models, using observations of 347 active companies characterizing a study model pooled ordinary least squares – POLS, including companies that have reported biological assets into account specific .The companies that had values of biological assets posted have had analyzed explanatory notes referring to this account. The results provide empirical evidence that the information content of biological assets disclosed by companies is not relevant to the sample. In relation the content analysis of the notes was checked a partial compliance of the standard, there is a disparity in the information disclosure practices by the companies analyzed, as well as an omission of items required by the standard. Can be inferred that loss of the relevance has occurred, in part, by the poor quality of the notes, which may make it difficult for outside users in interpreting the information disclosed.

  7. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.

    Science.gov (United States)

    Rabal, Obdulia; Oyarzabal, Julen

    2012-05-25

    The definition and pragmatic implementation of biologically relevant chemical space is critical in addressing navigation strategies in the overlapping regions where chemistry and therapeutically relevant targets reside and, therefore, also key to performing an efficient drug discovery project. Here, we describe the development and implementation of a simple and robust method for representing biologically relevant chemical space as a general reference according to current knowledge, independently of any reference space, and analyzing chemical structures accordingly. Underlying our method is the generation of a novel descriptor (LiRIf) that converts structural information into a one-dimensional string accounting for the plausible ligand-receptor interactions as well as for topological information. Capitalizing on ligand-receptor interactions as a descriptor enables the clustering, profiling, and comparison of libraries of compounds from a chemical biology and medicinal chemistry perspective. In addition, as a case study, R-groups analysis is performed to identify the most populated ligand-receptor interactions according to different target families (GPCR, kinases, etc.), as well as to evaluate the coverage of biologically relevant chemical space by structures annotated in different databases (ChEMBL, Glida, etc.).

  8. Developmental Testing of Liquid and Gaseous/Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military Relevant Surfaces

    Science.gov (United States)

    2016-02-11

    Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military-Relevant Surfaces 5a. CONTRACT NUMBER 5b. GRANT... DECONTAMINATION ON BACTERIAL SPORES AND OTHER BIOLOGICAL WARFARE AGENTS ON MILITARY-RELEVANT SURFACES Page Paragraph 1. SCOPE...surfaces before and after decontamination . The protocol in this TOP is based on the developed test methodologies from Edgewood Chemical Biological

  9. Self-Relevance Constructions of Biology Concepts: Meaning-Making and Identity-Formation

    Science.gov (United States)

    Davidson, Yonaton Sahar

    2018-01-01

    Recent research supports the benefit of students' construction of relevance through writing about the connection of content to their life. However, most such research defines relevance narrowly as utility value--perceived instrumentality of the content to the student's career goals. Furthermore, the scope of phenomenological and conceptual…

  10. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows

    NARCIS (Netherlands)

    Stamhuis, Eize J.

    2006-01-01

    Particle image velocimetry (PIV) has proven to be a very useful technique in mapping animal-generated flows or flow patterns relevant to biota. Here, theoretical background is provided and experimental details of 2-dimensional digital PIV are explained for mapping flow produced by or relevant to

  11. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources.

    Science.gov (United States)

    Bleda, Marta; Tarraga, Joaquin; de Maria, Alejandro; Salavert, Francisco; Garcia-Alonso, Luz; Celma, Matilde; Martin, Ainoha; Dopazo, Joaquin; Medina, Ignacio

    2012-07-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information. In addition, data size is increasingly becoming an obstacle when accessing or storing biological data. All these issues make very difficult to extract and integrate information from different sources, to analyze experiments or to access and query this information in a programmatic way. CellBase provides a solution to the growing necessity of integration by easing the access to biological data. CellBase implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. The database is hosted in our servers and is regularly updated. CellBase documentation can be found at http://docs.bioinfo.cipf.es/projects/cellbase.

  12. The Fortymile caribou herd: novel proposed management and relevant biology, 1992-1997

    Directory of Open Access Journals (Sweden)

    Rodney D. Boertje

    2000-04-01

    Full Text Available A diverse, international Fortymile Planning Team wrote a novel Fortymile caribou herd {Rangifer tarandus granti Management Plan in 1995 (Boertje & Gardner, 1996: 56-77. The primary goal of this plan is to begin restoring the Fortymile herd to its former range; >70% of the herd's former range was abandoned as herd size declined. Specific objectives call for increasing the Fortymile herd by at least 5-10% annually from 1998-2002. We describe demographics of the herd, factors limiting the herd, and condition of the herd and range during 1992-1997. These data were useful in proposing management actions for the herd and should be instrumental in future evaluations of the plan's actions. The following points summarize herd biology relevant to management proposed by the Fortymile Planning Team: 1. Herd numbers remained relatively stable during 1990-1995 (about 22 000-23 000 caribou. On 21 June 1996 we counted about 900 additional caribou in the herd, probably a result of increased pregnancy rates in 1996. On 26 June 1997 we counted about 2500 additional caribou in the herd, probably a result of recruitment of the abundant 1996 calves and excellent early survival of the 1997 calves. The Team deemed that implementing management actions during a period of natural growth would be opportune. 2. Wolf (Canis lupus and grizzly bear (Ursus arctos predation were the most important sources of mortality, despite over a decade of the most liberal regulations in the state for harvesting of wolves and grizzly bears. Wolves were the most important predator. Wolves killed between 2000 and 3000 caribou calves annually during this study and between 1000 and 2300 older caribou; 1200-1900 calves were killed from May through September. No significant differences in annual wolf predation rates on calves or adults were observed between 1994 and early winter 1997. Reducing wolf predation was judged by the Team to be the most manageable way to help hasten or stimulate

  13. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  14. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    OpenAIRE

    Matthew P. Adams; Catherine J. Collier; Sven Uthicke; Yan X. Ow; Lucas Langlois; Katherine R. O’Brien

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluat...

  15. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure.

    Science.gov (United States)

    Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Kizlauskas, Markus; Müller, Josef

    2013-07-01

    Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds. Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5ng/m(3) for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  17. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful.

  18. Doppler-broadening of positron annihilation in a biological environment

    International Nuclear Information System (INIS)

    Torrisi, L.; La Mela, C.; Catania, Univ.

    1997-01-01

    The aim of this study was to investigate the Doppler effect of the 511 keV γ peak from positron annihilation in biological matter: The broadening of the annihilation peak is due to positron annihilation with electrons that have high momentum. In aqueous solutions annihilation depends on the temperature and it is linked positronium formation. Measurements in vivo, on human brain, were taken during the diagnosis of positron emission tomography (PET) on healthy patients by injecting them with the beta emitter of short lifetime 18F . The Doppler-broadening in biological tissues rich in water content decreased significantly compared to biological solutions and water

  19. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and

  20. The Relevance of Biological Sciences in the 21st Century | Onyeka ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... Biological Sciences, as the name implies, is a group of sciences, rather than a ... knowledge is better assessed by the various problems of modern civilization ... in the improvement of food supply and elimination of hereditary diseases.

  1. Physical interactions among plant MADS-box transcription factors and their biological relevance

    NARCIS (Netherlands)

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal

  2. Is 'class effect' relevant when assessing the benefit/risk profile of a biologic agent?

    NARCIS (Netherlands)

    Sterry, W.; Kerkhof, P.C.M. van de

    2012-01-01

    Psoriasis is a chronic, genetically predisposed skin disorder, characterised by thickened scaly plaques. Although no therapy is recognised as curative, therapies aimed at symptom control include biologic agents that are generally designed to block molecular activation of cellular pathways of a

  3. Gene-environment interaction and biological monitoring of occupational exposures

    International Nuclear Information System (INIS)

    Hirvonen, Ari

    2005-01-01

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants

  4. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing

    OpenAIRE

    Romero-Hidalgo, Sandra; Ochoa-Leyva, Adrián; Garcíarrubio, Alejandro; Acuña-Alonzo, Victor; Antúnez-Argüelles, Erika; Balcazar-Quintero, Martha; Barquera-Lozano, Rodrigo; Carnevale, Alessandra; Cornejo-Granados, Fernanda; Fernández-López, Juan Carlos; García-Herrera, Rodrigo; García-Ortíz, Humberto; Granados-Silvestre, Ángeles; Granados, Julio; Guerrero-Romero, Fernando

    2017-01-01

    Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained bel...

  5. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    Science.gov (United States)

    2016-10-16

    interfere with the biological activity of the BMP2, and because radioisotope detection methods are highly sensitive and remain quantitative across a large...PRINCIPAL INVESTIGATOR: Dominik R. Haudenschild CONTRACTING ORGANIZATION: University of California, Davis Davis, CA 95618 REPORT DATE : October 2016...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015

  6. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  7. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species.

    Science.gov (United States)

    Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R

    2017-01-04

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  8. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    Science.gov (United States)

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  9. Stability of Molecules of Biological Importance to Ionizing Radiation: Relevance in Astrobiology

    Science.gov (United States)

    Meléndez-López, A. L.; Negrón-Mendoza, A.; Ramos-Bernal, S.; Colín-García, M.; Heredia, A.

    2017-11-01

    Our aim is to study the stability of amino acids in conditions that probably existed in the primitive environments. We study aspartic acid and glutamic acid, in solid state and aqueous solution, against high doses of gamma radiation at 298 and 77 K.

  10. Environment, Biology, and Culture: Implications for Adolescent Development.

    Science.gov (United States)

    Zahn-Waxler, Carolyn

    1996-01-01

    Introduces this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Problems of adolescence addressed include antisocial behavior, depressive symptoms, substance abuse, low achievement, and eating problems. Considers factors implicated in successful…

  11. Solid-supported synthesis: From pharmacologically relevant heterocycles to biologically active surfaces

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.

    for solid-phase synthesis, methods for on - and off-bead screening of combinatorial libraries and their applic ation to various biological targets. The first part of the thesis is dedicated to the development of methodology for the synthesis of structurally diverse heterocyclic scaffolds via N...... methods for the controlled organo-functionalization of titanium, one of the most prominent materials in medicinal device industry, have been suggested . Initial acidic and oxidative treatment s of the metal surface genera te reactive hydroxyl moieties , which are subsequently modified with synthetically...... versatile amine -containing reagents. Subsequent applications in antimicrobial peptide synthesis, metal -catalysis, release from the surface, and polymer grafti ng, are also presented....

  12. A review of research on common biological agents and their impact on environment

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.

    2009-01-01

    Biological agents are unique class of microorganisms which can be used to produce the disease in large populations of humans, animals and plants. If used for hostile purposes, any disease-causing microorganism could be considered a weapon. The use of biological agents is not a new concept and history is replete with examples of biological weapon use. Before the twenty century, biological warfare took on three main forms by deliberate poisoning of food and water with infectious material, use of microorganisms or toxins in some form of weapon system, and use of biologically inoculated fabrics. Four kinds of biological warfare agents are bacteria, viruses, rickettsiae, fungi. These are distinguished by being living organisms, that reproduce within their host victims, who then become contagious with a deadly multiplier effect, bacteria, viruses, or fungi or toxin found in nature can be used to kill or injure people. Biological agents may be used for an isolated assassination, as well as to cause incapacitation or death to thousands. These biological agents represent a dangerous military threat because they are alive, and are therefore unpredictable and uncontrollable once released. The act of bioterrorism can range from a simple hoax to the actual use of biological weapons. Biological agents have the potential to make an environment more dangerous over time. If the environment is contaminated, a long-term threat to the population could be created. This paper discusses common biological agents, their mode of action in living organisms and possible impact on the environment. (author)

  13. Screens as light biological variable in microgravitational space environment.

    Science.gov (United States)

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  14. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    Science.gov (United States)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  15. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  16. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    Science.gov (United States)

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  17. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport

    DEFF Research Database (Denmark)

    Bonne, Thomas Christian; Lundby, Carsten; Lundby, Anne Kristine

    2015-01-01

    The impact of altitude training on haematological parameters and the Athlete Biological Passport (ABP) was evaluated in international-level elite athletes. One group of swimmers lived high and trained high (LHTH, n = 10) for three to four weeks at 2130 m or higher whereas a control group (n = 10......) completed a three-week training camp at sea-level. Haematological parameters were determined weekly three times before and four times after the training camps. ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (RET%), OFF score and the abnormal blood profile score (ABPS) were...... calculated using the Bayesian model. After altitude training, six swimmers exceeded the 99% ABP thresholds: two swimmers exceeded the OFF score thresholds at day +7; one swimmer exceeded the OFF score threshold at day +28; one swimmer exceeded the threshold for RET% at day +14; and one swimmer surpassed...

  18. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon

    Directory of Open Access Journals (Sweden)

    Gargi Sachin Sarode

    2017-12-01

    Full Text Available The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.

  19. Small Groups in Programmed Environments: Behavioral and Biological Interactions.

    Science.gov (United States)

    1983-04-01

    DISTRIBUTION STATEMENT (of the abettdre entered in Block 20. it differm Iroi Repot) IS. SUPPLEMENTARY NOTES The Pavlovian Journal of Bioloqical Science, in...Experimentation in Controlled Environments: Its Implications for Economic Behavior and Social Poligy Making. Toronto: Alcoholism and Drug Addiction

  20. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  1. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport.

    Science.gov (United States)

    Bonne, Thomas Christian; Lundby, Carsten; Lundby, Anne Kristine; Sander, Mikael; Bejder, Jacob; Nordsborg, Nikolai Baastrup

    2015-08-01

    The impact of altitude training on haematological parameters and the Athlete Biological Passport (ABP) was evaluated in international-level elite athletes. One group of swimmers lived high and trained high (LHTH, n = 10) for three to four weeks at 2130 m or higher whereas a control group (n = 10) completed a three-week training camp at sea-level. Haematological parameters were determined weekly three times before and four times after the training camps. ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (RET%), OFF score and the abnormal blood profile score (ABPS) were calculated using the Bayesian model. After altitude training, six swimmers exceeded the 99% ABP thresholds: two swimmers exceeded the OFF score thresholds at day +7; one swimmer exceeded the OFF score threshold at day +28; one swimmer exceeded the threshold for RET% at day +14; and one swimmer surpassed the ABPS threshold at day +14. In the control group, no values exceeded the individual ABP reference range. In conclusion, LHTH induces haematological changes in Olympic-level elite athletes which can exceed the individually generated references in the ABP. Training at altitude should be considered a confounding factor for ABP interpretation for up to four weeks after altitude exposure but does not consistently cause abnormal values in the ABP. Copyright © 2014 John Wiley & Sons, Ltd.

  2. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance.

    Science.gov (United States)

    Yadav, Vikas; Hemansi; Kim, Nayun; Tuteja, Narendra; Yadav, Puja

    2017-01-01

    G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  3. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    2017-07-01

    Full Text Available G quadruplexes (G4 are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  4. Fluorescent Proteins for Investigating Biological Events in Acidic Environments

    Directory of Open Access Journals (Sweden)

    Hajime Shinoda

    2018-05-01

    Full Text Available The interior lumen of acidic organelles (e.g., endosomes, secretory granules, lysosomes and plant vacuoles is an important platform for modification, transport and degradation of biomolecules as well as signal transduction, which remains challenging to investigate using conventional fluorescent proteins (FPs. Due to the highly acidic luminal environment (pH ~ 4.5–6.0, most FPs and related sensors are apt to lose their fluorescence. To address the need to image in acidic environments, several research groups have developed acid-tolerant FPs in a wide color range. Furthermore, the engineering of pH insensitive sensors, and their concomitant use with pH sensitive sensors for the purpose of pH-calibration has enabled characterization of the role of luminal ions. In this short review, we summarize the recent development of acid-tolerant FPs and related functional sensors and discuss the future prospects for this field.

  5. Diffusion in crowded biological environments: applications of Brownian dynamics

    OpenAIRE

    Długosz, Maciej; Trylska, Joanna

    2011-01-01

    Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mg/ml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and sign...

  6. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA.

  7. Prognostic value and in vitro biological relevance of Neuropilin 1 and Neuropilin 2 in osteosarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Arlt, Matthias Je; Lengnick, Harald; Robl, Bernhard; Husmann, Maren; Bertz, Josefine; Born, Walter; Fuchs, Bruno

    2015-01-01

    Neoadjuvant chemotherapy in osteosarcoma increased the long-term survival of patients with localized disease considerably but metastasizing osteosarcoma remained largely treatment resistant. Neuropilins, transmembrane glycoproteins, are important receptors for VEGF dependent hyper-vascularization in tumor angiogenesis and their aberrant expression promotes tumorigenesis and metastasis in many solid tumors. Our analysis of Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2) immunostaining in a tissue microarray of 66 osteosarcoma patients identified NRP2 as an indicator of poor overall, metastasis-free and progression free survival while NRP1 had no predictive value. Patients with tumors that expressed NRP2 in the absence of NRP1 had a significantly worse prognosis than NRP1(-)/NRP2(-), NRP1(+) or NRP1(+)/NRP2(+) tumors. Moreover, patients with overt metastases and with NRP2-positive primary tumors had a significantly shorter survival rate than patients with metastases but NRP2-negative tumors. Furthermore, the expression of both NRP1 and NRP2 in osteosarcoma cell lines correlated to a variable degree with the metastatic potential of the respective cell line. To address the functional relevance of Neuropilins for VEGF signaling we used shRNA mediated down-regulation and blocking antibodies of NRP1 and NRP2 in the metastatic 143B and HuO9-M132 cell lines. In 143B cells, VEGFA signaling monitored by AKT phosphorylation was more inhibited by blocking of NRP1, whereas in HuO9-M132 cells NRP2 blocking was more effective indicating that NRP1 and NRP2 can substitute each other in the functional interaction with VEGFR1. Altogether, these data point to NRP2 as a powerful prognostic marker in osteosarcoma and together with NRP1 as a novel target for tumor-suppressive therapy.

  8. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  9. The Relevance of Chromosome Aberration Yields for Biological Dosimetry After Low-Level Occupational Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bauchinger, M.; Schmid, E.; Hug, O. [Gesellschaft fuer Strahlenforschung, Institut fuer Biologie, Neuherberg, Federal Republic of Germany (Germany); Strahlenbiologisches Institut der Universitaet Muenchen, Federal Republic of Germany (Germany)

    1971-06-15

    The usefulness of chromosome analysis for biological dosimetry has been tested in two groups of persons occupationally exposed to radiation: (I) in nurses employed in gynaecological radiology, exposed especially when handling radium inserts; and (II) in nuclear industry workers, all of which were exposed to external gamma irradiation and some of them also to internal radiation after incorporation of various radionuclides. The total dose registered with personal dosimeters ranged in Group 1 from 0.1 to 91.1 rem accumulated over working periods of 0.1 to 13 years, and in Group II from 1.0 to 18.2 rem accumulated over 1 to 9 years. Compared with unexposed controls, both groups exhibit a significant increase of cells with chromosome aberrations as well as larger numbers of breaks per cell. Dicentrics and rings could be observed in some cells, providing good evidence for previous radiation exposure, since these types of aberrations are extremely rare events in unexposed individuals. No correlation between the aberration yields and the film badge values could be demonstrated in Group II. Also, in Group I the fluctuations from individual to individual are rather high. Nevertheless, a positive correlation to the ''dose'' was obtained. Even a sub-group of the nurses that had only been exposed to 20 rem showed significantly more aberrations than control persons. From the results obtained, type and frequency of chromosome aberrations may be considered an indicator of radiation exposure even at the low doses. The reasons for lack of correspondence of chromosome aberration yields and the results of personal monitoring procedures are discussed in detail. (author)

  10. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  11. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  12. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Directory of Open Access Journals (Sweden)

    Raffaella Marconi

    Full Text Available Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR. In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects.We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED. To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells.Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated.Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice.

  13. The Environment for Professional Interaction and Relevant Practical Experience in AACSB-Accredited Accounting Programs.

    Science.gov (United States)

    Arlinghaus, Barry P.

    2002-01-01

    Responses from 276 of 1,128 faculty at Association to Advance Collegiate Schools of Business-accredited schools indicated that 231 were certified; only 96 served in professional associations; large numbers received financial support for professional activities, but only small numbers felt involvement or relevant experience (which are required for…

  14. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments

    OpenAIRE

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M.; Alcamí, Antonio; Gutiérrez-Bustillo, A. Montserrat; Moreno, Diego A.

    2016-01-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entit...

  15. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring.

    Science.gov (United States)

    Smolensky, Michael H; Reinberg, Alain E; Sackett-Lundeen, Linda

    2017-01-01

    The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can

  16. Comparison of Technology Use between Biology and Physics Teachers in a 1:1 Laptop Environment

    Science.gov (United States)

    Crook, Simon J.; Sharma, Manjula D.; Wilson, Rachel

    2015-01-01

    Using a mixed-methods approach the authors compared the associated practices of senior physics teachers (n = 7) and students (n = 53) in a 1:1 laptop environment with those of senior biology teachers (n = 10) and students (n = 125) also in a 1:1 laptop environment, in seven high schools in Sydney, NSW, Australia. They found that the physics…

  17. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  18. Detection of base damage in DNA in human blood exposed to ionizing radiation at biologically relevant doses

    International Nuclear Information System (INIS)

    Loon, A.A.W.M. van; Lohman, P.H.M.; Groenendijk, R.H.; Schans, G.P. van der; Baan, R.A.

    1991-01-01

    The alkaline elution technique for the detection of DNA damage has been adapted to allow application on unlabelled blood cells. Both the induction and subsequent repair have been studied of two classes of DNA damage, viz. single-strand breaks and base damage recognized by the γ-endonuclease activity in a cell-free extract of Micrococcus luteus bacteria. The high sensitivity of the assay permitted the measurement of induction and repair of base damage after in vitro exposure of full blood under aerobic conditions to biologically relevant doses of γ-rays (1.5-4.5 Gy). After a radiation dose of 3 Gy about 50% of the base damage was removed within 1.5 h of repair. Base damage could still be detected at 24h after exposure to 15 Gy. (author)

  19. Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment

    OpenAIRE

    Guendy, H.R.

    2007-01-01

    Ozone is a powerful oxidizing agent. The reaction of ozone with organic compounds in aqueous media has achieved a variety of treatment goals. The advantage of ozonation over the other oxidants is that the degradable products of ozonation are generally non-toxic, its final products are CO2 and H2O, and also the residual O3 in the system changes in few minutes to O2 .Convential treatment of textile wastewater includes various combinations of biological (activated sludge), physical and chemical ...

  20. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Finch, R.; Ewing, R.

    1990-12-01

    Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure and chemistry. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment. Several important natural analogue sites are reviewed, illustrating a wide variety of environments from oxidizing to reducing, including, among others: Cigar Lake, Canada, a uraninite-bearing ore body at depth within a strictly reducing environment; the ore body has 'seen' extensive groundwater interaction with virtually no significant oxidation or mobilization of U apperent. Koongara, Australia is a highly altered uraninite-bearing ore body partially exposed to meteoric water; alteration at depth has resulted from interaction with groundwater having a somewhat reduced Eh compared to the surface. Uraninite, Pb-uranyl oxide hydrates and uranyl silicates control U solubility at depth; uranyl phosphates and U adsorption onto clays and FeMn-oxides control U solubility near the surface. Pocos de Caldas, Brazil displays a redox from moving through uraninite-bearing rocks near the surface and shows local remobilization of U. Oklo, Gabon, a uraninite- and coffinite-bearing ore body, locally affected by intense hydrothermal alteration during fission reactions, demonstrates restricted radionuclide and fission product transport within a reducing environment. A current study being conducted by the authors at Shinkolbwe, Zaire, a uraninite-bearing ore body exposed to highly oxidizing conditions at the surface, provides over 50 species of uranyl phases for detailed study, and illustrates a complex uranyl phase paragenesis over several million years, from earliest-formed uranyl oxide hydrates and uranyl silicates to later-formed uranyl phosphate. (au) (268 refs.)

  2. Modelling of an industrial environment, part 2.: External dose calculation with relevant countermeasures

    International Nuclear Information System (INIS)

    Eged, K.; Kis, Z.; Alvarez-Farizo, B.; Gil, J.; Voigt, G.

