WorldWideScience

Sample records for biologically inspired visual

  1. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles. PMID:21527730

  2. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  3. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  4. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Directory of Open Access Journals (Sweden)

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  5. A Biologically Inspired Classifier

    CERN Document Server

    Bagnoli, Franco

    2007-01-01

    We present a method for measuring the distance among records based on the correlations of data stored in the corresponding database entries. The original method (F. Bagnoli, A. Berrones and F. Franci. Physica A 332 (2004) 509-518) was formulated in the context of opinion formation. The opinions expressed over a set of topic originate a ``knowledge network'' among individuals, where two individuals are nearer the more similar their expressed opinions are. Assuming that individuals' opinions are stored in a database, the authors show that it is possible to anticipate an opinion using the correlations in the database. This corresponds to approximating the overlap between the tastes of two individuals with the correlations of their expressed opinions. In this paper we extend this model to nonlinear matching functions, inspired by biological problems such as microarray (probe-sample pairing). We investigate numerically the error between the correlation and the overlap matrix for eight sequences of reference with r...

  6. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single......-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion...... into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment....

  7. Biologically-inspired machine vision

    OpenAIRE

    Tsitiridis, A

    2013-01-01

    This thesis summarises research on the improved design, integration and expansion of past cortex-like computer vision models, following biologically-inspired methodologies. By adopting early theories and algorithms as a building block, particular interest has been shown for algorithmic parameterisation, feature extraction, invariance properties and classification. Overall, the major original contributions of this thesis have been: 1. The incorporation of a salient feature-based method for sem...

  8. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    conference were elegant, but most importantly closely related to experimental findings. On the first day of the meeting we were able to celebrate Adrian Parsegian's 70th birthday. A worldwide renowned figure in modern biological physics, its distinguished veteran, a former President of the Biophysical Society and an author of many seminal, pioneering papers, Adrian has worked at the NIH for four decades and over the last two has led a vibrant Structural and Physical Biology Laboratory, created by him. Adrian has done a lot for physicists and biologists coming closer together. That summer, full of his ever young energy—an example for many young scientists—he is moving to build a new research team as a Professor at the University of Massachusetts at Amherst. My feeling is that something is beginning to move in the difficult interactions between the physical and biological communities, the progress noticeable at least at the scale of 130 people present in Trieste. A few years ago, Paul Selvin, a biophysicist at the University of Illinois who has made crucial contributions to the visualization and characterization of biomolecular motility, suggested that if Rutherford was alive today, he would have possibly conclude that 'All science is either....biology or tool-making for biology... or not fundable'. Generally, 'pride and prejudice' today is no longer on the side of physicists. But in order to overcome the barrier of skepticism we, physicists, not only should not be shy about what we were able to demonstrate in the test tube, but also have to think how we could show that our 'beautiful physical effects' work equally inside the cell! This is much more difficult. Many of us will not be able to do it alone without finding a biologist match. Crick was not only a great mind, he was also lucky to meet his biologist. But Crick himself was very serious about real biology rather than just 'biologically-inspired physics'. And this is what Adrian advised all of us to do in his 1997

  9. Biologically Inspired Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Jaeho; Yang, Sung-Pyo; Kim, Ha Gon; Kweon, Hee-Seok; Yoo, Seunghyup; Jeong, Ki-Hun

    2016-05-11

    Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications. PMID:27014918

  10. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  11. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  12. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  13. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  14. How physics can inspire biology

    Science.gov (United States)

    Kornyshev, Alexei

    2009-07-01

    In July 1997 Adrian Parsegian, a biophysicist at the National Institutes of Health in the US and a former president of the Biophysical Society, published an article in Physics Today in which he outlined his thoughts about the main obstacles to a happy marriage between physics and biology. Parsegian started his article with a joke about a physicist talking to his biology-trained friend.

  15. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  16. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  17. A biologically inspired MANET architecture

    Science.gov (United States)

    Kershenbaum, Aaron; Pappas, Vasileios; Lee, Kang-Won; Lio, Pietro; Sadler, Brian; Verma, Dinesh

    2008-04-01

    Mobile Ad-Hoc Networks (MANETs), that do not rely on pre-existing infrastructure and that can adapt rapidly to changes in their environment, are coming into increasingly wide use in military applications. At the same time, the large computing power and memory available today even for small, mobile devices, allows us to build extremely large, sophisticated and complex networks. Such networks, however, and the software controlling them are potentially vulnerable to catastrophic failures because of their size and complexity. Biological networks have many of these same characteristics and are potentially subject to the same problems. But in successful organisms, these biological networks do in fact function well so that the organism can survive. In this paper, we present a MANET architecture developed based on a feature, called homeostasis, widely observed in biological networks but not ordinarily seen in computer networks. This feature allows the network to switch to an alternate mode of operation under stress or attack and then return to the original mode of operation after the problem has been resolved. We explore the potential benefits such an architecture has, principally in terms of the ability to survive radical changes in its environment using an illustrative example.

  18. Biology-inspired AMO physics

    Science.gov (United States)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  19. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  20. Natural Scene Classification Inspired by Visual Perception and Cognition Mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui

    2011-01-01

    The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes. Inspired by this fact, we propose a biologically plausible approach for natural scene image classification. This approach consists of one visual perception model and two visual cognition models. The visual perception model, composed of two steps, is used to extract discriminative features from natural scene images. In the first step, we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform, which can decompose a natural scene image into a series of 2D spatial structure signals. In the second step, a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals. Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model. At last, we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization. Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.

  1. Biological Inspiration in Human Centred Robotics

    Institute of Scientific and Technical Information of China (English)

    HUHuo-sheng; LIUJin-dong; CalderonCarlosA

    2004-01-01

    Human centred robotics (HCR) concerns with the development of various kinds of intelligent systems and robots that will be used in environments coexisting with humans. These systems and robots will be interactive and useful assistants/companions for people in different ages, situations, activities and environments in order to improve the quality of life. This paper presents the autors' current research work toward the development of advanced theory and technologies for HCR applications, based on inspiration from biological systems. More specifically, both bio-mimetic system modelling and robot learning by imitation are discussed respectively, and some preliminary results are demonstrated.

  2. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Science.gov (United States)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  3. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  4. Biologically inspired emotion recognition from speech

    Science.gov (United States)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  5. Biologically Inspired Purification and Dispersion of SWCNTs

    Science.gov (United States)

    Feeback, Daniel L.; Clarke, Mark S.; Nikolaev, Pavel

    2009-01-01

    A biologically inspired method has been developed for (1) separating single-wall carbon nanotubes (SWCNTs) from other materials (principally, amorphous carbon and metal catalysts) in raw production batches and (2) dispersing the SWCNTs as individual particles (in contradistinction to ropes and bundles) in suspension, as required for a number of applications. Prior methods of purification and dispersal of SWCNTs involve, variously, harsh physical processes (e.g., sonication) or harsh chemical processes (e.g., acid reflux). These processes do not completely remove the undesired materials and do not disperse bundles and ropes into individual suspended SWCNTs. Moreover, these processes cut long SWCNTs into shorter pieces, yielding typical nanotube lengths between 150 and 250 nm. In contrast, the present method does not involve harsh physical or chemical processes. The method involves the use of biologically derived dispersal agents (BDDAs) in an aqueous solution that is mechanically homogenized (but not sonicated) and centrifuged. The dense solid material remaining after centrifugation is resuspended by vortexing in distilled water, yielding an aqueous suspension of individual, separated SWCNTs having lengths from about 10 to about 15 microns.

  6. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Science.gov (United States)

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior. PMID:26280070

  7. Biologically inspired robots as artificial inspectors

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  8. Visual Attention: from Bio-Inspired Modeling to Real-Time Implementation

    OpenAIRE

    Ouerhani, Nabil; Hügli, Heinz

    2004-01-01

    Visual Attention: From Bio-Inspired Modeling to Visual attention is the ability of a vision system, be it biological or artificial, to rapidly select the most salient and thus the most relevant data about the environment in which the system is operating. The main goal of this visual mechanism is to drastically reduce the amount of visual information that must be processed by high level and thus complex tasks, such as object recognition, which leads to a considerable speed up of the entire vis...

  9. Biologically Inspired Flagella-Templated Silica Nanotubes

    Science.gov (United States)

    Jo, Wonjin

    The desire and need for various types of nanostructures have been met with challenges of feasibility, reproducibility, and long fabrication time. To work towards improved bottom-up methods of nanofabrication, bacterial flagella are particularly attractive bio-templates for nanotubes due to their tubular structures and small inner and outer diameters. In this work, flagella isolated from Salmonella typhimurium are used as bio-templates to fabricate silica mineralized nanotubes. The process involves as well-controlled hydrolysis and condensation reaction with aminopropyltriethoxysilane (APTES), followed by the addition of tetraethoxysilane (TEOS). By controlling the concentration of TEOS and the reaction time, a simple and precise method is developed for creating silica-mineralized flagella nanotubes (SMFNs) with various thicknesses of the silica layer. In addition, the SMFNs are further modified to multifunctional nanotubes by coating metal nanoparticles (NPs) or metal oxide NPs such as gold, palladium, and iron oxide. The metallized SMFNs are achieved through reactions including reductive metallization or oxidative hydrolysis. The results from these studies provide evidence for the complete coating of SMFNs with uniform metal NP sizes and high surface area coverage. The metallized SMFNs are found to be electrically conductive along their network structures. The current-voltage characteristics show remarkably improved electrical conductivities depending on the types of metal NPs loading and SMFN networks concentration. The biologically inspired SMFNs with metal loading will allow have controlled electrical properties that can lead to the potential of creating unique and precise nanoelectronic materials. Lastly, the randomly entangled SMFNs are characterized to demonstrate their capabilities for hydrophilic and hydrophobic surface applications.

  10. Biologically inspired highly efficient buoyancy engine

    Science.gov (United States)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  11. Synthetic biology, inspired by synthetic chemistry

    OpenAIRE

    Malinova, V; Nallani, M.; Meier, W. P.; Sinner, E. K.

    2012-01-01

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology -about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal an...

  12. Biologically Inspired Execution Framework for Vulnerable Workflow Systems

    CERN Document Server

    Safdar, Sohail; Qureshi, Muhammad Aasim; Akbar, Rehan

    2009-01-01

    The main objective of the research is to introduce a biologically inspired execution framework for workflow systems under threat due to some intrusion attack. Usually vulnerable systems need to be stop and put into wait state, hence to insure the data security and privacy while being recovered. This research ensures the availability of services and data to the end user by keeping the data security, privacy and integrity intact. To achieve the specified goals, the behavior of chameleons and concept of hibernation has been considered in combination. Hence the workflow systems become more robust using biologically inspired methods and remain available to the business consumers safely even in a vulnerable state.

  13. Patented Biologically-inspired Technological Innovations: A Twenty Year View

    Institute of Scientific and Technical Information of China (English)

    Richard H. C. Bonser

    2006-01-01

    Publication rate of patents can be a useful measure of innovation and productivity in fields of science and technology. To assess the growth in industrially-important research, I conducted an appraisal of patents published between 1985 and 2005 on online databases using keywords chosen to select technologies arising as a result of biological inspiration. Whilst the total number of patents increased over the period examined, those with biomimetic content had increased faster as a proportion of total patent publications. Logistic regression analysis reveals that we may be a little over half way through an initial innovation cycle inspired by biological systems.

  14. Biologically inspired LED lens from cuticular nanostructures of firefly lantern.

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-11-13

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages.

  15. Biologically Inspired Vision for Indoor Robot Navigation

    OpenAIRE

    Saleiro, Mário; Tersic, K.; Lobato, D.; Rodrigues, J. M. F.; du Buf, J. M. H.

    2014-01-01

    Ultrasonic, infrared, laser and other sensors are being applied in robotics. Although combinations of these have allowed robots to navigate, they are only suited for specific scenarios, depending on their limitations. Recent advances in computer vision are turning cameras into useful low-cost sensors that can operate in most types of environments. Cameras enable robots to detect obstacles, recognize objects, obtain visual odometry, detect and recognize people and gestures, a...

  16. Development of a biologically inspired hydrobot tail

    Science.gov (United States)

    Moore, Danielle; Janneh, Alhaji; Philen, Michael

    2014-04-01

    It has been hypothesized that Europa, one of the moons of Jupiter, has a large ocean underneath a thick layer of ice. In order to determine whether life exists, it has been proposed that an underwater glider (hydrobot) capable of propulsion could be sent to explore the vast ocean. In this research, we considered various smart materials to create a propulsion device inspired by dolphin tails. Dolphins are highly efficient and excellent gliders, which makes them the ideal candidate for ocean exploration. In order to select the best dolphin species, we began by reviewing literature and then utilized the Analytical Hierarchy Process (AHP) to compare the different species. Lagenorhynchus obliquidens (Pacific White-Sided Dolphin) was found to be the best choice for creating a bioinspired hydrobot. We then conducted literature review of various smart materials and using this knowledge constructed a hydrobot tail prototype. This prototype demonstrates that smart materials can be fashioned into suitable actuators to control a tail fashioned after a dolphin.

  17. Biologically-Inspired Water Propulsion System

    Institute of Scientific and Technical Information of China (English)

    Andrzej Sioma

    2013-01-01

    Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers.Observations of nature,however,show that the absolute majority of organisms travel through water using wave motion,paddling or using water jet power.Inspired by these observations of nature,an innovative propulsion system working in aquatic environment was developed.This paper presents the design of the water propulsion system.Particular attention was paid to the use of paddling techniques and water jet power.A group of organisms that use those mechanisms to travel through water was selected and analysed.The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment.A method for modelling a propulsion system using a combination of the two solutions and the result were described.A conceptual design and a prototype constructed based on the solution were presented.With respect to the solution developed,studies and analyses of selected parameters of the prototype were described.

  18. Handwritten-word spotting using biologically inspired features

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    2008-01-01

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language, and collection. We propose a biologically inspired

  19. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  20. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  1. Biologically-Inspired Electronics with Memory Circuit Elements

    OpenAIRE

    Di Ventra, M.; Pershin, Y. V.

    2011-01-01

    Several abilities of biological systems, such as adaptation to natural environment, or of animals to learn patterns when appropriately trained, are features that are extremely useful, if emulated by electronic circuits, in applications ranging from robotics to solution of complex optimization problems, traffic control, etc. In this chapter, we discuss several examples of biologically-inspired circuits that take advantage of memory circuit elements, namely, electronic elements whose resistive,...

  2. Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    OpenAIRE

    Russell S A Brinkworth; David C O'Carroll

    2009-01-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adapt...

  3. Nanostructure Control of Biologically Inspired Polymers

    Science.gov (United States)

    Rosales, Adrianne Marie

    Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is

  4. Biologically Inspired Optimization of Building District Heating Networks

    Directory of Open Access Journals (Sweden)

    Leiming Shang

    2013-07-01

    Full Text Available In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate that although there are not large-scale efficiency savings to be made, the biologically inspired amoeboid movement model is capable of finding results of equal or better optimality than a comparable ant colony algorithm and genetic algorithm.

  5. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    OpenAIRE

    Alejandro Carrasco Elizalde; Peter Goldsmith

    2008-01-01

    The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the cont...

  6. Biologically Inspired Optimization of Building District Heating Networks

    OpenAIRE

    Leiming Shang; Xiaomin Zhao

    2013-01-01

    In this paper we show that a biologically inspired model can be successfully applied to problems of building optimal district heating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided by the model and a well-tuned ant colony algorithm and genetic algorithm. The results indicate th...

  7. Color image quality assessment with biologically inspired feature and machine learning

    Science.gov (United States)

    Deng, Cheng; Tao, Dacheng

    2010-07-01

    In this paper, we present a new no-reference quality assessment metric for color images by using biologically inspired features (BIFs) and machine learning. In this metric, we first adopt a biologically inspired model to mimic the visual cortex and represent a color image based on BIFs which unifies color units, intensity units and C1 units. Then, in order to reduce the complexity and benefit the classification, the high dimensional features are projected to a low dimensional representation with manifold learning. Finally, a multiclass classification process is performed on this new low dimensional representation of the image and the quality assessment is based on the learned classification result in order to respect the one of the human observers. Instead of computing a final note, our method classifies the quality according to the quality scale recommended by the ITU. The preliminary results show that the developed metric can achieve good quality evaluation performance.

  8. Artificial heartbeat: design and fabrication of a biologically inspired pump

    International Nuclear Information System (INIS)

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the ‘artificial heartbeat’ actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots (‘EcoBots’) that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or ‘bio-automaton’ that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. (paper)

  9. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  10. 7th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Engelbrecht, Andries; Abraham, Ajith; Plessis, Mathys; Snášel, Václav; Muda, Azah

    2016-01-01

    World Congress on Nature and Biologically Inspired Computing (NaBIC) is organized to discuss the state-of-the-art as well as to address various issues with respect to Nurturing Intelligent Computing Towards Advancement of Machine Intelligence. This Volume contains the papers presented in the Seventh World Congress (NaBIC’15) held in Pietermaritzburg, South Africa during December 01-03, 2015. The 39 papers presented in this Volume were carefully reviewed and selected. The Volume would be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  11. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  12. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis

    Science.gov (United States)

    Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie

    2016-01-01

    Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance. PMID:27471460

  13. Visual cortex inspired CNN model for feature construction in text analysis

    Directory of Open Access Journals (Sweden)

    Hongping Fu

    2016-07-01

    Full Text Available Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM, which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance.

  14. Biologically Inspired Robotic Arm Control Using an Artificial Neural Oscillator

    Directory of Open Access Journals (Sweden)

    Woosung Yang

    2010-01-01

    Full Text Available We address a neural-oscillator-based control scheme to achieve biologically inspired motion generation. In general, it is known that humans or animals exhibit novel adaptive behaviors regardless of their kinematic configurations against unexpected disturbances or environment changes. This is caused by the entrainment property of the neural oscillator which plays a key role to adapt their nervous system to the natural frequency of the interacted environments. Thus we focus on a self-adapting robot arm control to attain natural adaptive motions as a controller employing neural oscillators. To demonstrate the excellence of entrainment, we implement the proposed control scheme to a single pendulum coupled with the neural oscillator in simulation and experiment. Then this work shows the performance of the robot arm coupled to neural oscillators through various tasks that the arm traces a trajectory. With these, the real-time closed-loop system allowing sensory feedback of the neural oscillator for the entrainment property is proposed. In particular, we verify an impressive capability of biologically inspired self-adaptation behaviors that enables the robot arm to make adaptive motions corresponding to an unexpected environmental variety.

  15. An efficient biologically-inspired photocell enhanced by quantum coherence

    CERN Document Server

    Creatore, C; Emmott, S; Chin, A W

    2013-01-01

    Artificially reproducing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture of photosynthetic reaction centres that explicitly harnesses the quantum mechanical effects recently discovered in photosynthetic complexes. Quantum interference of photon absorption/emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of realistic parameters, opening a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.

  16. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.

    Science.gov (United States)

    Holzbach, Andreas; Cheng, Gordon

    2014-06-01

    In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture's focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations - making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to ∼+6%). PMID:24687170

  17. Biological Data Visualization (Dagstuhl Seminar 12372)

    OpenAIRE

    Görg, Carsten; HUNTER, LAWRENCE; Kennedy, Jessie; O'Donoghue, Sean; Van Wijk, Jarke J.

    2013-01-01

    The topic of visualizing biological data has recently seen growing interest. Visualization approaches can help researchers understand and analyze today's large and complex biological datasets. The aim of this seminar was to bring together biologists, bioinformaticians, and computer scientists to survey the current state of tools for visualizing biological data and to define a research agenda for developing the next generation of tools. During the seminar, the participants formed working group...