    2002-01-01

    The calculation of the collective dose and averted collective dose after applying countermeasures in an industrial environment has been divided in two parts. In the first part (Kis et al. 2002) separate Monte Carlo simulations of photon transport resulted in the air kermas per photon per unit area due to the industrial surfaces contaminated by 1 37C s at specific points using the so-called local approach. In the local approach the air kerma rates due to specific intervention elements at the evaluation locations in the whole environment are determined (Gutierrez et al. 2000). In this way the collective and averted collective dose due to the radiation from a particular intervention element (e.g. the roof of a building) can be obtained. It can, therefore, provide a ranking of the specific intervention elements based on their contribution to collective dose as well. The deposition pattern and the long-term behaviour of deposited radionuclides vary widely in natural circumstances; therefore the number of the photons emitted from the various surfaces per unit area and time can differ significantly. This means the results of the Monte Carlo simulations have to be weighted according to the number of emitted photons so that the actual radiation field can be set up. For this purpose, a dose calculation code has been developed in the framework of the TEMAS project (Gutierrez et al. 2000) which allows to calculate collective doses for different environments. This code has been applied in the present work

  3. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  4. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    Science.gov (United States)

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  5. Pharmaceutical products as emerging contaminant in water: relevance for developing nations and identification of critical compounds for Indian environment.

    Science.gov (United States)

    Chinnaiyan, Prakash; Thampi, Santosh G; Kumar, Mathava; Mini, K M

    2018-04-17

    Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern and have been detected worldwide in water bodies in trace concentrations. Most of these emerging contaminants are not regulated in water quality standards except a few in the developed countries. In the case of developing countries, research in this direction is at a nascent stage. For the effective management of Pharmaceutical contaminants (PC) in developing countries, the relevance of PCs as an emerging contaminant has to be analyzed followed by regular monitoring of the environment. Considering the resource constraints, this could be accomplished by identifying the priority compounds which is again region specific and dependent on consumption behavior and pattern. In this work, relevance of pharmaceutical compound as emerging contaminant in water for a developing country like India is examined by considering the data pertaining to pharmaceutical consumption data. To identify the critical Pharmaceutical Contaminants to be monitored in the Indian environment, priority compounds from selected prioritization methods were screened with the compounds listed in National List of Essential Medicine (NLEM), India. Further, information on the number of publications on the compound as an emerging contaminant, data on monitoring studies in India and the number of brands marketing the compound in India were also analyzed. It is found that out of 195 compounds from different prioritization techniques, only 77 compounds were found relevant to India based on NLEM sorting.

  6. Time-Domain Simulations of Transient Species in Experimentally Relevant Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueltschi, Tyler W.; Fischer, Sean A.; Apra, Edoardo; Tarnovsky, Alexander N.; Govind, Niranjan; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-02-04

    Simulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system. This species was chosen because it features both a non-conventional C-Br-Br bonding pattern, as well as a strong dependence of its spectral features on the local environment in which it resides, as illustrated in recent experimental reports. The spectroscopic properties of iso-CHBr3 were measured by several groups that captured this transient intermediate in the photochemistry of CHBr3 in the gas phase, in rare gas matrices at 5K, and in solution under ambient laboratory conditions. We simulate the UV-Vis and IR spectra of iso-CHBr3 in all three media, including a Ne cluster (64 atoms) and a methylcyclohexane cage (14 solvent molecules) representative of the matrix isolated and solvated species. We exclusively perform fully quantum mechanical static and dynamic simulations. By comparing our condensed phase simulations to their experimental analogues, we stress the importance of (i) conformational sampling, even at cryogenic temperatures, and (ii) using a fully quantum mechanical description of both solute and bath to properly account for the experimental observables.

  7. Experimental Characterization of a Composite Morphing Radiator Prototype in a Relevant Thermal Environment

    Science.gov (United States)

    Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.

    2017-01-01

    For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.

  8. The Relevance of People’s Attitudes Towards Freedom of Expression in a Changing Media Environment

    Directory of Open Access Journals (Sweden)

    Teresa K. NAAB

    2012-01-01

    Full Text Available The article outlines arguments for the relevance of people’s attitudes towards freedom of expression: It is a fundamental principle of democracy that if a virtue does not receive support from the population, it will not be anchored in law and its foundation is endangered in the medium term. People’s support for free speech is becoming even more influential because authoritative control of internet communication is faced with difficulties. Furthermore, with the development of social media users gain new opportunities to publicly express their opinions attaching even more importance to normative self-regulation. As a matter of fact, these increased opportunities of self-regulation may either enhance or decrease the exercise of expression rights. Thus, citizen’s endorsement of free expression is a valuable indicator of the status of freedom of expression in a country. To approach to the subject empirically, the paper systematizes findings on people’s attitudes towards free speech: Most people believe in freedom of expression in the abstract. Willingness to apply the right to opposing groups, however, is lower. Perceived threats, confidence in democratic principles, mode of communication, and personality variables influence tolerance of expressions. Finally, a research agenda is put forward to examine appreciation of free expression, its antecedence, and implications.

  9. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes.

    Science.gov (United States)

    Seal, Manas; Dey, Somdatta Ghosh

    2018-01-02

    Type 2 diabetes mellitus (T2Dm) is characterized by reduced β cell mass and amyloid deposits of human islet amyloid polypeptide (hIAPP) or amylin, a 37 amino acid containing peptide around pancreatic β cells. The interaction of copper (Cu) with amylin and its mutants has been studied in detail using absorption, circular dichroism, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. Cu binds amylin in a 1:1 ratio, and the binding domain lies within the first 19 amino acid residues of the peptide. Depending on the pH of the medium, Cu-amylin shows the formation of five pH-dependent components (component IV at pH 4.0, component III at pH 5.0, component II at pH 6.0, component I at pH 8.0, and another higher pH component above pH 9.0). The terminal amine, His18, and amidates are established as key residues in the peptide that coordinate the Cu center. The physiologically relevant components I and II can generate H 2 O 2 , which can possibly account for the enhanced toxicity of amylin in the presence of Cu, causing damage of the β cells of the pancreas via oxidative stress.

  10. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  11. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  12. Near-field environment research at PNL relevant to brine migration phenomena

    International Nuclear Information System (INIS)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.

    1987-01-01

    Heat and radiation resulting from emplacement of a high level nuclear waste package in a repository in salt will cause physical and chemical changes in the host rock and any brines present. These changes may alter the performance of waste package materials. Gamma radiolysis decomposes water into hydrogen and oxygen, hydrogen peroxide, and various other free radical and ionic species. Gamma ray irradiation of rock salt decomposes that salt to sodium metal colloids and neutral chlorine (unknown form), changing both its physical and chemical properties. Sodium metal will react, if contacted by water, to form sodium hydroxide plus hydrogen gas, while chlorine will react to form hydrochloric plus hypochlorous acids. If irradiated salts are completely dissolved, little impact on the chemical environment is expected because the acids and bases formed will neutralize each other. Heat from the waste package can alter the chemistry of the host rock. Changes in temperature can also alter the chemistry of brines by precipitation of phases with retrograde solubility, addition of more soluble salt components to the brine, and by reaction with clays and other impurities in the salt. Some of these reactions could be accompanied by significant shifts in the pH. In experiments to date, no important changes in chemistry have been observed when typical Permian Basin intrusion or inclusion brines were heated up to 150 0 C with no excess site-specific salt present. When excess salt was included, acidic shifts were noted, increasing with brine-salt interaction time and temperature

  13. A Problem-Solving Environment for Biological Network Informatics: Bio-Spice

    Science.gov (United States)

    2007-06-01

    user an environment to access software tools. The Dashboard is built upon the NetBeans Integrated Development Environment (IDE), an open source Java...based integration platform was demonstrated. During the subsequent six month development cycle, the first version of the NetBeans based Bio-SPICE...frameworks (OAA, NetBeans , and Systems Biology Workbench (SBW)[15]), it becomes possible for Bio-SPICE tools to truly interoperate. This interoperation

  14. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  15. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  16. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  17. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  18. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  19. Effects of Conceptual Change Text Based Instruction on Ecology, Attitudes toward Biology and Environment

    Science.gov (United States)

    Çetin, Gülcan; Ertepinar, Hamide; Geban, Ömer

    2015-01-01

    The purpose of this study is to investigate the effects of the conceptual change text based instruction on ninth grade students' understanding of ecological concepts, and attitudes toward biology and environment. Participants were 82 ninth grade students in a public high school in the Northwestern Turkey. A treatment was employed over a five-week…

  20. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Science.gov (United States)

    Bohna, Nathaniel Allan

    Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on

  1. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  3. Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau.

    Science.gov (United States)

    Sun, Xuejun; Zhang, Qianggong; Kang, Shichang; Guo, Junming; Li, Xiaofei; Yu, Zhengliang; Zhang, Guoshuai; Qu, Dongmei; Huang, Jie; Cong, Zhiyuan; Wu, Guangjian

    2018-08-01

    Glacierized mountain environments can preserve and release mercury (Hg) and play an important role in regional Hg biogeochemical cycling. However, the behavior of Hg in glacierized mountain environments and its environmental risks remain poorly constrained. In this research, glacier meltwater, runoff and wetland water were sampled in Zhadang-Qugaqie basin (ZQB), a typical glacierized mountain environment in the inland Tibetan Plateau, to investigate Hg distribution and its relevance to environmental risks. The total mercury (THg) concentrations ranged from 0.82 to 6.98ng·L -1 , and non-parametric pairwise multiple comparisons of the THg concentrations among the three different water samples showed that the THg concentrations were comparable. The total methylmercury (TMeHg) concentrations ranged from 0.041 to 0.115ng·L -1 , and non-parametric pairwise multiple comparisons of the TMeHg concentrations showed a significant difference. Both the THg and MeHg concentrations of water samples from the ZQB were comparable to those of other remote areas, indicating that Hg concentrations in the ZQB watershed are equivalent to the global background level. Particulate Hg was the predominant form of Hg in all runoff samples, and was significantly correlated with the total suspended particle (TSP) and not correlated with the dissolved organic carbon (DOC) concentration. The distribution of mercury in the wetland water differed from that of the other water samples. THg exhibited a significant correlation with DOC as well as TMeHg, whereas neither THg nor TMeHg was associated with TSP. Based on the above findings and the results from previous work, we propose a conceptual model illustrating the four Hg distribution zones in glacierized environments. We highlight that wetlands may enhance the potential hazards of Hg released from melting glaciers, making them a vital zone for investigating the environmental effects of Hg in glacierized environments and beyond. Copyright © 2018

  4. Clinicopathological variables of sporadic schwannomas of peripheral nerve in 291 patients and expression of biologically relevant markers.

    Science.gov (United States)

    Young, Eric D; Ingram, Davis; Metcalf-Doetsch, William; Khan, Dilshad; Al Sannaa, Ghadah; Le Loarer, Francois; Lazar, Alexander J F; Slopis, John; Torres, Keila E; Lev, Dina; Pollock, Raphael E; McCutcheon, Ian E

    2017-09-08

    OBJECTIVE While sporadic peripheral schwannomas (SPSs) are generally well treated with surgery, their biology is not well understood. Consequently, treatment options are limited. The aim of this study was to provide a comprehensive description of SPS. The authors describe clinicopathological features and treatment outcomes of patients harboring these tumors, and they assess expression of biomarkers using a clinically annotated tissue microarray. Together, these data give new insight into the biology and management of SPS. METHODS Patients presenting with a primary SPS between 1993 and 2011 (n = 291) were selected from an institutional registry to construct a clinical database. All patients underwent follow-up, and short- and long-term outcomes were assessed. Expression of relevant biomarkers was assessed using a new tissue microarray (n = 121). RESULTS SPSs were generally large (mean 5.5 cm) and frequently painful at presentation (55%). Most patients were treated with surgery (80%), the majority of whom experienced complete resolution (52%) or improvement (18%) of their symptoms. Tumors that were completely resected (85%) did not recur. Some patients experienced short-term (16%) and long-term (4%) complications postoperatively. Schwannomas expressed higher levels of platelet-derived growth factor receptor-β (2.1) than malignant peripheral nerve sheath tumors (MPNSTs) (1.5, p = 0.004) and neurofibromas (1.33, p = 0.007). Expression of human epidermal growth factor receptor-2 was greater in SPSs (0.91) than in MPNSTs (0.33, p = 0.002) and neurofibromas (0.33, p = 0.026). Epidermal growth factor receptor was expressed in far fewer SPS cells (10%) than in MPNSTs (58%, p SPSs more frequently expressed cytoplasmic survivin (66% of tumor cells) than normal nerve (46% of cells), but SPS expressed nuclear survivin in fewer tumor cells than in MPNSTs (24% and 50%, respectively; p = 0.018). CONCLUSIONS Complete resection is curative for SPS. Left untreated, however, these

  5. Self-assembled structures and pKa value of oleic acid in systems of biological relevance.

    Science.gov (United States)

    Salentinig, Stefan; Sagalowicz, Laurent; Glatter, Otto

    2010-07-20

    In the human digestion process, triglycerides are hydrolyzed by lipases to monoglycerides and the corresponding fatty acids. Here we report the self-assembly of structures in biologically relevant, emulsified oleic acid-monoolein mixtures at various pH values and oleic acid concentrations. Small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering were used to investigate the structures formed, and to follow their transitions while these factors were varied. The addition of oleic acid to monoolein-based cubosomes was found to increase the critical packing parameter in the system. Structural transitions from bicontinuous cubosomes through hexosomes and micellar cubosomes (Fd3m symmetry) to emulsified microemulsions occur with increasing oleic acid concentration. At sufficiently high oleic acid concentration, the internal particle structure was also found to strongly depend on the pH of the aqueous phase: transformations from emulsified microemulsion through micellar cubosomes, hexosomes, and bicontinuous cubosomes to vesicles can be observed as a function of increasing pH. The reversible transition from liquid crystals to vesicles occurs at intestinal pH values (between pH 7 and 8). The hydrodynamic radius of the particles decreases from around 120 nm for internally structured particles to around 60 nm for vesicles. All transitions with pH are reversible. Finally, the apparent pK(a) for oleic acid in monoolein could be determined from the change of structure with pH. This value is within the physiological pH range of the intestine and depends somewhat on composition.

  6. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    Science.gov (United States)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  7. The ultraviolet environment of Mars: biological implications past, present, and future

    Science.gov (United States)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  8. The ultraviolet environment of Mars: biological implications past, present, and future.

    Science.gov (United States)

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  9. Secure encapsulation and publication of biological services in the cloud computing environment.

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  10. Research in radiation biology, in the environment, and in radiation protection at CRNL

    International Nuclear Information System (INIS)

    Marko, A.M.; Myers, D.K.; Ophel, I.L.; Cowper, G.; Newcombe, H.B.

    1978-01-01

    Research in radiation biology at CRNL is concerned with: evaluation of the effects of low doses of radiation upon humans and other living organisms; the development of new methods for detecting the effects of radiation exposure in large populations; the continued development of improved methods by which radiation levels can be measured accurately and reliably; and evaluation of the effects of nuclear power use upon the environment. The present report summarizes our background knowledge of radiation hazards and describes current research activities in Biology and Health Physics Division at CRNL. (author)

  11. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    Science.gov (United States)

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  12. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  13. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Espinola, Fernando J.; Dionisi, Hebe M.; Borglin, Sharon; Brislawn, Colin J.; Jansson, Janet K.; Mac Cormack, Walter P.; Carroll, Jolynn; Sjoling, Sara; Lozada , Mariana

    2018-01-02

    In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.

  14. Influence of Web-Aided Cooperative Learning Environment on Motivation and on Self-Efficacy Belief in Biology Teaching

    Science.gov (United States)

    Hevedanli, Murat

    2015-01-01

    The purpose of this study is to investigate the influence of the web-aided cooperative learning environment on biology preservice teachers' motivation and on their self-efficacy beliefs in biology teaching. The study was carried out with 30 biology preservice teachers attending a state university in Turkey. In the study, the pretest-posttest…

  15. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  16. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Löwa, Norbert, E-mail: norbert.loewa@ptb.de; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non–linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment. - Highlights: • MPS signal amplitude: allows for MNP quantification in physiological environment. • MPS signal shape: specifically detects changes due to MNP interaction. • Correlation between changes in MPS amplitude and shape were found. • MPS signal (shape/amplitude) correlation allow for a quantification correction. • Reliable quantification result if the dynamic magnetic behavior of MNP do not change.

  17. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment.

    Science.gov (United States)

    Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang

    2017-10-01

    Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture

    NARCIS (Netherlands)

    Mason, P.G.; Cock, M.J.W.; Barratt, B.I.P.; Klapwijk, J.N.; Lenteren, van J.C.; Brodeur, J.; Hoelmer, K.A.; Heimpel, G.E.

    2018-01-01

    The Nagoya Protocol is a supplementary agreement to the Convention on Biological Diversity that provides a framework for the effective implementation of the fair and equitable sharing of benefits arising out of the utilization of genetic resources, including invertebrate biological control agents.

  19. The Biology of Cancer Health Disparities

    Science.gov (United States)

    These examples show how biology contributes to health disparities (differences in disease incidence and outcomes among distinct racial and ethnic groups, ), and how biological factors interact with other relevant factors, such as diet and the environment.

  20. REVIEW OF SELECTED BIOLOGICAL METHODS OF ASSESSING THE QUALITY OF NATURAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Beata Jakubus

    2015-04-01

    Full Text Available The xenobiotics introduced into the environment are the effect of human activities. It is especially soil contamination that leads to degradation of soils, which may finally be referred to the biological imbalance of the ecosystem. Normally chemical methods are used for the assessment of soil’s quality. Unfortunately, they are not always quick and inexpensive. Therefore, the practice and the science at environmental monitoring more frequently employ biological methods. Most of them meet the above mentioned conditions and become a supplement of routine laboratory practices. This publication shows an overview of selected common biological methods used to estimate the quality of the environment. The first part of the paper presents biomonitoring as a first step of environmental control which relies on the observation of indicator organisms. The next section was dedicated to the bioassays, indicating the greater or lesser practical applications confirmed by literature on the subject. Particular attention has been focused on phytotests and the tests based on the invertebrates.

  1. Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment

    Directory of Open Access Journals (Sweden)

    Mark A. Moline

    2016-02-01

    Full Text Available The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.

  2. Environment Biological and Health Care Efforts Influenced of Lymfatic Filariasis Incidence, Sarmi Distric

    Directory of Open Access Journals (Sweden)

    Mina Sipayung

    2014-05-01

    District Sarmi is the most endemic area of filariasis in Papua which has rate of microfilaria (mf (47.06% up to the year 2012. In the Province Papua filarial worm is Wuchereria bancrofti and is transmitted through the bite of a mosquito vectors. Lymphatic filariasis does not cause death, but in chronic cases it causes disability, psychosocial problems, stigma, and decreased productivity. This study was aimed to analyze environment biological and health care efforts that influence the incidence of lymphatic filariasis. This study used case-control method. Samples comprised 32 case samples (mf + and 32 control samples (mf-. Primary data were collected through interviews and observation. Data were analyzed using Chi-Square and continued with multivariate Logistic Regression. Statistical analysis obtained indicated two variables on the incidence of lymphatic filariasis limfatik in District Sarmi (health care efforts pvalue = 0.002, OR: 7.779, as well as the biological environment pvalue= 0.008, OR: 5.841. Significant variables were health services with sub-variables promotion, prevention and the environmental biology. Suggestion: Mosquito bites should be avoided, the vector should be controlled through mutual cooperation and health promotion should be implemented. Keywords: Wuchereria bancrofti, lymphatic filariasis, vector, health care,                         Sarmi Distric

  3. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  4. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2013-01-01

    Full Text Available Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  5. Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology.

    Science.gov (United States)

    Schmidt, Markus; de Lorenzo, Víctor

    2012-07-16

    The plausible release of deeply engineered or even entirely synthetic/artificial microorganisms raises the issue of their intentional (e.g. bioremediation) or accidental interaction with the Environment. Containment systems designed in the 1980s-1990s for limiting the spread of genetically engineered bacteria and their recombinant traits are still applicable to contemporary Synthetic Biology constructs. Yet, the ease of DNA synthesis and the uncertainty on how non-natural properties and strains could interplay with the existing biological word poses yet again the challenge of designing safe and efficacious firewalls to curtail possible interactions. Such barriers may include xeno-nucleic acids (XNAs) instead of DNA as information-bearing molecules, rewriting the genetic code to make it non-understandable by the existing gene expression machineries, and/or making growth dependent on xenobiotic chemicals. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    Meyer, D.E.

    1999-01-01

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC 50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low ( 50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  7. Environment and biology of the Kara Sea: a general view for contamination studies.

    Science.gov (United States)

    Miquel, J C

    2001-01-01

    The recent revelation that over the past 30 years there has been a history of dumping waste including high-level radioactive wastes in the shallow Kara Sea has caused wide-spread concern. The potential impact of these contaminants and other non-nuclear pollutants in the Arctic ecosystem and on human health need to be assessed and, thus, a better insight gained on radioecological processes in cold waters. The present paper proposes a general view on the biology and the environment of the Kara Sea, as a basic tool for the experimental and modelling assessments of the impact of these contaminants.

  8. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review.

    Science.gov (United States)

    Wang, Zhuhong; Chen, Jiubin; Zhang, Ting

    2017-05-18

    Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ 65 Cu (-16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems.

  9. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  10. Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Zhuhong Wang

    2017-05-01

    Full Text Available Copper (Cu is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰ in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals behaviors in the environment and biological systems.

  11. The practicalities and pitfalls of establishing a policy-relevant and cost-effective soil biological monitoring scheme

    NARCIS (Netherlands)

    Faber, J.H.; Creamer, R.E.; Mulder, C.; Römbke, J.; Rutgers, M.; Sousa, J.P.; Stone, D.; Griffiths, B.S.

    2013-01-01

    A large number of biological indicators have been proposed over the years for assessing soil quality. Although many of those have been applied in monitoring schemes across Europe, no consensus exists on the extent to which these indicators might perform best and how monitoring schemes can be further

  12. Avoiding Panic and Keeping the Ports Open in a Chemical and Biological Threat Environment. A Literature Review

    National Research Council Canada - National Science Library

    Korpi, Tanja M; Hemmer, Christopher

    2005-01-01

    ... and biological threat environment. As a starting point for such a program, this study examines the extant literature on the psychology of risk assessment, warnings, sociological studies of reactions to disasters...

  13. How can increased use of biological N2 fixation in agriculture benefit the environment?

    International Nuclear Information System (INIS)

    Jensen, Erik Steen; Hauggaard-Nielsen, Henrik

    2001-01-01

    Asymbiotic, associative or symbiotic biological N 2 fixation (BNF), is a free and renewable resource, which should constitute an integral part of sustainable agro-ecosystems. Yet there has been a rapid increase in use of fertiliser N and a parallel decline in the cultivation of leguminous plants and BNF, especially in the developed world. Fertilisers have boosted crop yields, but intensive agricultural systems have increasingly negative effects on the atmospheric and aquatic environments. BNF, either alone or in combination with fertilisers and animal manures, may prove to be a better solution to supply nitrogen to the cropping systems of the future. This review focuses on the potential benefit of BNF on the environment especially on soil acidification, rhizosphere processes and plant CO 2 fixation. As fertiliser N has supplanted BNF in agriculture the re-substitution of BNF is considered. What is the consequence of fertiliser N production on energy use? The effect of fertiliser use on the release of the greenhouse gas CO 2 is estimated at approximately 1 % of the global anthropogenic emission of CO 2 . The role of BNF on nitrogen cycling, ammonia volatilisation, N 2 O emission and NO 3 leaching suggests that BNF is less likely than fertilisers to cause losses during pre-cropping and cropping. Sometimes however the post-harvest losses may be greater, due to the special qualities of legume residues. Nevertheless, legumes provide other 'ecological services' including improved soil structure, erosion protection and greater biological diversity. (author)

  14. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  15. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    Science.gov (United States)

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  16. Human health and the environment: Predicting plasma protein binding and metabolic clearance rates of environmentally relevant chemicals.

    Science.gov (United States)

    In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...

  17. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  18. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  19. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance.

    Science.gov (United States)

    Hutmacher, Dietmar Werner; Holzapfel, Boris Michael; De-Juan-Pardo, Elena Maria; Pereira, Brooke Anne; Ellem, Stuart John; Loessner, Daniela; Risbridger, Gail Petuna

    2015-12-01

    In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. The Open Microscopy Environment: open image informatics for the biological sciences

    Science.gov (United States)

    Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.

    2016-07-01

    Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).

  1. Biochemical and biological responses in V79 cells grown in different background radiation environment

    International Nuclear Information System (INIS)

    Amicarelli, F.; Colafarina, S.; Ara, C.; Antonelli, F.; Balata, M.; Belli, M.; Simone, G.; Satta, L.

    2003-01-01

    Full text: In order to investigate the influence of a low background radiation environment on the biochemical and biological responses of mammalian cells cultured in vitro, a cell culture laboratory has been set up at the Gran Sasso National Laboratory (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN), located under the Gran Sasso d'Italia mountain, where cosmic rays are reduced by a factor of 10 6 and neutrons by a factor of 10 3 respect to the outside environment. Chinese hamster V79 cells were grown in parallel for up to nine months at LNGS and at the Istituto Superiore di Sanita (ISS). At the LNGS the exposure due to radon was reduced by a factor of about 25 with respect to the ISS. The biological end points addressed concerned cells proliferation, the expression of enzymes specific for the reduction of superoxydes, mutation induction by gamma-rays at the hprt locus and apoptotic sensitivity. After 9 months of culture, the cells grown at the LNGS, compared to the cells grown at the ISS, exhibit: i) a significant increase of the cell density at confluence; ii) a significantly higher capacity to scavenge organic and inorganic hydroperoxydes but a reduced scavenging capacity towards superoxide anions; iii) an increase in both the basal hprt mutation frequency and the sensitivity to the mutagenic effect of gamma-rays. The cells grown at the LNGS also show greater apoptotic sensitivity at the third month of culture that is no longer detected after nine months. Overall, these data suggest that cell response to ionizing radiation may be more complex than that predicted by a linear relationship with the dose and are consistent with the occurrence of an adaptive response related to the background radiation. However, other possibilities cannot be excluded such as the selection, in the two cultures, of clones having different characteristics, independently of the different radiation background. Work is in progress to better elucidate this point

  2. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    Science.gov (United States)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  3. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  4. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    International Nuclear Information System (INIS)

    Casals, E; Gonzalez, E; Puntes, V F

    2012-01-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  5. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms

    Science.gov (United States)

    Casals, E.; Gonzalez, E.; Puntes, V. F.

    2012-11-01

    A deeper understanding of the behaviour of inorganic nanoparticles in biological media is needed not only to fully control and develop the potential of these materials but also to increase knowledge of the physical chemistry of inorganic materials when their morphology approaches that of molecular entities. Although this knowledge and control is not yet entirely acquired, industry and society are already using nanomaterials in greater quantities and in consumer products. As normally happens when something new arrives in society, the interest in the broader implications of this emerging technology has grown together with unfounded ‘nanoeuphoria’ and ‘nanoscares’. In this context, only by understanding the mechanisms of the nano-bio interaction will it be possible to safely develop nanotechnology. In this review, we discuss on how nanoparticles behave once they are naturally or intentionally produced and are exposed to humans and the environment. The response of nanoparticles inside organisms or released to the environment is complex and diverse, and depends on a variety of parameters involved. Mainly, they may (i) be aggregated into microscopic particles or embedded in exposed materials; (ii) the surfaces of the nanoparticles, which determine their bioactivity, experience constant modifications; and (iii) nanoparticles may corrode and dissolve or they can suffer morphological modifications.

  6. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Gene-environment interaction in Major Depression: focus on experience-dependent biological systems

    Directory of Open Access Journals (Sweden)

    Nicola eLopizzo

    2015-05-01

    Full Text Available Major Depressive Disorder (MDD is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to life long risk for mental health outcomes. In this review we will discuss how genetic variants (polymorphisms, SNPs within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene X environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, in this review we aim to underlie the role of genetic and epigenetic processes involved in stress and neuroplasticity related biological systems on development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  8. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology

    Directory of Open Access Journals (Sweden)

    Lazic Stanley E

    2008-07-01

    Full Text Available Abstract Background Analysis of variance (ANOVA is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis – even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. Results An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159. This will be true in general, and the reasons for this are discussed. Conclusion There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  9. Identification of Genes Relevant to Pesticides and Biology from Global Transcriptome Data of Monochamus alternatus Hope (Coleoptera: Cerambycidae Larvae.

    Directory of Open Access Journals (Sweden)

    Songqing Wu

    Full Text Available Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is traditionally used to prevent pine wilt disease, new strategies based in biological control are promising ways for the management of the disease. However, there is no deep sequence analysis of Monochamus alternatus Hope that describes the transcriptome and no information is available about gene function of this insect vector. We used next generation sequencing technology to sequence the whole fourth instar larva transcriptome of Monochamus alternatus Hope and successfully built a Monochamus alternatus Hope transcriptome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO terms, information for 16,730 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs database, and 13,024 unigenes matched with 224 predicted pathways in the Kyoto Encyclopedia of Genes and Genome (KEGG. In addition, genes related to putative insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive enzymes, possible future insect control targets and immune-related molecules are described. This study provides valuable basic information that can be used as a gateway to develop new molecular tools for Monochamus alternatus Hope control strategies.

  10. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  11. Seven-day human biological rhythms: An expedition in search of their origin, synchronization, functional advantage, adaptive value and clinical relevance.

    Science.gov (United States)

    Reinberg, Alain E; Dejardin, Laurence; Smolensky, Michael H; Touitou, Yvan

    2017-01-01

    This fact-finding expedition explores the perspectives and knowledge of the origin and functional relevance of the 7 d domain of the biological time structure, with special reference to human beings. These biological rhythms are displayed at various levels of organization in diverse species - from the unicellular sea algae of Acetabularia and Goniaulax to plants, insects, fish, birds and mammals, including man - under natural as well as artificial, i.e. constant, environmental conditions. Nonetheless, very little is known about their derivation, functional advantage, adaptive value, synchronization and potential clinical relevance. About 7 d cosmic cycles are seemingly too weak, and the 6 d work/1 d rest week commanded from G-d through the Laws of Mosses to the Hebrews is too recent an event to be the origin in humans. Moreover, human and insect studies conducted under controlled constant conditions devoid of environmental, social and other time cues report the persistence of 7 d rhythms, but with a slightly different (free-running) period (τ), indicating their source is endogenous. Yet, a series of human and laboratory rodent studies reveal certain mainly non-cyclic exogenous events can trigger 7 d rhythm-like phenomena. However, it is unknown whether such triggers unmask, amplify and/or synchronize previous non-overtly expressed oscillations. Circadian (~24 h), circa-monthly (~30 d) and circannual (~1 y) rhythms are viewed as genetically based features of life forms that during evolution conferred significant functional advantage to individual organisms and survival value to species. No such advantages are apparent for endogenous 7 d rhythms, raising several questions: What is the significance of the 7 d activity/rest cycle, i.e. week, storied in the Book of Genesis and adopted by the Hebrews and thereafter the residents of nearby Mediterranean countries and ultimately the world? Why do humans require 1 d off per 7 d span? Do 7 d rhythms bestow functional

  12. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  13. Interstitial water studies on Irish Sea sediments and their relevance to the fate of transuranic nuclides in the marine environment

    International Nuclear Information System (INIS)

    Harvey, B.R.

    1981-01-01

    This paper describes the physico-chemical conditions existing in the interstitial waters of sediments in contaminated areas of the Irish Sea, which provide valuable information on the sedimentary environment into which radioactive waste products become incorporated. It is recommended that these measurements be made in areas where transuranic behaviour can be determined, which then would allow useful predictions to be made concerning the possible behaviour of transuranics in other, uncontaminated, environments, if these environments can be physico-chemically correlated in the same way. (author)

  14. Time-driven activity-based costing in an outpatient clinic environment: development, relevance and managerial impact.

    Science.gov (United States)

    Demeere, Nathalie; Stouthuysen, Kristof; Roodhooft, Filip

    2009-10-01

    Healthcare managers are continuously urged to provide better patient services at a lower cost. To cope with these cost pressures, healthcare management needs to improve its understanding of the relevant cost drivers. Through a case study, we show how to perform a time-driven activity-based costing of five outpatient clinic's departments and provide evidence of the benefits of such an analysis.

  15. The Preservation of "Non-Biological" Environments in the Solar System

    Science.gov (United States)

    Hargrove, Eugene

    Nature preservation will be a central element of the exploration of the Solar System, whether this emphasis is initially planned for or not. Exploration of extraterrestrial environments will generate images and scientific information that will excite the imagination of the general public throughout the world and be supportive of more funding for exploration. However, damage to the environments visited, once made public, will likely generate a backlash against exploration programs that could inhibit exploration or even bring it completely to an end. The exploration in the nineteenth century of the western United States, with landscapes aesthetically very different from those found in Europe but very similar to those existing on the Moon and on Mars, provides an excellent indication of what will happen in off-planet exploration. Nearly every place painted by a major artist or photographed by a photographer on a geological survey during that time period is today a national park or national monument. If extraterrestrial environments are not protected, the major space societies that are currently enthusiastically supportive of space agencies around the world could become political opponents, much as the Sierra Club evolved into a serious and effective critic of the U.S. Forest Service and National Park Service in the United States. At a minimum, space agencies must be protective of the historical landing sites on the Moon, avoid strip mining on the Moon that may draw criticism, and protect major features on Mars from damage, such as the Cydonian Face on Mars, Valles Marineris, the grand canyon of Mars, and Olympus Mons, a mountain three times as tall as Mount Everest. A good first step might be to establish a world-heritage-style site to protect the visible side of the Moon. Although extraterrestrial sites may initially be labeled "non-biological," caution must be taken to be protective of possible extraterrestrial life, active or dormant, even in the most unlikely

  16. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry

    Science.gov (United States)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.

  17. PENGARUH STRATEGI PEMBELAJARAN BIOLOGY ENVIRONMENT TECHNOLOGY SOCIETY (BETS) TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN HASIL BELAJAR BIOLOGI KELAS X KOTA MALANG

    OpenAIRE

    Eka Arum Sasi Mahardika; Hadi Suwono; Sri Endah Indriwati

    2016-01-01

    This study aims to determine the effect BETS learning to critical thinking skills and learning outcomes biology class X Senior High School in Malang. This research was conducted at SMAN 7 Malang from February-May 2016. Critical thinking skills and cognitive learning outcomes measured by a written test, whereas affective and psikomor measured by observations during the learning activities. Result critical thinking skills and cognitive learning outcomes were analyzed using statistical test with...

  18. PENGARUH STRATEGI PEMBELAJARAN BIOLOGY ENVIRONMENT TECHNOLOGY SOCIETY (BETS TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN HASIL BELAJAR BIOLOGI KELAS X KOTA MALANG

    Directory of Open Access Journals (Sweden)

    Eka Arum Sasi Mahardika

    2016-08-01

    Penelitian ini bertujuan untuk mengetahui pengaruh pembelajaran BETS terhadap kemampuan berpikir kritis dan hasil belajar biologi  kelas X SMA Kota Malang. Penelitian ini dilaksanakan di SMAN 7 Malang pada bulan Februari-Mei 2016. Kemampuan berpikir kritis dan hasil belajar kognitif diukur melalui tes tulis sedangkan ranah afektif dan psikomor diukur melalui observasi selama pembelajaran. Data kemampuan berpikir kritis dan hasil belajar kognitif dianalisis menggunakan uji statistik dengan bantuan Software SPSS 22.0 for Window. Hasil penelitian menunjukkan bahwa ada pengaruh strategi BETS terhadap kemampuan berpikir kritis dan hasil belajar kognitif; afektif kelas eksperimen lebih tinggi dibandingkan kelas kontrol; psikomotor kelas kontrol lebih tinggi dibandingkan kelas kontrol.

  19. The Context of Military Environments: An Agenda for Basic Research on Social and Organizational Factors Relevant to Small Units

    Science.gov (United States)

    2014-06-01

    internally enforced by feelings of shame or guilt, are primarily taught by parents , and so become part of the preferences of individuals. In this way...ENVIRONMENTS • What are the group or organizational antecedents of resilience such as group bonds, leadership style , and organizational values...and practices. In R.A. McMackin, E. Newman , J.M. Fogler, and T.M. Keane, Eds., Trauma Therapy in Context: The Science and Craft of Evidence-Based

  20. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region.

    Science.gov (United States)

    Zhang, Chunlai; Shen, Yaping; Li, Qing; Jia, Wenru; Li, Jiao; Wang, Xuesong

    2018-06-15

    To identify characteristics of aeolian activity and the aeolian environment in China's eastern desert region, this study collected surface sediment samples from the main desert and sandy lands in this region: the Hobq Desert and the Mu Us, Otindag, Horqin, and Hulunbuir sandy lands. We analyzed the grain-size characteristics and their relationships to three key environmental indicators: drift potential, the dune mobility index, and vegetation cover. The main sediment components are fine to medium sands, with poor (Hulunbuir) to moderate (all other areas) sorting, of unimodal to bimodal distribution. This suggests that improved sorting is accomplished by the loss of both relatively coarser and finer grains. Since 2000, China's eastern desert region has generally experienced low wind energy environmental conditions, resulting in decreased dune activity. In the Hobq Desert, however, the dry climate and sparse vegetation, in conjunction with the most widely distributed mobile dune area in the eastern desert region, have led to frequent and intense aeolian activity, including wind erosion, sand transport, and deposition, resulting in conditions for good sediment sorting. In the Mu Us, Otindag, and Horqin sandy lands, mosaic distribution has resulted from wind erosion-dominated and deposition-dominated aeolian environments. In the Hulunbuir Sandy Land, high precipitation, low temperatures, and steppe vegetation have resulted in well-developed soils; however, strong winds and flat terrain have created an aeolian environment dominated by wind erosion. Copyright © 2018. Published by Elsevier B.V.

  1. The determination of B and Sr isotopes of quaternary biologic fossils in Yanghuzhuang Yanqing basin and their living environment

    International Nuclear Information System (INIS)

    Xiao Yingkai; Xiao Jun; Zhao Zhiqi; He Maoyong; Li Shizhen

    2007-01-01

    The B and Sr isotopic compositions of early Quaternary biologic fossils in Yanghuzhuang and living bivalves in Weishui river were measured. Comparing with the data of marine foraminifer, the results show a non-marine living environment for these foraminifers lived in early Quaternary in Yanghuzhuang, Yanqing; Basin. (authors)

  2. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge.

    Science.gov (United States)

    Cardoso, Olivier; Porcher, Jean-Marc; Sanchez, Wilfried

    2014-11-01

    Human and veterinary active pharmaceutical ingredients (APIs) are involved in contamination of surface water, ground water, effluents, sediments and biota. Effluents of waste water treatment plants and hospitals are considered as major sources of such contamination. However, recent evidences reveal high concentrations of a large number of APIs in effluents from pharmaceutical factories and in receiving aquatic ecosystems. Moreover, laboratory exposures to these effluents and field experiments reveal various physiological disturbances in exposed aquatic organisms. Also, it seems to be relevant to increase knowledge on this route of contamination but also to develop specific approaches for further environmental monitoring campaigns. The present study summarizes available data related to the impact of pharmaceutical factory discharges on aquatic ecosystem contaminations and presents associated challenges for scientists and environmental managers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Contextual Hub Analysis Tool (CHAT: A Cytoscape app for identifying contextually relevant hubs in biological networks [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tanja Muetze

    2016-08-01

    Full Text Available Highly connected nodes (hubs in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT, which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest.   Availability: CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store (http://apps.cytoscape.org/apps/chat.

  4. Making Biology Relevant to Undergraduates

    Science.gov (United States)

    Musante, Susan

    2012-01-01

    This article features Science Education for New Civic Engagements and Responsibilities (SENCER; www.sencer.net) Summer Institute. The SENCER program, which began formally in 2001, was the vision of David Burns; Karen Oates, currently Peterson Family Dean of Arts and Sciences at Worcester Polytechnic Institute; and Ric Wiebl, currently director of…

  5. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  6. Identification and characteristics of biological agents in work environment of medical emergency services in selected ambulances

    Directory of Open Access Journals (Sweden)

    Agata Bielawska-Drózd

    2017-08-01

    Full Text Available Objectives: Assessment of microbial air quality and surface contamination in ambulances and administration offices as a control place without occupational exposure to biological agents; based on quantitative and qualitative analysis of bacteria, yeasts and filamentous fungi found in collected samples. Material and Methods: The sampling was done by wet cyclone technology using the Coriolis recon apparatus, imprint and swab methods, respectively. In total, 280 samples from 28 ambulances and 10 offices in Warszawa were tested. Data was analyzed using Shapiro-Wilk normality test, Kruskal-Wallis test with α = 0.05. P value ≤ 0.05 was considered as significant. Results: The levels of air contamination were from 0 to 2.3×101 colony-forming unit (CFU/m3 for bacteria and for yeast and filamentous fungi were from 0 to 1.8×101 CFU/m3. The assessment of office space air samples has shown the following numbers of microorganisms: bacteria from 3.0×101 to 4.2×101 CFU/m3 and yeast and filamentous fungi from 0 to 1.9×101 CFU/m3. For surface contamination the mean bacterial count in ambulances has been between 1.0×101 and 1.3×102 CFU/25 cm2 and in offices – between 1.1×101 and 8.5×101 CFU/25 cm2. Mean fungal count has reached the level from 2.8×100 to 4.2×101 CFU/25 cm2 in ambulances and 1.3×101 to 5.8×101 CFU/25 cm2 in offices. The qualitative analysis has revealed the presence of Acinetobacter spp. (surfaces, coagulase – negative Staphylococci (air and surfaces, Aspergillus and Penicillium genera (air and surfaces. Conclusions: The study has revealed a satisfactory microbiological quantity of analyzed air and surface samples in both study and control environments. However, the presence of potentially pathogenic microorganisms in the air and on surfaces in ambulances may endanger the medical emergency staff and patients with infection. Disinfection and cleaning techniques therefore should be constantly developed and implemented. Int J Occup

  7. Identification and characteristics of biological agents in work environment of medical emergency services in selected ambulances.

    Science.gov (United States)

    Bielawska-Drózd, Agata; Cieślik, Piotr; Wlizło-Skowronek, Bożena; Winnicka, Izabela; Kubiak, Leszek; Jaroszuk-Ściseł, Jolanta; Depczyńska, Daria; Bohacz, Justyna; Korniłłowicz-Kowalska, Teresa; Skopińska-Różewska, Ewa; Kocik, Janusz

    2017-06-19

    Assessment of microbial air quality and surface contamination in ambulances and administration offices as a control place without occupational exposure to biological agents; based on quantitative and qualitative analysis of bacteria, yeasts and filamentous fungi found in collected samples. The sampling was done by wet cyclone technology using the Coriolis recon apparatus, imprint and swab methods, respectively. In total, 280 samples from 28 ambulances and 10 offices in Warszawa were tested. Data was analyzed using Shapiro-Wilk normality test, Kruskal-Wallis test with α = 0.05. P value ≤ 0.05 was considered as significant. The levels of air contamination were from 0 to 2.3×101 colony-forming unit (CFU)/m3 for bacteria and for yeast and filamentous fungi were from 0 to 1.8×101 CFU/m3. The assessment of office space air samples has shown the following numbers of microorganisms: bacteria from 3.0×101 to 4.2×101 CFU/m3 and yeast and filamentous fungi from 0 to 1.9×101 CFU/m3. For surface contamination the mean bacterial count in ambulances has been between 1.0×101 and 1.3×102 CFU/25 cm2 and in offices - between 1.1×101 and 8.5×101 CFU/25 cm2. Mean fungal count has reached the level from 2.8×100 to 4.2×101 CFU/25 cm2 in ambulances and 1.3×101 to 5.8×101 CFU/25 cm2 in offices. The qualitative analysis has revealed the presence of Acinetobacter spp. (surfaces), coagulase - negative Staphylococci (air and surfaces), Aspergillus and Penicillium genera (air and surfaces). The study has revealed a satisfactory microbiological quantity of analyzed air and surface samples in both study and control environments. However, the presence of potentially pathogenic microorganisms in the air and on surfaces in ambulances may endanger the medical emergency staff and patients with infection. Disinfection and cleaning techniques therefore should be constantly developed and implemented. Int J Occup Med Environ Health 2017;30(4):617-627. This work is available in Open Access

  8. Biological transfer of radionuclides in marine environments - Identifying and filling knowledge gaps for environmental impact assessments

    International Nuclear Information System (INIS)

    Brown, J.E.; Borretzen, P.; Hosseini, A.; Iosjpe, M.

    2004-01-01

    A review on concentration factors (CF) for the marine environment was conducted in order to consider the relevance of existing data from the perspective of environmental protection and to identify areas of data paucity. Data have been organised in a format compatible with a reference organism approach, for selected radionuclides, and efforts have been taken to identify the factors that may be of importance in the context of dosimetric and dose-effects analyses. These reference organism categories had been previously selected by identifying organism groups that were likely to experience the highest levels of radiation exposure, owing to high uptake levels or residence in a particular habitat, for defined scenarios. Significant data gaps in the CF database have been identified, notably for marine mammals and birds. Most empirical information pertains to a limit suite of radionuclides, particularly 137 Cs, 210 Po and 99 Tc. A methodology has been developed to help bridge this information deficit. This has been based on simple dynamic, biokinetic models that mainly use parameters derived from laboratory-based study and field observation. In some cases, allometric relationships have been employed to allow further model parameterization. Initial testing of the model by comparing model output with empirical data sets suggest that the models provide sensible equilibrium CFs. Furthermore, analyses of modelling results suggest that for some radionuclides, in particularly those with long effective half-lives, the time to equilibrium can be far greater than the life-time of an organism. This clearly emphasises the limitations of applying a universal equilibrium approach. The methodology, therefore, has an added advantage that non-equilibrium scenarios can be considered in a more rigorous manner. Further refinements to the modelling approach might be attained by exploring the importance of various model parameters, through sensitivity analyses, and by identifying those

  9. Data management in the modern structural biology and biomedical research environment.

    Science.gov (United States)

    Zimmerman, Matthew D; Grabowski, Marek; Domagalski, Marcin J; Maclean, Elizabeth M; Chruszcz, Maksymilian; Minor, Wladek

    2014-01-01

    Modern high-throughput structural biology laboratories produce vast amounts of raw experimental data. The traditional method of data reduction is very simple-results are summarized in peer-reviewed publications, which are hopefully published in high-impact journals. By their nature, publications include only the most important results derived from experiments that may have been performed over the course of many years. The main content of the published paper is a concise compilation of these data, an interpretation of the experimental results, and a comparison of these results with those obtained by other scientists.Due to an avalanche of structural biology manuscripts submitted to scientific journals, in many recent cases descriptions of experimental methodology (and sometimes even experimental results) are pushed to supplementary materials that are only published online and sometimes may not be reviewed as thoroughly as the main body of a manuscript. Trouble may arise when experimental results are contradicting the results obtained by other scientists, which requires (in the best case) the reexamination of the original raw data or independent repetition of the experiment according to the published description of the experiment. There are reports that a significant fraction of experiments obtained in academic laboratories cannot be repeated in an industrial environment (Begley CG & Ellis LM, Nature 483(7391):531-3, 2012). This is not an indication of scientific fraud but rather reflects the inadequate description of experiments performed on different equipment and on biological samples that were produced with disparate methods. For that reason the goal of a modern data management system is not only the simple replacement of the laboratory notebook by an electronic one but also the creation of a sophisticated, internally consistent, scalable data management system that will combine data obtained by a variety of experiments performed by various individuals on diverse

  10. Palaeopathology and its relevance to understanding health and disease today: the impact of the environment on health, past and present

    Directory of Open Access Journals (Sweden)

    Roberts Charlotte Ann

    2016-03-01

    Full Text Available This paper considers the discipline of palaeopathology, how it has developed, how it is studied, and what limitations present challenges to analysis. The study of disease has a long history and has probably most rapidly developed over the last 40-50 years with the development of methods, and particularly ancient pathogen DNA analysis. While emphasizing that palaeopathology has close synergies to evolutionary medicine, it focuses then on three ‘case studies’ that illustrate the close interaction people have had with their environments and how that has impacted their health. Upper and lower respiratory tract disease has affected sinuses and ribs, particularly in urban contexts, and tuberculosis in particular has been an ever present disease throughout thousands of years of our existence. Ancient DNA methods are now allowing us to explore how strains of the bacteria causing TB have changed through time. Vitamin D deficiency and ‘phossy jaw’ are also described, both potentially related to polluted environments, and possibly to working conditions in the industrial period. Access to UV light is emphasized as a preventative factor for rickets and where a person lives is important (latitude. The painful stigmatizing ‘phossy jaw’ appears to be a condition related to the match making industries. Finally, thoughts for the future are outlined, and two key concerns: a close consideration of ethical issues and human remains, especially with destructive analyses, and thinking more about how palaeopathological research can impact people beyond academia.