  18. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  19. Biologically inspired optics: analog semiconductor model of the beetle exoskeleton

    Science.gov (United States)

    Buhl, Kaia; Roth, Zachary; Srinivasan, Pradeep; Rumpf, Raymond; Johnson, Eric

    2008-08-01

    Evolution in nature has produced through adaptation a wide variety of distinctive optical structures in many life forms. For example, pigment differs greatly from the observed color of most beetles because their exoskeletons contain multilayer coatings. The green beetle is disguised in a surrounding leaf by having a comparable reflection spectrum as the leaves. The Manuka and June beetle have a concave structure where light incident at any angle on the concave structures produce matching reflection spectra. In this work, semiconductor processing methods were used to duplicate the structure of the beetle exoskeleton. This was achieved by combining analog lithography with a multilayer deposition process. The artificial exoskeleton, 3D concave multilayer structure, demonstrates a wide field of view with a unique spectral response. Studying and replicating these biologically inspired nanostructures may lead to new knowledge for fabrication and design of new and novel nano-photonic devices, as well as provide valuable insight to how such phenomenon is exploited.

  20. Invariant facial feature extraction using biologically inspired strategies

    Science.gov (United States)

    Du, Xing; Gong, Weiguo

    2011-12-01

    In this paper, a feature extraction model for face recognition is proposed. This model is constructed by implementing three biologically inspired strategies, namely a hierarchical network, a learning mechanism of the V1 simple cells, and a data-driven attention mechanism. The hierarchical network emulates the functions of the V1 cortex to progressively extract facial features invariant to illumination, expression, slight pose change, and variations caused by local transformation of facial parts. In the network, filters that account for the local structures of the face are derived through the learning mechanism and used for the invariant feature extraction. The attention mechanism computes a saliency map for the face, and enhances the salient regions of the invariant features to further improve the performance. Experiments on the FERET and AR face databases show that the proposed model boosts the recognition accuracy effectively.

  1. Numerical simulations of odorant detection by biologically inspired sensor arrays.

    Science.gov (United States)

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-03-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking. PMID:22155966

  2. Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    OpenAIRE

    Medathati, N. V. Kartheek; Neumann, Heiko; Masson, Guillaume,; Kornprobst, Pierre

    2016-01-01

    International audience Studies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision ...

  3. COSFIRE : A Brain-Inspired Approach to Visual Pattern Recognition

    NARCIS (Netherlands)

    Azzopardi, G.; Petkov, N.

    2014-01-01

    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a

  4. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  5. Perception of biological motion in visual agnosia.

    Science.gov (United States)

    Huberle, Elisabeth; Rupek, Paul; Lappe, Markus; Karnath, Hans-Otto

    2012-01-01

    Over the past 25 years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral ("what") and a dorsal ("where") visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: perception of biological motion might be impaired when "non-biological" motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots ("Shape-from-Motion"), recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  6. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    Science.gov (United States)

    Kinsinger, Nichola M.

    There is an alarming increase of a variety of new chemicals that are now being discharged into the wastewater system causing increased concern for public health and safety because many are not removed by typical wastewater treatment practices. Titanium Dioxide (TiO2) is a heterogeneous photocatalytic material that rapidly and completely mineralizing organics without harmful byproducts. TiO2 is synthesized by various methods, which lack the necessary control of crystal size, phase, and morphological features that yield optimized semiconductor materials. Mineralizing organisms demonstrate how nature can produce elegant structures at room temperature through controlled organic-mineral interactions. Here, we utilize biologically-inspired scaffolds to template the nucleation and growth of inorganic materials such as TiO2, which aid in controlling the size and phase of these particles and ultimately, their properties. Nanosized rutile and anatase particles were synthesized under solution conditions at relatively low temperatures and mild pH conditions. The effects of reaction conditions on phase and grain size were investigated and discussed from coordination chemistry and coarsening mechanisms. Photocatalytic characterization of TiO2 phase mixtures was performed to investigate their synergistic effect. The suspension conditions of these catalytic nanomaterials were modulated to optimize the degradation rate of organic analytes. Through the addition of an organic scaffold during the synthesis reaction, a mechanically robust (elastic) composite material containing TiO2 nanoparticles was produced. This composite was subsequently heat-treated to produce a porous, high surface area TiO2 nanoparticulate membrane. Processing conditions were investigated to characterize the growth and phase transformation of TiO2, which ultimately impacts photocatalytic performance. These bulk porous TiO2 structures can be fabricated and tailored to act as stand-alone photocatalytic membranes

  7. Visualizing ensembles in structural biology.

    Science.gov (United States)

    Melvin, Ryan L; Salsbury, Freddie R

    2016-06-01

    Displaying a single representative conformation of a biopolymer rather than an ensemble of states mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. However, there are few apparent options due to the fixed nature of print media. Here we suggest a standardized methodology for visually indicating the distribution width, standard deviation and uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single representative conformation. Of particular note is that the visualization method employed clearly distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this method to ligand binding, suggesting a way to indicate the expected error in many high throughput docking programs when visualizing the structural spread of the output. We provide several examples in the context of nucleic acids and proteins with particular insights gained via this method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-deoxyuridine-5-O-monophosphate) - a topoisomerase-1 (Top1), apoptosis-inducing poison - and nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss how these methods can be extended to any macromolecular data set with an underlying distribution, including experimental data such as NMR structures. PMID:27179343

  8. Visualizing ensembles in structural biology.

    Science.gov (United States)

    Melvin, Ryan L; Salsbury, Freddie R

    2016-06-01

    Displaying a single representative conformation of a biopolymer rather than an ensemble of states mistakenly conveys a static nature rather than the actual dynamic personality of biopolymers. However, there are few apparent options due to the fixed nature of print media. Here we suggest a standardized methodology for visually indicating the distribution width, standard deviation and uncertainty of ensembles of states with little loss of the visual simplicity of displaying a single representative conformation. Of particular note is that the visualization method employed clearly distinguishes between isotropic and anisotropic motion of polymer subunits. We also apply this method to ligand binding, suggesting a way to indicate the expected error in many high throughput docking programs when visualizing the structural spread of the output. We provide several examples in the context of nucleic acids and proteins with particular insights gained via this method. Such examples include investigating a therapeutic polymer of FdUMP (5-fluoro-2-deoxyuridine-5-O-monophosphate) - a topoisomerase-1 (Top1), apoptosis-inducing poison - and nucleotide-binding proteins responsible for ATP hydrolysis from Bacillus subtilis. We also discuss how these methods can be extended to any macromolecular data set with an underlying distribution, including experimental data such as NMR structures.

  9. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  10. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    Science.gov (United States)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain

  11. DeviceEditor visual biological CAD canvas

    Directory of Open Access Journals (Sweden)

    Chen Joanna

    2012-02-01

    Full Text Available Abstract Background Biological Computer Aided Design (bioCAD assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

  12. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    OpenAIRE

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cu...

  13. Biology for the Visually Impaired Student.

    Science.gov (United States)

    Cooperman, Susan

    1980-01-01

    This is a description of a beginning college biology course for visually impaired students. Equipment for instruction is discussed and methods for using the materials are included. Topics included in the course are chemical bonding, diffusion and osmosis, cell structure, meiosis and mitosis, reproduction, behavior, nutrition, and circulation. (SA)

  14. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    OpenAIRE

    Palagi, Stefano; Jager, Edwin; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to i...

  15. Algebra of the Visual: The London Underground Map and the Art It Has Inspired

    OpenAIRE

    Alan Ashton-Smith

    2011-01-01

    "Algebra of the Visual: The London Underground Map and the Art It Has Inspired" by Alan Ashton-Smith. The London Underground symbolizes London, and the London Underground map, designed by Harry Beck in 1931, symbolizes the London Underground. Accordingly, Beck’s map has in itself come to be a recognizable signifier of London. Its impact resonates beyond this city though: it is also the prototype for metro maps worldwide, with its basic topological structure having been adopted for use on the ...

  16. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  17. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  18. Biologically Inspired Model for Inference of 3D Shape from Texture.

    Science.gov (United States)

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer.

  19. Biologically Inspired Model for Inference of 3D Shape from Texture.

    Science.gov (United States)

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  20. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  1. Biologically inspired force enhancement for maritime propulsion and maneuvering

    CERN Document Server

    Weymouth, G D

    2016-01-01

    The move to high performance applications greatly increases the demand to produce large instantaneous fluid forces for high-speed maneuvering and improved power efficiency for sustained propulsion. Animals achieve remarkable feats of maneuvering and efficiency by changing their body shape to generate unsteady fluid forces. Inspired by this, we have studied a range of immersed bodies which drastically change their shape to produce fluid forces. These include relatively simple shape- changes, such as quickly changing the angle of attack of a foil to induce emergency stops and the use of tandem flapping foils to generate three times the average propulsive force of a single flapping foil. They also include more unconventional shape-changes such as high-speed retracting foil sections to power roll and dive maneuvers and the use of soft robotics to rapidly shrink the frontal area of an ellipsoid to power 68% efficient fast-start maneuvers or even completely cancel the drag force with 91% quasi-propulsive efficiency...

  2. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  3. A design methodology for biologically inspired dry fibrillar adhesives

    Science.gov (United States)

    Aksak, Burak

    Realization of the unique aspects of gecko adhesion and incorporating these aspects into a comprehensive design methodology is essential to enable fabrication of application oriented gecko-inspired dry fibrillar adhesives. To address the need for such a design methodology, we propose a fibrillar adhesion model that evaluates the effect of fiber dimensions and material on adhesive performance of fiber arrays. A fibrillar adhesion model is developed to predict the adhesive characteristics of an array of fibrillar structures, and quantify the effect of fiber length, radius, spacing, and material. Photolithography techniques were utilized to fabricate elastomer microfiber arrays. Fibers that are fabricated from stiff SU-8 photoresist are used to fabricate a flexible negative mold that facilitates fabrication of fiber arrays from various elastomers with high yield. The tips of the cylindrical fibers are modified to mushroom-like tip shapes. Adhesive strengths in excess of 100 kPa is obtained with mushroom tipped elastomer microfibers. Vertically aligned carbon nanofibers (VACNFs) are utilized as enhanced friction materials by partially embedding inside soft polyurethanes. Friction coefficients up to 1 were repeatedly obtained from the resulting VACNF composite structures. A novel fabrication method is used to attach Poly(n-butyl acrylate) (PBA) molecular brush-like structures on the surface of polydimethylsiloxane (PDMS). These brushes are grown on unstructured PDMS and PDMS fibers with mushroom tips. Pull-off force is enhanced by up to 7 times with PBA brush grafted micro-fiber arrays over unstructured PDMS substrate. Adhesion model, initially developed for curved smooth surfaces, is extended to self-affine fractal surfaces to better reflect the adhesion performance of fiber arrays on natural surfaces. Developed adhesion model for fiber arrays is used in an optimization scheme which estimates optimal design parameters to obtain maximum adhesive strength on a given

  4. Proceedings Fourth Workshop on Membrane Computing and Biologically Inspired Process Calculi 2010

    CERN Document Server

    Ciobanu, Gabriel; 10.4204/EPTCS.40

    2010-01-01

    The 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010) is organized in Jena as a satellite event of the Eleventh International Conference on Membrane Computing (CMC11). Biological membranes play a fundamental role in the complex reactions which take place in cells of living organisms. The importance of this role has been considered in two different types of formalisms introduced recently. Membrane systems were introduced as a class of distributed parallel computing devices inspired by the observation that any biological system is a complex hierarchical structure, with a flow of biochemical substances and information that underlies their functioning. The modeling and analysis of biological systems has also attracted considerable interest of the process algebra research community. Thus the notions of membranes and compartments have been explicitly represented in a family of calculi, such as ambients and brane calculi. A cross fertilization of these two research areas has ...

  5. Biologically-inspired Microfluidic Platforms and Aptamer-based Nanobiosensors

    OpenAIRE

    Cho, Hansang

    2010-01-01

    Recent advances in micro/nano- technologies have shown high potentials in the field of quantitative biology, biomedical science, and analytical chemistry. However, micro/nano fluidics still requires multi-layered structures, complex plumbing/tubing, and external equipments for large-scale applications and nanotechnology-based sensors demand high cost. Interestingly, nature has much simpler and more effective solutions. The goal of this dissertation is to develop novel microfluidic platforms a...

  6. Algebra of the Visual: The London Underground Map and the Art It Has Inspired

    Directory of Open Access Journals (Sweden)

    Alan Ashton-Smith

    2011-01-01

    Full Text Available "Algebra of the Visual: The London Underground Map and the Art It Has Inspired" by Alan Ashton-Smith. The London Underground symbolizes London, and the London Underground map, designed by Harry Beck in 1931, symbolizes the London Underground. Accordingly, Beck’s map has in itself come to be a recognizable signifier of London. Its impact resonates beyond this city though: it is also the prototype for metro maps worldwide, with its basic topological structure having been adopted for use on the subways of many other cities. (NANO: New American Notes Online

  7. Invariant visual object recognition: biologically plausible approaches.

    Science.gov (United States)

    Robinson, Leigh; Rolls, Edmund T

    2015-10-01

    Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream.

  8. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    Science.gov (United States)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  9. From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.

  10. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  11. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  12. SelSta - A Biologically Inspired Approach for Self-Stabilizing Humanoid Robot Walking

    OpenAIRE

    Jakimovski, Bojan; Kotke, Michael; Hörenz, Martin; Maehle, Erik

    2010-01-01

    International audience In this paper we elaborate a study on self-stabilizing humanoid robot that achieves run-time self-stabilization and energy optimized walking gait pattern parameters on different kinds of flat surfaces. The algorithmic approach named SelSta uses biologically inspired notions that introduce robustness into the self-stabilizing functionality of the humanoid robot. The approach has been practically tested on our S2-HuRo humanoid robot and the results from the tests demon...

  13. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    OpenAIRE

    Humayun Irshad; Sepehr Jalali; Ludovic Roux; Daniel Racoceanu; Lim Joo Hwee; Gilles Le Naour; Frédérique Capron

    2013-01-01

    Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach...

  14. Biologically inspired design framework for Robot in Dynamic Environments using Framsticks

    CERN Document Server

    S., Raja Mohamed

    2012-01-01

    Robot design complexity is increasing day by day especially in automated industries. In this paper we propose biologically inspired design framework for robots in dynamic world on the basis of Co-Evolution, Virtual Ecology, Life time learning which are derived from biological creatures. We have created a virtual khepera robot in Framsticks and tested its operational credibility in terms hardware and software components by applying the above suggested techniques. Monitoring complex and non complex behaviors in different environments and obtaining the parameters that influence software and hardware design of the robot that influence anticipated and unanticipated failures, control programs of robot generation are the major concerns of our techniques.

  15. BiLBIQ A Biologically Inspired Robot with Walking and Rolling Locomotion

    CERN Document Server

    King, Ralf Simon

    2013-01-01

    The book ‘BiLBIQ: A biologically inspired Robot with walking and rolling locomotion’ deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed.   The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature’s inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a speci...

  16. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  17. Recent Developments in the Application of Biologically Inspired Computation to Chemical Sensing

    Science.gov (United States)

    Marco, S.; Gutierrez-Gálvez, A.

    2009-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. In this work, the state of the art concerning biologically inspired computation for chemical sensing will be reviewed. Instead of reviewing the whole body of computational neuroscience of olfaction, we restrict this review to the application of models to the processing of real chemical sensor data.

  18. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  19. Occupational therapy intervention to inspire self-efficacy in a patient with spinal ataxia and visual disturbance.

    Science.gov (United States)

    Tohyama, Satsuki; Usuki, Fusako

    2015-02-09

    We report a case of a patient with severe ataxia and visual disturbance due to vitamin E deficiency, whose self-efficacy was inspired by intervention with an appropriate occupational therapy activity. Before the handloom intervention, her severe neurological deficits decreased her activities of daily living (ADL) ability, which made her feel pessimistic and depressed. The use of a handloom, however, inspired her sense of accomplishment because she could perform the weft movement by using her residual physical function, thereby relieving her pessimistic attitude. This perception of capability motivated her to participate in further rehabilitation. Finally, her eager practice enhanced her ADL ability and quality of life (QOL). The result suggests that it is important to provide an appropriate occupational therapy activity that can inspire self-efficacy in patients with chronic refractory neurological disorders because the perception of capability can enhance the motivation to improve performance in general activities, ADL ability and QOL.

  20. Soft Robotics: Biological Inspiration, State of the Art, and Future Research

    Directory of Open Access Journals (Sweden)

    Deepak Trivedi

    2008-01-01

    Full Text Available Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

  1. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective.

    Science.gov (United States)

    Iida, Fumiya; Nurzaman, Surya G

    2016-08-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843

  2. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective.

    Science.gov (United States)

    Iida, Fumiya; Nurzaman, Surya G

    2016-08-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception.

  3. Teaching Biology to the Visually Impaired: Accommodating Students' Special Needs.

    Science.gov (United States)

    Womble, Mark D.; Walker, Gary R.

    2001-01-01

    Describes how to teach a visually-oriented biology lecture and laboratory course to blind students. Using several techniques in the laboratory enabled a student to have a meaningful laboratory experience. (SAH)

  4. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  5. Biologically inspired large scale chemical sensor arrays and embedded data processing

    Science.gov (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  6. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  7. A biologically inspired meta-control navigation system for the Psikharpax rat robot

    International Nuclear Information System (INIS)

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment—recognized as new contexts—and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. (paper)

  8. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  9. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    Science.gov (United States)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  10. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  11. A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids

    Directory of Open Access Journals (Sweden)

    Yu Hui

    2015-04-01

    Full Text Available When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, to the crew. However, there is little room left for traditional seat to improve further. Herein, a new seat system biologically-inspired by felids’ landing is proposed. Firstly, a series of experiments was carried out on cats and tigers, in which they were trained to jump down voluntarily from different heights. Based on the ground reaction forces combined with kinematics, the experiment indicated that felids’ landing after self-initial jump was a multi-step impact attenuation process and the new seat was inspired by this. Then the construction and work process of new seat were redesigned to realize the multi-step impact attenuation. The dynamic response of traditional and new seat is analyzed under the identical conditions and the results show that the new concept seat can significantly weaken the occupant overload in two directions compared with that of traditional seat. As a consequence, the risk of injury evaluated for spinal and head is also lowered, meaning a higher level of protection which is especially beneficial to the debilitated astronaut.

  12. A biologically inspired meta-control navigation system for the Psikharpax rat robot.

    Science.gov (United States)

    Caluwaerts, K; Staffa, M; N'Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-06-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics.

  13. Survey of locomotion control of legged robots inspired by biological concept

    Institute of Scientific and Technical Information of China (English)

    WU QiDi; LIU ChengJu; ZHANG JiaQi; CHEN QiJun

    2009-01-01

    Compared with wheeled mobile robots, legged robots can easily step over obstacles and walk through rugged ground. They have more flexible bodies and therefore, can deal with complex environment. Nev-ertheless, some other issues make the locomotion control of legged robots a much complicated task, such as the redundant degree of freedoms and balance keeping. From literatures, locomotion control has been solved mainly based on programming mechanism. To use this method, walking trajectories for each leg and the gaits have to be designed, and the adaptability to an unknown environment cannot be guaranteed. From another aspect, studying and simulating animals' walking mechanism for engi-neering application is an efficient way to break the bottleneck of locomotion control for legged robots. This has attracted more and more attentions. Inspired by central pattern generator (CPG), a control method has been proved to be a successful attempt within this scope. In this paper, we will review the biological mechanism, the existence evidences, and the network properties of CPG. From the en-gineering perspective, we will introduce the engineering simulation of CPG, the property analysis, and the research progress of CPG inspired control method in locomotion control of legged robots. Then, in our research, we will further discuss on existing problems, hot issues, and future research directions in this field.