  11. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    International Nuclear Information System (INIS)

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-01-01

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date

  12. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-part one.

    Science.gov (United States)

    Krafft, Marie Pierre; Riess, Jean G

    2015-06-01

    The elemental characteristics of the fluorine atom tell us that replacing an alkyl chain by a perfluoroalkyl or polyfluorinated chain in a molecule or polymer is consequential. A brief reminder about perfluoroalkyl chains, fluorocarbons and fluorosurfactants is provided. The outstanding, otherwise unattainable physicochemical properties and combinations thereof of poly and perfluoroalkyl substances (PFASs) are outlined, including extreme hydrophobic and lipophobic character; thermal and chemical stability in extreme conditions; remarkable aptitude to self-assemble into sturdy thin repellent protecting films; unique spreading, dispersing, emulsifying, anti-adhesive and levelling, dielectric, piezoelectric and optical properties, leading to numerous industrial and technical uses and consumer products. It was eventually discovered, however, that PFASs with seven or more carbon-long perfluoroalkyl chains had disseminated in air, water, soil and biota worldwide, are persistent in the environment and bioaccumulative in animals and humans, raising serious health and environmental concerns. Further use of long-chain PFASs is environmentally not sustainable. Most leading manufacturers have turned to shorter four to six carbon perfluoroalkyl chain products that are not considered bioaccumulative. However, many of the key performances of PFASs decrease sharply when fluorinated chains become shorter. Fluorosurfactants become less effective and less efficient, provide lesser barrier film stability, etc. On the other hand, they remain as persistent in the environment as their longer chain homologues. Surprisingly little data (with considerable discrepancies) is accessible on the physicochemical properties of the PFASs under examination, a situation that requires consideration and rectification. Such data are needed for understanding the environmental and in vivo behaviour of PFASs. They should help determine which, for which uses, and to what extent, PFASs are environmentally

  14. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    Science.gov (United States)

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Psychological Effects towards Humans Living in the Environment Made of Biological Concrete in Malaysia at 2015

    Directory of Open Access Journals (Sweden)

    Amirreza Talaiekhozani

    2017-01-01

    Full Text Available In day-to-day life concrete become a compulsory material in the construction field as to make it a real concern among researchers for producing concrete with improved properties. Biological method is one of the new methods to improve concrete properties. Although, much research about biological concrete has been carried out, but till now nobody has not studied for the psychological effects of using a house or offices made up of biological concrete. The aim of this study is to investigate and find out the person's opinion about staying in a house or offices made up of biological concrete. In this study, a questionnaire containing eight questions was prepared and distributed among 21 persons in Malaysia University of Technology including students, academic and non-academic staffs among which few of them was an expert in the field of biological concrete and others did not have any knowledge about the bioconcrete. Finally, the results obtained from the questionnaires were analyzed. The results showed that 81% of participants in this study would like to stay in a house or office made up of biological concrete. However, 38% of participants believe that staying in a house or office made of biological concrete can cause health related problems. The current research paper can be considered significant for architects and civil engineers to have the insight to look into the psychological aspects of using biological concrete for various applications in the field of construction.

  16. Precision Viticulture : is it relevant to manage the vineyard according to the within field spatial variability of the environment ?

    Science.gov (United States)

    Tisseyre, Bruno

    2015-04-01

    For more than 15 years, research projects are conducted in the precision viticulture (PV) area around the world. These research projects have provided new insights into the within-field variability in viticulture. Indeed, access to high spatial resolution data (remote sensing, embedded sensors, etc.) changes the knowledge we have of the fields in viticulture. In particular, the field which was until now considered as a homogeneous management unit, presents actually a high spatial variability in terms of yield, vigour an quality. This knowledge will lead (and is already causing) changes on how to manage the vineyard and the quality of the harvest at the within field scale. From the experimental results obtained in various countries of the world, the goal of the presentation is to provide figures on: - the spatial variability of the main parameters (yield, vigor, quality), and how this variability is organized spatially, - the temporal stability of the observed spatial variability and the potential link with environmental parameters like soil, topography, soil water availability, etc. - information sources available at a high spatial resolution conventionally used in precision agriculture likely to highlight this spatial variability (multi-spectral images, soil electrical conductivity, etc.) and the limitations that these information sources are likely to present in viticulture. Several strategies are currently being developed to take into account the within field variability in viticulture. They are based on the development of specific equipments, sensors, actuators and site specific strategies with the aim of adapting the vineyard operations at the within-field level. These strategies will be presented briefly in two ways : - Site specific operations (fertilization, pruning, thinning, irrigation, etc.) in order to counteract the effects of the environment and to obtain a final product with a controlled and consistent wine quality, - Differential harvesting with the

  17. Food words distract the hungry: Evidence of involuntary semantic processing of task-irrelevant but biologically-relevant unexpected auditory words.

    Science.gov (United States)

    Parmentier, Fabrice B R; Pacheco-Unguetti, Antonia P; Valero, Sara

    2018-01-01

    Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants' biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants' biological needs.

  18. The Androgen-Regulated Calcium-Activated Nucleotidase 1 (CANT1) Is Commonly Overexpressed in Prostate Cancer and Is Tumor-Biologically Relevant in Vitro

    Science.gov (United States)

    Gerhardt, Josefine; Steinbrech, Corinna; Büchi, Oralea; Behnke, Silvia; Bohnert, Annette; Fritzsche, Florian; Liewen, Heike; Stenner, Frank; Wild, Peter; Hermanns, Thomas; Müntener, Michael; Dietel, Manfred; Jung, Klaus; Stephan, Carsten; Kristiansen, Glen

    2011-01-01

    Previously, we identified the calcium-activated nucleotidase 1 (CANT1) transcript as up-regulated in prostate cancer. Now, we studied CANT1 protein expression in a large cohort of nearly 1000 prostatic tissue samples including normal tissue, prostatic intraepithelial neoplasia (PIN), primary carcinomas, metastases, and castrate-resistant carcinomas, and further investigated its functional relevance. CANT1 displayed predominantly a Golgi-type immunoreactivity with additional and variable cytoplasmic staining. In comparison to normal tissues, the staining intensity was significantly increased in PIN lesions and cancer. In cancer, high CANT1 levels were associated with a better prognosis, and castrate-resistant carcinomas commonly showed lower CANT1 levels than primary carcinomas. The functional role of CANT1 was investigated using RNA interference in two prostate cancer cell lines with abundant endogenous CANT1 protein. On CANT1 knockdown, a significantly diminished cell number and DNA synthesis rate, a cell cycle arrest in G1 phase, and a strong decrease of cell transmigration rate and wound healing capacity of CANT1 knockdown cells was found. However, on forced CANT1 overexpression, cell proliferation and migration remained unchanged. In summary, CANT1 is commonly overexpressed in the vast majority of primary prostate carcinomas and in the precursor lesion PIN and may represent a novel prognostic biomarker. Moreover, this is the first study to demonstrate a functional involvement of CANT1 in tumor biology. PMID:21435463

  19. Correlation between γ-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Murray, D.

    1994-01-01

    We examined the degree of correlation between γ-ray-induced lethality and DNA double-strand breaks (dsbs) after biologically relevant doses of radiation. Radiation lethality was modified by treating 14 C-labelled Chinese hamster ovary cells with either of two aminothiols (WR-1065 or WR-255591) and the associated effect on dsb induction was determined by pulsed-field gel electrophoresis (PFGE). The use of phosphorimaging to analyse the distribution of 14 C-activity in the gel greatly improved the low-dose resolution of the PFGE assay. Both WR-1065 and WR-255591 protected against dsb induction and lethality to a similar extent after low doses of radiation. although this correlation broke down when supralethal doses were used to induce dsbs. Thus, the level of dsbs induced in these cells as measured by PFGE after survival-curve doses of γ-radiation is consistently predictive of the degree of lethality obtained, implying a cause-effect relationship between these two parameters and confirming previous results obtained using the neutral filter elution assay for dsbs. (author)

  20. Developing Navy Capability to Recover Forces in Chemical, Biological, and Radiological Hazard Environments

    Science.gov (United States)

    2013-01-01

    damage control; LHD flight deck and well deck operations; fleet surgical team; Afloat Training Group; Assault Craft Unit; Naval Surface Warfare Center ...Biological, Radiological and Nuclear School, and U.S. Army Edgewood Chemical Biological Center , Guidelines for Mass Casualty Decontamination During a HAZMAT...Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by OSD, the Joint Staff

  1. The drivers of corporate environment inputs: Based on neo-institution theory evidence from Chinese listed biological and other companies.

    Science.gov (United States)

    Guo, Rui; Tao, Lan; Yan, Liang; Chen, Lianfang; Wang, Haijun

    2014-09-01

    From corporate internal governance structure and external institutional environment, this study uses a legitimacy perspective of intuitional theory to analyze the main influence factors on corporate environmental protection inputs and propose some hypotheses. With the establishment of empirical models, it analyzes the data of 2004-2009 listed biological and other companies in China to test the hypotheses. The findings are concluded that in internal institutional environment, the nature of the controlling shareholder, the proportion of the first shareholder in the ownership structure, the combination of chairman and general manager in board efficiency and the intensity of environmental laws and regulations of the industry in external institutional environment have an significant impact on the behaviors of corporate environmental protection inputs.

  2. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  3. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    biological processes, including pathways related to inflammation and oxidative stress, that are relevant to mucositis development, thus providing the basis for future studies to improve the management and treatment of mucositis in patients with cancer.

  4. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Czech Academy of Sciences Publication Activity Database

    Domazet Jurašin, D.; Ćurlin, M.; Capjak, I.; Crnković, T.; Lovrić, M.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 7, 15 Feb (2016), s. 246-262 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : biological fluids * colloidal stability * maghemite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.127, year: 2016

  5. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  6. Effect of Organic Solvents and Biologically Relevant Ions on the Light-Induced DNA Cleavage by Pyrene and Its Amino and Hydroxy Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2002-09-01

    Full Text Available Abstract: Polycyclic aromatic hydrocarbons (PAHs are a class of carcinogenic compounds that are both naturally and artificially produced. Many PAHs are pro-carcinogens that require metabolic activation. Recently, it has been shown that PAH can induce DNA single strand cleavage and formation of PAH-DNA covalent adduct upon irradiation with UVA light. The light-induced DNA cleavage parallels phototoxicity in one instance. The DNA photocleavage efficiency depends on the structure of the PAHs. This article reports the effect of both organic solvents and the presence of biologically relevant ions, Na+, Mg2+, Ca2+, K+, Fe3+, Cu2+, Zn+2, Mn2+, and I-, on the light-induced DNA cleavage by pyrene, 1-hydroxypyrene and 1-aminopyrene. Since both 1-hydroxypyrene (0.6 μM and 1-aminopyrene (6 μM dissolve well in the minimum organic solvents used (2% methanol, dimethylsulfoxide, and dimethylformamide, increasing the amount of the organic solvent resulted in the decrease of the amount of DNA single strand cleavage caused by the combination effect of 1-hydroxy or 1-aminopyrene and UVA light. The result with the less watersoluble pyrene shows that increase of the amount of the organic solvent can increase the amount of DNA single strand DNA photocleavage cause by the combination of pyrene and UVA light. Therefore, there are two effects by the organic solvents: (i to dissolve PAH and (ii to quench DNA photocleavage. The presence of Fe3+ and Zn2+ enhances, while the presence of Ca2+ and Mn2+ inhibits the DNA photocleavage caused by 1-aminopyrene and UVA light. Other metal ions have minimal effect. This means that the effect of ions on DNA photocleavage by PAHs is complex. The presence of KI enhances DNA photocleavage. This indicates that the triplet-excited state of 1-aminopyrene is involved in causing DNA cleavage

  7. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin.

    Directory of Open Access Journals (Sweden)

    Patrick A M Jansen

    Full Text Available BACKGROUND: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2 is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis. METHODOLOGY/PRINCIPAL FINDINGS: We found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects. CONCLUSIONS/SIGNIFICANCE: Serum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases.

  8. Spatial distribution of osteopontin, CD44v6 and podoplanin in the lining epithelium of odontogenic keratocyst, and their biological relevance.

    Science.gov (United States)

    Kechik, Khamisah Awang; Siar, Chong Huat

    2018-02-01

    The odontogenic keratocyst (OKC) remains the most challenging jaw cyst to treat because of its locally-aggressive behaviour and high recurrence potential. Emerging evidence suggests that osteopontin, its receptors CD44v6 and integrin α v , and podoplanin, have a role in the local invasiveness of this cyst. However the spatial distribution characteristics of these pro-invasive markers in the lining epithelium of OKC, and their association with the clinicopathologic parameters of OKC are largely unexplored. This study sought to address these issues in comparison with dentigerous cysts (DCs) and radicular cysts (RCs) and to evaluate their biological relevance. A sample consisting of 20 OKC cases, 10 DCs and 10 RCs was subjected to immunohistochemical staining for osteopontin, CD44v6 and integrin α v , and podoplanin, and semiquantitative analysis was performed. All factors (except integrin α v ) were detected heterogeneously in the constitutive layers of the lining epithelium in all three cyst types. Key observations were significant upregulation of CD44v6 and podoplanin in OKC compared to DCs and RCs, suggesting that these protein molecules may play crucial roles in promoting local invasiveness in OKC (P<0.05). Osteopontin underexpression and distribution patterns were indistinctive among all three cysts indicating its limited role as pro-invasive factor. Clinical parameters showed no significant correlations with all protein factors investigated. Present findings suggest that an osteopontin low CD44v6 high and podoplanin high immunoprofile most probably represent epithelial signatures of OKC and are markers of local invasiveness in this cyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Study of the movement of metallic pollutants in the physical environment and biological chains

    International Nuclear Information System (INIS)

    Bittel, R.; Magnaval, R.

    1976-01-01

    The authors describe, giving examples, the use of nuclear and non-nuclear techniques in studying the movement of metallic elements capable of contaminating the environment, man and various other organisms. A brief account is given of the methods employed. Emphasis is placed on obtaining data which can be used in predicting the harm which may result in the long term for man and the environment from increases in the concentrations of metallic pollutants. (author)

  10. Gaze Behavior in a Natural Environment with a Task-Relevant Distractor: How the Presence of a Goalkeeper Distracts the Penalty Taker

    Directory of Open Access Journals (Sweden)

    Johannes Kurz

    2018-01-01

    Full Text Available Gaze behavior in natural scenes has been shown to be influenced not only by top–down factors such as task demands and action goals but also by bottom–up factors such as stimulus salience and scene context. Whereas gaze behavior in the context of static pictures emphasizes spatial accuracy, gazing in natural scenes seems to rely more on where to direct the gaze involving both anticipative components and an evaluation of ongoing actions. Not much is known about gaze behavior in far-aiming tasks in which multiple task-relevant targets and distractors compete for the allocation of visual attention via gaze. In the present study, we examined gaze behavior in the far-aiming task of taking a soccer penalty. This task contains a proximal target, the ball; a distal target, an empty location within the goal; and a salient distractor, the goalkeeper. Our aim was to investigate where participants direct their gaze in a natural environment with multiple potential fixation targets that differ in task relevance and salience. Results showed that the early phase of the run-up seems to be driven by both the salience of the stimulus setting and the need to perform a spatial calibration of the environment. The late run-up, in contrast, seems to be controlled by attentional demands of the task with penalty takers having habitualized a visual routine that is not disrupted by external influences (e.g., the goalkeeper. In addition, when trying to shoot a ball as accurately as possible, penalty takers directed their gaze toward the ball in order to achieve optimal foot-ball contact. These results indicate that whether gaze is driven by salience of the stimulus setting or by attentional demands depends on the phase of the actual task.

  11. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biological effects of transuranic elements in the environment: human effects and risk estimates

    International Nuclear Information System (INIS)

    Thompson, R.C.; Wachholz, B.W.

    1980-01-01

    The potential for human effects from environmentally dispersed transuranic elements is briefly reviewed. Inhalation of transuranics suspended in air and ingestion of transuranics deposited on or incorporated in foodstuffs are the significant routes of entry. Inhalation is probably the more important of these routes because gastrointestinal absorption of ingested transuranics is so inefficient. Major uncertainties are those concerned with substantially enhanced absorption by the very young and the possibility of increased availability as transuranics become incorporated in biological food chains

  13. Biological model of vision for an artificial system that learns to perceive its environment

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, M.R.; Nguyen, H.G.

    1989-06-01

    The objective is to design an artificial vision system for use in robotics applications. Because the desired performance is equivalent to that achieved by nature, the authors anticipate that the objective will be accomplished most efficiently through modeling aspects of the neuroanatomy and neurophysiology of the biological visual system. Information enters the biological visual system through the retina and is passed to the lateral geniculate and optic tectum. The lateral geniculate nucleus (LGN) also receives information from the cerebral cortex and the result of these two inflows is returned to the cortex. The optic tectum likewise receives the retinal information in a context of other converging signals and organizes motor responses. A computer algorithm is described which implements models of the biological visual mechanisms of the retina, thalamic lateral geniculate and perigeniculate nuclei, and primary visual cortex. Motion and pattern analyses are performed in parallel and interact in the cortex to construct perceptions. We hypothesize that motion reflexes serve as unconditioned pathways for the learning and recall of pattern information. The algorithm demonstrates this conditioning through a learning function approximating heterosynaptic facilitation.

  14. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  15. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    International Nuclear Information System (INIS)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B.; Coves, J.; Hazemann, J.L.

    2009-01-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  16. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards Biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; den Brok, P.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  17. World, environment, Umwelt, and innerworld: a biological perspective on visual awareness

    Science.gov (United States)

    Koenderink, Jan J.

    2013-03-01

    The world is all physical reality (Higgs bosons, and so forth), the "environment" is a geographical locality (your city, …), the "Umwelt" is the totality of possible actions of the environment on the sensitive body surface of an agent (you, your dog, …) and the possible actions of the agent on the environment (mechanical, chemical, …), whereas the "innerworld" is what it is for the agent to be, that is awareness. Awareness is pre-personal, proto-conscious, and (perhaps) proto-rational. The various "worlds" described above are on distinct ontological levels. The world, and the environment are studied in the exact sciences, the Umwelt is studied by physiology and ethology. Ethology is like behavioristic psychology, with the difference that it applies to all animals. It skips the innerworld, e.g., it considers speech to be a movement of air molecules.The innerworld can only be known through first person reports, thus is intrinsically subjective. It can only be approached through "experimental phenomenology", which is based on intersubjectivity among humans. In this setting speech may mean something in addition to the movements of molecules. These views lead to a model of vision as an "optical user interface". It has consequences for many applications.

  18. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; Brok, den P.J.; Fisher, D. L.; Khine, M. S.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  19. Evaluation of biological properties and fate in the environment of a new class of biosurfactants.

    Science.gov (United States)

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Delbeke, Elisabeth I P; Van Geem, Kevin M; Stevens, Christian V

    2018-06-01

    Selected sophorolipid quaternary ammonium salts (SQAS), being a new class of modified biosurfactants, were studied in this work for the first time with regard to their biodegradability and fate in the environment. It was made to find whether environment-friendly bioproducts like biosurfactants are still safe to the environment after their chemical modification. The susceptibility of these SQAS for biodegradation was estimated together with the evaluation of their influence on activated sludge microorganisms. Additionally, the mechanisms of removal of the SQAS from wastewater and from the aquatic environment, were analysed. The evaluated SQAS were potentially biodegradable, although none of them could be classified as readily biodegradable. The biodegradation degrees after 28 days ranged from 4 to 42%, dependent on the SQAS tested, i.e. below the required OECD 301D Closed Bottle Test level of 60%. Simultaneously, the analysis of the mass spectra revealed the presence of the breakdown products of each SQAS studied. Biodegradation was preceded by sorption of the SQAS on sludge particles, which occurred to be a main mechanism of the removal of these newly synthesized biosurfactants from wastewater. The mean degree of sorption calculated on the basis of SQAS determination was from 75 to 96%, dependent on the studied SQAS. The presence of SQAS in wastewater did not deteriorate the operation of the activated sludge system, although the products of the SQAS biodegradation remained in the liquid phase and might contribute to the increase of COD of the effluent to be introduced to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment.

    Science.gov (United States)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G; Garcia, Marcos V B; Amelung, Wulf

    2005-05-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m(-3) in air (>85% of the sum of 21PAHs concentration), up to 1000 microg kg(-1) in plants (>90%), 477 microg kg(-1) in litter (>90%), 32 microg kg(-1) in topsoil (>90%), and 160 microg kg(-1) (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 microg kg(-1)), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 microg kg(-1) compared to atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin.

  1. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment

    International Nuclear Information System (INIS)

    Krauss, Martin; Wilcke, Wolfgang; Martius, Christopher; Bandeira, Adelmar G.; Garcia, Marcos V.B.; Amelung, Wulf

    2005-01-01

    To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m -3 in air (>85% of the Σ21PAHs concentration), up to 1000 μg kg -1 in plants (>90%), 477 μg kg -1 in litter (>90%), 32 μg kg -1 in topsoil (>90%), and 160 μg kg -1 (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12-60 μg kg -1 ), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 μg kg -1 compared to -1 in interior parts) and high PERY concentrations in all compartments (12-86 μg kg -1 ), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin. - Evidence of non-pyrolytic, biogenic production of PAHs is provided

  2. Salt-stimulation of caesium accumulation in the euryhaline green microalga Chlorella salina: potential relevance to the development of a biological Cs-removal process

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S. V.; Codd, G. A.; Gadd, G. M. [Department of Biological Sciences, University of Dundee, Dundee DD1 4HN (United Kingdom)

    1993-07-01

    Accumulation of Cs{sup +} by Chlorella salina was 28-fold greater in cells incubated in the presence than in the absence of 0.5 M-NaCl. An approximate 70% removal of external Cs{sup +} resulted after 15 h incubation of cells with 50 μ;M-CsCl and 0.5 M-NaCl. LiCl also had a stimulatory effect on Cs{sup +} uptake, although mannitol did not. Cs{sup +} influx increased with increasing external NaCl concentration and was maximal between 25-500 mM-NaCl at approximately 4 nmol Cs{sup +} h−1 (10{sup 6} cells){sup −1}. Little effect on Cs{sup +} uptake resulted from the presence of Mg{sup 2+} or Ca{sup 2+} or from varying the external pH, and Cs{sup +} was relatively non-toxic towards C. salina. At increasing cell densities (from 4 × 10{sup 5} to 1 × 10{sup 7} cells ml{sup +1}), decreasing amounts of Cs{sup +} were accumulated per cell although the rate of Cs{sup +} removal from the external medium was still greatest at the higher cell densities examined. Freely suspended C. salina and cell-loaded alginate microbeads accumulated similar levels of Cs{sup +}, however, 46% of total Cs{sup +} uptake was attributable to the calcium-alginate matrix in the latter case. When Cs{sup +}-loaded cells were subjected to hypoosmotic shock, loss of cellular Cs{sup +} occurred allowing easy Cs{sup +} recovery. This loss exceeded 90% of cellular Cs{sup +} when cells were washed with solutions containing ≤ 50 mM-NaCl between consecutive Cs{sup +} uptake periods; these cells subsequently lost their ability to accumulate large amounts of Cs{sup +}. Maximal Cs{sup +} uptake (approximately 85.1% removal after three 15 h incubations) occurred when cells were washed with a solution containing 500 mM-NaCl and 200 mM-KCl between incubations. The relevance of these results to the possible use of C. salina in a salt-dependent biological Cs-removal process is discussed. (author)

  3. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  4. A review of the biological and geochemical behaviour of technetium in the marine environment

    International Nuclear Information System (INIS)

    Beasley, T.M.; Lorz, H.V.

    1986-01-01

    Present understanding of the behavior of Tc in the marine environment is summarised. The prevalent valence state of Tc in oxygenated seawater is +7, arguing that pertechnetate ion, TcO - 4 , represents the most likely form of this radioelement in seawater. Laboratory experiments using radio-labeled pertechnetate ion have shown that binding of this anion to different classes of marine sediments is slight. Concentration factors for the majority of marine organisms studied to date are small; notable exceptions are seen in certain species of brown algae, polychaetes and macrocrustaceans. Uptake and loss kinetics are generally rapid with the majority of the Tc being associated with shell, exoskeleton and gut. There are, as yet, no data supporting the contention that stable element analogs such as iodate can be used to predict the long-term behavior of 99 Tc (as pertechnetate) in the marine environment. (author)

  5. Microbial load in indoor sport environments: new quality issues by molecular biology

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano Spica

    2004-12-01

    Full Text Available

    The quality of hygiene found in sporting environments represents an emergent requirement in societies of industrialised countries.

    Besides safety issues, the microbial load of indoor air, water and surfaces affects comfort and performance. Recent studies have identified fungi as the quantitatively most important component, of unhealthy indoor air.

    Few studies have been carried out regarding indoor sport, recreational and rehabilitative facilities, such as swimming pools, saunas and spas. The aim of our study is to determine the extent of fungal and microbial contamination in indoor swimming pool environments, by means of both morphological and molecular typing of isolated species.

    Establishment of appropriate standardised monitoring procedures prevents infections and improves quality.

  6. Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects.

    Science.gov (United States)

    Le Cann, Pierre; Bonvallot, Nathalie; Glorennec, Philippe; Deguen, Séverine; Goeury, Christophe; Le Bot, Barbara

    2011-12-01

    Much research is being carried out into indoor exposure to harmful agents. This review focused on the impact on children's health, taking a broad approach to the indoor environment and including chemical, microbial, physical and social aspects. Papers published from 2006 onwards were reviewed, with regards to scientific context. Most of publications dealt with chemical exposure. Apart from the ongoing issue of combustion by-products, most of these papers concerned semi volatile organic compounds (such as phthalates). These may be associated with neurotoxic, reprotoxic or respiratory effects and may, therefore, be of particular interest so far as children are concerned. In a lesser extent, volatile organic compounds (such as aldehydes) that have mainly respiratory effects are still studied. Assessing exposure to metals is still of concern, with increasing interest in bioaccessibility. Most of the papers on microbial exposure focused on respiratory tract infections, especially asthma linked to allergens and bio-aerosols. Physical exposure includes noise and electromagnetic fields, and articles dealt with the auditory and non auditory effects of noise. Articles on radiofrequency electromagnetic fields mainly concerned questions about non-thermal effects and papers on extremely low-frequency magnetic fields focused on the characterization of exposure. The impact of the indoor environment on children's health cannot be assessed merely by considering the effect of these different types of exposure: this review highlights new findings and also discusses the interactions between agents in indoor environments and also with social aspects. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Mutagenic potential scale developed for relative evaluation of biological system response to environments presenting different gamma exposure rates

    International Nuclear Information System (INIS)

    Nouailhetas, Yannick; Almeida, Carlos E. Bonacossa de; Mezrahi, Arnaldo; Shu, Jane; Xavier, Ana Maria

    1999-01-01

    The elaboration of a mutagenic potential scale (MPS) will be accomplished through the evaluation of the frequency of induced mutations in a plant biological system in different sites. The selection of these sites will be based on general public perception of risk to health. In this selection, it will include areas such ecological paradises and also neighborhoods of nuclear reactors and uranium mining and milling industry with potential radiological impact. The developed project foresees the contribution of other research groups that will also provide data from different sites. The referred scale will be built based on the response of the genetic system that gives color to the cells of Tradescantia (BNL 4430) stamen hair to mutagenic agents. Methodological improvements has been developed aiming the computerization of mutagenic events evaluation and statistical analysis of data that will significantly increase the efficiency of the system and obtention of results. Other biological systems of environmental quality are being added to the project, for future use. MPS should facilitate the general public and professionals of the nuclear area to understand risks, on a biological basis, of exposure from radiologically impacted environments. (author)

  8. An Advanced Environment for Hybrid Modeling of Biological Systems Based on Modelica

    Directory of Open Access Journals (Sweden)

    Proß Sabrina

    2011-03-01

    Full Text Available Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process.

  9. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  10. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  11. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-08-17

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.

  12. Effects of space environment on biological characters of cultured rose seedlings

    Science.gov (United States)

    Min, L.; Huai, X.; Jinying, L.; Yi, P.; Chunhua, Z.

    Cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology cytology physiology and molecular biology of the seedlings After loaded on the space flight the plant s height number of leaves and fresh weight per seedling were all increased significantly compared to the ground controls The content of chlorophyll was basically unchanged In some cells the ultrastructural changes involved twist contraction and deformation of cell wall curvature and loose arrangement of lamellae of some chloroplasts and a significant increase in number of starch grains per chloroplast In addition the number of mitochondria increased but some mitochondrial outer membrane broke and some mitochondrial cristae disappeared The activities of the defense enzymes such as superoxide dismutase peroxidase and catalyse in rose leaves increased and the content of malondialdehyde decreased In the RAPD analysis with 40 10-mer primers 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls and five primers amplified polymorphic products The rate of DNA variation was 6 34

  13. Applications of 14C - AMS on Archaeology, Climate, Environment, Geology, Oceanography and Biology

    International Nuclear Information System (INIS)

    Gomes, P. R. S.; Macario, K. D.; Anjos, R. M.

    2007-01-01

    In this contribution we describe several experiments on 14 C-AMS (Accelerator Mass Spectrometry) related to historical, ecological and environmental questions. We discuss the chronology of prehistoric settlements of the central-south Brazilian coast. The unexpected result pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling. The results of 14 C-AMS measurements in seaweed tissue show differences in the isotopic signature of the water sources. The present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. We performed experiments on climate at the Amazon region. At remote lakes of the Amazon region, the Hg accumulation rate archived in sediment cores is a powerful tool for the interpretation of the paleoclimatology and paleoecology of the region. Different sedimentation regimes are observed from ∼41500 yr. BP to the present. The understanding of sea-level fluctuations are fundamental for human occupation of littoral areas and hydrocarbon industry on offshore exploration. We performed radiocarbon dating of foraminifera shell samples, collected in upper slope of Campos Basin, in Southern Brazil. The mean accumulation ratio for the whole column is 6.17 cm/1000 years. Fluctuations in this mean values indicate that the ocean bottom dynamics has some variation during the period. (Author)

  14. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    Capron, Michael

    2011-01-01

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  15. Silica- and silylated europium-based luminescent hybrids: new analysis tools for biological environments

    International Nuclear Information System (INIS)

    Pereira Duarte, Adriana

    2012-01-01

    The association of the very interesting luminescence properties of the lanthanide chelates with the physicochemical properties of inorganic matrix such as silica is a promising way to obtain new probes or luminescent markers for biology analyses. In this idea, this work focuses on the preparation of new hybrid materials based on the grafting of new europium(III) complexes on silica nanoparticles. These europium complexes were developed in our group using bifunctional ligands containing both complexing and grafting sites. Intrinsic characteristic of the ligands gives us the ability to make a covalent bond between the material surface and the complex. Two different methodologies were used; the first one is the direct grafting reaction involving the complex and silica nanoparticles (i.e. dense or meso-porous particles). The second one is the Stoeber reaction, where the SiO 2 nanoparticles were prepared in presence of the europium complex. The last methodology has an additional difficult, because of the presence of silylated europium complex, it needs a closer control of the physicochemical conditions. The new organic-inorganic hybrid materials, obtained in this work, present an interesting luminescence behavior and this one is depending on the localization of the europium complex, i.e. on the surface or within the nanoparticles. In addition, the obtained hybrids present the nano-metric dimension and the complex is not leachable. Analyses were realized to describe the luminescence properties, beyond surface and structural characteristics. Initial results show that the new hybrids are promising candidates for luminescent bio-markers, particularly for the time-resolved analysis. (author) [fr

  16. Contamination of mercury in the biological and physical environment of northwest Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Delisle, C E

    1977-10-01

    Mercury and its compounds are present in the environment of northwest Quebec and present serious risks to human health. This study shows that all bodies of water investigated yield fish with mercury concentrations in excess of the Canadian safe limit (0.5 ppm) for human consumption. Data are reported for total mercury in 902 fishes from 58 bodies of water sampled between 1972 and 1976. Out of these, 158 were Coregonus clupeaformis with an average concentration of 0.27 ppm of mercury, 82 were Catostomus commersoni with 0.38 ppm, 287 were Stizostedion vitreum vitreum with 0.79 ppm, 364 were Esox lucius with 0.84 ppm, and 11 were Acipenser fulvescens with 0.36 ppm. It is concluded that walleye and pike are rarely safe to eat in northwest Quebec. Data on limited numbers of molluscs, benthic organisms, plankton, aquatic birds and aquatic mammals from this area are also reported and show only a few in excess of the safe level. Exceptions are found in ducks, grebes, mergansers and otters, mink and marten. Mercury in sediments varied from 50 ppb (background level) to more than 1000 ppb, depending on the body of water and its proximity to zones of influence of human activity. Surface waters rarely exceed 0.20 ppb mercury even in areas where sediment contamination is high. Ground water reached 48 ppb in some areas, however, suggesting contamination from natural sources.

  17. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Bondietti, E.A.; Eyman, L.D.

    1976-01-01

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241 Am, 242 Cm, and 244 Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242 Cm, 244 Cm, 241 Am, 243 Am, and 237 Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  18. Applications of 14C-AMS on archaeology, climate, environment, geology, oceanography and biology

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Anjos, R.M.; Macario, K.D.; Santos, G.M.

    2005-01-01

    The first experiment discusses the chronology of prehistoric settlements of the central-south Brazilian coast. In the southern Brazilian coast there is a high density of these shellmounds, dated in general between 6,000 and 2,000 BP. A charcoal sample from a coastal shellmound of Rio de Janeiro State was dated by 14 C-AMS to 7,860±80 years BP. This is an unexpected result that pulls back by some two thousand years the antiquity consensually accepted for the settlement of that region. We performed an experiment concerning the isotopic signature of the local waters of an important Brazilian coastal upwelling, located in Arraial do Cabo, R.J., with applications in the fields of Oceanography and Marine Ecology. We assess the contribution of the wind-driven coastal upwelling of Arraial do Cabo to the local biological production. The variation of the carbon isotopic compositions was investigated in a population of a seaweed. Upwelling events were simulated in the laboratory, in order to study three regimes: total upwelling (SACW), partial upwelling (mixed water) and no-upwelling (TW). Water samples were collected at 70 m depth (SACW) and at 10 m (TW). The seaweed was cultivated during seven days, in controlled conditions, into the three mentioned types of water. The results of 14 C-AMS measurements in the seaweed tissue show a clear indication of difference in the isotopic signature of the water sources, allowing to infer the differences of the water sources. We believe that the present results contribute to opening new perspectives for the use of 14 C as a tracer of the biological production in upwelling areas all over the world. The next reported experiment is on climate at the Amazon region. An increase in the Hg flux is a strong indicator of disturbance in a forest ecosystem related to abrupt changes in the water balance, and its changes reflect changes in the ocean and average regional temperatures. In regions where the geological background of mercury is

  19. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshio [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan); Toki, Hiroshi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2016-02-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.

  20. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi

    2016-01-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M ⊙ . Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars

  1. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer

    DEFF Research Database (Denmark)

    Brooks, Susan A; Carter, Tracey M; Bennett, Eric P

    2007-01-01

    understood, may mediate the synthesis of varied glycoforms of cellular proteins with different biological activities. Disruptions in glycosylation are a common feature of cancer and may have functional significance. Immunocytochemistry with confocal scanning laser microscopy was employed to detect members...... of the ppGalNAc-T family, ppGalNAc-T1, -T2, -T3, -T4 and -T6 in a range of breast cell lines. The cells were chosen to represent a range of phenotypes from 'normal'/benign (HMT 3,522), primary, non-metastatic breast cancer (BT 474), to aggressive, metastatic breast cancer (ZR75-1, T47D, MCF-7, DU 4...... tightly restricted ppGalNAc-T's may result in initiation of O-linked glycosylation at normally unoccupied potential glycosylation sites leading to altered glycoforms of proteins with changed biological activity which may contribute to the pathogenesis of cancer....

  2. Measurement of neutrons emitted following the absorption of stopped negative pions in the biologically relevant nuclei 12C, 14N und 16O

    International Nuclear Information System (INIS)

    Klein, U.

    1978-05-01

    A time-of-flight technique has been used to measure the energy spectra of neutrons emitted following the absorption of stopped negative pions in the biologically interesting light out at the biomedical pion channel πE3 of the Swiss Institute of Nuclear Research (SIN). The neutron spectra for all the target nuclei studied are the same within the error bars. The spectra are characterized by a low-energy 'evaporation' part and a high-energy 'direct' component. (orig.) [de

  3. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  4. Discussion groups with parents of children with cerebral palsy in Europe designed to assist development of a relevant measure of environment

    DEFF Research Database (Denmark)

    McManus, V; Michelsen, S I; Parkinson, K

    2006-01-01

    BACKGROUND: An instrument to measure environmental factors relevant to physically impaired children is being developed in a European context. Preliminary work in England had identified some potentially important themes. Further inquiry was needed to identify issues important in other European...

  5. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C.

    2005-01-01

    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. X-ray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of non-apatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra

  6. Environment

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    IGT's efforts in environmental protection are primarily concerned with reducing the level of undesirable emissions from combustion, treating solid and liquid waste materials, and producing cleaner fuels. Projects being funded include: an ultra-low-emission gas-fired cyclonic burner for firetube boiler retrofit; a combination of IGT's de-NOX technology for municipal solid waste combustors with the injection of sorbents to reduce pollutants; second-generation NOx reduction techniques for regenerative glass melting furnaces; investigation of the applicability of electric DC field flame stabilization; development of a slagging cyclonic combustor for a class of industrial solid wastes; remediation research of various biological, chemical, and thermal technologies for cleaning and/or immobilizing contaminants in soils and sludges; and fuel cell research on molten carbonate and solid oxide fuel cells

  7. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Lyons, Brett P.; Thain, John E.; Law, Robin J.

    2013-01-01

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  8. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed 'legacy contaminants'; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however,the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  9. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  10. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    Science.gov (United States)

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  12. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  13. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  14. Relevance of a Healthy Change Process and Psychosocial Work Environment Factors in Predicting Stress, Health Complaints, and Commitment Among Employees in a Ghanaian Bank

    OpenAIRE

    Quaye, Emmanuel

    2010-01-01

    This thesis was intended to examine the effect of the healthiness of change process and psychosocial work environment factors in predicting job stress, health complaints and commitment among employees in a Ghanaian bank (N=132), undergoing organizational change. The change process was measured in terms of dimensions from the Healthy Change Process Index (HCPI) and the psychosocial work environment was measured by the Demands-Control-Support (DCS) model. Hierarchical regression analyses reveal...

  15. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    International Nuclear Information System (INIS)

    Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe

    2015-01-01

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays

  16. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    Energy Technology Data Exchange (ETDEWEB)

    Baldassarre, Francesca, E-mail: francesca.baldassarre@unisalento.it [University of Salento, Department of Cultural Heritage (Italy); Cacciola, Matteo, E-mail: matteo.cacciola@unirc.it [University “Mediterranea” of Reggio Calabria, DICEAM (Italy); Ciccarella, Giuseppe, E-mail: giuseppe.ciccarella@unisalento.it [University of Salento, Department of Innovation Engineering (Italy)

    2015-09-15

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  17. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  18. Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean.

    Science.gov (United States)

    Camargo, William N; Durán, Gabriel C; Rada, Orlando C; Hernández, Licet C; Linero, Juan-Carlos G; Muelle, Igor M; Sorgeloos, Patrick

    2005-10-26

    Artemia (Crustacea, Anostraca), also known as brine shrimp, are typical inhabitants of extreme environments. These hypersaline environments vary considerably in their physicochemical composition, and even their climatic conditions and elevation. Several thalassohaline (marine) environments along the Colombian Caribbean coast were surveyed in order to contribute to the knowledge of brine shrimp biotopes in South America by determining some vital biological and physicochemical parameters for Artemia survival. Additionally, cyst quality tests, biometrical and essential fatty acids analysis were performed to evaluate the economic viability of some of these strains for the aquaculture industry. In addition to the three locations (Galerazamba, Manaure, and Pozos Colorados) reported in the literature three decades ago in the Colombian Caribbean, six new locations were registered (Salina Cero, Kangaru, Tayrona, Bahía Hondita, Warrego and Pusheo). All habitats sampled showed that chloride was the prevailing anion, as expected, because of their thalassohaline origin. There were significant differences in cyst diameter grouping strains in the following manner according to this parameter: 1) San Francisco Bay (SFB-Control, USA), 2) Galerazamba and Tayrona, 3) Kangarú, 4) Manaure, and 5) Salina Cero and Pozos Colorados. Chorion thickness values were smaller in Tayrona, followed by Salina Cero, Galerazamba, Manaure, SFB, Kangarú and Pozos Colorados. There were significant differences in naupliar size, grouping strains as follows (smallest to largest): 1) Galerazamba, 2) Manaure, 3) SFB, Kangarú, and Salina Cero, 4) Pozos Colorados, and 5) Tayrona. Overall, cyst quality analysis conducted on samples from Manaure, Galerazamba, and Salina Cero revealed that all sites exhibited a relatively high number of cysts.g-1. Essential fatty acids (EFA) analysis performed on nauplii from cyst samples from Manaure, Galerazamba, Salina Cero and Tayrona revealed that cysts from all sites

  19. Review of biological monitoring programs at nuclear facilities

    International Nuclear Information System (INIS)

    Quintana, L.R.; Oakes, T.W.; Shank, K.E.

    Biological monitoring programs, as well as relevant radioecological research studies, are reviewed at specific Department of Energy facilities; the program at Oak Ridge National Laboratory is discussed in detail. The biological measurements that are being used for interpreting the impact of a facility on its surrounding environment and nearby population are given. Suggestions which could facilitate interlaboratory comparison studies are presented

  20. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nabarlek evaporation and storage ponds: possible role of biological activity in the escape of toxic substances to the general environment

    International Nuclear Information System (INIS)

    Martinick, W.

    1982-01-01

    An investigation was undertaken to determine whether or not game birds might become contaminated with radionuclides while visiting the evaporating ponds at the Nabarlek uranium mine. The level of biological community development in the ponds and water bird activity were low. It is concluded that at present escape of radionuclides or toxic elements from the ponds as a result of biological activity is not a problem

  2. Applied research and development of neutron activation analysis - The study on human health and environment by neutron activation analysis of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Yoo, Jong Ik; Lee, Jae Kwang; Lee, Sung Jun; Lee, Sang Sun; Jeon, Ki Hong; Na, Kyung Won; Kang, Sang Hun [Yonsei University, Seoul (Korea)

    2000-04-01

    With the development of the precise quantitative analytical method for the analysis of trace elements in the various biological samples such as hair and food, evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body was done. The trace elemental distribution in Korean total diet and representative food stuff was identified first. With the project the elemental distributions in supplemental healthy food and Korean and Chinese origin oriental medicine were identified. The amount of trace elements ingested with the hair analysis of oriental medicine takers were also estimated. The amounts of trace elements inhaled with the analysis of foundry air, blood and hair of foundry workers were also estimated. The basic estimation method in view of health and environment with the neutron activation analysis of biological samples such as foods and hair was established with the result. Nationwide usage system of the NAA facility in Hanaro in many different and important areas of biological area can be initiated with the results. The output of the project can support public heath, environment, and medical research area. The results can be applied for the process of micronutrients enhanced health food production and for the health safety and health status enhancement with the additional necessary data expansion and the development of various evaluation technique. 19 refs., 7 figs., 23 tabs. (Author)

  3. Aspectos docentes sobre medio ambiente urbano y sustentabilidad: su importancia actual. /Educational aspects of the urban environment and sustainability: its relevance today.

    Directory of Open Access Journals (Sweden)

    Fadda,Giulietta

    1999-12-01

    Full Text Available Se refiere por qué Chile no se puede incluir entre los países con mayor tradición ambientalista y cómo el modelo económico que le ha valido prestigiosas consideraciones internacionales ha representado un alto costo ambiental y ha provocado daños irreparables al medio ambiente./ It argues the need for a training course at university level in the field of environment and sustainability, and attempts a definition of the components of the course.

  4. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    Science.gov (United States)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  6. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  7. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    Science.gov (United States)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic

  8. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece

    International Nuclear Information System (INIS)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-01-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑ 21 PBDE) in A/C dust ranged between 84 and 4062 ng g −1 with a median value of 1092 ng g −1 , while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day −1 (median 12 ng day −1 ). - Highlights: • PBDEs were investigated in dust of A/C filters in occupational settings in Thessaloniki, Greece. • BDE-209 was found to be the most abundant BDE congener. • High levels of PBDEs were found in a newspaper building, internet cafes and electronic shops. • PBDEs were attributable to the extensive presence and/or usage of electronic devices. • Exposure of employees to PBDEs via indoor dust ingestion was estimated at 12 ng day −1 . - PBDEs were for the first time measured in dust from central A/C filters in workplaces of Greece and their concentrations were used to estimate the non-dietary human exposure

  9. A fluorogenic molecular nanoprobe with an engineered internal environment for sensitive and selective detection of biological hydrogen sulfide.

    Science.gov (United States)

    Kim, Myung; Seo, Young Hun; Kim, Youngsun; Heo, Jeongyun; Jang, Woo-Dong; Sim, Sang Jun; Kim, Sehoon

    2017-02-14

    A nanoreactor approach based on the amphiphilic assembly of various molecules offers a chance to finely engineer the internal reaction medium to enable highly selective and sensitive detection of H 2 S in biological media, being useful for microscopic imaging of cellular processes and in vitro diagnostics with blood samples.

  10. The biological assessment of flora and fauna as standards for changes in the near-shore ocean environment: a study of Barbers Point Harbor.