  14. Pose-Independent Face Recognition Using Biologically Inspired Feature Set and Mixture of Experts

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-08-01

    Full Text Available Automatic face recognition system has received significant attention during the last decades due to its wide range of applications, such as security, human-computer interaction, visual surveillance, and so on. In this paper, a new and efficient face recognition method, based on features inspired by the human’s visual cortex and applying mixture of experts’ architecture on the extracted feature set is proposed. A feature set is extracted by means of a feed-forward model, which contains a view and illumination invariant C2 features from all images in the data set. Then, these C2 feature vector which derived from a cortex-like mechanism passed to a mixture of multilayer perceptron neural networks. In the result part, the proposed approach is applied on ORL and Yale databases and the accuracy rate achieved 99.75% and 100% respectively. In addition, experimental results have demonstrated our method robust in successful recognition of human faces even with variant lighting and poses.

  15. Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations.

    Science.gov (United States)

    Yao, H; Rocca, G Della; Guduru, P R; Gao, H

    2008-07-01

    Inspired by the adhesion mechanisms of several animal species such as geckos, beetles and flies, several efforts in designing and fabricating surface engineering strategies have been made recently to mimic the adhesive and frictional behaviour of biological foot pads. An important feature of such biological adhesion systems is the ability to switch between strong attachment and easy detachment, which is crucial for animal locomotion. Recent investigations have suggested that such a 'switching' mechanism can be achieved by the elastic anisotropy of the attachment pad, which renders the magnitude of the detachment force to be direction dependent. This suggestion is supported by the observations that the fibres of the foot pads in geckos and insects are oriented at an angle to the base and that geckos curl their toes backwards (digital hyperextension) while detaching from a surface. One of the promising bio-inspired architectures developed recently is a film-terminated fibrillar PDMS surface; this structure was demonstrated to result in superior detachment force and energy dissipation compared with a bulk PDMS surface. In this investigation, the film-terminated fibrillar architecture is modified by tilting the fibres to make the surface vertically more compliant and elastically anisotropic. The directional detachment and the sliding resistance between the tilted fibrillar surfaces and a spherical glass lens are measured: both show significant directional anisotropy. It is argued that the anisotropy introduced by the tilted fibres and the deformation-induced change in the compliance of the fibre layer are responsible for the observed anisotropy in the detachment force. PMID:17971321

  16. Mechanism Interpretation of the Biological Brain Cooling and Its Inspiration on Bionic Engineering

    Institute of Scientific and Technical Information of China (English)

    Xu Xue; Jing Liu

    2011-01-01

    The brain is one of the most important organs in a biological body which can only work in a relatively stable temperature range. However, many environmental factors in biosphere would cause cerebral temperature fluctuations. To sustain and regulate the brain temperature, many mechanisms of biological brain cooling have been evolved, including Selective Brain Cooling (SBC), cooling through surface water evaporation, respiration, behavior response and using special anatomical appendages. This article is dedicated to present a summarization and systematic interpretation on brain cooling strategies developed in animals by classifying and comparatively analyzing each typical biological brain cooling mechanism from the perspective of bio-heat transfer. Meanwhile, inspirations from such cooling in nature were proposed for developing advanced bionic engineering technologies especially with two focuses on therapeutic hypothermia and computer chip cooling areas. It is expected that many innovations can be achieved along this way to find out new cooling methodologies for a wide variety of industrial applications which will be highly efficient, energy saving, flexible or even intelligent.

  17. Biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles

    Science.gov (United States)

    Eckerle, Joseph; Stanford, Scott; Marlow, John; Schmidt, Roger; Oh, Seajin; Low, Thomas; Shastri, Subramanian V.

    2001-06-01

    Small, autonomous mobile robots are needed for applications such as reconnaissance over difficult terrain or internal inspection of large industrial systems. Previous work in experimental biology and with legged robots has revealed the advantages of using leg actuators with inherent compliance for robust, autonomous locomotion over uneven terrain. Recently developed field-effect electroactive elastomer artificial muscle actuators offer such compliance as well as attractive performance parameters such as force/weight and efficiency, so we developed a small (670 g) six-legged robot, FLEX, using AM actuators. Electrically, AM actuators are a capacitive, high-impedance load similar to piezoelectrics, which makes them difficult to rive optimally with conventional circuitry. Still, we were able to devise a modular, microprocessor-based control system capable of driving 12 muscles with up to 5,000 V, operating form an on- board battery. The artificial muscle actuators had excellent compliance and peak performance, but suffered from poor uniformity and degradation over time. FLEX is the first robot of its kind. While there is room for improvement in some of the robot systems such as actuators and their drivers, this work has validated the idea of using artificial muscle actuators in biologically inspired walking robots.

  18. Biologically-inspired approaches for self-organization, adaptation, and collaboration of heterogeneous autonomous systems

    Science.gov (United States)

    Steinberg, Marc

    2011-06-01

    This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.

  19. Real-Time Illumination Invariant Face Detection Using Biologically Inspired Feature Set and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available In recent years, face detection has been thoroughly studied due to its wide potential applications, including face recognition, human-computer interaction, video surveillance, etc.In this paper, a new and illumination invariant face detection method, based on features inspired by the human's visual cortexand applying BP neural network on the extracted featureset is proposed.A feature set is extracted from face and non-face images, by means of a feed-forward model, which contains a view and illumination invariant C2 features from all images in the dataset. Then, these C2 feature vector which derived from a cortex-like mechanism passed to a BP neural network. In the result part, the proposed approach is applied on FEI and Wild face detection databases and high accuracy rate is achieved. In addition, experimental results have demonstrated our proposed face detector outperforms the most of the successful face detection algorithms in the literature and gives the first best result on all tested challenging face detection databases.

  20. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  1. Visualizing time-related data in biology, a review.

    Science.gov (United States)

    Secrier, Maria; Schneider, Reinhard

    2014-09-01

    Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation.

  2. How can selection of biologically inspired features improve the performance of a robust object recognition model?

    Directory of Open Access Journals (Sweden)

    Masoud Ghodrati

    Full Text Available Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages. These object parts are used for training procedure in the model and have an important role in object recognition. These patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more informative than usual random patches. We demonstrate the strength of the proposed model on a range of object recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen from the experiments that selected features are generally particular parts of target images. Our results suggest that selected features which are parts of target objects provide an efficient set for robust object recognition.

  3. Learning slow features with reservoir computing for biologically-inspired robot localization.

    Science.gov (United States)

    Antonelo, Eric; Schrauwen, Benjamin

    2012-01-01

    This work proposes a hierarchical biologically-inspired architecture for learning sensor-based spatial representations of a robot environment in an unsupervised way. The first layer is comprised of a fixed randomly generated recurrent neural network, the reservoir, which projects the input into a high-dimensional, dynamic space. The second layer learns instantaneous slowly-varying signals from the reservoir states using Slow Feature Analysis (SFA), whereas the third layer learns a sparse coding on the SFA layer using Independent Component Analysis (ICA). While the SFA layer generates non-localized activations in space, the ICA layer presents high place selectivity, forming a localized spatial activation, characteristic of place cells found in the hippocampus area of the rodent's brain. We show that, using a limited number of noisy short-range distance sensors as input, the proposed system learns a spatial representation of the environment which can be used to predict the actual location of simulated and real robots, without the use of odometry. The results confirm that the reservoir layer is essential for learning spatial representations from low-dimensional input such as distance sensors. The main reason is that the reservoir state reflects the recent history of the input stream. Thus, this fading memory is essential for detecting locations, mainly when locations are ambiguous and characterized by similar sensor readings.

  4. Computing with Biologically Inspired Neural Oscillators: Application to Colour Image Segmentation

    Directory of Open Access Journals (Sweden)

    Ammar Belatreche

    2010-01-01

    Full Text Available This paper investigates the computing capabilities and potential applications of neural oscillators, a biologically inspired neural model, to grey scale and colour image segmentation, an important task in image understanding and object recognition. A proposed neural system that exploits the synergy between neural oscillators and Kohonen self-organising maps (SOMs is presented. It consists of a two-dimensional grid of neural oscillators which are locally connected through excitatory connections and globally connected to a common inhibitor. Each neuron is mapped to a pixel of the input image and existing objects, represented by homogenous areas, are temporally segmented through synchronisation of the activity of neural oscillators that are mapped to pixels of the same object. Self-organising maps form the basis of a colour reduction system whose output is fed to a 2D grid of neural oscillators for temporal correlation-based object segmentation. Both chromatic and local spatial features are used. The system is simulated in Matlab and its demonstration on real world colour images shows promising results and the emergence of a new bioinspired approach for colour image segmentation. The paper concludes with a discussion of the performance of the proposed system and its comparison with traditional image segmentation approaches.

  5. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  6. Modelling of a biologically inspired robotic fish driven by compliant parts.

    Science.gov (United States)

    El Daou, Hadi; Salumäe, Taavi; Chambers, Lily D; Megill, William M; Kruusmaa, Maarja

    2014-03-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. PMID:24451164

  7. Bio-empirical mode decomposition: visible and infrared fusion using biologically inspired empirical mode decomposition

    Science.gov (United States)

    Sissinto, Paterne; Ladeji-Osias, Jumoke

    2013-07-01

    Bio-EMD, a biologically inspired fusion of visible and infrared (IR) images based on empirical mode decomposition (EMD) and color opponent processing, is introduced. First, registered visible and IR captures of the same scene are decomposed into intrinsic mode functions (IMFs) through EMD. The fused image is then generated by an intuitive opponent processing the source IMFs. The resulting image is evaluated based on the amount of information transferred from the two input images, the clarity of details, the vividness of depictions, and range of meaningful differences in lightness and chromaticity. We show that this opponent processing-based technique outperformed other algorithms based on pixel intensity and multiscale techniques. Additionally, Bio-EMD transferred twice the information to the fused image compared to other methods, providing a higher level of sharpness, more natural-looking colors, and similar contrast levels. These results were obtained prior to optimization of color opponent processing filters. The Bio-EMD algorithm has potential applicability in multisensor fusion covering visible bands, forensics, medical imaging, remote sensing, natural resources management, etc.

  8. Biologically inspired, haltere, angular-rate sensors for micro-autonomous systems

    Science.gov (United States)

    Smith, G. L.; Bedair, S. S.; Schuster, B. E.; Nothwang, W. D.; Pulskamp, J. S.; Meyer, C. D.; Polcawich, R. G.

    2012-06-01

    Small autonomous aerial systems require the ability to detect roll, pitch, and yaw to enable stable flight. Existing inertial measurement units (IMUs) are incapable of accurately measuring roll-pitch-yaw within the size, weight, and power requirements of at-scale insect-inspired aerial autonomous systems. To overcome this, we have designed novel IMUs based on the biological haltere system in a microelectromechanical system (MEMS). MEMS haltere sensors were successfully simulated, designed, and fabricated with a control scheme that enables simple, straightforward decoupling of the signals. Passive mechanical logic was designed to facilitate the decoupling of the forces acting on the sensor. The control scheme was developed that efficiently and accurately decouples the three component parts from the haltere sensors. Individual, coupled, and arrayed halteres were fabricated. A series of static electrical tests and dynamic device tests were conducted, in addition to in-situ bend tests, to validate the simulation results, and these, taken as a whole, indicate that the MEMS haltere sensors will be inherently sensitive to the Coriolis forces caused by changes in angular rate. The successful fabrication of a micro-angular rate sensor represents a substantial breakthrough and is an enabling technology for a number of Army applications, including micro air vehicles (MAVs).

  9. Task-Oriented Parameter Tuning Based on Priority Condition for Biologically Inspired Robot Application

    Directory of Open Access Journals (Sweden)

    Jaesung Kwon

    2015-01-01

    Full Text Available This work gives a biologically inspired control scheme for controlling a robotic system. Novel adaptive behaviors are observed from humans or animals even in unexpected disturbances or environment changes. This is why they have neural oscillator networks in the spinal cord to yield rhythmic-motor primitives robustly under a changing task. Hence, this work focuses on rhythmic arm movements that can be accomplished in terms of employing a control approach based on an artificial neural oscillator model. The main challenge is to determine various parameters for applying a neural feedback to robotic systems with performing a desired behavior and self-maintaining the entrainment effect. Hence, this work proposes a task-oriented parameter tuning algorithm based on the simulated annealing (SA. This work also illustrates how to technically implement the proposed control scheme exploiting a virtual force and neural feedback. With parameters tuned, it is verified in simulations that a 3-DOF planar robotic arm traces a given trajectory precisely, adapting to uneven external disturbances.

  10. Modelling of a biologically inspired robotic fish driven by compliant parts

    International Nuclear Information System (INIS)

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill’s elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. (paper)

  11. Visual Analysis of Biological Activity Data with Scaffold Hunter.

    Science.gov (United States)

    Klein, Karsten; Koch, Oliver; Kriege, Nils; Mutzel, Petra; Schäfer, Till

    2013-12-01

    The growing interest in chemogenomics approaches over the last years has led to an increasing amount of data regarding chemical and the corresponding biological activity space. The resulting data, collected in either in-house or public databases, need to be analyzed efficiently to speed-up the increasingly difficult task of drug discovery. Unfortunately, the discovery of new chemical entities or new targets for known drugs ('drug repurposing') is not suitable to a fully automated analysis or a simple drill down process. Visual interactive interfaces that allow to explore chemical space in a systematic manner and facilitate analytical reasoning can help to overcome these problems. Scaffold Hunter is a tool for the visual analysis of chemical compound databases that provides integrated visualization and analysis of biological activity data and fosters the interactive exploration of data imported from a variety of sources. We describe the features and illustrate the use by means of an exemplary analysis workflow.

  12. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  13. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Science.gov (United States)

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  14. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation.

    Science.gov (United States)

    Childs, Allie; Hemraz, Usha D; Castro, Nathan J; Fenniri, Hicham; Zhang, Lijie Grace

    2013-12-01

    Cartilage defects are a persistent issue in orthopedic tissue engineering where acute and chronic tissue damage stemming from osteoarthritis, trauma, and sport injuries, present a common and serious clinical problem. Unlike bone, cartilage repair continues to be largely intractable due to the tissue's inherently poor regenerative capacity. Thus, the objective of this study is to design a novel tissue engineered nanostructured cartilage scaffold via biologically-inspired self-assembling rosette nanotubes (RNTs) and biocompatible non-woven poly (l-lactic acid) (PLLA) for enhanced human bone marrow mesenchymal stem cell (hMSC) chondrogenic differentiation. Specifically, RNTs are a new class of biomimetic supramolecular nanomaterial obtained through the self-assembly of low-molecular-weight modified guanine/cytosine DNA base hybrids (the G∧C motif) in an aqueous environment. In this study, we synthesized a novel twin G∧C-based RNT (TB-RGDSK) functionalized with cell-favorable arginine-glycine-aspartic acid-serine-lysine (RGDSK) integrin binding peptide and a twin G∧C based RNT with an aminobutane linker molecule (TBL). hMSC adhesion, proliferation and chondrogenic differentiation were evaluated in vitro in scaffold groups consisting of biocompatible PLLA with TBL, 1:9 TB-RGDSK:TBL, and TB-RGDSK, respectively. Our results show that RNTs can remarkably increase total glycosaminoglycan, collagen, and protein production when compared to PLLA controls without nanotubes. Furthermore, the TB-RGDSK with 100% well-organized RGDSK peptides achieved the highest chondrogenic differentiation of hMSCs. The current in vitro study illustrated that RNT nanotopography and surface chemistry played an important role in enhancing hMSC chondrogenic differentiation thus making them promising for cartilage regeneration. PMID:24225196

  15. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    Science.gov (United States)

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  16. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation

    International Nuclear Information System (INIS)

    Cartilage defects are a persistent issue in orthopedic tissue engineering where acute and chronic tissue damage stemming from osteoarthritis, trauma, and sport injuries, present a common and serious clinical problem. Unlike bone, cartilage repair continues to be largely intractable due to the tissue's inherently poor regenerative capacity. Thus, the objective of this study is to design a novel tissue engineered nanostructured cartilage scaffold via biologically-inspired self-assembling rosette nanotubes (RNTs) and biocompatible non-woven poly (l-lactic acid) (PLLA) for enhanced human bone marrow mesenchymal stem cell (hMSC) chondrogenic differentiation. Specifically, RNTs are a new class of biomimetic supramolecular nanomaterial obtained through the self-assembly of low-molecular-weight modified guanine/cytosine DNA base hybrids (the G∧C motif) in an aqueous environment. In this study, we synthesized a novel twin G∧C-based RNT (TB-RGDSK) functionalized with cell-favorable arginine–glycine–aspartic acid–serine–lysine (RGDSK) integrin binding peptide and a twin G∧C based RNT with an aminobutane linker molecule (TBL). hMSC adhesion, proliferation and chondrogenic differentiation were evaluated in vitro in scaffold groups consisting of biocompatible PLLA with TBL, 1:9 TB-RGDSK:TBL, and TB-RGDSK, respectively. Our results show that RNTs can remarkably increase total glycosaminoglycan, collagen, and protein production when compared to PLLA controls without nanotubes. Furthermore, the TB-RGDSK with 100% well-organized RGDSK peptides achieved the highest chondrogenic differentiation of hMSCs. The current in vitro study illustrated that RNT nanotopography and surface chemistry played an important role in enhancing hMSC chondrogenic differentiation thus making them promising for cartilage regeneration. (paper)

  17. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    Science.gov (United States)

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation. PMID:26234364

  18. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  19. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    Science.gov (United States)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  20. Superior visual performance in nocturnal insects: neural principles and bio-inspired technologies

    Science.gov (United States)

    Warrant, Eric J.

    2016-04-01

    At night, our visual capacities are severely reduced, with a complete loss in our ability to see colour and a dramatic loss in our ability to see fine spatial and temporal details. This is not the case for many nocturnal animals, notably insects. Our recent work, particularly on fast-flying moths and bees and on ball-rolling dung beetles, has shown that nocturnal animals are able to distinguish colours, to detect faint movements, to learn visual landmarks, to orient to the faint pattern of polarised light produced by the moon and to navigate using the stars. These impressive visual abilities are the result of exquisitely adapted eyes and visual systems, the product of millions of years of evolution. Nocturnal animals typically have highly sensitive eye designs and visual neural circuitry that is optimised for extracting reliable information from dim and noisy visual images. Even though we are only at the threshold of understanding the neural mechanisms responsible for reliable nocturnal vision, growing evidence suggests that the neural summation of photons in space and time is critically important: even though vision in dim light becomes necessarily coarser and slower, it also becomes significantly more reliable. We explored the benefits of spatiotemporal summation by creating a computer algorithm that mimicked nocturnal visual processing strategies. This algorithm dramatically increased the reliability of video collected in dim light, including the preservation of colour, strengthening evidence that summation strategies are essential for nocturnal vision.

  1. Biological inspiration in optics and photonics: harnessing nature's light manipulation strategies for multifunctional optical materials (Conference Presentation)

    Science.gov (United States)

    Kolle, Mathias; Sandt, Joseph D.; Nagelberg, Sara N.; Zarzar, Lauren D.; Kreysing, Moritz; Vukusic, Peter

    2016-03-01

    The precise control of light-matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties. This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that

  2. Visual Behaviour Based Bio-Inspired Polarization Techniques in Computer Vision and Robotics

    OpenAIRE

    Shabayek, Abd El Rahman; Morel, Olivier; Fofi, David

    2012-01-01

    For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual beha...

  3. A Biologically Inspired Model of Distributed Online Communication Supporting Efficient Search and Diffusion of Innovation

    Directory of Open Access Journals (Sweden)

    Soumya Baneerjee

    2016-01-01

    Full Text Available We inhabit a world that is not only “small” but supports efficient decentralized search – an individual using local information can establish a line of communication with another completely unknown individual. Here we augment a hierarchical social network model with communication between and within communities. We argue that organization into communities would decrease overall decentralized search times. We take inspiration from the biological immune system which organizes search for pathogens in a hybrid modular strategy. Our strategy has relevance in search for rare amounts of information in online social networks and could have implications for massively distributed search challenges. Our work also has implications for design of efficient online networks that could have an impact on networks of human collaboration, scientific collaboration and networks used in targeted manhunts. Real world systems, like online social networks, have high associated delays for long-distance links, since they are built on top of physical networks. Such systems have been shown to densify i.e. the average number of neighbours that an individual has increases with time. Hence such networks will have a communication cost due to space and the requirement of building and maintaining and increasing number of connections. We have incorporated such a non-spatial cost to communication in order to introduce the realism of individuals communicating within communities, which we call participation cost. We introduce the notion of a community size that increases with the size of the system, which is shown to reduce the time to search for information in networks. Our final strategy balances search times and participation costs and is shown to decrease time to find information in decentralized search in online social networks. Our strategy also balances strong-ties (within communities and weak-ties over long distances (between communities that bring in diverse ideas and

  4. Identifying and Visualizing Macromolecular Flexibility in Structural Biology.

    Science.gov (United States)

    Palamini, Martina; Canciani, Anselmo; Forneris, Federico

    2016-01-01

    Structural biology comprises a variety of tools to obtain atomic resolution data for the investigation of macromolecules. Conventional structural methodologies including crystallography, NMR and electron microscopy often do not provide sufficient details concerning flexibility and dynamics, even though these aspects are critical for the physiological functions of the systems under investigation. However, the increasing complexity of the molecules studied by structural biology (including large macromolecular assemblies, integral membrane proteins, intrinsically disordered systems, and folding intermediates) continuously demands in-depth analyses of the roles of flexibility and conformational specificity involved in interactions with ligands and inhibitors. The intrinsic difficulties in capturing often subtle but critical molecular motions in biological systems have restrained the investigation of flexible molecules into a small niche of structural biology. Introduction of massive technological developments over the recent years, which include time-resolved studies, solution X-ray scattering, and new detectors for cryo-electron microscopy, have pushed the limits of structural investigation of flexible systems far beyond traditional approaches of NMR analysis. By integrating these modern methods with powerful biophysical and computational approaches such as generation of ensembles of molecular models and selective particle picking in electron microscopy, more feasible investigations of dynamic systems are now possible. Using some prominent examples from recent literature, we review how current structural biology methods can contribute useful data to accurately visualize flexibility in macromolecular structures and understand its important roles in regulation of biological processes.

  5. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    Science.gov (United States)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye

  6. Design and Implementation of a Biologically Inspired Flying Robot - An EPS@ISEP 2014 Spring Project

    OpenAIRE

    Caramin, Bénédicte Anki; Dunn, Iain; Ney, Rauno; Klawikowski, Yvonne; Malheiro, Benedita; Ribeiro, Maria Cristina; Silva, Manuel; Caetano, Nídia de Sá; Ferreira, Paulo; Guedes, Pedro

    2015-01-01

    The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutio...

  7. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  8. Evaluation of target and cardiac position during visually monitored deep inspiration breath-hold for breast radiotherapy.

    Science.gov (United States)

    Conroy, Leigh; Yeung, Rosanna; Watt, Elizabeth; Quirk, Sarah; Long, Karen; Hudson, Alana; Phan, Tien; Smith, Wendy L

    2016-01-01

    A low-resource visually monitored deep inspiration breath-hold (VM-DIBH) technique was successfully implemented in our clinic to reduce cardiac dose in left-sided breast radiotherapy. In this study, we retrospectively characterized the chest wall and heart positioning accuracy of VM-DIBH using cine portal images from 42 patients. Central chest wall position from field edge and in-field maximum heart distance (MHD) were manually measured on cine images and compared to the planned positions based on the digitally reconstructed radiographs (DRRs). An in-house program was designed to measure left anterior descending artery (LAD) and chest wall separation on the planning DIBH CT scan with respect to breath-hold level (BHL) during simulation to determine a minimum BHL for VM-DIBH eligibility. Systematic and random setup uncertainties of 3.0 mm and 2.6 mm, respectively, were found for VM-DIBH treatment from the chest wall measurements. Intrabeam breath-hold stability was found to be good, with over 96% of delivered fields within 3 mm. Average treatment MHD was significantly larger for those patients where some of the heart was planned in the field compared to patients whose heart was completely shielded in the plan (p < 0.001). No evidence for a minimum BHL was found, suggesting that all patients who can tolerate DIBH may yield a benefit from it. PMID:27455494

  9. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  10. Performance improvement of IPMC flow sensors with a biologically-inspired cupula structure

    Science.gov (United States)

    Lei, Hong; Sharif, Montassar Aidi; Paley, Derek A.; McHenry, Matthew J.; Tan, Xiaobo

    2016-04-01

    Ionic polymer-metal composites (IPMCs) have inherent underwater sensing and actuation properties. They can be used as sensors to collect flow information. Inspired by the hair-cell mediated receptor in the lateral line system of fish, the impact of a flexible, cupula-like structure on the performance of IPMC flow sensors is experimentally explored. The fabrication method to create a silicone-capped IPMC sensor is reported. Experiments are conducted to compare the sensing performance of the IPMC flow sensor before and after the PDMS coating under the periodic flow stimulus generated by a dipole source in still water and the laminar flow stimulus generated in a flow tank. Experimental results show that the performance of IPMC flow sensors is significantly improved under the stimulus of both periodic flow and laminar flow by the proposed silicone-capping.

  11. A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment

    International Nuclear Information System (INIS)

    A bio-inspired prototype fish using the flexible matrix composite (FMC) muscle technology for fin and body actuation is developed. FMC actuators are pressure driven muscle-like actuators capable of large displacements as well as large blocking forces. An analytical model of the artificial fish using FMC actuators is developed and analysis results are presented. An experimental prototype of the artificial fish having FMC artificial muscles has been completed and tested. Constant mean thrusts have been achieved in the laboratory for a stationary fish for different undulation frequencies around 1 Hz. The experimental results demonstrate that a nearly constant thrust can be achieved through tuning of excitation frequency for given body stiffness. Free swimming results show that the prototype can swim at approximately 0.3 m s−1

  12. explorase: Multivariate Exploratory Analysis and Visualization for Systems Biology

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    2008-03-01

    Full Text Available The datasets being produced by high-throughput biological experiments, such as microarrays, have forced biologists to turn to sophisticated statistical analysis and visualization tools in order to understand their data. We address the particular need for an open-source exploratory data analysis tool that applies numerical methods in coordination with interactive graphics to the analysis of experimental data. The software package, known as explorase, provides a graphical user interface (GUI on top of the R platform for statistical computing and the GGobi software for multivariate interactive graphics. The GUI is designed for use by biologists, many of whom are unfamiliar with the R language. It displays metadata about experimental design and biological entities in tables that are sortable and filterable. There are menu shortcuts to the analysis methods implemented in R, including graphical interfaces to linear modeling tools. The GUI is linked to data plots in GGobi through a brush tool that simultaneously colors rows in the entity information table and points in the GGobi plots.

  13. Using biological networks to integrate, visualize and analyze genomics data.

    Science.gov (United States)

    Charitou, Theodosia; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Network biology is a rapidly developing area of biomedical research and reflects the current view that complex phenotypes, such as disease susceptibility, are not the result of single gene mutations that act in isolation but are rather due to the perturbation of a gene's network context. Understanding the topology of these molecular interaction networks and identifying the molecules that play central roles in their structure and regulation is a key to understanding complex systems. The falling cost of next-generation sequencing is now enabling researchers to routinely catalogue the molecular components of these networks at a genome-wide scale and over a large number of different conditions. In this review, we describe how to use publicly available bioinformatics tools to integrate genome-wide 'omics' data into a network of experimentally-supported molecular interactions. In addition, we describe how to visualize and analyze these networks to identify topological features of likely functional relevance, including network hubs, bottlenecks and modules. We show that network biology provides a powerful conceptual approach to integrate and find patterns in genome-wide genomic data but we also discuss the limitations and caveats of these methods, of which researchers adopting these methods must remain aware. PMID:27036106

  14. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  15. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  16. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    Science.gov (United States)

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  17. Binding biological motion and visual features in working memory.

    Science.gov (United States)

    Ding, Xiaowei; Zhao, Yangfan; Wu, Fan; Lu, Xiqian; Gao, Zaifeng; Shen, Mowei

    2015-06-01

    Working memory mechanisms for binding have been examined extensively in the last decade, yet few studies have explored bindings relating to human biological motion (BM). Human BM is the most salient and biologically significant kinetic information encountered in everyday life and is stored independently from other visual features (e.g., colors). The current study explored 3 critical issues of BM-related binding in working memory: (a) how many BM binding units can be retained in working memory, (b) whether involuntarily object-based binding occurs during BM binding, and (c) whether the maintenance of BM bindings in working memory requires attention above and beyond that needed to maintain the constituent dimensions. We isolated motion signals of human BM from non-BM sources by using point-light displays as to-be-memorized BM and presented the participants colored BM in a change detection task. We found that working memory capacity for BM-color bindings is rather low; only 1 or 2 BM-color bindings could be retained in working memory regardless of the presentation manners (Experiments 1-3). Furthermore, no object-based encoding took place for colored BM stimuli regardless of the processed dimensions (Experiments 4 and 5). Central executive attention contributes to the maintenance of BM-color bindings, yet maintaining BM bindings in working memory did not require more central attention than did maintaining the constituent dimensions in working memory (Experiment 6). Overall, these results suggest that keeping BM bindings in working memory is a fairly resource-demanding process, yet central executive attention does not play a special role in this cross-module binding. PMID:25893683

  18. GPU Implementation of Real-Time Biologically Inspired Face Detection using CUDA

    Directory of Open Access Journals (Sweden)

    Elham Askary

    2013-07-01

    Full Text Available In this paper massively parallel real-time face detection based on a visual attention and cortex-like mechanism of cognitive vision system is presented. As a first step, we use saliency map model to select salient face regions and HMAX C1 model to extract features from salient input image and then apply mixture of expert neural network to classify multi-view faces from nonface images. The saliency map model is a complex concept for bottom-up attention selection that includes many processes to find face regions in a visual science. Parallel real-time implementation on Graphics Processing Unit (GPU provides a solution for this kind of computationally intensive image processing. By implementing saliency map and HMAX C1 model on a multi-GPU platform using CUDA programming with memory bandwidth, we achieve good performance compared to recent CPU. Running on NVIDIA Geforce 8800 (GTX graphics card at resolution 640×480 detection rate of 97% is achieved. In addition, we evaluate our results using a height speed camera with other parallel methods on face detection application.

  19. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot

    OpenAIRE

    Hauser, Helmut; Neumann, Gerhard; Ijspeert, Auke J.; Maass, Wolfgang

    2011-01-01

    Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that m...

  20. Biologically inspired survival analysis based on integrating gene expression as mediator with genomic variants.

    Science.gov (United States)

    Youssef, Ibrahim; Clarke, Robert; Shih, Ie-Ming; Wang, Yue; Yu, Guoqiang

    2016-10-01

    Accurately linking cancer molecular profiling with survival can lead to improvements in the clinical management of cancer. However, existing survival analysis relies on statistical evidence from a single level of data, without paying much attention to the integration of interacting multi-level data and the underlying biology. Advances in genomic techniques provide unprecedented power of characterizing the cancer tissue in a more complete manner than before, offering the opportunity to design biologically informed and integrative approaches for survival data analysis. Human cancer is characterized by somatic copy number alternation and unique gene expression profiles. However, it remains largely unclear how to integrate the gene expression and genetic variant data to achieve a better prediction of patient survival and an improved understanding of disease progression. Consistent with the biological hierarchy from DNA to RNA, we prioritize each survival-relevant feature with two separate scores, predictive and mechanistic. For mRNA expression levels, predictive features are those mRNAs whose variation in expression levels is associated with survival outcome, and mechanistic features are those mRNAs whose variation in expression levels is associated with genomic variants. Further, we simultaneously integrate information from both the predictive model and the mechanistic model through our new approach, GEMPS (Gene Expression as a Mediator for Predicting Survival). Applied on two cancer types (ovarian and glioblastoma multiforme), our method achieved better prediction power (p-value: 6.18E-03-5.15E-11) than peer methods (GE.CNAs and GE.CNAs. Lasso). Gene set enrichment analysis confirms that the genes utilized for the final survival analysis are biologically important and relevant. PMID:27619193

  1. Biologically-inspired synthetic dry adhesives for wall-climbing robots

    Science.gov (United States)

    Murphy, Michael P.

    Animals such as insects, spiders, and lizards are capable of clinging to and climbing on a variety of surfaces, from rough stone to smooth silicon. Hairy microscale arrays of structures on their feet conform to surface roughness to create millions of points of contact, creating a large overall contact area. Weak intermolecular forces (van der Waals forces) between each fiber tip and the surface sum to large overall forces due to the high number of contacts. In this work we present the fabrication, characterization, and demonstration of synthetic polyurethane fibrillar adhesives inspired by these animals. Angled polymer micro-fiber arrays are fabricated and characterized. A tip modification technique is presented which enables fabrication of fibers with flat mushroom shaped tips which greatly increase the adhesion of the fibers, up to 5N/cm 2 (normal direction), and with a magnitude within the range of geckos (10 N/cm2) in the shear direction on smooth surfaces. We present a fabrication technique to create fibers with angled flat mushroom-shaped tips which replicate the directional characteristics of geckos, gripping in one direction (within the range of gecko adhesion) and releasing easily in the other. Multilevel hierarchical structures with specialized tips for roughness adaptation are also presented. Fiber hierarchies from the millimeter scale to the sub-micron scale are demonstrated, including three-level fiber fabrication with specialized tips. Hierarchical structures demonstrate up to 5 times the adhesion of an unstructured sample, and requiring up to 10 times the detachment energy. Finally, an agile, wireless, palm-sized wall climbing robot which uses the synthetic fibrillar dry adhesives to climb is presented. Waalbot , named after the van der Waals forces it uses to climb, exploits the attachment and detachment characteristics of the developed dry adhesives, capabilities include climbing smooth surfaces such as glass in any orientation on any surface slope

  2. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  3. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  4. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Science.gov (United States)

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  5. Mathematical modeling and simulation of biologically inspired hair receptor arrays in laminar unsteady flow separation

    Science.gov (United States)

    Dickinson, B. T.; Singler, J. R.; Batten, B. A.

    2012-02-01

    Bats possess arrays of distributed flow-sensitive hair-like mechanoreceptors on their dorsal and ventral wing surfaces. Bat wing hair receptors are known to play a significant role in flight maneuverability and are directionally most sensitive to reversed flow over the wing. In this work, we consider the mechanics of flexible hair-like structures for the time accurate detection and visualization of hydrodynamic images associated with unsteady near surface flow phenomena. A nonlinear viscoelastic model of a hair-like structure coupled to an unsteady nonuniform flow is proposed. Writing the hair model in nondimensional form, we identify five dimensionless groups that govern hair behavior. An order of magnitude analysis of the physical forces involved in the fluid-structure hair response is performed. Through the choice of hair material properties, we show how a local measure of near surface flow velocity may be obtained from hair tip displacement and resultant moment. When hair structures are placed into an array, time and space accurate hydrodynamic images may be obtained. We illustrate the imaging of reversed flow that occurs during a laminar unsteady flow separation with an array of hair-like structures.

  6. Biologically Inspired Design Principles for Scalable, Robust, Adaptive, Decentralized Search and Automated Response (RADAR)

    CERN Document Server

    Moses, Melanie

    2010-01-01

    Distributed search problems are ubiquitous in Artificial Life (ALife). Many distributed search problems require identifying a rare and previously unseen event and producing a rapid response. This challenge amounts to finding and removing an unknown needle in a very large haystack. Traditional computational search models are unlikely to find, nonetheless, appropriately respond to, novel events, particularly given data distributed across multiple platforms in a variety of formats and sources with variable and unknown reliability. Biological systems have evolved solutions to distributed search and response under uncertainty. Immune systems and ant colonies efficiently scale up massively parallel search with automated response in highly dynamic environments, and both do so using distributed coordination without centralized control. These properties are relevant to ALife, where distributed, autonomous, robust and adaptive control is needed to design robot swarms, mobile computing networks, computer security system...

  7. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... is developed and tested using a physics simulation environment. This study verifies that the neural modules can serve a general purpose regardless of the robot’s specific embodiment. We also believe that our neural modules can be important components for locomotion generation in other complex robotic systems...

  8. Biologically inspired crack delocalization in a high strain-rate environment.

    Science.gov (United States)

    Knipprath, Christian; Bond, Ian P; Trask, Richard S

    2012-04-01

    Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an 'engineered' nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the

  9. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.

    Science.gov (United States)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100

  10. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes.

  11. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. PMID:26196087

  12. A biologically inspired modular structure to control the sit-to-stand transfer of a biped robot.

    Science.gov (United States)

    Andani, M Emadi; Bahrami, F; Maralani, P Jabedar

    2007-01-01

    In this study, a biologically inspired control structure to control the sit-to-stand (STS) transfer from a chair is developed and simulated. STS movement is consisted of two main phases. First phase of the movement is before leaving the seat (seat-off moment). In this phase seat reactions forces act on the body parts which are in contact with the seat. The second phase is after seat-off, where the only external forces acting on the body are ground reaction forces. A proper control algorithm of the STS transfer needs to consider switching between these two phases, which correspond to two different dynamical structures. The control structure developed and discussed in this work is based on the MOSAIC structure, proposed first by Wolpert and Kawato [1]. Original MOSAIC structure has a modular architecture which is based on multiple pairs of forward and inverse models of the dynamical system to be controlled, and each module is trained separately to learn one part of a given task. The number of effective modules is predetermined. We have developed a new method to train all modules simultaneously. This method is based on reinforcement and cooperative competitive learning, and the number of effective modules is determined automatically. In this study, the simulation was begun with four modules. Our results showed that only two modules out of four were selected to control the STS task. Responsibility of controlling the task was switched between the two modules around the seat-off moment.

  13. Seeing by Touch: Evaluation of a Soft Biologically-Inspired Artificial Fingertip in Real-Time Active Touch

    Directory of Open Access Journals (Sweden)

    Tareq Assaf

    2014-02-01

    Full Text Available Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects. The softness of the optical sensor’s contact surface also allows safer interactions with objects. High-level tactile features such as edges are extrapolated from the sensor’s output and the information is used to generate a tactile image. The work presented in this paper aims to investigate and evaluate this artificial fingertip for 2D shape reconstruction. The sensor was mounted on a robot arm to allow autonomous exploration of different objects. The sensor and a number of human participants were then tested for their abilities to track the raised perimeters of different planar objects and compared. By observing the technique and accuracy of the human subjects, simple but effective parameters were determined in order to evaluate the artificial system’s performance. The results prove the capability of the sensor in such active exploration tasks, with a comparable performance to the human subjects despite it using tactile data alone whereas the human participants were also able to use proprioceptive cues.