    Science.gov (United States)

    Hokama, Y; Wachi, K M; Shiraki, A; Goo, C; Ebesu, J S

    2001-02-01

    The biological assessments of the flora and fauna in the near-shore ocean environment, specifically Barbers Point Harbor (BPH), demonstrate the usefulness of these biological analyses for evaluation of the changes occurring following man-made excavation for expansion of the harbor. The study included identification and enumeration of macroalgae and dinoflagellates and analyses of herbivores and carnivores in four areas within the perimeter of the harbor and the north and south entrances into the harbor. Numbers of macroalgae varied between 1994 and 1999 surveys, with significant decrease in numbers in stations C, D and E. Stations A and B were similar between 1994 and 1999 with a slight increase in 1999. The significant differences were shown with the appearance of Gambierdiscus toxicus (G toxicus) in 1999 among the algae in stations A and B. Assessment of herbivores and carnivores with the immunological membrane immunobead assay using monoclonal antibody to ciguatoxin and related polyethers demonstrated an increase in fish toxicity among the herbivore from 1994-1999 (22% increase) with a decrease (22%) in non-toxic fish. This was also demonstrated in the carnivores, but to a lesser degree. It is suggested that the biological analyses of the flora and the fauna of the near-shore ocean environment are appropriate to assess the changes that occur from natural and man-made alterations.

  11. Li depletion effects on Li2TiO3 reaction with H2 in thermo-chemical environment relevant to breeding blanket for fusion power plants

    International Nuclear Information System (INIS)

    Alvani, Carlo; Casadio, Sergio; Contini, Vittoria; Giorgi, Rossella; Mancini, Maria Rita; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2005-07-01

    This is a report of the Working Group in the Subtask on Solid Breeder Blankets under the Implementing Agreement on a Co-operative Programme on Nuclear Technology of Fusion Reactors (International Energy Agency (IEA)). This Working Group (Task F and WG-F) was performed from 2000 to 2004 by a collaboration of European Union (EU) and Japan (JA). In this report, lithium depletion effects on the reaction of lithium titanate (Li 2 TiO 3 ) with hydrogen (H 2 ) in thermo-chemical environment were discussed. The reaction of Li 2 TiO 3 ceramics with H 2 was studied in a thermo-chemical environment simulating (excepting irradiation) that of the hottest pebble-bed zone of breeding-blanket actually designed for fusion power plants. This 'reduction' as performed at 900degC in Ar+0.1%H, purge gas (He+0.1%H 2 being the designed reference') was found to be enhanced by TiO 2 doping of the specimens of simulate 6 Li-burn-up expected to reach 20% at their end-of-life. The reaction rates, however, were so slow to be not significantly extrapolated to the breeder material service time (years). In Ar+3%H 2 , faster reaction rates allowed a better identification of the process evolution (kinetics) by Temperature-Programmed Reduction' (TPR) and 'Oxidation' (TPO), and combined TG-DTA thermal analysis. The reduction of pure Li 4/5 TiO 12/5 spinel phase to Li 4/5 TiO 12/5-y was found to reach in one day the steady state at the O-vacancy concentration y=0.2. Complimentary microscopy (SEM) and spectroscopy (XRD, XPS) techniques were used to characterize the reaction products among which the presence of the orthorhombic Li v TiO 2 (0 ≤ v ≤ 1/2) and Li 2 TiO 3 could be diagnosed. So that the complete spinel reduction to Li 1/2 TiO 2 was obtained according to a scheme involving the Li 1/2 TiO 2 -Li 4/5 TiO 12/5 spinel phase solid solution for which y=3v/(10-5v). The reduction rate of pure meta-titanate to Li 2 TiO 3-x was found much lower (x approx. = 0.01) and even possibly due to the presence

  12. A review of biological studies sponsored by the Department of the Environment to assist feasibility studies of the disposal of heat generating radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Allen, J.A.; Gale, G.

    1985-04-01

    The report review recent biological studies on the organisms of the deep sea and takes into account the physical and chemical parameters that influence them. Particular attention is devoted to studies funded by the Department of the Environment to determine the technical feasibility of disposing of high level radioactive wastes in the deep sea. Such quantitative information that exists concerning the input and output of organic material into the abyss is given. This information is related to the diversity, growth, size, and reproductive biology of the abyssal infauna and epifauna and to the organisms within the water column above. Life processes, under the influence of high pressure are discussed and related to the uptake by and release from organisms of radiochemicals. Gaps in our present knowledge of the total ecosystem are identified and recommendations for future studies made. (author)

  13. The use of Sphagnum recurvum Pal. Beauv. as biological tests for determination of the level of pollution with fluorine compounds and sulphur dioxide in the environment

    Directory of Open Access Journals (Sweden)

    Maria Świeboda

    2014-01-01

    Full Text Available The green parts of the peat moss Sphagnum recurvum Pal. Beauv. were used as a biological test to evaluate the pollution level of the natural environment in the region of the aluminium works "Skawina" (Southern Poland with fluorine compounds and sulphur dioxide. The moss samples were placed in nylon nets and exposed to the polluted air for 6 weeks, then the fluorine and sulphur content in them was determined. The results demonstrated the usefulness of this method for the purpose of establishing the range of influence of the emitted industrial pollution.

  14. Protecting America's economy, environment, health, and security against invasive species requires a strong federal program in systematic biology

    Science.gov (United States)

    Hilda Diaz-Soltero; Amy Y. Rossman

    2011-01-01

    Systematics is the science that identifies and groups organisms by understanding their origins, relationships, and distributions. It is fundamental to understanding life on earth, our crops, wildlife, and diseases, and it provides the scientific foundation to recognize and manage invasive species. Protecting America's economy, environment, health, and security...

  15. To What Extent Do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues

    Science.gov (United States)

    Calado, Florbela M.; Scharfenberg, Franz-Josef; Bogner, Franz X.

    2015-01-01

    Our article proposes a set of six criteria for analysing science-technology-society-environment (STSE) issues in regular textbooks as to how they are expected to contribute to students' scientific literacy. We chose genetics and gene technology as fields prolific in STSE issues. We derived our criteria (including 26 sub-criteria) from a literature…

  16. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a

  17. Effects of grade control structures on fish passage, biological assemblages, and hydraulic environments in western Iowa streams: a multidisciplinary review

    Science.gov (United States)

    Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.

    2011-01-01

    Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.

  18. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.; Villani, M.; Coluccio, M. L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé , N.; Cesarelli, M.; Amato, F.; Di Fabrizio, Enzo M.; Gentile, F.

    2018-01-01

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  19. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  20. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    Science.gov (United States)

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  1. Adolescent Learning in the Zoo: Embedding a Non-Formal Learning Environment to Teach Formal Aspects of Vertebrate Biology

    Science.gov (United States)

    Randler, Christoph; Kummer, Barbara; Wilhelm, Christian

    2012-06-01

    The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the self-determination theory, therefore, we used a group-based, hands-on learning environment. To address this questions, we used a treatment—control design (BACI) with different treatments and a control group. Pre-, post- and retention tests were applied. All treatments led to a substantial increase of learning and retention knowledge compared to the control group. Immediately after the zoo visit, the zoo-guide tour provided the highest scores, while after a delay of 6 weeks, the learner-centered environment combined with a teacher-guided summarizing scored best. We suggest incorporating the zoo as an out-of-school environment into formal school learning, and we propose different methods to improve learning in zoo settings.

  2. Concentrations and biological availability of 238U and 230Th in the environs of a uranium milling operation

    International Nuclear Information System (INIS)

    Ibrahim, S.; Flot, S.; Whicker, F.W.

    1982-01-01

    This paper reports on a study whose objectives were to determine 238 U and 230 Th concentrations in soil and native plants from various sites around a conventional acid leach uranium milling operation in the Western US, and to estimate plant/soil concentration factors. Soil and vegetation samples were collected from exposed, weathered tailings; near the edge of a tailings pond; from a reclamation area; and at several native range background (control) locations. The results indicate that mean plant/soil concentration factors varied significantly among sites and between radionuclides, but no significant differences between plant groups were found. Concentration factors for 230 Th were greater than for 238 U for plants growing at the edge of the tailings pond. It is speculated that the lower concentration factors for uranium relative to thorium at this site may be due to the proportion of their contents in soil that is biologically available for plant uptake

  3. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  4. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  5. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  6. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    Science.gov (United States)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  7. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Directory of Open Access Journals (Sweden)

    Tim D Williams

    2011-08-01

    Full Text Available The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  8. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Science.gov (United States)

    Williams, Tim D; Turan, Nil; Diab, Amer M; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L; Hrydziuszko, Olga; Lyons, Brett P; Stentiford, Grant D; Herbert, John M; Abraham, Joseph K; Katsiadaki, Ioanna; Leaver, Michael J; Taggart, John B; George, Stephen G; Viant, Mark R; Chipman, Kevin J; Falciani, Francesco

    2011-08-01

    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  9. In vitro and in vivo measurements of the dissolution parameters of uranium and plutonium mixed oxides in biological environment

    International Nuclear Information System (INIS)

    Matton, S.

    1999-01-01

    During the mixed-oxide fuel fabrication process, inhalation is potentially the main route of internal contamination. The International Commission on Radiological Protection recommends experimental measurement of parameters such as size and dissolution rate for specific industrial compounds. First, we validated the use of PERALS (Photon Electron Rejecting Alpha Liquid Scintillation) for alpha measurement in biological samples which, in some cases, could improve detection limit. We characterised physical chemical properties in terms of size, specific area and activity of 3 different powders: MOX made according to either the MIMAS process, which showed heterogeneous chemical composition, or the SOLGEL, which showed homogeneous chemical composition and industrial PuO 2 . Their dissolution parameters, f r and s s , as defined in the simplest model proposed by ICRP 66 were measured in vivo, after inhalation in the rat, and in vitro. The statistical variation of these values were expressed as standard deviation. Moreover, in vitro studies demonstrated variation of the s s value depending on the duration of the incubation. We also developed methods to characterise interactions between UO 2 particles and phosphate ions which could be involved in the actinide toxicity. (author) [fr

  10. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics

    International Nuclear Information System (INIS)

    2008-04-01

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  11. Contents of toxic elements in biological environment of pregnant women of all reproductive age give birth first time

    Directory of Open Access Journals (Sweden)

    Markevych V.V.

    2016-09-01

    Full Text Available Purpose — to investigate the toxic contents of microelements in serum and erythrocytes of pregnant women in the early, middle and old reproductive age in the case of the first delivery. Patients and methods. The study was conducted in the third trimester of pregnancy on 36.08±0.59 weeks of gestation. Reproductive age of pregnant women was 16.33±0.21, 24.67±0.37 and 36.14±0.77 years respectively. The content of toxic ME (chromium, nickel, lead and cobalt in the biological substrates was determined by atomic absorption spectrophotometer C — 115 MI. Results. We found that pregnant women regardless of reproductive age who gave birth for the first time had high level of nickel both in serum and in red blood cells. With the growth of reproductive age we saw accumulation of toxic chromium in serum. Much less content of cadmium in red blood cells and possibly other tissues in pregnant women of older reproductive age apparently linked to the more conscious and responsible attitude to their health condition, the process of pregnancy and a healthy lifestyle and above except the main source of cadmium — smoking. The lowest content of lead in red blood cells is determined in the women of middle reproductive age. At the same time serum and erythrocytic content of lead in any group was not higher its level in healthy pregnant women. Conclusion. Nowadays very actual is researching of placenta as a body that provides trace element balance in system «mother—placenta—fetus». To determine the role of placenta in protecting the fetus from exposure of toxic elements reasonable is investigation of their content in the placenta and its functions — barrier penetration, depositing of essential and toxic elements.

  12. Marine protected area restricts demographic connectivity: Dissimilarity in a marine environment can function as a biological barrier.

    Science.gov (United States)

    Sato, Masaaki; Honda, Kentaro; Uy, Wilfredo H; Baslot, Darwin I; Genovia, Tom G; Nakamura, Yohei; Bernardo, Lawrence Patrick C; Kurokochi, Hiroyuki; Pantallano, Allyn Duvin S; Lian, Chunlan; Nadaoka, Kazuo; Nakaoka, Masahiro

    2017-10-01

    The establishment of marine protected areas (MPAs) can often lead to environmental differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we examined the abundance and recruitment patterns of two anemonefishes ( Amphiprion frenatus and A. perideraion ) that inhabit sea anemones in different management zones (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parentage analysis. We found lower levels of abundance per anemone in the MPA compared to the fishing zones for both species ( n  = 1,525 anemones, p  = .032). The parentage analysis also showed that lower numbers of fishes were recruited from the fishing zones and outside of the study area into each anemone in the MPA than into each anemone in the fishing zones ( n  = 1,525 anemones, p  fishing zones ( n  = 384 females, p  = .516). Because the ocean currents around the study site were unlikely to cause a lower settlement intensity of larvae in the MPA, the ocean circulation was not considered crucial to the observed abundance and recruitment patterns. Instead, stronger top-down control and/or a lower density of host anemones in the MPA were potential factors for such patterns. Our results highlight the importance of dissimilarity in a marine environment as a factor that affects connectivity.

  13. Multifinality in the Development of Personality Disorders: A Biology × Sex × Environment Interaction Model of Antisocial and Borderline Traits

    Science.gov (United States)

    Beauchaine, Theodore P.; Klein, Daniel N.; Crowell, Sheila E.; Derbidge, Christina; Gatzke-Kopp, Lisa

    2009-01-01

    Although antisocial personality disorder (ASPD) is more common among males and borderline personality disorder (BPD) is more common among females, some (e.g., Paris, 1997) have suggested that the two disorders reflect multifinal outcomes of a single etiology. This assertion is based on several overlapping symptoms and features, including trait impulsivity, emotional lability, high rates of depression and suicide, and a high likelihood of childhood abuse and/or neglect. Furthermore, rates of ASPD are elevated in the first degree relatives of those with BPD, and concurrent comorbidity rates for the two disorders are high. In this article, we present a common model of antisocial and borderline personality development. We begin by reviewing issues and problems with diagnosing and studying personality disorders in children and adolescents. Next, we discuss dopaminergic and serotonergic mechanisms of trait impulsivity as predisposing vulnerabilities to ASPD and BPD. Finally, we extend shared risk models for ASPD and BPD by specifying genetic loci that may confer differential vulnerability to impulsive aggression and mood dysregulation among males and impulsive self-injury and mood dysregulation among females. Although the precise mechanisms of these sex-moderated genetic vulnerabilities remain poorly understood, they appear to interact with environmental risk factors including adverse rearing environments to potentiate the development of ASPD and BPD. PMID:19583882

  14. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  15. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  16. Cancer and non-cancer risk at low doses of radiation: biological basis of radiation-environment interplay

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2013-01-01

    Cancer and non-cancer risk at low doses of ionizing radiation remains poorly defined due to ambiguity at low doses caused by limitations in statistical power and information available on interplay with environment. To deal with these problems, a novel non-parametric statistics was developed based on artificial neural networks theorem and applied to cancer and non-cancer risk in A-bomb survivors. The analysis revealed several unique features at low doses that could not be accounted for by nominal radiation dose alone. They include (1) threshold that varies with organ, gender and age, including cardiovascular diseases, (2) prevalence of infectious diseases, and (3) suppression of pathogenesis of HTLV1. The threshold is unique as it is manifested as negative excess relative risk, a reduction of spontaneous rate at low doses. The response is consistent with currently emerging laboratory data on DNA double-strand break (DSB) repair pathway choice and its sustainability as epigenetic memory in accordance with histone code theory. In response to DSB, of radiation or DNA replication arrest origin, distinct and competitively operating repair pathways are instigated. Activation by low doses of restitution-directed canonical non-homologous end-joining (C-NHEJ) suppresses both error-prone alternative end-joining (Alt-NHEJ) and homologous recombination (HR). The latter two present major pathways to mutagenesis at stalled replication folk associated with endogenous and exogenous genotoxin such as tobacco smoke metabolites and AID-associated somatic hypermutation and class switch recombination in Ig gene. Suppression of these error-prone pathways by low doses of low LET radiation is consistent with the reduction of cancer occurrence by environmental genotoxin, immunodiversity and stable integration of retrovirus DNA, providing a significant modulator of dose linearity at low doses. Whole picture may bring about a new landscape of cancer and non-cancer molecular epidemiology which

  17. A biological model for construction of meaning to serve as an interface between an intelligent system and its environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, W.J. [Univ of California, Berkeley, CA (United States)

    1996-12-31

    There are two main levels of neural function to be modeled with appropriate state variables and operations. Microscopic activity is seen in the fraction of the variance of single neuron pulse trains (>99.9%) that is largely random and uncorrelated with pulse trains of other neurons in the neuropil. Macroscopic activity is revealed in the >0.1% of the total variance of each neuron that is covariant with all other neurons in neuropil comprising a population. It is observed in dendritic potentials recorded as surface EEGs. The {open_quotes}spontaneous{close_quotes} background activity of neuropil at both levels arises from mutual excitation within a population of excitatory neurons. Its governing point attractor is set by the macroscopic state, which acts as an order parameter to regulate the contributing neurons. The point attractor manifests a homogeneous field of white noise, which can be modeled by a continuous time state variable for pulse density. Neuropil comprises both excitatory and inhibitory neurons Their interactions at the macroscopic level give oscillations, manifesting a limit cycle attractor. Multiple areas of neuropil comprising a sensory system interact. Due to their incommensurate characteristic frequencies and the long axonal delays between them, the system maintains a global chaotic attractor having multiple wings, one for each discriminable class of stimuli. Access to each wing is by stimulus- induced state transitions, causing construction of macroscopic chaotic patterns, that are carried to targets of cortical transmission by axon tracts. AM patterns of the carrier are extracted by the targets by spatiotemporal integration, thereby retrieving the covariance comprising the chaotic signal. In digital models, noise serves to stabilize the chaotic attractors. An example will be given of the model operating as an interface between the environment and a pattern classifier, which learns to form its own feature detectors.

  18. Public health challenges for the 21st century: Convergence of demography, economics, environment and biology: Nalanda distinguished lecture.

    Science.gov (United States)

    Narayan, K M Venkat

    2017-01-01

    The rapidly changing and interdependent world under the mega-force of globalization presents unique challenges and opportunities for public health. Focusing on the example of type 2 diabetes, I argue that an appreciation for the evolution of demographic and economic contexts is essential to appropriately address today's dynamic and complex health challenges. For the vast majority of the past 2000 years, India and China were the world's largest economies until the rise of western European nations in the 18th century and later the USA. In the case of India, inflation-adjusted per capita income remained flat between 1700 and 1950, while in the same period that of the UK grew more than 7-fold, although the population of the UK relatively grew 3-times faster than that of India in the same period. This 250-year gap in industrial and economic development may be central to understanding the large burden of diabetes among individuals of Indian descent, and should be taken into account in a wider context to understand the divergence in health development between India and parts of the world which benefited from early industrial progress and accompanying improvements in food supply, hygiene and living conditions. Lessons from high-income countries support a strong emphasis on public health to achieve important populationwide health gains, and offer insights into the broader determinants of health such as economic and food security, equity, urban infrastructure, health-promoting environments, and access to high-quality health systems. Critical to contemporary public health is also strong data systems and evidence-based decision-making.

  19. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale.

    Science.gov (United States)

    Wallace, Tiffany A; Martin, Damali N; Ambs, Stefan

    2011-08-01

    Cancer incidence and mortality rates show great variations across nations and between population groups. These variations are largely explained by differences in age distribution, diet and lifestyle, access to health care, cultural barriers and exposure to carcinogens and pathogens. Cancers caused by infections are significantly more common in developing than developed countries, and they overproportionally affect immigrant populations in the USA and other countries. The global pattern of cancer is not stagnant. Instead, it is dynamic because of fluctuations in the age distribution of populations, improvements in cancer prevention and early detection in affluent countries and rapid changes in diet and lifestyle in parts of the world. For example, increased smoking rates have caused tobacco-induced cancers to rise in various Asian countries, whereas reduced smoking rates have caused these cancers to plateau or even begin to decline in Western Europe and North America. Some population groups experience a disproportionally high cancer burden. In the USA and the Caribbean, cancer incidence and mortality rates are excessively high in populations of African ancestry when compared with other population groups. The causes of this disparity are multifaceted and may include tumor biological and genetic factors and their interaction with the environment. In this review, we will discuss the magnitude and causes of global cancer health disparities and will, with a focus on African-Americans and selected cancer sites, evaluate the evidence that genetic and tumor biological factors contribute to existing cancer incidence and outcome differences among population groups in the USA.

  20. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Directory of Open Access Journals (Sweden)

    Tilton Susan C

    2012-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single

  1. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis

  2. Assessing the relevance of ecotoxicological studies for regulatory decision making.

    Science.gov (United States)

    Rudén, Christina; Adams, Julie; Ågerstrand, Marlene; Brock, Theo Cm; Poulsen, Veronique; Schlekat, Christian E; Wheeler, James R; Henry, Tala R

    2017-07-01

    Regulatory policies in many parts of the world recognize either the utility of or the mandate that all available studies be considered in environmental or ecological hazard and risk assessment (ERA) of chemicals, including studies from the peer-reviewed literature. Consequently, a vast array of different studies and data types need to be considered. The first steps in the evaluation process involve determining whether the study is relevant to the ERA and sufficiently reliable. Relevance evaluation is typically performed using existing guidance but involves application of "expert judgment" by risk assessors. In the present paper, we review published guidance for relevance evaluation and, on the basis of the practical experience within the group of authors, we identify additional aspects and further develop already proposed aspects that should be considered when conducting a relevance assessment for ecotoxicological studies. From a regulatory point of view, the overarching key aspect of relevance concerns the ability to directly or indirectly use the study in ERA with the purpose of addressing specific protection goals and ultimately regulatory decision making. Because ERA schemes are based on the appropriate linking of exposure and effect estimates, important features of ecotoxicological studies relate to exposure relevance and biological relevance. Exposure relevance addresses the representativeness of the test substance, environmental exposure media, and exposure regime. Biological relevance deals with the environmental significance of the test organism and the endpoints selected, the ecological realism of the test conditions simulated in the study, as well as a mechanistic link of treatment-related effects for endpoints to the protection goal identified in the ERA. In addition, uncertainties associated with relevance should be considered in the assessment. A systematic and transparent assessment of relevance is needed for regulatory decision making. The relevance

  3. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    Science.gov (United States)

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  4. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  5. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  6. New insights into pancreatic cancer biology.

    Science.gov (United States)

    Hidalgo, M

    2012-09-01

    Pancreatic cancer remains a devastating disease. Over the last few years, there have been important advances in the molecular and biological understanding of pancreatic cancer. This included understanding of the genomic complexity of the disease, the role of pancreatic cancer stem cells, the relevance of the tumor microenvironment, and the unique metabolic adaptation of pancreas cancer cells to obtain nutrients under hypoxic environment. In this paper, we review the most salient developments in these few areas.

  7. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  8. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    Science.gov (United States)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  9. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics; Studentska vedecka konferencia, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  10. Biological diversity in urban environments

    OpenAIRE

    Gyllin, Mats

    2004-01-01

    The thesis approaches the concept of urban biodiversity from different angles in an attempt to explain its significance. In a study from the constructed Toftanäs wetland park, methods of affecting local biodi-versity are demonstrated as integrated with other functions, such as water quality and stormwater detention. Vegetation analyses are provided to show the rapid and sometimes unexpected change in species composition. Both spontaneous and introduced species were followed in a five-year pro...

  11. A review of biological processes within oceanic water columns relevant to the assessment of the safety of disposal of waste, notably radioactive isotopes on or within the sea bed

    International Nuclear Information System (INIS)

    Angel, M.V.

    1985-01-01

    Pelagic biological processes and their connotations in the assessment of possible dispersal mechanisms of contaminants released on the deep oceanic seabed are reviewed. Biological gradients tend to be from the surface down so the search is for processes which run counter to these general gradients. Observed profiles of standing crop of both plankton and micronekton show that below 2000 m biological activity would have to be exceptionally dynamic to have an influence that will even approach within an order of magnitude of the dispersive effect of physical mixing. Examination of all forms of known migration mechanisms fails to reveal such dynamic activity. Nor have any critical pathways been identified within the present or foreseeable pattern of exploitation of the oceans. However, a major gap in knowledge is whether the pattern of these biological processes changes substantially in the region of continental slopes. (author)

  12. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are

  13. The CLEM Model: Path Analysis of the Mediating Effects of Attitudes and Motivational Beliefs on the Relationship between Perceived Learning Environment and Course Performance in an Undergraduate Non-Major Biology Course

    Science.gov (United States)

    Partin, Matthew L.; Haney, Jodi J.