  14. VISUALIZATION APPROACH TO STRUCTURE-FUNCTION RELATIONSHIP IN BIOLOGICAL MACROMOLECULES

    Directory of Open Access Journals (Sweden)

    M. Luetić

    2015-08-01

    Full Text Available Introduction: Most of recent research in the field of education strongly recommends the use of visualization in the daily teacher’s practice, especially when it comes to teaching science. Objectives: We investigated the impact of different kinds of visualization on student’s accomplishments, and the relationship between 2D and 3D visualization on the learning outcomes in biochemistry teaching, as well as gender-related differences in 2D vs 3D perception abilities. Materials and Methods: The research study was conducted on a sample of 149 senior secondary school students, devided into three groups: control group (usual teaching approach, and two experimental groups taught using different kinds of visualization: E1 (2D and 3D static visualization tools, and E2 (3D dynamic visualization tools, in addition. Discussion and results: We measured the students’ learning outcomes in biochemistry, as well as the level of satisfaction with different teaching methods. The data were interpreted by performing statistical measures and analyses. In order to validate our hypothesis, we used one-tail and two-tail ANOVA analyses (along with the t-test.Conclusions: There was no statistical significance regarding 2D vs 3D visualization tools in biochemistry teaching. Although there existed some gender-related differences in students’ achievements (in favor of females, it was not established that they were related to the type of visualization (2D or 3D tools applied. However students from the E2 group (additional computer animations were more interested and involved in this kind of teaching. Although the results do not show a statistical significance in favor of 3D visualization, we must conclude that in teaching biochemistry it is certainly a more efficient approach than traditional teacher-oriented lessons. By using this kind of visualization tools in everyday teaching practice, chemistry teachers are given the opportunity to enlighten students with somewhat

  15. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  16. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    Science.gov (United States)

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  17. Reflections on Supporting a Visually Impaired Student Complete a Biological Psychology Module

    Science.gov (United States)

    Betts, Lucy R.; Cross, Amanda

    2010-01-01

    While there are a number of technologies that have been used, with varying levels of success, to support visually impaired students, the purpose of this article is to reflect upon the authors' experiences of supporting a visually impaired student through a nine-month level two undergraduate biological psychology module. The authors developed a…

  18. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-12-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  19. Microscopic visualization of a biological response to charged particle traversal

    Science.gov (United States)

    Taucher-Scholz, G.; Jakob, B.; Becker, G.; Scholz, M.

    2003-08-01

    Understanding the molecular mechanisms underlying biological effects of charged particle radiation has become increasingly important in view of the use of ion beams in tumor therapy. Elucidating how the enhanced efficiency of densely ionizing radiation in cell killing is related to the initial causative lesions, namely DNA double-strand breaks, constitutes a major task in radiobiology. The inhomogeneous spatial distribution of energy deposition leading to the induction of more complex and less reparable DNA lesions is the basis for high-LET effects. But the cellular response to radiation damage also involves the interplay between repair and signal transduction proteins with the aim of coordinating the processing of DNA damage and cell cycle progression to allow time for repair. Charged particles are used as a probe for the production of localized subcellular damage to study these aspects of the biological response to ionizing radiation. Immunocytochemical techniques applied in combination with confocal laser microscopy allow to monitor the relocalization of DNA damage response proteins within individual nuclei following irradiation. In particular, the rapid accumulation of the signalling protein p21 at sites of heavy ion-induced DNA damage reflects the microscopic distribution of dose deposited within nuclei of irradiated human fibroblasts. The biological response pattern for p21 is presented for high and low energy ion beams, involving different particle species and representing a wide range of radiation qualities.

  20. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  1. Bio-inspired vision

    International Nuclear Information System (INIS)

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  2. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  3. Preliminary tests of a possible outdoor light adaptation solution for a fly inspired visual sensor: a biomimetic solution - biomed 2011.

    Science.gov (United States)

    Dean, Brian K; Wright, Cameron H G; Barrett, Steven F

    2011-01-01

    Two previous papers, presented at RMBS in 2009 and 2010, introduced a fly inspired vision sensor that could adapt to indoor light conditions by mimicking the light adaptation process of the commonhousefly, Muscadomestica. A new system has been designed that should allow the sensor to adapt to outdoor light conditions which will enable the sensor’s use inapplications such as: unmanned aerial vehicle (UAV) obstacle avoidance, UAV landing support, target tracking, wheelchair guidance, large structure monitoring, and many other outdoor applications. A sensor of this type is especially suited for these applications due to features of hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line.Many of these qualities are beyond the ability of traditional computervision sensors such as charge coupled device (CCD) arrays.To achieve outdoor light adaptation, a variety of design obstacles have to be overcome such as infrared interference, dynamic range expansion, and light saturation. The newly designed system overcomes the latter two design obstacles by mimicking the fly’s solution of logarithmic compression followed by removal of the average background light intensity. This paper presents the new design and the preliminary tests that were conducted to determine its effectiveness. PMID:21525612

  4. ANALYSIS OF BIOLOGICAL SCIENCES FOR TEACHING STUDENTS WITH VISUAL IMPAIRMENT IN DISTRITO FEDERAL’S SCHOOLS

    Directory of Open Access Journals (Sweden)

    Júlia Carvalho Mota de Souza

    2014-05-01

    Full Text Available Visual impairment is a limitation that occurs in the sensory part of the vision, and can be classified as blindness, low vision or subnormal vision. The people with visually impaired have guaranteed rights to study in regular schools or special education schools. Therefore, a differentiated teaching is necessary for the learning of visually impaired students to happen effectively and ensure educational inclusion within the school. The aim of this study was to qualitatively analyze the teaching of Biological Sciences for the visually impaired in schools of the Distrito Federal, noting the institution, teachers and visually impaired students. The study was conducted using semi-structured interviews analyzed epistemologically. The results showed that: the institutions do not have adequate physical infrastructure; Biology teachers have no qualifications required; teachers of resource rooms are able to meet visually impaired students, even if resources are not sufficient, and the students do not understand all the benefits they could have. Therefore, it is necessary to adapt the teaching and learning materials to allow for a better education for visually impaired students and thus ensure appropriate learning for all students within the same educational institution.

  5. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  6. Communicative interactions improve visual detection of biological motion.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available BACKGROUND: In the context of interacting activities requiring close-body contact such as fighting or dancing, the actions of one agent can be used to predict the actions of the second agent. In the present study, we investigated whether interpersonal predictive coding extends to interactive activities--such as communicative interactions--in which no physical contingency is implied between the movements of the interacting individuals. METHODOLOGY/PRINCIPAL FINDINGS: Participants observed point-light displays of two agents (A and B performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A's communicative action was substituted with a non-communicative action. Using a simultaneous masking detection task, we demonstrate that observing the communicative gesture performed by agent A enhanced visual discrimination of agent B. CONCLUSIONS/SIGNIFICANCE: Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve as a predictor for the expected actions of the respondent, even if no physical contact between agents is implied.

  7. A biologically inspired attachable, self-standing nanofibrous membrane for versatile use in oil-water separation

    Science.gov (United States)

    Tenjimbayashi, Mizuki; Sasaki, Kaichi; Matsubayashi, Takeshi; Abe, Jyunichiro; Manabe, Kengo; Nishioka, Sachiko; Shiratori, Seimei

    2016-05-01

    Uloborus walckenaerius spider webs provided the inspiration for attachable, self-standing nanofibre sheets. The developed product adds selective wettability against oil-water mixtures to both 2D and 3D materials by attaching or covering them, leading to successful separation through a facile, scalable and low-cost process.Uloborus walckenaerius spider webs provided the inspiration for attachable, self-standing nanofibre sheets. The developed product adds selective wettability against oil-water mixtures to both 2D and 3D materials by attaching or covering them, leading to successful separation through a facile, scalable and low-cost process. Electronic supplementary information (ESI) available: Experimental section, designing procedure, cost, cross sectional SEM, influence of NFs-S components to wettability, thickness, fibre diameter and flexibility, surface tension vs. contact angle, SEM images after extraction of oil, characteristics of testing oil, large scale-fabrication of NFs-S. See DOI: 10.1039/c6nr03349k

  8. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    International Nuclear Information System (INIS)

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  9. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Johan; Hjelstuen, Mari H.B.; Mjaaland, Ingvil; Dybvik, Kjell Ivar (Dept. of Radiotherapy, Stavanger Univ. Hospital, Stavanger (Norway)), e-mail: vijo@sus.no

    2011-01-15

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  10. JColorGrid: software for the visualization of biological measurements

    Directory of Open Access Journals (Sweden)

    May Barnaby CH

    2006-04-01

    Full Text Available Abstract Background Two-dimensional data colourings are an effective medium by which to represent three-dimensional data in two dimensions. Such "color-grid" representations have found increasing use in the biological sciences (e.g. microarray 'heat maps' and bioactivity data as they are particularly suited to complex data sets and offer an alternative to the graphical representations included in traditional statistical software packages. The effectiveness of color-grids lies in their graphical design, which introduces a standard for customizable data representation. Currently, software applications capable of generating limited color-grid representations can be found only in advanced statistical packages or custom programs (e.g. micro-array analysis tools, often associated with steep learning curves and requiring expert knowledge. Results Here we describe JColorGrid, a Java library and platform independent application that renders color-grid graphics from data. The software can be used as a Java library, as a command-line application, and as a color-grid parameter interface and graphical viewer application. Data, titles, and data labels are input as tab-delimited text files or Microsoft Excel spreadsheets and the color-grid settings are specified through the graphical interface or a text configuration file. JColorGrid allows both user graphical data exploration as well as a means of automatically rendering color-grids from data as part of research pipelines. Conclusion The program has been tested on Windows, Mac, and Linux operating systems, and the binary executables and source files are available for download at http://jcolorgrid.ucsf.edu.

  11. Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs.

    Science.gov (United States)

    Hillson, Nathan J; Plahar, Hector A; Beal, Jacob; Prithviraj, Ranjini

    2016-06-17

    Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange.

  12. Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs.

    Science.gov (United States)

    Hillson, Nathan J; Plahar, Hector A; Beal, Jacob; Prithviraj, Ranjini

    2016-06-17

    Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange. PMID:27267452

  13. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged

  14. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems.

    Science.gov (United States)

    Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D

    2016-01-25

    Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.

  15. In Vivo Bioluminescent Imaging (BLI: Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Directory of Open Access Journals (Sweden)

    Steven Ripp

    2010-12-01

    Full Text Available In vivo bioluminescent imaging (BLI is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.

  16. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    Science.gov (United States)

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  17. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    OpenAIRE

    Jim Harkin; Fearghal Morgan; Liam McDaid; Steve Hall; Brian McGinley; Seamus Cawley

    2009-01-01

    FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs) applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable...

  18. BioJS: an open source JavaScript framework for biological data visualization

    OpenAIRE

    J. Gomez; Garcia, L. J.; Salazar, G. A.; Villaveces, J.; Gore, S.; Garcia, A; Martin, M J; Launay, G.; Alcantara, R.; del-Toro, N.; Dumousseau, M.; Orchard, S.; Velankar, S.; Hermjakob, H; Zong, C.

    2013-01-01

    Summary: BioJS is an open-source project whose main objective is the visualization of biological data in JavaScript. BioJS provides an easy-to-use consistent framework for bioinformatics application programmers. It follows a community-driven standard specification that includes a collection of components purposely designed to require a very simple configuration and installation. In addition to the programming framework, BioJS provides a centralized repository of components available for reuti...

  19. In vivo cell biology of cancer cells visualized with fluorescent proteins.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    This chapter describes a new cell biology where the behavior of individual cells can be visualized in the living animal. Previously it has been demonstrated that fluorescent proteins can be used for whole-body imaging of metastatic tumor growth, bacterial infection, and gene expression. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts, and macrophages. Another example is the color coding of cells with RFP or GFP such that both cell types can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo. Mice in which the regulatory elements of the stem cell marker nestin drive GFP expression enable nascent vasculature to be visualized interacting with transplanted RFP-expressing cancer cells. Nestin-driven GFP expression can also be used to visualize hair follicle stem cells. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Highly elongated cancer cells in capillaries in living mice were observed within skin flaps. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells in the capillaries elongated to fit the width of these vessels. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.

  20. iBET: Immersive visualization of biological electron-transfer dynamics.

    Science.gov (United States)

    Nakano, C Masato; Moen, Erick; Byun, Hye Suk; Ma, Heng; Newman, Bradley; McDowell, Alexander; Wei, Tao; El-Naggar, Mohamed Y

    2016-04-01

    Recently, we presented a computational framework named VizBET to simulate and visualize biological electron-transfer (ET) dynamics. The visualization process was encapsulated as a plugin to the Visual Molecular Dynamics (VMD) software. However, the user's ability to understand complex, multidimensional ET pathways was severely limited when visualized in 2D on traditional computer monitors. To provide a more accurate representation with enhanced depth perception, we here present an extension of VizBET named iBET to render the VMD model of ET dynamics in a commodity virtual reality (VR) platform. The paper describes detailed procedures to export VMD models into the Unity game engine and render it in an Oculus Rift head mounted display. With the increasing availability of low-cost VR systems like the Rift and rich programmability of game engines, the iBET framework provides a powerful means to explore and understand not only biological ET processes but also a unique experiential tool for broad scientific communities. PMID:26955008

  1. A stable biologically motivated learning mechanism for visual feature extraction to handle facial categorization.

    Directory of Open Access Journals (Sweden)

    Karim Rajaei

    Full Text Available The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model, it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.

  2. Reduced lung dose and improved inspiration level reproducibility in visually guided DIBH compared to audio coached EIG radiotherapy for breast cancer patients

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Aznar, Marianne Camille; Pedersen, Anders Navrsted;

    2013-01-01

    Patients with left-sided breast cancer with lymph node involvement have routinely been treated with enhanced inspiration gating (EIG) for a decade at our institution. In a transition from EIG to deep inspiration breath hold (DIBH) we compared the two techniques with focus on target coverage, dose...

  3. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    International Nuclear Information System (INIS)

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients

  4. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  5. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  6. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver [Technical Univ. of Darmstadt (Germany)

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  7. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver

    2009-12-01

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  8. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    International Nuclear Information System (INIS)

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  9. ChemProt-2.0: visual navigation in a disease chemical biology database

    DEFF Research Database (Denmark)

    Kjærulff, Sonny Kim; Wich, Louis; Kringelum, Jens Vindahl;

    2013-01-01

    of proteins, which can help in the prediction of off-target effects. Finally, the database was integrated into a visual interface that enables navigation of the pharmacological space for small molecules. Filtering options were included in order to facilitate and to guide dynamic search of specific queries....... measurements for 15 290 proteins. Each protein is linked to quality-scored human protein-protein interactions data based on more than half a million interactions, for studying diseases and biological outcomes (diseases, pathways and GO terms) through protein complexes. In ChemProt-2.0, therapeutic effects...

  10. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  11. Facial expression recognition using biologically inspired features and SVM%基于生物启发特征和SVM的人脸表情识别

    Institute of Scientific and Technical Information of China (English)

    穆国旺; 王阳; 郭蔚

    2014-01-01

    将C1特征应用于静态图像人脸表情识别,提出了一种新的基于生物启发特征和SVM的表情识别算法。提取人脸图像的C1特征,利用PCA+LDA方法对特征进行降维,用SVM进行分类。在JAFFE和Extended Cohn-Kanade(CK+)人脸表情数据库上的实验结果表明,该算法具有较高的识别率,是一种有效的人脸表情识别方法。%C1 features are introduced to facial expression recognition for static images, and a new algorithm for facial expression recognition based on Biologically Inspired Features(BIFs)and SVM is proposed. C1 features of the facial images are extracted, PCA+LDA method is used to reduce the dimensionality of the C1 features, SVM is used for classifi-cation of the expression. The experiments on the JAFFE and Extended Cohn-Kanade(CK+)facial expression data sets show the effectiveness and the good performance of the algorithm.

  12. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,3 1Chameleon Scientific, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA and coat it on titanium (Ti using molecular plasma deposition (MPD. NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. Keywords: hydroxyapatite, anodization, nanotechnology

  13. Inspirational Journey

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Artists from across Europe and Asia ventured into the remote Chinese countryside to seek inspiration from the Miao Ethnic group "I’ve never been to Asia before and everything is strange and wonderful:supermarkets and shopping mails,even the air- port seemed exotic!"wrote Ula Sickle,a choreographer from Poland on her blog under the name"chopstick diaries."Ula was one of the 18 foreign and domestic artists participating in a cultural exchange project called the Pointe to Point: Asia-Europe Dance Forum.It aims to empower aspiring young artists from Asia and Europe to reflect upon their views of

  14. Arena3D: visualizing time-driven phenotypic differences in biological systems

    Directory of Open Access Journals (Sweden)

    Secrier Maria

    2012-03-01

    Full Text Available Abstract Background Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. Results Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic

  15. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  16. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  17. Griffiths phase and long-range correlations in a biologically motivated visual cortex model

    Science.gov (United States)

    Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-07-01

    Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region – a Griffiths phase – characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.

  18. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  19. Griffiths phase and long-range correlations in a biologically motivated visual cortex model.

    Science.gov (United States)

    Girardi-Schappo, M; Bortolotto, G S; Gonsalves, J J; Pinto, L T; Tragtenberg, M H R

    2016-01-01

    Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves' size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f (b) power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f (b) power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation. PMID:27435679

  20. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  1. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...

  2. Biologically inspired intelligent decision making

    OpenAIRE

    Manning, Timmy; Sleator, Roy D.; Walsh, Paul

    2013-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinfo...

  3. a Geo-Visual Analytics Approach to Biological Shepherding: Modelling Animal Movements and Impacts

    Science.gov (United States)

    Benke, K. K.; Sheth, F.; Betteridge, K.; Pettit, C. J.; Aurambout, J.-P.

    2012-07-01

    The lamb industry in Victoria is a significant component of the state economy with annual exports in the vicinity of 1 billion. GPS and visualisation tools can be used to monitor grazing animal movements at the farm scale and observe interactions with the environment. Modelling the spatial-temporal movements of grazing animals in response to environmental conditions provides input for the design of paddocks with the aim of improving management procedures, animal performance and animal welfare. The term "biological shepherding" is associated with the re-design of environmental conditions and the analysis of responses from grazing animals. The combination of biological shepherding with geo-visual analytics (geo-spatial data analysis with visualisation) provides a framework for improving landscape design and supports research in grazing behaviour in variable landscapes, heat stress avoidance behaviour during summer months, and modelling excreta distributions (with respect to nitrogen emissions and nitrogen return for fertilising the paddock). Nitrogen losses due to excreta are mainly in the form of gaseous emissions to the atmosphere and leaching into the groundwater. In this study, background and context are provided in the case of biological shepherding and tracking animal movements. Examples are provided of recent applications in regional Australia and New Zealand. Based on experimental data and computer simulation, and using data visualisation and feature extraction, it was demonstrated that livestock excreta are not always randomly located, but concentrated around localised gathering points, sometimes separated by the nature of the excretion. Farmers require information on the nitrogen losses in order to reduce emissions to meet local and international nitrogen leaching and greenhouse gas targets and to improve the efficiency of nutrient management.

  4. Expanding biological data standards development processes for US IOOS: visual line transect observing community for mammal, bird, and turtle data

    Science.gov (United States)

    Fornwall, M.; Gisiner, R.; Simmons, S. E.; Moustahfid, Hassan; Canonico, G.; Halpin, P.; Goldstein, P.; Fitch, R.; Weise, M.; Cyr, N.; Palka, D.; Price, J.; Collins, D.

    2012-01-01

    The US Integrated Ocean Observing System (IOOS) has recently adopted standards for biological core variables in collaboration with the US Geological Survey/Ocean Biogeographic Information System (USGS/OBIS-USA) and other federal and non-federal partners. In this Community White Paper (CWP) we provide a process to bring into IOOS a rich new source of biological observing data, visual line transect surveys, and to establish quality data standards for visual line transect observations, an important source of at-sea bird, turtle and marine mammal observation data. The processes developed through this exercise will be useful for other similar biogeographic observing efforts, such as passive acoustic point and line transect observations, tagged animal data, and mark-recapture (photo-identification) methods. Furthermore, we suggest that the processes developed through this exercise will serve as a catalyst for broadening involvement by the larger marine biological data community within the goals and processes of IOOS.

  5. Ways of incorporating photographic images in learning and assessing high school biology: A study of visual perception and visual cognition

    Science.gov (United States)

    Nixon, Brenda Chaumont

    This study evaluated the cognitive benefits and costs of incorporating biology-textbook and student-generated photographic images into the learning and assessment processes within a 10th grade biology classroom. The study implemented Wandersee's (2000) 20-Q Model of Image-Based Biology Test-Item Design (20-Q Model) to explore the use of photographic images to assess students' understanding of complex biological processes. A thorough review of the students' textbook using ScaleMaster R with PC Interface was also conducted. The photographs, diagrams, and other representations found in the textbook were measured to determine the percentage of each graphic depicted in the book and comparisons were made to the text. The theoretical framework that guided the research included Human Constructivist tenets espoused by Mintzes, Wandersee and Novak (2000). Physiological and cognitive factors of images and image-based learning as described by Robin (1992), Solso (1997) and Wandersee (2000) were examined. Qualitative case study design presented by Yin (1994), Denzin and Lincoln (1994) was applied and data were collected through interviews, observations, student activities, student and school artifacts and Scale Master IIRTM measurements. The results of the study indicate that although 24% of the high school biology textbook is devoted to photographic images which contribute significantly to textbook cost, the teacher and students paid little attention to photographic images other than as aesthetic elements for creating biological ambiance, wasting valuable opportunities for learning. The analysis of the photographs corroborated findings published by the Association American Association for the Advancement of Science that indicated "While most of the books are lavishly illustrated, these representations are rarely helpful, because they are too abstract, needlessly complicated, or inadequately explained" (Roseman, 2000, p. 2). The findings also indicate that applying the 20-Q

  6. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    Science.gov (United States)

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime

  7. EDUCATIONAL TECHNOLOGIES, DEVELOPING VISUAL THINKING IN THE TEACHING OF BIOLOGICAL DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Tsatsenko L. V.

    2016-04-01

    Full Text Available The article discusses issues related to visual thinking and educational technologies. We have noted the importance of visual thinking in the teaching process at the higher education institutions and defined its main functions. We have considered information technology for courses such as “History and methodology of scientific agronomy”, “Cytogenetics”, “Genetic monitoring”. The article substantiates basic postulates for the formation of visual environment: the ability to collect the material in accordance with the task and to define the basic accents, and navigate through all of the work; the ability to match the artwork to the selected research topic. As the technology, we have regarded the method of sketches or visual notes, and the method of visual metaphor. The method of sketches or notes was the basis for the creation of electronic databases with images of plants in different works of art. Visual notes allow visualizing the educational information by translating verbal elements of this information into visual that is "to be able to think visually." Works of art, as illustrative environment, have several meanings in training courses: an exemplary or motivation; illustration as a source of information for the analysis of the phenomenon under study; visual, that is paintings or works of art as an illustration of the student response, as a result of its self search. The visual metaphor is used to explain the material, understanding and comparison. Both methods are: the method of sketches and visual metaphors that allow the subject to learn, analyze, communicate and draw analogies with the subject area and to look for new images

  8. ANALYSIS OF BIOLOGICAL SCIENCES FOR TEACHING STUDENTS WITH VISUAL IMPAIRMENT IN DISTRITO FEDERAL’S SCHOOLS

    OpenAIRE

    Júlia Carvalho Mota de Souza; Carolina Conceição Prado

    2014-01-01

    Visual impairment is a limitation that occurs in the sensory part of the vision, and can be classified as blindness, low vision or subnormal vision. The people with visually impaired have guaranteed rights to study in regular schools or special education schools. Therefore, a differentiated teaching is necessary for the learning of visually impaired students to happen effectively and ensure educational inclusion within the school. The aim of this study was to qualitatively analyze the tea...

  9. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining

    OpenAIRE

    Sivachenko Andrey Y; Huan Tianxiao; Harrison Scott H; Chen Jake Y

    2008-01-01

    Abstract Background New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of c...

  10. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    Science.gov (United States)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; Vizzeri, G.

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  11. RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry

    Science.gov (United States)

    Zhang, Jing

    2016-01-01

    Background Statistical analysis and data visualization are two crucial aspects in molecular biology and biology. For analyses that compare one dependent variable between standard (e.g., control) and one or multiple independent variables, a comprehensive yet highly streamlined solution is valuable. The computer programming language R is a popular platform for researchers to develop tools that are tailored specifically for their research needs. Here we present an R package RBioplot that takes raw input data for automated statistical analysis and plotting, highly compatible with various molecular biology and biochemistry lab techniques, such as, but not limited to, western blotting, PCR, and enzyme activity assays. Method The package is built based on workflows operating on a simple raw data layout, with minimum user input or data manipulation required. The package is distributed through GitHub, which can be easily installed through one single-line R command. A detailed installation guide is available at http://kenstoreylab.com/?page_id=2448. Users can also download demo datasets from the same website. Results and Discussion By integrating selected functions from existing statistical and data visualization packages with extensive customization, RBioplot features both statistical analysis and data visualization functionalities. Key properties of RBioplot include: -Fully automated and comprehensive statistical analysis, including normality test, equal variance test, Student’s t-test and ANOVA (with post-hoc tests);-Fully automated histogram, heatmap and joint-point curve plotting modules;-Detailed output files for statistical analysis, data manipulation and high quality graphs;-Axis range finding and user customizable tick settings;-High user-customizability. PMID:27703842

  12. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DEFF Research Database (Denmark)

    King, Zachary A.; Draeger, Andreas; Ebrahim, Ali;

    2015-01-01

    draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, Ch...

  13. Visualizing Biological Data in Museums: Visitor Learning with an Interactive Tree of Life Exhibit

    Science.gov (United States)

    Horn, Michael S.; Phillips, Brenda C.; Evans, Evelyn Margaret; Block, Florian; Diamond, Judy; Shen, Chia

    2016-01-01

    In this study, we investigate museum visitor learning and engagement at an interactive visualization of an evolutionary tree of life consisting of over 70,000 species. The study was conducted at two natural history museums where visitors collaboratively explored the tree of life using direct touch gestures on a multi-touch tabletop display. In the…

  14. Retina-inspired Filter

    OpenAIRE

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2016-01-01

    This paper introduces a novel filter which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model “virtual retina”. This model is the cornerstone to derive the non-separable spatiotemporal OPL retina-inspired filter, briefly renamed retina- insp...

  15. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  16. A novel 3D wavelet based filter for visualizing features in noisy biological data

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; Haase, S; Lyle, J M; Agard, D A; Sedat, J W

    2005-01-05

    We have developed a 3D wavelet-based filter for visualizing structural features in volumetric data. The only variable parameter is a characteristic linear size of the feature of interest. The filtered output contains only those regions that are correlated with the characteristic size, thus denoising the image. We demonstrate the use of the filter by applying it to 3D data from a variety of electron microscopy samples including low contrast vitreous ice cryogenic preparations, as well as 3D optical microscopy specimens.

  17. Bio-inspired flapping UAV design: a university perspective

    Science.gov (United States)

    Han, Jae-Hung; Lee, Jun-Seong; Kim, Dae-Kwan

    2009-03-01

    Bio-inspired design to make artificial flappers fly does not just imitate biological systems as closely as possible, but also transferring the flappers' own functionalities to engineering solutions. This paper summarizes some key technical issues and the states-of-art of bio-inspired design of flapping UAVs with an introduction to authors' recent research results in this field.

  18. Nature inspired algorithms and artificial intelligence

    OpenAIRE

    Elisa Valentina Onet; Ecaterina Vladu

    2008-01-01

    Artificial intelligence has been very muchinterested in studying the characteristics ofintelligent agent, mainly planning, learning,reasoning (making decisions) and perception.Biological processes and methods have beeninfluencing science from many decades. Naturalsystems have many properties that inspiredapplications - self-organisation, simplicity of basicelements, dynamics, flexibility. This paper is a surveyof nature inspired algorithms, like Particle SwarmOptimization (PSO), Ant Colony Op...

  19. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  20. Knowledge management for systems biology a general and visually driven framework applied to translational medicine

    Directory of Open Access Journals (Sweden)

    Falciani Francesco

    2011-03-01

    Full Text Available Abstract Background To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the

  1. A bio-inspired image coder with temporal scalability

    CERN Document Server

    Masmoudi, Khaled; Kornprobst, Pierre

    2011-01-01

    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalians retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, compared to the JPEG standards, our decoded images do not show annoying art...

  2. Action video game players' visual search advantage extends to biologically relevant stimuli.

    Science.gov (United States)

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. PMID:26071923

  3. A visualization tool to support decision making in environmental and biological planning

    Science.gov (United States)

    Romañach, Stephanie S.; McKelvy, James M.; Conzelmann, Craig; Suir, Kevin J.

    2014-01-01

    Large-scale ecosystem management involves consideration of many factors for informed decision making. The EverVIEW Data Viewer is a cross-platform desktop decision support tool to help decision makers compare simulation model outputs from competing plans for restoring Florida's Greater Everglades. The integration of NetCDF metadata conventions into EverVIEW allows end-users from multiple institutions within and beyond the Everglades restoration community to share information and tools. Our development process incorporates continuous interaction with targeted end-users for increased likelihood of adoption. One of EverVIEW's signature features is side-by-side map panels, which can be used to simultaneously compare species or habitat impacts from alternative restoration plans. Other features include examination of potential restoration plan impacts across multiple geographic or tabular displays, and animation through time. As a result of an iterative, standards-driven approach, EverVIEW is relevant to large-scale planning beyond Florida, and is used in multiple biological planning efforts in the United States.

  4. An adaptive gaze stabilization controller inspired by the vestibulo-ocular reflex.

    Science.gov (United States)

    Lenz, A; Balakrishnan, T; Pipe, A G; Melhuish, C

    2008-09-01

    The vestibulo-ocular reflex stabilizes vision in many vertebrates. It integrates inertial and visual information to drive the eyes in the opposite direction to head movement and thereby stabilizes the image on the retina. Its adaptive nature guarantees stable vision even when the biological system undergoes dynamic changes (due to disease, growth or fatigue etc), a characteristic especially desirable in autonomous robotic systems. Based on novel, biologically plausible neurological models, we have developed a robotic testbed to qualitatively evaluate the performance of these algorithms. We show how the adaptive controller can adapt to a time varying plant and elaborate how this biologically inspired control architecture can be employed in general engineering applications where sensory feedback is very noisy and/or delayed. PMID:18583732

  5. An adaptive gaze stabilization controller inspired by the vestibulo-ocular reflex.

    Science.gov (United States)

    Lenz, A; Balakrishnan, T; Pipe, A G; Melhuish, C

    2008-09-01

    The vestibulo-ocular reflex stabilizes vision in many vertebrates. It integrates inertial and visual information to drive the eyes in the opposite direction to head movement and thereby stabilizes the image on the retina. Its adaptive nature guarantees stable vision even when the biological system undergoes dynamic changes (due to disease, growth or fatigue etc), a characteristic especially desirable in autonomous robotic systems. Based on novel, biologically plausible neurological models, we have developed a robotic testbed to qualitatively evaluate the performance of these algorithms. We show how the adaptive controller can adapt to a time varying plant and elaborate how this biologically inspired control architecture can be employed in general engineering applications where sensory feedback is very noisy and/or delayed.

  6. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  7. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  8. Fast Wavelet-Based Visual Classification

    CERN Document Server

    Yu, Guoshen

    2008-01-01

    We investigate a biologically motivated approach to fast visual classification, directly inspired by the recent work of Serre et al. Specifically, trading-off biological accuracy for computational efficiency, we explore using wavelet and grouplet-like transforms to parallel the tuning of visual cortex V1 and V2 cells, alternated with max operations to achieve scale and translation invariance. A feature selection procedure is applied during learning to accelerate recognition. We introduce a simple attention-like feedback mechanism, significantly improving recognition and robustness in multiple-object scenes. In experiments, the proposed algorithm achieves or exceeds state-of-the-art success rate on object recognition, texture and satellite image classification, language identification and sound classification.

  9. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  10. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  11. An Ark of Inspiration.

    Science.gov (United States)

    King, Steve

    2001-01-01

    Describes an art project suitable for middle and high school students in which they either combine identifiable parts from different animals to create one creature or take one animal and creatively distort it. Explains that this lesson enables students to be satisfied with their animal-inspired artwork. (CMK)

  12. Biologically Inspired Optimization Methods An Introduction

    CERN Document Server

    Wahde, M

    2008-01-01

    The advent of rapid, reliable and cheap computing power over the last decades has transformed many, if not most, fields of science and engineering. The multidisciplinary field of optimization is no exception. First of all, with fast computers, researchers and engineers can apply classical optimization methods to problems of larger and larger size. In addition, however, researchers have developed a host of new optimization algorithms that operate in a rather different way than the classical ones, and that allow practitioners to attack optimization problems where the classical methods are either

  13. Ants as Fluids: Physics-Inspired Biology

    CERN Document Server

    Streiff, Micah; Shinotsuka, Sho; Alexeev, Alex; Hu, David

    2010-01-01

    Fire ants use their claws to grip diverse surfaces, including each other. As a result of their mutual adhesion and large numbers, ant colonies flow like inanimate fluids. In this sequence of films, we demonstrate how ants behave similarly to the spreading of drops, the capillary rise of menisci, and gravity-driven flow down a wall. By emulating the flow of fluids, ant colonies can remain united under stressful conditions.

  14. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  15. Learning from nature: biologically-inspired sensors

    NARCIS (Netherlands)

    Wicaksono, D.H.B.

    2008-01-01

    New emerging sensing applications demand novel sensors in micro-/nano-scale to enable integration and embedding into higher level structures or systems. Downsizing the structure will usually decrease the sensitivity of the sensors, since the sensitivity is a function of geometrical parameters, e.g.

  16. From Cellular Mechanotransduction to Biologically Inspired Engineering

    Science.gov (United States)

    Ingber, Donald E.

    2010-01-01

    This article is based on a lecture I presented as the recipient of the 2009 Pritzker Distinguished Lecturer Award at the Biomedical Engineering Society annual meeting in October 2009. Here, I review more than thirty years of research from my laboratory, beginning with studies designed to test the theory that cells use tensegrity (tensional integrity) architecture to stabilize their shape and sense mechanical signals, which I believed to be critical for control of cell function and tissue development. Although I was trained as a cell biologist, I found that the tools I had at my disposal were insufficient to experimentally test these theories, and thus I ventured into engineering to find critical solutions. This path has been extremely fruitful as it has led to confirmation of the critical role that physical forces play in developmental control, as well as how cells sense and respond to mechanical signals at the molecular level through a process known as cellular mechanotransduction. Many of the predictions of the cellular tensegrity model relating to cell mechanical behaviors have been shown to be valid, and this vision of cell structure led to discovery of the central role that transmembrane adhesion receptors, such as integrins, and the cytoskeleton play in mechanosensing and mechanochemical conversion. In addition, these fundamental studies have led to significant unexpected technology fallout, including development of micromagnetic actuators for non-invasive control of cellular signaling, microfluidic systems as therapeutic extracorporeal devices for sepsis therapy, and new DNA-based nanobiotechnology approaches that permit construction of artificial tensegrities that mimic properties of living materials for applications in tissue engineering and regenerative medicine. PMID:20140519

  17. A biologically inspired model for pattern recognition*

    OpenAIRE

    Gonzalez, Eduardo; Liljenström, Hans; Ruiz, Yusely; Li, Guang

    2010-01-01

    In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with distributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and malignant classes is used to demonstrate the capa...

  18. Biologically inspired hairy surfaces for liquid repellency

    Science.gov (United States)

    Hsu, Shu-Hau

    Owing to remarkable features, such as self-cleaning, anti-biofouling and drag reduction, interest on rendering surfaces water-repellent has significantly grown within this decade. Attempts on making surfaces "superhydrophobic", where high water contact angle (θc >150°) accompanied with only few degrees of roll-off angle, have been extensively demonstrated through the mimicking of the surface chemistry and morphology of lotus leaves. This appealing phenomenon also exists on another structure from nature: surfaces comprising soft hairs. Although the role of this piliferous integument has long been recognized for providing life, arthropods in particular, waterrepellency, the synthetic superhydrophobic surfaces based on this structure are still very limited. In this study, the goal was to develop a novel liquid-repellent surface by mimicking the hairy exterior of species. The artificial hairy surfaces were prepared by means of pressurized membrane casting, in which thermoplastic sheets were forced to flow into porous membranes at elevated temperature. The G-shaped pillars on the membrane cast polypropylene substrate are particularly similar to the conformation of natural hairs. The principle of this fabrication technique is relatively accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces. The artificial hairy surface features perfectly hydrophobic response where no contact angle hysteresis was observed from video assessment. Thus the artificial hairy surface of the current work appears to be the first report to have such extreme hydrophobicity with only structural modification from the original substrate. This ultralow adhesion to water droplet is believed to be attributed to the hydrophobic methyl groups and the mechanical response of the artificial hairs. Liquid repellency of the hairy surfaces was further enhanced by coating with fluorocarbon (CF) layers via deep reactive ion etching (DRIE). The contact angle of water-methanol mixture (gamma < 35.2 mN/m) was raised from 60° to around 140°. The surface energy of coated samples, however, was still not low enough to repel non-polar liquids. Moreover, the hairy structure is not favorable for maintaining the low surface tension liquid in Cassie-Baxter state.

  19. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  20. A Regional Monitoring and Visualization System for Decision Support and Disaster Management Applications for the Mesoamerican Biological Corridor and Beyond

    Science.gov (United States)

    Irwin, Daniel

    2002-01-01

    The Mesoamerican Biological Corridor (MBC)-a network of managed and protected areas extending from Mexico to Columbia-is a crucial initiative for the Mesoamerican region, with a central development concept of integrating conservation and sustainable use of biodiversity within the framework of sustainable economic development. The MBC is of particular importance to the Central American Commission for Environment and Development (CCAD), which is comprised of the environmental ministers from the seven Central American countries. Responsible for determining priority areas for action in the corridor, CCAD decision makers require current and accurate information, and access to the dynamic knowledge of the changes in the MBC such as deforestation hotspots, fires, and the effects of natural disasters. Currently this information is not integrated and in disparate locations throughout the region and the world. Leveraging NASA technology, satellite data, and capability, we propose to team with the World Bank and the CCAD to develop a regional monitoring and visualization system-with central nodes at the NASA/Marshall Space Flight Center and at CCAD headquarters. This system will assimilate NASA spatial datasets (e.g. MODIS, Landsat, etc.), spatial data from other sources (commercial and public-domain), and ancillary data developed in each of the seven Central American countries (soils, transportation networks, biodiversity indicator maps, etc.). The system will function as a "virtual dashboard" for monitoring the MBC and provide the critical decision support tools for CCAD decision makers. The CCAD central node will also serve as a high-tech showcase for the corridor among the international community, other decision-makers, the media, and students.

  1. Unmanned Aerial Vehicles Target Detection Based on Bio-inspired Visual Attention%基于仿生视觉注意机制的无人机目标检测

    Institute of Scientific and Technical Information of China (English)

    王晓华; 张聪; 李聪; 段海滨; 邓亦敏

    2015-01-01

    A novel method of target detection for unmanned aerial vehicles (UAV) was proposed based on the mechanism of biological visual attention. Different features including intensity, orientation and region contract were utilized in the proposed algorithm. The AdaBoost clasififer was utilized to analyze the saliency features and fuse the feature maps into the ifnal saliency map. Then, target region that has the largest value in the saliency map was detected by image segmentation. Series of experimental results demonstrate the feasibility and effectiveness of the proposed approach of target detection for UAVs, which has high adaptive ability and can detect the target region precisely.%提出了一种基于仿生视觉注意机制的无人机目标检测方法,该方法使用了亮度、方向和区域对比度特征,针对提取的多个显著性特征,利用AdaBoost分类器对其进行分析和融合,得到最终的显著图。对显著图进行图像分割,从中找出显著度最高的区域即目标区域。仿真结果表明,所提出的无人机目标检测方法可以比较准确地确定目标区域,自适应能力强。

  2. Nature inspired algorithms and artificial intelligence

    Directory of Open Access Journals (Sweden)

    Elisa Valentina Onet

    2008-05-01

    Full Text Available Artificial intelligence has been very muchinterested in studying the characteristics ofintelligent agent, mainly planning, learning,reasoning (making decisions and perception.Biological processes and methods have beeninfluencing science from many decades. Naturalsystems have many properties that inspiredapplications - self-organisation, simplicity of basicelements, dynamics, flexibility. This paper is a surveyof nature inspired algorithms, like Particle SwarmOptimization (PSO, Ant Colony Optimization (ACOand Artificial Bee Colony(ABC.