    2012-01-01

    In this study, the following questions were addressed in an undergraduate non-major biology course using a large lecture format: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? The purpose of this study was to…

  14. WE-H-BRA-09: Application of a Modified Microdosimetric-Kinetic Model to Analyze Relative Biological Effectiveness of Ions Relevant to Light Ion Therapy Using the Particle Heavy Ion Transport System

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, M [Yale-New Haven Hospital, New Haven, CT (United States); Palmer, T [Oregon State University, Corvallis, OR (United States)

    2016-06-15

    Purpose: To evaluate the dose and biological effectiveness of various ions that could potentially be used for actively scanned particle therapy. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary particles for 1H beams and ten million particles for 4He, 7Li, 10B, 12C, 14N, 16O, and 20Ne were simulated for 0.6cm diameter pencil beams. Beam energies corresponding to Bragg peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely every millimeter and radially in annuli with outer radius of 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model for five different cell types to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. The product of the calculated RBEs and the simulated physical dose was taken to create biological dose and comparisons were then made between the various ions. Results: Transversely, the 10B beam was seen to minimize relative biological dose in both the constant and accelerated dose change regions, proximal to the Bragg Peak, for all beams traveling greater than 50mm. For the 50mm beam, 7Li was seen to provide the most optimal biological dose profile. Radially small fluctuations (<4.2%) were seen in RBE while physical dose was greater than 1% for all beams. Conclusion: Even with the growing usage of 12C, it may not be the most optimal ion in all clinical situations. Boron was calculated to have slightly enhanced RBE characteristics, leading to lower relative biological doses.

  15. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  16. Making Deferred Taxes Relevant

    NARCIS (Netherlands)

    Brouwer, Arjan; Naarding, Ewout

    2018-01-01

    We analyse the conceptual problems in current accounting for deferred taxes and provide solutions derived from the literature in order to make International Financial Reporting Standards (IFRS) deferred tax numbers value-relevant. In our view, the empirical results concerning the value relevance of

  17. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  18. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples.

    Science.gov (United States)

    Bonta, Maximilian; Hegedus, Balazs; Limbeck, Andreas

    2016-02-18

    In this work, a novel calibration approach for minor and trace element quantification in LA-ICP-MS imaging of biological tissues is presented. Droplets of aqueous standard solutions are deposited onto pre-cut pieces of filter paper, allowed to dry, and sputtered with a thin gold layer for use as pseudo-internal standard. Analysis of the standards using LA-ICP-MS is performed using radial line-scans across the filters. In contrast to conventionally used preparation of matrix-matched tissue standards, the dried-droplet approach offers a variety of advantages: The standards are easy to prepare, no characterization of the standards using acid digestion is required, no handling of biological materials is necessary, and the concentration range, as well the number of investigated analytes is almost unlimited. The proposed quantification method has been verified using homogenized tissue standards with known analyte concentrations before being applied to a human malignant mesothelioma biopsy from a patient who had not received any chemotherapeutic treatment. Elemental distribution images were acquired at a lateral resolution of 40 μm per pixel, limits of detection ranging from 0.1 μg g(-1) (Mn, Ni, Cu, Zn) to 13.2 μg g(-1) (K) were reached. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ecological principles relevant to nuclear war

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Cropper, W.P. Jr.; Grover, H.D.

    1985-01-01

    The ecological principles outlined are very basic ones; the authors anticipate a readership trained in a broad range of disciplines, including those unfamiliar with the academic discipline of ecology. The authors include substantial discussion on ecophysiology (i.e., the responses of organisms to their environment) because this is relevant to the new understanding of the potential climatic consequences of nuclear war. In particular, the physiological sensitivity of organisms to reduced levels of light and temperature are a key part of the analysis of the potential ecological effects and agricultural effects of nuclear war. Much of the ecological analysis has been organized around major biological units called biomes. The authors describe the biome concept and discuss some of the environmental-climatic factors that are believed to control biome distribution. Emphasis is given to plants because of their controlling influence on ecosystem functions through their role as primary producers. Future reports are needed to address more fully the potential effects on animals. Much more research needs to be done on both plant and animal responses to the types of perturbations possible for the aftermath of a nuclear war. Another important element for analysis of the potential ecological consequences of nuclear war concerns recovery processes. As the post-nuclear war environmental extremes ameliorate, ecological communities in devastated regions would begin to reorganize. It is not possible to predict the course of such a succession precisely, but some principles concerning post-perturbation replacement (such as seed banks and germination), relevant successional patterns, and organism strategies are discussed

  20. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Culturally Relevant Cyberbullying Prevention

    OpenAIRE

    Phillips, Gregory John

    2017-01-01

    In this action research study, I, along with a student intervention committee of 14 members, developed a cyberbullying intervention for a large urban high school on the west coast. This high school contained a predominantly African American student population. I aimed to discover culturally relevant cyberbullying prevention strategies for African American students. The intervention committee selected video safety messages featuring African American actors as the most culturally relevant cyber...

  2. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. Report of a Consultants Group Meeting. Working Material

    International Nuclear Information System (INIS)

    1999-01-01

    High-priority opportunities are proposed for use of nuclear techniques to effect improved production and shipping of augmentative biological control agents. Proposed subprojects include use of ionizing radiation to improve the production of insect natural enemies on natural hosts/prey or on artificial diets. Other subprojects pertain to improving the ability to move beneficial organisms in international trade, and in using them in the field. Additional high priority activities were identified proposing use of nuclear techniques to produce sterile and/or substerile F-1 weed biological control agents to help evaluate potential impact on non-target species in the pre-release phase, integration of augmentative releases and F-1 sterility in IPM and area-wide pest management programmes, and utilization of by-products from SIT mass-rearing facilities in augmentative biological control programmes. (author)

  4. Development of marine flyash concrete and evaluation of its performance with respect to physico-chemical and biological factors in marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; VijayKumar, V.; Kundaikar, T.J.; Venugopal, C.; Sawant, S.S.

    The aim of the research was to develop flyash concrete and assess various factors controlling its durability in the marine environment. Hence the research was planned with the following objectives in mind: (1) Development of flyash concrete...

  5. The Limits to Relevance

    Science.gov (United States)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  6. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  7. The CLEM model: Path analysis of the mediating effects of attitudes and motivational beliefs on the relationship between perceived learning environment and course performance in an undergraduate nonmajor biology course

    Science.gov (United States)

    Partin, Matthew L.

    The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to

  8. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  9. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  10. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  11. Is Information Still Relevant?

    Science.gov (United States)

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  12. Search for the evidence of endocrine disruption in the aquatic environment: Lessons to be learned from joint biological and chemical monitoring in the European Project COMPREHEND

    NARCIS (Netherlands)

    Eggen, R.I.L.; Bengtsson, B.E.; Bowmer, C.T.; Gerritsen, A.A.M.; Gibert, M.; Hylland, K.; Johnson, A.C.; Leonards, P.E.G.; Nakari, T.; Norrgren, L.; Sumpter, J.P.; Suter, M.J.F.; Svenson, A.; Pickering, A.D.

    2003-01-01

    Between January 1999 and December 2001, the European Community project COMPREHEND was performed. The overall aim of COMPREHEND was to assess endocrine disruption in the aquatic environment in Europe, consequent to effluent discharge, with emphasis on estrogenic activity. COMPREHEND demonstrated the

  13. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  14. Information Needs/Relevance

    OpenAIRE

    Wildemuth, Barbara M.

    2009-01-01

    A user's interaction with a DL is often initiated as the result of the user experiencing an information need of some kind. Aspects of that experience and how it might affect the user's interactions with the DL are discussed in this module. In addition, users continuously make decisions about and evaluations of the materials retrieved from a DL, relative to their information needs. Relevance judgments, and their relationship to the user's information needs, are discussed in this module. Draft

  15. Inferring relevance in a changing world

    Directory of Open Access Journals (Sweden)

    Robert C Wilson

    2012-01-01

    Full Text Available Reinforcement learning models of human and animal learning usually concentrate on how we learn the relationship between different stimuli or actions and rewards. However, in real world situations stimuli are ill-defined. On the one hand, our immediate environment is extremely multi-dimensional. On the other hand, in every decision-making scenario only a few aspects of the environment are relevant for obtaining reward, while most are irrelevant. Thus a key question is how do we learn these relevant dimensions, that is, how do we learn what to learn about? We investigated this process of representation learning experimentally, using a task in which one stimulus dimension was relevant for determining reward at each point in time. As in real life situations, in our task the relevant dimension can change without warning, adding ever-present uncertainty engendered by a constantly changing environment. We show that human performance on this task is better described by a suboptimal strategy based on selective attention and serial hypothesis testing rather than a normative strategy based on probabilistic inference. From this, we conjecture that the problem of inferring relevance in general scenarios is too computationally demanding for the brain to solve optimally. As a result the brain utilizes approximations, employing these even in simplified scenarios in which optimal representation learning is tractable, such as the one in our experiment.

  16. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    Science.gov (United States)

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  18. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  19. Nanodiamonds as platforms for biology and medicine.

    Science.gov (United States)

    Man, Han B; Ho, Dean

    2013-02-01

    Nanoparticles possess a wide range of exceptional properties applicable to biology and medicine. In particular, nanodiamonds (NDs) are being studied extensively because they possess unique characteristics that make them suitable as platforms for diagnostics and therapeutics. This carbon-based material (2-8 nm) is medically relevant because it unites several key properties necessary for clinical applications, such as stability and compatibility in biological environments, and scalability in production. Research by the Ho group and others has yielded ND particles with a variety of capabilities ranging from delivery of chemotherapeutic drugs to targeted labeling and uptake studies. In addition, encouraging new findings have demonstrated the ability for NDs to effectively treat chemoresistant tumors in vivo. In this review, we highlight the progress made toward bringing nanodiamonds from the bench to the bedside.

  20. Tailor-Made Fluorescent Trilobolide To Study Its Biological Relevance

    Czech Academy of Sciences Publication Activity Database

    Jurášek, M.; Rimpelová, S.; Kmoníčková, Eva; Drašar, P.; Ruml, T.

    2014-01-01

    Roč. 57, č. 19 (2014), s. 7947-7954 ISSN 0022-2623 Grant - others:GA ČR(CZ) GA14-28334S; GA MŠMT(CZ) 20/2014 Program:GA Institutional support: RVO:68378041 Keywords : trilobolide * nitric oxide * endoplasmic reticulum Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 5.447, year: 2014

  1. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.

    2011-01-01

    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  2. Towards a barrier height benchmark set for biologically relevant systems.

    Science.gov (United States)

    Kromann, Jimmy C; Christensen, Anders S; Cui, Qiang; Jensen, Jan H

    2016-01-01

    We have collected computed barrier heights and reaction energies (and associated model structures) for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p)[LANL2DZ]//B3LYP/6-31G(d,p) level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs) observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10-15 kcal/mol), while DFTB results in a MAD that is significantly lower (6 kcal/mol). The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4-5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p). For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set and how other researchers can contribute to the process.

  3. Towards a barrier height benchmark set for biologically relevant systems

    Directory of Open Access Journals (Sweden)

    Jimmy C. Kromann

    2016-05-01

    Full Text Available We have collected computed barrier heights and reaction energies (and associated model structures for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p[LANL2DZ]//B3LYP/6-31G(d,p level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10–15 kcal/mol, while DFTB results in a MAD that is significantly lower (6 kcal/mol. The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4–5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p. For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set and how other researchers can contribute to the process.

  4. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but

  5. Epigenetics in prostate cancer: biologic and clinical relevance.

    Science.gov (United States)

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Relevant Features of Science: Values in Conservation Biology

    Science.gov (United States)

    van Dijk, Esther M.

    2013-01-01

    The development of an understanding of the nature of science is generally assumed to be an important aspect of science communication with respect to the enhancement of scientific literacy. At present, a general characterization of the nature of science is still lacking and probably such a characterization will not be achievable. The overall aim of…

  7. [Relevant public health enteropathogens].

    Science.gov (United States)

    Riveros, Maribel; Ochoa, Theresa J

    2015-01-01

    Diarrhea remains the third leading cause of death in children under five years, despite recent advances in the management and prevention of this disease. It is caused by multiple pathogens, however, the prevalence of each varies by age group, geographical area and the scenario where cases (community vs hospital) are recorded. The most relevant pathogens in public health are those associated with the highest burden of disease, severity, complications and mortality. In our country, norovirus, Campylobacter and diarrheagenic E. coli are the most prevalent pathogens at the community level in children. In this paper we review the local epidemiology and potential areas of development in five selected pathogens: rotavirus, norovirus, Shiga toxin-producing E. coli (STEC), Shigella and Salmonella. Of these, rotavirus is the most important in the pediatric population and the main agent responsible for child mortality from diarrhea. The introduction of rotavirus vaccination in Peru will have a significant impact on disease burden and mortality from diarrhea. However, surveillance studies are needed to determine the impact of vaccination and changes in the epidemiology of diarrhea in Peru following the introduction of new vaccines, as well as antibiotic resistance surveillance of clinical relevant bacteria.

  8. [How to be prudent with synthetic biology. Synthetic Biology and the precautionary principle].

    Science.gov (United States)

    Rodríguez López, Blanca

    2014-01-01

    Synthetic biology is a new discipline that is twofold: firstly it offers the promise to pay benefits that can alleviate some of the ills that plague mankind; On the other hand, like all technologies, holds risks. Given these, the most critical and concerned about the risks, invoke the application of the precautionary principle, common in cases where an activity or new technology creates risks to the environment and/or human health, but far from universally accepted happens to be currently one of the most controversial principles. In this paper the question of the risks and benefits of synthetic biology and the relevance of applying the precautionary principle are analyzed. To do this we proceed as follows. The first part focuses on synthetic biology. At first, this discipline is characterized, with special attention to what is novel compared to the known as "genetic engineering". In the second stage both the benefits and the risks associated with it are discussed. The first part concludes with a review of the efforts currently being made to control or minimize the risks. The second part aims to analyze the precautionary principle and its possible relevance to the case of Synthetic Biology. At first, the different versions and interpretations of the principle and the various criticisms of which has been the subject are reviewed. Finally, after discarding the Precautionary Principle as an useful tool, it is seen as more appropriate some recent proposals to treat technologies that take into account not only risks but also their benefits.

  9. Evolutionary medicine: update on the relevance to family practice.

    Science.gov (United States)

    Naugler, Christopher T

    2008-09-01

    To review the relevance of evolutionary medicine to family practice and family physician training. Articles were located through a MEDLINE search, using the key words evolution, Darwin, and adaptation. Most references presented level III evidence (expert opinion), while a minority provided level II evidence (epidemiologic studies). Evolutionary medicine deals with the interplay of biology and the environment in the understanding of human disease. Yet medical schools have virtually ignored the need for family physicians to have more than a cursory knowledge of this topic. A review of the main trends in this field most relevant to family practice revealed that a basic knowledge of evolutionary medicine might help in explaining the causation of diseases to patients. Evolutionary medicine has also proven key to explaining the reasons for the development of antibiotic resistance and has the potential to explain cancer pathogenesis. As an organizing principle, this field also has potential in the teaching of family medicine. Evolutionary medicine should be studied further and incorporated into medical training and practice. Its practical utility will be proven through the generation of testable hypotheses and their application in relation to disease causation and possible prevention.

  10. Concentration levels of rare-earth elements and thorium on plants from the Morro de Ferro environment as an indicator for the biological availability of transuranium elements

    International Nuclear Information System (INIS)

    Miekeley, N.; Casartelli, E.A.; Dotto, R.M.

    1994-01-01

    Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of μg/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing for Solanum ciliatum in the sequence: leaves -3 to 10 -2 . Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed. (author) 26 refs.; 5 figs.; 5 tabs

  11. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations.

    Science.gov (United States)

    Boggio-Pasqua, Martial; Burmeister, Carl F; Robb, Michael A; Groenhof, Gerrit

    2012-06-14

    Organisms have evolved a wide variety of mechanisms to utilize and respond to light. In many cases, the biological response is mediated by structural changes that follow photon absorption in a protein complex. The initial step in such cases is normally the photoisomerization of a highly conjugated prosthetic group. To understand better the factors controlling the isomerization, we perform atomistic molecular dynamics simulations. In this perspective article we briefly review the key theoretical concepts of photochemical reactions and present a practical simulation scheme for simulating photochemical reactions in biomolecular systems. In our scheme, a multi-configurational quantum mechanical description is used to model the electronic rearrangement for those parts of the system that are involved in the photon absorption. For the remainder, typically consisting of the apo-protein and the solvent, a simple force field model is used. The interactions in the systems are thus computed within a hybrid quantum/classical framework. Forces are calculated on-the-fly, and a diabatic surface hopping procedure is used to model the excited-state decay. To demonstrate how this method is used we review our studies on photoactivation of the photoactive yellow protein, a bacterial photoreceptor. We will show what information can be obtained from the simulations, and, by comparing to recent experimental findings, what the limitations of our simulations are.

  12. Vygotsky's Crisis: Argument, context, relevance.

    Science.gov (United States)

    Hyman, Ludmila

    2012-06-01

    Vygotsky's The Historical Significance of the Crisis in Psychology (1926-1927) is an important text in the history and philosophy of psychology that has only become available to scholars in 1982 in Russian, and in 1997 in English. The goal of this paper is to introduce Vygotsky's conception of psychology to a wider audience. I argue that Vygotsky's argument about the "crisis" in psychology and its resolution can be fully understood only in the context of his social and political thinking. Vygotsky shared the enthusiasm, widespread among Russian leftist intelligentsia in the 1920s, that Soviet society had launched an unprecedented social experiment: The socialist revolution opened the way for establishing social conditions that would let the individual flourish. For Vygotsky, this meant that "a new man" of the future would become "the first and only species in biology that would create itself." He envisioned psychology as a science that would serve this humanist teleology. I propose that The Crisis is relevant today insofar as it helps us define a fundamental problem: How can we systematically account for the development of knowledge in psychology? I evaluate how Vygotsky addresses this problem as a historian of the crisis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.

    Science.gov (United States)

    Anderson, J C; Dubetz, C; Palace, V P

    2015-02-01

    Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines

  14. User perspectives on relevance criteria

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2002-01-01

    , partially relevant, or not relevant to their information need; and explained their decisions in an interview. Analysis revealed 29 criteria, discussed positively and negatively, that were used by the participants when selecting passages that contributed or detracted from a document's relevance......This study investigates the use of criteria to assess relevant, partially relevant, and not-relevant documents. Study participants identified passages within 20 document representations that they used to make relevance judgments; judged each document representation as a whole to be relevant...... matter, thought catalyst), full text (e.g., audience, novelty, type, possible content, utility), journal/publisher (e.g., novelty, main focus, perceived quality), and personal (e.g., competition, time requirements). Results further indicate that multiple criteria are used when making relevant, partially...

  15. Biological, environmental, and social influences on childhood obesity.

    Science.gov (United States)

    Campbell, M Karen

    2016-01-01

    The prevalence of childhood obesity has increased globally over the past three decades, with evidence of recent leveling off in developed countries. Reduction in the, currently high, prevalence of obesity will require a full understanding of the biological and social pathways to obesity in order to develop appropriately targeted prevention strategies in early life. Determinants of childhood obesity include individual level factors, including biological, social, and behavioral risks, acting within the influence of the child's family environment, which is, in turn, imbedded in the context of the community environment. These influences act across childhood, with suggestions of early critical periods of biological and behavioral plasticity. There is evidence of sex and gender differences in the responses of boys and girls to their environments. The evidence that determinants of childhood obesity act at many levels and at different stages of childhood is of policy relevance to those planning early health promotion and primary prevention programs as it suggests the need to address the individual, the family, the physical environment, the social environment, and social policy. The purpose of this narrative review is to summarize current, and emerging, literature in a multilevel, life course framework.

  16. Elephant logging and environment

    International Nuclear Information System (INIS)

    Tin-Aung-Hla

    1995-01-01

    The natural environment comprises non-biological elements such as air, water, light, heat and biological elements of animal and plant life; all interact with each other to create an ecosystem. Human activities like over-exploitation of forest results in deforestation and desertification. This consequently changes ecological balance. Topics on: (1) history of elephants utilization; (2) elephant logging; (3) classification of elephants; (4) dragging gear; (5) elephant power; (6) elephant logging and environment, are discussed

  17. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  18. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  19. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    Science.gov (United States)

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  20. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  1. Dividend Is Relevant: A Restatement | Amadasu | African Research ...

    African Journals Online (AJOL)

    The major recommendation is that dividend, priceearningsratio, retained earnings, return on capital employed andautonomous part assumed to be government, external, internal, andeconomic environment, should be coordinated through policy instruments forcorporate governance for dividend to have relevance.

  2. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  3. Classification of Clinically Relevant Microorganisms in Non-Medical Environments

    National Research Council Canada - National Science Library

    Bowers, Daniel

    2004-01-01

    .... He named them Staphylococcus aureus because of their golden color. S. aureus remains one of the most important pathogens in clinical settings largely due to the rapidity of its evolutionary response to treatment...

  4. Convivência e aprendizagem em ambientes virtuais: uma reflexão a partir da biologia do conhecer Coexistence and learning in virtual environments: a reflection from the biology of cognition's point of view

    Directory of Open Access Journals (Sweden)

    Eliana Maria do Sacramento Soares

    2011-12-01

    Full Text Available Pensar a dimensão complexa e sistêmica do processo educativo é um dos desafios da contemporaneidade. Para tanto, partimos do pressuposto de que ambientes virtuais de aprendizagem podem se constituir em domínios de ações que levem à autorregulação e a transformações estruturais. Para verificar essa pressuposição, este artigo apresenta resultados de um estudo empírico que busca compreender, a partir da Biologia do Conhecer, como um ambiente virtual pode se constituir num domínio de convivência capaz de propiciar a aprendizagem. Os resultados indicam possibilidades de gestão e de intervenção pedagógica nos ambientes de aprendizagem, que possibilitem a emergência de fluxos de interações que contribuam para que se estabeleça a convivência, nos moldes estudados.Thinking the complex and systemic dimension of the educative process is one of the nowadays' challenges. To this end, we start from the assumption that virtual learning environments can be constituded in action domains that lead to selfregulation and structural transformations. To verify this assumption, this paper presents results of an empirical study that seeks to understand, from the Biology of cognition, how a virtual environment can constitute a coexistence domain, able to propitiate learning. The results suggest possibilities of management and pedagogical intervention in the learning environments that make possible the emergence of interaction flows and contribute to establishing the coexistence, along the lines studied.

  5. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  6. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  7. Invited Review Article: Advanced light microscopy for biological space research

    International Nuclear Information System (INIS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  8. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  9. Bacteriophage lambda: early pioneer and still relevant

    Science.gov (United States)

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  10. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  11. Relevance in the science classroom: A multidimensional analysis

    Science.gov (United States)

    Hartwell, Matthew F.

    While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different

  12. A protocol for classifying ecologically relevant marine zones, a statistical approach

    Science.gov (United States)

    Verfaillie, Els; Degraer, Steven; Schelfaut, Kristien; Willems, Wouter; Van Lancker, Vera

    2009-06-01

    Mapping ecologically relevant zones in the marine environment has become increasingly important. Biological data are however often scarce and alternatives are being sought in optimal classifications of abiotic variables. The concept of 'marine landscapes' is based on a hierarchical classification of geological, hydrographic and other physical data. This approach is however subject to many assumptions and subjective decisions. An objective protocol for zonation is being proposed here where abiotic variables are subjected to a statistical approach, using principal components analysis (PCA) and a cluster analysis. The optimal number of clusters (or zones) is being defined using the Calinski-Harabasz criterion. The methodology has been applied on datasets of the Belgian part of the North Sea (BPNS), a shallow sandy shelf environment with a sandbank-swale topography. The BPNS was classified into 8 zones that represent well the natural variability of the seafloor. The internal cluster consistency was validated with a split-run procedure, with more than 99% correspondence between the validation and the original dataset. The ecological relevance of 6 out of the 8 zones was demonstrated, using indicator species analysis. The proposed protocol, as exemplified for the BPNS, can easily be applied to other areas and provides a strong knowledge basis for environmental protection and management of the marine environment. A SWOT-analysis, showing the strengths, weaknesses, opportunities and threats of the protocol was performed.