  3. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  4. Neurobiologically inspired mobile robot navigation and planning

    OpenAIRE

    Mathias Quoy

    2007-01-01

    After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  5. Neurobiologically Inspired Mobile Robot Navigation and Planning

    OpenAIRE

    Cuperlier, Nicolas; Quoy, Mathias; Gaussier, Philippe

    2007-01-01

    After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  6. Swarm intelligence in bio-inspired robotics

    OpenAIRE

    Berg, Jannik; Karud, Camilla Haukenes

    2011-01-01

    In this report, we have explored swarm intelligence through a box-pushing taskwith physical robots called e-pucks. Research on social insects has been presentedtogether with dierent ways of controlling autonomous robots, where combiningthis knowledge has been essential in our quest to make a biological plausible antretrieving system.Inspired by ants and behavior-based robotics, we have created the system CRABS.It is based on Brooks' subsumption architecture to control six dierent behavio...

  7. Data specifications for INSPIRE

    Science.gov (United States)

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  8. Inspiral into Gargantua

    CERN Document Server

    Gralla, Samuel E; Warburton, Niels

    2016-01-01

    We model the inspiral of a compact object into a more massive black hole rotating very near the theoretical maximum. We find that once the body enters the near-horizon regime the gravitational radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an exponentially damped profile. This contrasts with the usual "chirping" behavior and, if detected, would constitute a "smoking gun" for a near-extremal black hole in nature.

  9. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  10. Quantum-Inspired Maximizer

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  11. Eesti õpetaja pälvis Inspiration Software'i stipendiumi / Ave Lauringson

    Index Scriptorium Estoniae

    Lauringson, Ave

    2007-01-01

    USA tarkvarafirma Inspiration Software tegi teatavaks 30 õpetaja nimed üle maailma, kes saavad 2007. aasta haridusstipendiumi (Inspired Teacher Scholarships for Visual Learning). Nende seas on ka Lasnamäe Lasteaia-Algkooli õpetaja, Tiigrihüppe SA ekspert ja koolitaja ning Tiigri Tegija 2007 auhinnasaaja Ingrid Maadvere

  12. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  13. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  14. A tissue-inspired amorphous photonic metamaterial

    CERN Document Server

    Bi, Dapeng

    2016-01-01

    Inspired by how cells pack in dense biological tissues, we design an amorphous material which possesses a complete photonic band gap. A physical parameter inspired by how cells adhere with one another and regulate their shapes can continuously tune the photonic band gap size as well as the bulk mechanical property of the material. The material can be further tuned to undergo a solid-fluid phase transition during which the shear modulus vanishes yet the photonic band gap persists, hence giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled non-rigid photonic structures with photonic band gaps that can be controlled in real time.

  15. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  16. The scientific study of inspiration in the creative process: Challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Victoria C. Oleynick

    2014-06-01

    Full Text Available Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale, which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort, and we review empirical evidence that inspiration and effort both play important—but different—roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society.

  17. Tree-inspired piezoelectric energy harvesting

    Science.gov (United States)

    Hobbs, William B.; Hu, David L.

    2012-01-01

    We design and test micro-watt energy-harvesters inspired by tree trunks swaying in the wind. A uniform flow vibrates a linear array of four cylinders affixed to piezoelectric energy transducers. Particular attention is paid to measuring the energy generated as a function of cylinder spacing, flow speed, and relative position of the cylinder within the array. Peak power is generated using cylinder center-to-center spacings of 3.3 diameters and flow speeds in which the vortex shedding frequency is 1.6 times the natural frequency of the cylinders. Using these flow speeds and spacings, the power generated by downstream cylinders can exceed that of leading cylinders by more than an order of magnitude. We visualize the flow in this system by studying the behavior of a dynamically matched flowing soap film with imbedded styrofoam disks. Our qualitative visualizations suggest that peak energy harvesting occurs under conditions in which vortices have fully detached from the leading cylinder.

  18. Geophysics in INSPIRE

    Science.gov (United States)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  19. VI International Workshop on Nature Inspired Cooperative Strategies for Optimization

    CERN Document Server

    Otero, Fernando; Masegosa, Antonio

    2014-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm In...

  20. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

    Science.gov (United States)

    Loh, Kenneth J.; Azhari, Faezeh

    2012-07-01

    The highly optimized performance of nature's creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.

  1. On the Role of Visual Teaching in Biology Teaching%直观教学在生物教学中的作用

    Institute of Scientific and Technical Information of China (English)

    戎鹏柱

    2012-01-01

    直观教学是生物教学中最重要的教学手段之一,几乎所有的生物课都能利用这种方法教学,利用这一手段的效果能直接决定学生的学习效果。所以,教师必须对直观教学的意义、种类和运用方法有全面深入的了解,并掌握相关技能和技巧,才能不断提高教学质量。%Visual teaching is one of the most important teaching methods in biology teaching,for it can be used in nearly all biology classes to directly improve students' learning effect.Therefore,the teacher must deeply understand visual teaching method,and grasp relevant skills,so as to continuously improve teaching quality.

  2. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    Science.gov (United States)

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  3. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  4. Microflyers: inspiration from nature

    Science.gov (United States)

    Sirohi, Jayant

    2013-04-01

    Over the past decade, there has been considerable interest in miniaturizing aircraft to create a class of extremely small, robotic vehicles with a gross mass on the order of tens of grams and a dimension on the order of tens of centimeters. These are collectively refered to as micro aerial vehicles (MAVs) or microflyers. Because the size of microflyers is on the same order as that of small birds and large insects, engineers are turning to nature for inspiration. Bioinspired concepts make use of structural or aerodynamic mechanisms that are observed in insects and birds, such as elastic energy storage and unsteady aerodynamics. Biomimetic concepts attempt to replicate the form and function of natural flyers, such as flapping-wing propulsion and external appearance. This paper reviews recent developments in the area of man-made microflyers. The design space for microflyers will be described, along with fundamental physical limits to miniaturization. Key aerodynamic phenomena at the scale of microflyers will be highlighted. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed wing micro air vehicles and microhelicopters will not be addressed. A few representative bioinspired and biomimetic microflyer concepts developed by researchers will be described in detail. Finally, some of the sensing mechanisms used by natural flyers that are being implemented in man-made microflyers will be discussed.

  5. eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan

    2009-01-01

    This paper presents the concept of a biological inspired reconfigurable hardware cell architecture which supports self-organisation and self-healing. Two fundamental processes in biology, namely fertilization-to-birth and cell self-healing have inspired the development of this cell architecture. ...

  6. A multimodal imaging workflow to visualize metal mixtures in the human placenta and explore colocalization with biological response markers.

    Science.gov (United States)

    Niedzwiecki, Megan M; Austin, Christine; Remark, Romain; Merad, Miriam; Gnjatic, Sacha; Estrada-Gutierrez, Guadalupe; Espejel-Nuñez, Aurora; Borboa-Olivares, Hector; Guzman-Huerta, Mario; Wright, Rosalind J; Wright, Robert O; Arora, Manish

    2016-04-01

    Fetal exposure to essential and toxic metals can influence life-long health trajectories. The placenta regulates chemical transmission from maternal circulation to the fetus and itself exhibits a complex response to environmental stressors. The placenta can thus be a useful matrix to monitor metal exposures and stress responses in utero, but strategies to explore the biologic effects of metal mixtures in this organ are not well-developed. In this proof-of-concept study, we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to measure the distributions of multiple metals in placental tissue from a low-birth-weight pregnancy, and we developed an approach to identify the components of metal mixtures that colocalized with biological response markers. Our novel workflow, which includes custom-developed software tools and algorithms for spatial outlier identification and background subtraction in multidimensional elemental image stacks, enables rapid image processing and seamless integration of data from elemental imaging and immunohistochemistry. Using quantitative spatial statistics, we identified distinct patterns of metal accumulation at sites of inflammation. Broadly, our multiplexed approach can be used to explore the mechanisms mediating complex metal exposures and biologic responses within placentae and other tissue types. Our LA-ICP-MS image processing workflow can be accessed through our interactive R Shiny application 'shinyImaging', which is available at or through our laboratory's website, . PMID:26987553

  7. a Novel Ship Detection Method for Large-Scale Optical Satellite Images Based on Visual Lbp Feature and Visual Attention Model

    Science.gov (United States)

    Haigang, Sui; Zhina, Song

    2016-06-01

    Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.

  8. Synthesis and biological evaluation of carbon-11 and fluorine-18 labeled tracers for in vivo visualization of PDE10A

    International Nuclear Information System (INIS)

    Introduction: In vivo visualization of PDE10A using PET provides a tool to evaluate the role of PDE10A in various neuropsychiatric diseases and can also be useful in the clinical evaluation of PDE10A inhibitor drug candidates. We evaluated several carbon-11 and fluorine-18 labeled PDE10A inhibitors as potential PDE10A PET radioligands. Materials and Methods: [11C]MP10, [11C]JNJ42071965 and four other tracers were developed. Their biodistribution was evaluated in rats. Rat plasma and brain radiometabolites were quantified. Baseline microPET imaging was performed in normal rats and PDE10A knockout (KO) and wild-type (WT) mice. Blocking and displacement studies were conducted. The selectivity of the tracer binding was further studied in an ex vivo autoradiography experiment in PDE10A KO and WT mice. Results: Biodistribution showed brain uptake for all tracers in the striatum and wash-out from the cerebellum. [11C]1 (11C-MP10) had the highest specific uptake index (striatum (S) vs. cerebellum (C) ratios (S/C)-1) at 60 min (7.4). [11C]5 ([11C]JNJ42071965) had a high index at the early time points (1.0 and 3.7 at 2 and 30 min p.i., respectively). The affinity of [11C]4, [18 F]3 and [18 F]6 was too low to visualize PDE10A using microPET. [11C] 2 showed a specific binding, while kinetics of [11C]1 were too slow. [11C]5 reached equilibrium after 10 min (uptake index = 1.2). Blocking and displacement experiments in rats and baseline imaging in PDE10A KO mice showed specific and reversible binding of [11C]5 to PDE10A. Conclusions: We successfully radiolabeled and evaluated six radiotracers for their potential to visualize PDE10A in vivo. While [11C]1 had the highest striatal specific uptake index, its slow kinetics likely compromise clinical use of this tracer. [11C]5 has a relatively high striatum-to-background ratio and fast kinetic profile, which makes it a valuable carbon-11 alternative

  9. A nature-inspired approach to reactor and catalysis engineering

    OpenAIRE

    Coppens, M-O

    2012-01-01

    Mechanisms used by biology to solve fundamental problems, such as those related to scalability, efficiency and robustness could guide the design of innovative solutions to similar challenges in chemical engineering. Complementing progress in bioinspired chemistry and materials science, we identify three methodologies as the backbone of nature-inspired reactor and catalysis engineering. First, biology often uses hierarchical networks to bridge scales and facilitate transport, leading to broadl...

  10. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  11. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  12. Immuno-inspired robotic applications: a review

    CERN Document Server

    Raza, Ali

    2012-01-01

    Artificial immune systems primarily mimic the adaptive nature of biological immune functions. Their ability to adapt to varying pathogens makes such systems a suitable choice for various robotic applications. Generally, AIS-based robotic applications map local instantaneous sensory information into either an antigen or a co-stimulatory signal, according to the choice of representation schema. Algorithms then use relevant immune functions to output either evolved antibodies or maturity of dendritic cells, in terms of actuation signals. It is observed that researchers, in an attempt to solve the problem in hand, do not try to replicate the biological immunity but select necessary immune functions instead, resulting in an ad-hoc manner these applications are reported. Authors, therefore, present a comprehensive review of immuno-inspired robotic applications in an attempt to categorize them according to underlying immune definitions. Implementation details are tabulated in terms of corresponding mathematical expr...

  13. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  14. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    CERN Document Server

    Nowotniak, Robert

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selected binary quantum chromosomes cover a domain of one-dimensional fitness function.

  15. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    Science.gov (United States)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-12-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  16. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  17. Inspiring to inspire: Developing teaching in higher education

    Directory of Open Access Journals (Sweden)

    Louise Williams

    2016-12-01

    Full Text Available Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through individual reflections to a set of pre-determined questions, a group of Higher Education teachers (n = 5 with a responsibility for the development of learning, teaching and assessment, share their thoughts, feelings and beliefs on inspiring teaching. The interpretive analysis of the data shows from a staff perspective that the notion of inspiring teaching has three main components which are all interrelated, those being; the actual teaching and learning experience; the design of the curriculum and the teacher/student relationship. Staff development initiatives were found to help people explore and develop their own teaching philosophy, to develop new practices and to share and learn from others. However, individual’s mindset, beliefs and attitudes were found to be a challenge. Teachers can frame their development around the different aspects of inspiring teaching and with support from senior leadership as well as a positive culture, teaching communities can work together towards inspiring teaching.

  18. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    Science.gov (United States)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  19. Human vision inspired framework for facial expressions recognition

    OpenAIRE

    R. A. Khan; Meyer, A.; Konik, Hubert; Bouakaz, Saïda

    2012-01-01

    We present a novel human vision inspired framework that can recognize facial expressions very efficiently and accurately. We propose to computationally process small, salient region of the face to extract features as it happens in human vision. To determine which facial region(s) is perceptually salient for a particular expression, we conducted a psycho-visual experimental study with an eye-tracker. A novel feature space conducive for recognition task is proposed, which is created by extracti...

  20. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  1. The problem with inspiration porn: a tentative definition and a provisional critique

    OpenAIRE

    2016-01-01

    The term ‘inspiration porn’ is associated with disability advocacy in general and the late activist and comedian Stella Young in particular. It has come into widespread usage over the last few years. I propose the following definition: ‘Inspiration porn is the representation of disability as a desirable but undesired characteristic, usually by showing impairment as a visually or symbolically distinct biophysical deficit in one person, a deficit that can and must be overcome through the displa...

  2. Nursing Ways to Inspire Hope

    OpenAIRE

    Forsberg, Birgit

    2013-01-01

    The purpose of this Bachelor’s thesis was to search for nursing ways to inspire hope in acute care patients. There was an abundance of general material found on the theme of hope, but research articles specifically on hope inspiration and hope maintenance in acute care were limited, especially from the nursing point of view. This theme of hope is in itself a fluctuating value throughout one’s lifespan, and so it has been difficult to measure. And lastly, finding evidence based research result...

  3. Inspiring future experimental scientists through questions related to colour

    Science.gov (United States)

    Fairchild, Mark D.; Melgosa, Manuel

    2014-07-01

    In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.

  4. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    The research of Odile Meulien and Dietmar Ohlmann is about perceiving a multidimensional world. Not about the cyberspace created for new cinema creation, nor the reality which seems to be created by communication. It's the search for the reality we perceive, when the mind "touches" an object with its senses. In fact, it is a study of the surface of an object, which we can record in its visual appearing, its structure, shape and colors. When using photographic media, the tactile sense of the structure is missing, when using some other reproductive media; we experience somewhere a sensation of fault, something different. When using holography, we are able to record some three dimensional shape which has in fact a lot of parameter of a realistic copy. What is missing is the touch, the smell, the way we can go close and far, surround the object, relate the reflected light to its surrounding. The only interesting attribute of a hologram is for Dietmar Ohlmann its capacity to illustrate a continuum. He likes its changing diffractive character during daytime and surrounds lighting. For Odile Meulien the continuum of a hologram represents a new possible model for understanding wholeness in a social context. In fact, both are working on an educational process together, helping children and adults to find a new position of their own in harmony with living surrounding. Dietmar Ohlmann is working on his artistic side, while Odile Meulien works on educational programs experiencing the perspective of a curator and social analyst. New is the implication of using the latest of the techniques like the atomic force microscopy, which make possible to touch the holographic grating while the holographic image remains untouched. In other words it is the reverse of the usual approach of objects which at first we touch to investigate further. Their difference in experiencing and perceiving scientific and technical approach brings a lot of paradigm in their discussion. Together they will

  5. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop had much to…

  6. Inversion exercises inspired by mechanics

    Science.gov (United States)

    Groetsch, C. W.

    2016-02-01

    An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.

  7. Allothetic and idiothetic sensor fusion in rat-inspired robot localization

    Science.gov (United States)

    Weitzenfeld, Alfredo; Fellous, Jean-Marc; Barrera, Alejandra; Tejera, Gonzalo

    2012-06-01

    We describe a spatial cognition model based on the rat's brain neurophysiology as a basis for new robotic navigation architectures. The model integrates allothetic (external visual landmarks) and idiothetic (internal kinesthetic information) cues to train either rat or robot to learn a path enabling it to reach a goal from multiple starting positions. It stands in contrast to most robotic architectures based on SLAM, where a map of the environment is built to provide probabilistic localization information computed from robot odometry and landmark perception. Allothetic cues suffer in general from perceptual ambiguity when trying to distinguish between places with equivalent visual patterns, while idiothetic cues suffer from imprecise motions and limited memory recalls. We experiment with both types of cues in different maze configurations by training rats and robots to find the goal starting from a fixed location, and then testing them to reach the same target from new starting locations. We show that the robot, after having pre-explored a maze, can find a goal with improved efficiency, and is able to (1) learn the correct route to reach the goal, (2) recognize places already visited, and (3) exploit allothetic and idiothetic cues to improve on its performance. We finally contrast our biologically-inspired approach to more traditional robotic approaches and discuss current work in progress.

  8. Collective form generation through visual participatory representation

    DEFF Research Database (Denmark)

    Day, Dennis; Sharma, Nishant; Punekar, Ravi

    2012-01-01

    In order to inspire and inform designers with the users data from participatory research, it may be important to represent data in a visual format that is easily understandable to the designers. For a case study in vehicle design, the paper outlines visual representation of data and the use...

  9. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  10. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  11. Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    OpenAIRE

    al-Rifaie, Mohammad Majid; Aber, Ahmed; Bishop, Mark

    2012-01-01

    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of t...

  12. Neural networks and neuroscience-inspired computer vision.

    Science.gov (United States)

    Cox, David Daniel; Dean, Thomas

    2014-09-22

    Brains are, at a fundamental level, biological computing machines. They transform a torrent of complex and ambiguous sensory information into coherent thought and action, allowing an organism to perceive and model its environment, synthesize and make decisions from disparate streams of information, and adapt to a changing environment. Against this backdrop, it is perhaps not surprising that computer science, the science of building artificial computational systems, has long looked to biology for inspiration. However, while the opportunities for cross-pollination between neuroscience and computer science are great, the road to achieving brain-like algorithms has been long and rocky. Here, we review the historical connections between neuroscience and computer science, and we look forward to a new era of potential collaboration, enabled by recent rapid advances in both biologically-inspired computer vision and in experimental neuroscience methods. In particular, we explore where neuroscience-inspired algorithms have succeeded, where they still fail, and we identify areas where deeper connections are likely to be fruitful.

  13. Decrypting $SO(10)$-inspired leptogenesis

    CERN Document Server

    Di Bari, Pasquale; Fiorentin, Michele Re

    2014-01-01

    Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...

  14. Jellyfish inspired underwater unmanned vehicle

    Science.gov (United States)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  15. Systematization of the protein sequence diversity in enzymes related to secondary metabolic pathways in plants, in the context of big data biology inspired by the KNApSAcK motorcycle database.

    Science.gov (United States)

    Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2013-05-01

    Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.

  16. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network

    Science.gov (United States)

    Li, Na; Yang, Yongjia

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly. PMID:27803711

  17. Issues in Applying Bio-Inspiration, Cognitive Critical Mass and Developmental-Inspired Principles to Advanced Intelligent Systems

    Science.gov (United States)

    Berg-Cross, Gary; Samsonovich, Alexei V.