  13. Interfacing DNA nanodevices with biology

    DEFF Research Database (Denmark)

    Vinther, Mathias; Kjems, Jørgen

    2016-01-01

    in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular...... environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology....

  14. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  15. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  16. Investigations on a global environment improving technology utilizing biological functions. 2. Structuring a ligno-bioprocess; Seibutsu kino wo riyoshita chikyu kankyo kaizen gijutsu ni kansuru chosa. 2. Riguno bio process no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Discussions were given to reserve global environments on reducing dependence on fossil resources and more effectively utilizing wood resources. Economically utilizable amount of wastes from lumbering factories reaches about five million tons annually. Discussions were made on a ligno-bioprocess that uses these wastes. The current quantitative production efficiency of cellulase by means of bacterial breeding is very high. A problem is production of ligninolytic enzymes, to which application of the recombinant DNA method is indispensable. Combination of steam explosion with biological decomposition or the organosolv process is an effective method for lignin decomposition. Decomposition of cellulose by using the ultra critical water method is worth noticing. With respect to hemicellulose utilization, production of cellulose derivatives, biodegradable polymers and oligosaccharides would be conceivable by means of esterification and etherification. Vanillinic acid, adhesives, resins and lignin-based polymer materials could be manufactured from lignin. Material cost for these products accounts for about 35% of the product price, thus making the lignochemicals promising commercial products. 301 refs., 71 figs., 39 tabs.

  17. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  18. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    Science.gov (United States)

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management

  19. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  20. Profiles of Dialogue for Relevance

    Directory of Open Access Journals (Sweden)

    Douglas Walton

    2016-12-01

    Full Text Available This paper uses argument diagrams, argumentation schemes, and some tools from formal argumentation systems developed in artificial intelligence to build a graph-theoretic model of relevance shown to be applicable (with some extensions as a practical method for helping a third party judge issues of relevance or irrelevance of an argument in real examples. Examples used to illustrate how the method works are drawn from disputes about relevance in natural language discourse, including a criminal trial and a parliamentary debate.

  1. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  2. Relevance theory: pragmatics and cognition.

    Science.gov (United States)

    Wearing, Catherine J

    2015-01-01

    Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication. © 2014 John Wiley & Sons, Ltd.

  3. Clinical relevance in anesthesia journals

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Møller, Ann M

    2006-01-01

    The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles.......The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles....

  4. An Improved Optimization Method for the Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, M. R.; Van Leemput, Koen

    2013-01-01

    In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the ...

  5. Long-time data storage: relevant time scales

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    2011-01-01

    Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is

  6. Reflections on rural people's knowledge and skill and relevance in ...

    African Journals Online (AJOL)

    UNLICENSED

    objective is to assess the relevance of indigenous knowledge in agriculture. ... transmit the knowledge to the youths and researchers to document it and government to protect it. ... mechanisms to protect the earth's biological diversity. ... and other development agencies to embrace Agenda 21 as .... ecological characteristics.

  7. Stress and adaptation : Toward ecologically relevant animal models

    NARCIS (Netherlands)

    Koolhaas, Jaap M.; Boer, Sietse F. de; Buwalda, Bauke

    Animal models have contributed considerably to the current understanding of mechanisms underlying the role of stress in health and disease. Despite the progress made already, much more can be made by more carefully exploiting animals' and humans' shared biology, using ecologically relevant models.

  8. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  9. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  10. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England.

    Science.gov (United States)

    Dallas, Lorna J; Jha, Awadhesh N

    2015-06-30

    Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...... natalizumab in several countries outside the European Union). However, despite the use of biologics for more than a decade, questions still remain about the true efficacy and the best treatment regimens - especially about when to discontinue treatment. Furthermore, a need for optimizing treatment...... with biologics still exists, as 20-40% of patients with CD (depending on selection criteria) do not have any relevant response to the current biological agents (i.e. primary failures). A better patient selection might maximize the clinical outcome while minimizing the complications associated with this type...

  13. EURASIP journal on bioinformatics & systems biology

    National Research Council Canada - National Science Library

    2006-01-01

    "The overall aim of "EURASIP Journal on Bioinformatics and Systems Biology" is to publish research results related to signal processing and bioinformatics theories and techniques relevant to a wide...

  14. Chapter 5:Biological Properties of Wood

    Science.gov (United States)

    Rebecca E. Ibach

    2013-01-01

    There are numerous biological degradations that wood is exposed to in various environments. Biological damage occurs when a log, sawn product, or final product is not stored, handled, or designed properly. Biological organisms such as bacteria, mold, stain, decay fungi, insects, and marine borers depend heavily on temperature and moisture conditions to grow. Figure 5.1...

  15. [Biological agents].

    Science.gov (United States)

    Amano, Koichi

    2009-03-01

    There are two types of biological agents for the treatment of rheumatoid arthritis (RA); monoclonal antibodies and recombinant proteins. Among the latter, etanercept, a recombinant fusion protein of soluble TNF receptor and IgG was approved in 2005 in Japan. The post-marketing surveillance of 13,894 RA patients revealed the efficacy and safety profiles of etanercept in the Japanese population, as well as overseas studies. Abatacept, a recombinant fusion protein of CTLA4 and IgG, is another biological agent for RA. Two clinical trials disclosed the efficacy of abatacept for difficult-to-treat patients: the AIM for MTX-resistant cases and the ATTAIN for patients who are resistant to anti-TNF. The ATTEST trial suggested abatacept might have more acceptable safety profile than infliximab. These biologics are also promising for the treatment of RA for not only relieving clinical symptoms and signs but retarding structural damage.

  16. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  17. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  18. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  19. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    Science.gov (United States)

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  20. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  1. Shippingport: A relevant decommissioning project

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    Because of Shippingport's low electrical power rating (72 MWe), there has been some misunderstanding on the relevancy of the Shippingport Station Decommissioning Project (SSDP) to a modern 1175 MWe commercial pressurized water reactor (PWR) power station. This paper provides a comparison of the major components of the reactor plant of the 72 MWe Shippingport Atomic Power Station and an 1175 MWe nuclear plant and the relevancy of the Shippingport decommissioning as a demonstration project for the nuclear industry. For the purpose of this comparison, Portland General Electric Company's 1175 MWe Trojan Nuclear Plant at Rainier, Oregon, has been used as the reference nuclear power plant. 2 refs., 2 figs., 1 tab

  2. Environmental biology

    International Nuclear Information System (INIS)

    Tschumi, P.A.

    1981-01-01

    Environmental biology illustrates the functioning of ecosystems and the dynamics of populations with many examples from limnology and terrestrial ecology. On this basis, present environmental problems are analyzed. The present environmental crisis is seen as a result of the failure to observe ecological laws. (orig.) [de

  3. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David

    2016-01-01

    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  4. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  5. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  6. Geomicrobiology and its relevance to nuclear waste disposal - a further annotated bibliography

    International Nuclear Information System (INIS)

    West, J.M.; Arme, S.C.

    1984-07-01

    Scientific investigations into the disposal of high/intermediate level radioactive waste into deep geological formations includes work in the field of geomicrobiology. It has been shown that microbes exist in deep and shallow geological formations and that they could alter the geochemical environment of a waste repository and influence radionuclide migration. A preliminary literature survey indicated a lack of annotated material and an initial report (West, McKinley and Christofi, 1982) provided the first bibliography. This report is an updated annotated bibliography of relevant geomicrobiological research published since 1982 and should be used in conjunction with the previous report. Those without specific biological experience may find the glossary of common terms in the initial report of use. A major area of work which has not been referenced widely here is near surface disposal of both radioactive and conventional industrial waste. This vast topic can be accessed via some of the general reviews in this report. (author)

  7. Alpha power gates relevant information during working memory updating.

    Science.gov (United States)

    Manza, Peter; Hau, Chui Luen Vera; Leung, Hoi-Chung

    2014-04-23

    Human working memory (WM) is inherently limited, so we must filter out irrelevant information in our environment or our mind while retaining limited important relevant contents. Previous work suggests that neural oscillations in the alpha band (8-14 Hz) play an important role in inhibiting incoming distracting information during attention and selective encoding tasks. However, whether alpha power is involved in inhibiting no-longer-relevant content or in representing relevant WM content is still debated. To clarify this issue, we manipulated the amount of relevant/irrelevant information using a task requiring spatial WM updating while measuring neural oscillatory activity via EEG and localized current sources across the scalp using a surface Laplacian transform. An initial memory set of two, four, or six spatial locations was to be memorized over a delay until an updating cue was presented indicating that only one or three locations remained relevant for a subsequent recognition test. Alpha amplitude varied with memory maintenance and updating demands among a cluster of left frontocentral electrodes. Greater postcue alpha power was associated with the high relevant load conditions (six and four dots cued to reduce to three relevant) relative to the lower load conditions (four and two dots reduced to one). Across subjects, this difference in alpha power was correlated with condition differences in performance accuracy. In contrast, no significant effects of irrelevant load were observed. These findings demonstrate that, during WM updating, alpha power reflects maintenance of relevant memory contents rather than suppression of no-longer-relevant memory traces.

  8. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    Science.gov (United States)

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  9. Dramatic lives and relevant becomings

    DEFF Research Database (Denmark)

    Henriksen, Ann-Karina; Miller, Jody

    2012-01-01

    of marginality into positions of relevance. The analysis builds on empirical data from Copenhagen, Denmark, gained through ethnographic fieldwork with the participation of 20 female informants aged 13–22. The theoretical contribution proposes viewing conflicts as multi-linear, multi-causal and non...

  10. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  11. Flavonoids as Important Molecules of Plant Interactions with the Environment

    Directory of Open Access Journals (Sweden)

    Justyna Mierziak

    2014-10-01

    Full Text Available Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants’ interactions with other organisms (microorganisms, animals and other plants and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.

  12. Crossing Boundaries in Undergraduate Biology Education

    Science.gov (United States)

    Vanderklein, Dirk; Munakata, Mika; McManus, Jason

    2016-01-01

    In an effort to make mathematics relevant to biology students, the authors developed two modules that sought to integrate mathematics and ecology instruction to differing degrees. The modules were developed by a team of biology and mathematics educators and were implemented in an ecology course using three different instructional methods for three…

  13. Impact of Thermodynamic Principles in Systems Biology

    NARCIS (Netherlands)

    Heijnen, J.J.

    2010-01-01

    It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects

  14. Exemplary Programs in Secondary School Biology.

    Science.gov (United States)

    McComas, William F.; Penick, John E.

    1989-01-01

    Summarizes 10 exemplary programs which address topics on individualized biology, a modified team approach, limnology, physical anthropology, the relevance of biology to society, ecology, and health. Provides names and addresses of contact persons for further information. Units cover a broad range of abilities and activities. (RT)

  15. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  16. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-05

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  17. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  18. Increasing the biological value of dietary cutlets

    OpenAIRE

    SYZDYKOVA L.S.; DIKHANBAYEVA F.T.; BAZYLHANOVA E.CH

    2015-01-01

    Relevance of work: meat products are the main source of the proteins, necessary for activity of the person. In this article is determined the biological value of the cutlets with dietary properties. The purpose of this work is development of the production technology of dietary cutlets in branches of public catering and determination of their biological value. As a result of work dietary cutlets with the increased biological value due to addition of oatmeal are received.

  19. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.

    Science.gov (United States)

    Dieter, Hermann H

    2010-03-01

    "Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological

  20. The Improved Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

    The concept of sparse Bayesian learning has received much attention in the machine learning literature as a means of achieving parsimonious representations of features used in regression and classification. It is an important family of algorithms for sparse signal recovery and compressed sensing....... Hence in its current form it is reminiscent of a greedy forward feature selection algorithm. In this report, we aim to solve the problems of the original RVoxM algorithm in the spirit of [7] (FastRVM).We call the new algorithm Improved Relevance Voxel Machine (IRVoxM). Our contributions...... and enables basis selection from overcomplete dictionaries. One of the trailblazers of Bayesian learning is MacKay who already worked on the topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the concept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector...

  1. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  2. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  3. PathText: a text mining integrator for biological pathway visualizations

    Science.gov (United States)

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  4. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  5. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  6. Probabilistic biological network alignment.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  7. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  8. Assessing Relevance of External Cognitive Measures.

    Science.gov (United States)

    Cairó, Osvaldo

    2017-01-01

    The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual.

  9. JournalMap: Geo-semantic searching for relevant knowledge

    Science.gov (United States)

    Ecologists struggling to understand rapidly changing environments and evolving ecosystem threats need quick access to relevant research and documentation of natural systems. The advent of semantic and aggregation searching (e.g., Google Scholar, Web of Science) has made it easier to find useful lite...

  10. The Flora Malesiana Project and its relevance to Malaysia

    NARCIS (Netherlands)

    Saw, L.G.; Soepadmo, E.

    2002-01-01

    In a developing country like Malaysia, it is becoming difficult to attract funds to do basic taxonomic work. Taxonomic research must be made relevant to national needs. Among the increasing needs for indigenous plants and their environment in Malaysia are their conservation and determining the

  11. Biology Branch

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, W F

    1974-12-31

    Progress is reported on the following studies in biochemistry and molecular biology: study of long pyrimidine polynucleotides in DNA; isolation of thymine dimers from Schizosaccharomyces pombe; thermal stability of high molecular weight RNA; nucleases of Micrococcus radiodurans; effect of ionizing radiation on M. radiodurans cell walls and cell membranes; chemical modification of nucleotides; exonucleases of M. radiodurans; and enzymatic basis of repair of radioinduced damage in M. radiodurans. Genetics, development, and population studies include repair pathways and mutation induction in yeast; induction of pure mutant clones in yeast; radiosensitivity of bacteriophage T4; polyacrylamide gel electrophoresis of bacteriophage T4; radiation genetics of Dahibominus; and radiation studies on bitting flies. (HLW)

  12. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  13. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    1975-01-01

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  14. General review of literature relevant to coastal water discharges

    International Nuclear Information System (INIS)

    Pentreath, R.J.

    1985-01-01

    This review on the behaviour of radionuclides released into coastal water from the radioactive discharges, prepared on the basis of existing publications and documents, is divided into parts on pathways of exposure, behaviour of radionuclides in coastal environments, biological avialability of radionuclides, habit surveys and critical groups, assessment of dose to man and the effects of radiation on aquatic organisms

  15. Microdosing: Concept, application and relevance

    Directory of Open Access Journals (Sweden)

    Tushar Tewari

    2010-01-01

    Full Text Available The use of microdose pharmacokinetic studies as an essential tool in drug development is still to catch on. While this approach promises potential cost savings and a quantum leap in efficiencies of the drug development process, major hurdles still need to be overcome before the technique becomes commonplace and part of routine practice. Clear regulations in Europe and the USA have had an enabling effect. The lack of enabling provisions for microdosing studies in Indian regulation, despite low risk and manifest relevance for the local drug development industry, is inconsistent with the country′s aspirations to be among the leaders in pharmaceutical research.

  16. Abstracts of the 10. Annual meeting of the Federation of the Experimental Biological Societies

    International Nuclear Information System (INIS)

    1995-01-01

    The meeting was about experimental biology and it was discussed topics related to medicine, pharmacology, cellular biology, biophysics, toxicology, physiology, immunology, radiobiology, photobiology, natural products and environment

  17. Infectious Disease risks associated with exposure to stressful environments

    Science.gov (United States)

    Meehan, Ichard T.; Smith, Morey; Sams, Clarence

    1993-01-01

    Multiple environmental factors asociated with space flight can increase the risk of infectious illness among crewmembers thereby adversely affecting crew health and mission success. Host defences can be impaired by multiple physiological and psychological stressors including: sleep deprivation, disrupted circadian rhythms, separation from family, perceived danger, radiation exposure, and possibly also by the direct and indirect effects of microgravity. Relevant human immunological data from isolated or stressful environments including spaceflight will be reviewed. Long-duration missions should include reliable hardware which supports sophisticated immunodiagnostic capabilities. Future advances in immunology and molecular biology will continue to provide therapeutic agents and biologic response modifiers which should effectively and selectively restore immune function which has been depressed by exposure to environmental stressors.

  18. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  19. Socially Relevant Knowledge Based Telemedicine

    Science.gov (United States)

    2010-10-01

    in the field of education as well. Advantage (s) of training in virtual worlds The most important advantage of use of computer based...Shirmohammadi, S. (2007). Accessibility and scalability in collaborative eCommerce environments. Digital Information Management, 2007. ICDIM 󈧋. 2nd...methods on human effort has certain advantages and disadvantages. The main advantage is that human-intensive methods usually yield data that are of high

  20. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  1. Students' Personal Connection with Science: Investigating the Multidimensional Phenomenological Structure of Self-Relevance

    Science.gov (United States)

    Hartwell, Matthew; Kaplan, Avi

    2018-01-01

    This paper presents findings from a two-phase mixed methods study investigating the phenomenological structure of self-relevance among ninth-grade junior high school biology students (Phase 1: N = 118; Phase 2: N = 139). We begin with a phenomenological multidimensional definition of self-relevance as comprising three dimensions: the academic…

  2. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  3. Biologics in pediatric psoriasis - efficacy and safety.

    Science.gov (United States)

    Dogra, Sunil; Mahajan, Rahul

    2018-01-01

    Childhood psoriasis is a special situation that is a management challenge for the treating dermatologist. As is the situation with traditional systemic agents, which are commonly used in managing severe psoriasis in children, the biologics are being increasingly used in the recalcitrant disease despite limited data on long term safety. Areas covered: We performed an extensive literature search to collect evidence-based data on the use of biologics in pediatric psoriasis. The relevant literature published from 2000 to September 2017 was obtained from PubMed, using the MeSH words 'biologics', 'biologic response modifiers' and 'treatment of pediatric/childhood psoriasis'. All clinical trials, randomized double-blind or single-blind controlled trials, open-label studies, retrospective studies, reviews, case reports and letters concerning the use of biologics in pediatric psoriasis were screened. Articles covering the use of biologics in pediatric psoriasis were screened and reference lists in the selected articles were scrutinized to identify other relevant articles that had not been found in the initial search. Articles without relevant information about biologics in general (e.g. its mechanism of action, pharmacokinetics and adverse effects) and its use in psoriasis in particular were excluded. We screened 427 articles and finally selected 41 relevant articles. Expert opinion: The available literature on the use of biologics such as anti-tumor necrosis factor (TNF)-α agents, and anti-IL-12/23 agents like ustekinumab suggests that these are effective and safe in managing severe pediatric psoriasis although there is an urgent need to generate more safety data. Dermatologists must be careful about the potential adverse effects of the biologics before administering them to children with psoriasis. It is likely that with rapidly evolving scenario of biologics in psoriasis, these will prove to be very useful molecules particularly in managing severe and recalcitrant

  4. Interactive Effects of Working Memory Self-Regulatory Ability and Relevance Instructions on Text Processing

    Science.gov (United States)

    Hamilton, Nancy Jo

    2012-01-01

    Reading is a process that requires the enactment of many cognitive processes. Each of these processes uses a certain amount of working memory resources, which are severely constrained by biology. More efficiency in the function of working memory may mediate the biological limits of same. Reading relevancy instructions may be one such method to…

  5. The biology of cultural conflict.

    Science.gov (United States)

    Berns, Gregory S; Atran, Scott

    2012-03-05

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives-how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour-but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment.

  6. Culture, Urbanism and Changing Human Biology.

    Science.gov (United States)

    Schell, L M

    2014-04-03

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia.

  7. Neutron Scattering in Biology Techniques and Applications

    CERN Document Server

    Fitter, Jörg; Katsaras, John

    2006-01-01

    The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

  8. Other relevant numerical modelling papers

    International Nuclear Information System (INIS)

    Chartier, M.

    1989-01-01

    The ocean modelling is a rapidly evolving science and a large number of results have been published. Several categories of papers are of particular interest for this review: the papers published by the international atomic institutions, such as the NEA (for the CRESP or Subseabed Programs), the IAEA (for example the Safety Series, the Technical Report Series or the TECDOC), and the ICRP, and the papers concerned by more fundamental research, which are published in specific scientific literature. This paper aims to list some of the most relevant publications for the CRESP purposes. It means by no way to be exhaustive, but informative on the incontestable progress recently achieved in that field. One should note that some of these papers are so recent that their final version has not yet been published

  9. Industrial relevance of thermophilic Archaea.

    Science.gov (United States)

    Egorova, Ksenia; Antranikian, Garabed

    2005-12-01

    The dramatic increase of newly isolated extremophilic microorganisms, analysis of their genomes and investigations of their enzymes by academic and industrial laboratories demonstrate the great potential of extremophiles in industrial (white) biotechnology. Enzymes derived from extremophiles (extremozymes) are superior to the traditional catalysts because they can perform industrial processes even under harsh conditions, under which conventional proteins are completely denatured. In particular, enzymes from thermophilic and hyperthermophilic Archaea have industrial relevance. Despite intensive investigations, our knowledge of the structure-function relationships of their enzymes is still limited. Information concerning the molecular properties of their enzymes and genes has to be obtained to be able to understand the mechanisms that are responsible for catalytic activity and stability at the boiling point of water.

  10. The Relevance of Hegel's Logic

    Directory of Open Access Journals (Sweden)

    John W Burbidge

    2007-12-01

    Full Text Available Hegel defines his Logic as the science that thinks about thinking.nbsp; But when we interpret that work as outlining what happens when we reason we are vulnerable to Fregersquo;s charge of psychologism.nbsp; I use Hegelrsquo;s tripartite distinction among understanding, dialectical and speculative reason as operations of pure thought to suggest how thinking can work with objective concepts.nbsp; In the last analysis, however, our ability to move from the subjective contingency of representations and ideas to the pure concepts we think develops from mechanical memory, which separates sign from sense so hat we can focus simply on the latter.nbsp; By becoming aware of the connections that underlie our thinking processes we may be able to both move beyond the abstractions of symbolic logic and clarify what informal logicians call relevance.

  11. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  12. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  13. Interaction of dermatologically relevant nanoparticles with skin cells and skin

    Directory of Open Access Journals (Sweden)

    Annika Vogt

    2014-12-01

    Full Text Available The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica versus intended exposure through application of sunscreen (titanium dioxide or antiseptics (silver. Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles.

  14. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    Science.gov (United States)

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    transfers, occurs in a cascade in many biological processes, including photosynthesis. ... the model reactions of photosynthetic ... biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis ...

  16. IQ Predicts Biological Motion Perception in Autism Spectrum Disorders

    Science.gov (United States)

    Rutherford, M. D.; Troje, Nikolaus F.

    2012-01-01

    Biological motion is easily perceived by neurotypical observers when encoded in point-light displays. Some but not all relevant research shows significant deficits in biological motion perception among those with ASD, especially with respect to emotional displays. We tested adults with and without ASD on the perception of masked biological motion…

  17. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  18. Cognitive biology dealing with information from bacteria to minds

    CERN Document Server

    Auletta, Gennaro

    2011-01-01

    Providing a new conceptual scaffold for further research in biology and cognition, this text introduces the new field of cognitive biology, treating developing organisms as information processors which use cognition to control and modify their environments.

  19. Environment and development

    International Nuclear Information System (INIS)

    1992-01-01

    As part of its contribution to the United Nations Conference on Environment and Development, held in Rio de Janeiro in June 1992, the IAEA produced a booklet entitled ''Nuclear Power, Nuclear Techniques and Sustainable Development''. The second half of this dealt with the relevance of the IAEA's work to ''Agenda 21'', an agenda of environmental conservation and sustainable development for the twenty-first century. This article briefly summarizes the text

  20. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.