    This Chapter summarizes ideas presented at the special PerMIS 2008 session on Biological Inspiration for Intelligent Systems. Bio-inspired principles of development and evolution are a special part of the bio-models and principles that can be used to improve intelligent systems and related artifacts. Such principles are not always explicit. They represent an alternative to incremental engineering expansion using new technology to replicate human intelligent capabilities. They are more evident in efforts to replicate and produce a “critical mass” of higher cognitive functions of the human mind or their emergence through cognitive developmental robotics (DR) and self-regulated learning (SRL). DR approaches takes inspiration from natural processes, so that intelligently engineered systems may create solutions to problems in ways similar to what we hypothesize is occurring with biologics in their natural environment. This Chapter discusses how an SRL-based approach to bootstrap a “critical mass” can be assessed by a set of cognitive tests. It also uses a three-level bio-inspired framework to illustrate methodological issues in DR research. The approach stresses the importance of using bio-realistic developmental principles to guide and constrain research. Of particular importance is keeping models and implementation separate to avoid the possible of falling into a Ptolemaic paradigm that may lead to endless tweaking of models. Several of Lungarella's design principles [36] for developmental robotics are discussed as constraints on intelligence as it emerges from an ecologically balanced, three-way interaction between an agents' control systems, physical embodiment, and the external environment. The direction proposed herein is to explore such principles to avoid slavish following of superficial bio-inspiration. Rather we should proceed with a mature and informed developmental approach using developmental principles based on our incremental understanding of how

  18. Adaptive visual attention model

    OpenAIRE

    Hügli, Heinz; Bur, Alexandre

    2009-01-01

    Visual attention, defined as the ability of a biological or artificial vision system to rapidly detect potentially relevant parts of a visual scene, provides a general purpose solution for low level feature detection in a vision architecture. Well considered for its universal detection behaviour, the general model of visual attention is suited for any environment but inferior to dedicated feature detectors in more specific environments. The goal of the development presented in this paper is t...

  19. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin;

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive for...

  20. Commentary: "A systems view on the future of medicine: Inspiration from Chinese medicine?"

    NARCIS (Netherlands)

    Verpoorte, R.; Crommelin, D.; Danhof, M.; Gilissen, L.J.W.J.; Schuitmaker, H.; Greef, de J.; Witkamp, R.F.

    2009-01-01

    Chinese medicine could serve as a source of inspiration for drug development. Using systems biology in combination with reverse pharmacology is a novel way for the discovery of novel biological active compounds and targets as well as for proving the occurrence of synergy and prodrugs. A key factor f

  1. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop;

    2013-01-01

    surface strategies in order to learn clever surface architectures and implement those architectures to impart advanced functionalities into manufactured consumer products. This keynote paper delivers a critical review of such inspiring biological surfaces and their nonbiological product analogs, where...... such as sensing and actuation. These strategies collectively enable functional surfaces to deliver extraordinary adhesion, hydrophobicity, multispectral response, energy scavenging, thermal regulation, antibiofouling, and other advanced functions. Production industries have been intrigued with such biological...... manufacturing science and engineering have adopted such advanced functional surface architectures....

  2. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  3. CT anatomy of the diaphragm: changes in end inspiration and end expiration

    International Nuclear Information System (INIS)

    To assess the change in configuration of the diaphragm between scans obtained at end inspiration and end expiration. Two series of CT scans at end inspiration and at end expiration were obtained in 37 patients. We evaluated the changes in the type of anterior diaphragm, pseudotumor, undulation of the diaphragm, and diaphragmatic defect during the respiratory phases. The configuration of the anterior portion of the diaphragm changed between end inspiratory and end expiratory CT scans in 25(67.6%) of 37 patients. Diaphragmatic defect, diaphragmatic pseudotumor, and undulation of the diaphragm were more frequent at end inspiration (13.5%, 18.9%, 37.8%, respectively) than at end expiration (0%, 5.4%, 10.8%, respectively). There is a change in the configuration of the anterior portion of the diaphragm and we also observed differences in the visualization of diaphragmatic defects, pseudotumor, and undulation between scans obtained at end inspiration and end expiration

  4. Natural product-inspired rational design, synthesis and biological evaluation of 2,3-dihydropyrano[2,3-f]chromen-4(8H)-one based hybrids as potential mitochondrial apoptosis inducers.

    Science.gov (United States)

    Sakthivel, Palaniappan; Ilangovan, Andivelu; Kaushik, Mahabir Prasad

    2016-10-21

    Synthesis of novel pyranochromanone amide hybrids, by combining pyranochromanone pharmacophore and privileged scaffolds such as 2-amino-1,3,4-thiadiaole/2-aminothiazole/aminopyridine/aminonaphthalene and anti-cancer evaluation of a series led us to discover a series of new chemical entities (NCEs) showing broad spectrum of anti-cancer activity against three different human cancer cell lines (MCF-7, A549 and HeLa), at IC50 values ranging from 14.3 to 97.8 μM. Among them, some compounds such as 15b, 15d, 20a and 20b displayed excellent activity against breast cancer cell line MCF-7. Detailed biological studies such as AO/EB dual staining, Hoechst 33342 staining, FACS analysis of mitochondrial membrane potential (Δψm) using JC-1 dye and DNA fragmentation confirmed the apoptosis induced by the hybrids. Gene expression studies by Real time RT-PCR has shown that these compounds are efficient regulator of anti-apoptotic gene Bcl-2. Western blot analysis also revealed that these compounds persuade apoptosis through intrinsic pathway by up-regulating the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl-2. Molecular docking studies reveal that compounds 15b and 20b binds efficiently with Bcl-2 promoter G-quadruplex.

  5. Human-inspired lighting the intention control in robot systems with of glare avoidance%Human-inspired lighting the intention control in robot systems with of glare avoidance

    Institute of Scientific and Technical Information of China (English)

    Chen Shengyong; Guan Qiu; Liu Sheng; Bi Dexue

    2011-01-01

    This paper presents some human-inspired strategies for lighting control in a robot system for best scene interpretation, where the main intention is to avoid possible glares or highlights occurring in images. It firstly compares the characteristics of human eyes and robot eyes. Then some evaluation criteria are addressed to assess the lighting conditions. A bio-inspired method is adopted to avoid the visual glare which is caused by either direct illumination from large light sources or indirect illumination reflected by smooth surfaces. Appropriate methods are proposed to optimize the pose and optical parameters of the light source and the vision camera.

  6. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  7. Towards Ecology Inspired Software Engineering

    OpenAIRE

    Baudry, Benoit; Monperrus, Martin

    2012-01-01

    Les écosystèmes sont des systèmes complexes et dynamiques. Au cours de l'évolution, ils ont développé des capacités avancées pour fournir des fonctions stables, et ce malgré des changements constants dans l'environnement. Dans ce papier, nous discutons l'hypothèse que les lois dirigeant l'organisation et le développement des écosystèmes sont une source d'inspiration riche pour l'architecture et la construction des logiciels.

  8. 基于生物启发C2特征的在线目标跟踪算法%Online Object Tracking Algorithm Based on Biologically-Inspired C2 Feature

    Institute of Scientific and Technical Information of China (English)

    邢晓芬; 裘索; 郭锴凌; 徐向民

    2012-01-01

    In the existing online object tracking algorithms, tracking deviation commonly occurs when there exists a complex deformation of object appearance. In order to solve this problem, this paper employs robust features to describe the object appearance. First, the perception mechanism of the ventral pathway of human visual cortex is imitated, and C2 feature, which is invariant to position and scale and can distinguish complex shapes, is introduced. Then, a novel online object-tracking model based on a cognitive patch set is put forward to recognize C2 feature. In this model, the importance of a cognitive patch is estimated according to its role in the object recognition, and based on the estimated results, online elimination and update of cognitive patches are realized. Meanwhile, an online object/background classifier is adopted to distinguish new candidate patches, thus solving the problem of the error accumulation resulting from the participation of the background part of the object region in the model adjustment. Simulated results indicate that the proposed method is robust and effective in the presence of complex object deformation and severe occlusion.%现有的在线跟踪算法在应对目标复杂形变时易出现跟踪偏差.文中通过寻找鲁棒的特征去刻画目标外观来解决这一问题,即模拟人眼视皮层腹侧通路感知机制,引入具有位置尺度不变性、复杂形状选择特性的C2特征,建立一个基于认知碎片集进行C2特征识别的在线目标跟踪模型,并根据认知碎片在目标识别中所起的作用对其重要性进行评估,依据评估结果实现认知碎片的在线淘汰与更新,同时引入在线目标/背景分类器,对新加入认知碎片记忆池的碎片进行筛选,解决了跟踪到的目标区域中的背景部分参与模型更新可能造成的误差累积问题.仿真实验结果表明:该算法在应对目标复杂形变和严重遮挡时,具有一定的鲁棒性与有效性.

  9. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  10. Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Bjørnsen Fredberg; Dueck, Jenny;

    2016-01-01

    BACKGROUND AND PURPOSE: Deep inspiration breath hold (DIBH) increases lung volume and can potentially reduce treatment-related toxicity in locally advanced lung cancer. We estimated geometric uncertainties in visually guided voluntary DIBH and derived the appropriate treatment margins for differe...

  11. Analysis of ocean in situ observations and web-based visualization

    Science.gov (United States)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Alvera Azcarate, Aida; Santinelli, Giorgio; Hendriksen, Gerrit; Giorgetti, Alessandra; Beckers, Jean-Marie

    2016-04-01

    The sparsity of observations poses a challenge common to various ocean science disciplines. Even for physical parameters where the spatial and temporal coverage is higher, current observational networks undersample a broad spectrum of scales. The situation is generally more severe for chemical and biological parameters because related sensors are less widely deployed. The analysis tool DIVA (Data-Interpolating Variational Analysis) is designed to generate gridded fields from in situ observations. DIVA has been applied to various physical (temperature and salinity), chemical (concentration of nitrate, nitrite and phosphate) and biological parameters (abundance of a species) in the context of different European projects (SeaDataNet, EMODnet Chemistry and EMODnet Biology). We show the technologies used to visualize the gridded fields based on the Web Map Services standard. Visualization of analyses from in situ observations provides a unique set of challenges since the accuracy of the analysed field is not spatially uniform as it strongly depends on the observations location. In addition, an adequate handling of depth and time dimensions is essential. Beside visualizing the gridded fields, access is also given to the underlying observations. It is thus also possible to view more detailed information about the variability of the observations. The in situ observation visualization service allows one to display vertical profiles and time series and it is built upon OGC standards (the Web Feature Service and Web Processing Services) and following recommendation from the INSPIRE directive.

  12. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  13. Information processes in visual and object buffers of scene understanding system for reliable target detection, separation from background, and identification

    Science.gov (United States)

    Kuvich, Gary

    2006-05-01

    Modern target recognition systems suffer from the lack of human-like abilities to understand the visual scene, detect, unambiguously identify and recognize objects. As result, the target recognition systems become dysfunctional if target doesn't demonstrate remarkably distinctive and contrast features that allow for unambiguous separation from background and identification upon such features. This is somewhat similar to visual systems of primitive animals like frogs, which can separate and recognize only moving objects. However, human vision unambiguously separates any object from its background. Human vision combines a rough but wide peripheral, and narrow but precise foveal systems with visual intelligence that utilize both scene and object contexts and resolve ambiguity and uncertainty in the visual information. Perceptual grouping is one of the most important processes in human vision, and it binds visual information into meaningful patterns and structures. Unlike the traditional computer vision models, biologically-inspired Network-Symbolic models convert image information into an "understandable" Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level system of Visual Intelligence. This interaction provides recursive rough context identification of regions of interest in the visual scene and their analysis in the object buffer for precise and unambiguous separation of the object from background/clutter with following recognition of the target.

  14. Biological Optimisation for Nurse Scheduling

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary research that more biologically-realistic AISs could have is also discussed.

  15. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  16. Structurally tuned iridescent surfaces inspired by nature

    Energy Technology Data Exchange (ETDEWEB)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cedric; Welch, Victoria; Vigneron, Jean Pol [Laboratoire de Physique du Solide, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium); Lucas, Stephane [Laboratoire d' Analyses par Reactions Nucleaires, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium)], E-mail: olivier.deparis@fundp.ac.be

    2008-01-15

    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO{sub 2}/SiO{sub 2} multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO{sub 2}/SiO{sub 2} layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions.

  17. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions. PMID:23307357

  18. Event Rates for Binary Inspiral

    CERN Document Server

    Kalogera, V

    2001-01-01

    Double compact objects (neutron stars and black holes) found in binaries with small orbital separations are known to spiral in and are expected to coalesce eventually because of the emission of gravitational waves. Such inspiral and merger events are thought to be primary sources for ground based gravitational-wave interferometric detectors (such as LIGO). Here, we present a brief review of estimates of coalescence rates and we examine the origin and relative importance of uncertainties associated with the rate estimates. For the case of double neutron star systems, we compare the most recent rate estimates to upper limits derived in a number of different ways. We also discuss the implications of the formation of close binaries with two non-recycled pulsars.

  19. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  20. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  1. Decrypting SO(10-inspired leptogenesis

    Directory of Open Access Journals (Sweden)

    Pasquale Di Bari

    2015-04-01

    Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sin⁡δ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.

  2. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.

    Science.gov (United States)

    Fuller, Sawyer B; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y; Wood, Robert J

    2014-08-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role.

  3. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli

    Science.gov (United States)

    Fuller, Sawyer B.; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y.; Wood, Robert J.

    2014-01-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846

  4. On the Cultivation of Students' Interests in Biology Teaching

    Science.gov (United States)

    Li, Yan

    2011-01-01

    This paper introduces the importance of middle school students' interests in learning biology. Considering the psychological characteristics of middle school students, this paper suggests several practical ways for inspiring students' interests in learning biology.

  5. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  6. New Inspirations in Nature: A Survey

    Directory of Open Access Journals (Sweden)

    Nitesh Maganlal Sureja

    2012-11-01

    Full Text Available Over the past few decades, the studies on algorithms inspired by nature have shown that these methods can be efficiently used to eliminate most of the difficulties of classical methods. Nature inspired algorithms are widely used to solve optimization problems with complex nature. Various research works are carried out and algorithms are presented based on that during last few decades. Recently, some new algorithms inspired from nature are proposed to further improve the solutions obtained by the algorithms presented before. In this paper, a survey of five recently introduced Nature inspired algorithms is carried out. They include Firefly algorithm (FA, Cuckoo Search (CS, and Bat Inspired Algorithm (BA. Each of these algorithms are introduced and applied on various numerical optimization functions by various authors. We have tried to review and study the papers published by the authors and present a conclusion of this survey based on the results obtained.

  7. An active system for visually-guided reaching in 3D across binocular fixations.

    Science.gov (United States)

    Martinez-Martin, Ester; del Pobil, Angel P; Chessa, Manuela; Solari, Fabio; Sabatini, Silvio P

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  8. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L.; Engert, Florian

    2015-01-01

    ABSTRACT Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. PMID:25792753

  9. An active system for visually-guided reaching in 3D across binocular fixations.

    Science.gov (United States)

    Martinez-Martin, Ester; del Pobil, Angel P; Chessa, Manuela; Solari, Fabio; Sabatini, Silvio P

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data.

  10. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    Directory of Open Access Journals (Sweden)

    Ester Martinez-Martin

    2014-01-01

    Full Text Available Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity generated from the egocentric representation of the visual information (image coordinates. In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching. The approach’s performance is evaluated through experiments on both simulated and real data.

  11. Bio-inspired nanomaterials and their applications as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Smita Sachin Zinjarde

    2012-01-01

    Full Text Available In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin, plant parts (bark, callus, leaves, peels, and tubers, fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired as novel antimicrobial agents have also been discussed.

  12. Biologically inspired omniphobic surfaces by reverse imprint lithography.

    Science.gov (United States)

    Hensel, René; Finn, Andreas; Helbig, Ralf; Braun, Hans-Georg; Neinhuis, Christoph; Fischer, Wolf-Joachim; Werner, Carsten

    2014-04-01

    Springtail skin morphology is translated into robust omniphobic polymer membranes by reverse imprint lithography. The combination of overhanging cross-sections and their arrangement in a self-supporting comblike pattern are crucial for mechanically stable coatings that can be even applied to curved surfaces. PMID:24375518

  13. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: building a small microrover that employs energy generated by a bacterial source Objective: investigate the usability of a microbial fuel cell to power...

  14. A new shoulder model with a biologically inspired glenohumeral joint.

    Science.gov (United States)

    Quental, C; Folgado, J; Ambrósio, J; Monteiro, J

    2016-09-01

    Kinematically unconstrained biomechanical models of the glenohumeral (GH) joint are needed to study the GH joint function, especially the mechanisms of joint stability. The purpose of this study is to develop a large-scale multibody model of the upper limb that simulates the 6 degrees of freedom (DOF) of the GH joint and to propose a novel inverse dynamics procedure that allows the evaluation of not only the muscle and joint reaction forces of the upper limb but also the GH joint translations. The biomechanical model developed is composed of 7 rigid bodies, constrained by 6 anatomical joints, and acted upon by 21 muscles. The GH joint is described as a spherical joint with clearance. Assuming that the GH joint translates according to the muscle load distribution, the redundant muscle load sharing problem is formulated considering as design variables the 3 translational coordinates associated with the GH joint translations, the joint reaction forces associated with the remaining kinematic constraints, and the muscle activations. For the abduction motion in the frontal plane analysed, the muscle and joint reaction forces estimated by the new biomechanical model proposed are similar to those estimated by a model in which the GH joint is modeled as an ideal spherical joint. Even though this result supports the assumption of an ideal GH joint to study the muscle load sharing problem, only a 6 DOF model of the GH joint, as the one proposed here, provides information regarding the joint translations. In this study, the biomechanical model developed predicts an initial upward and posterior migration of the humeral head, followed by an inferior and anterior movement, which is in good agreement with the literature. PMID:27381499

  15. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the...... neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex...... signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then...

  16. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  17. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-01

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  18. Biologically inspired path execution using SURF flow in robot navigation

    OpenAIRE

    Perez-Sala, Xavier; Angulo Bahón, Cecilio; Escalera, Sergio

    2011-01-01

    An exportable and robust system using only camera images is proposed for path execution in robot navigation. Motion information is extracted in the form of optical flow from SURF robust descriptors of consecutive frames, so the method is called SURF flow. This information is used to correct robot displacement when a straight forward path command is sent to the robot, but it is not really executed due to several robot and environmental concerns. The proposed system has been ...

  19. Biologically Inspired Vision Systems for Flying Robots – Editorial

    OpenAIRE

    Antonio Fernández-Caballero

    2016-01-01

    Unmanned aerial vehicles (UAVs) have attracted considerable interest for a wide variety of applications, including meteorological observation, fire monitoring and patrolling, to military purposes such as reconnaissance, monitoring and communication [4]. In recent years, flying robots such as autonomous quadrocopters have gained increased interest in robotics and computer vision research. To navigate safely, these robots need the ability to localise themselves autonomously using their on-board...

  20. Biologically Inspired Behaviour Design for Autonomous Robotic Fish

    Institute of Scientific and Technical Information of China (English)

    Jin-Dong Liu; Huosheng Hu

    2006-01-01

    Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance of the designed behaviour layer.

  1. Bio-Inspired Search Strategies for Robot Swarms

    OpenAIRE

    Hereford, James M.; Siebold, Michael A.

    2010-01-01

    We developed and tested two biologically inspired search strategies for robot swarms. The first search technique, which we call the physically embedded Particle Swarm Optimization (pePSO) algorithm, is based on bird flocking and the PSO. The pePSO is able to find single peaks even in a complex search space such as the Rastrigin function and the Rosenbrock function. We were also the first research team to show that the pePSO could be implemented in an actual suite of robots. Our experiments wi...

  2. Product and technology innovation: what can biomimicry inspire?

    Science.gov (United States)

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. PMID:25316672

  3. Biology-Derived Algorithms in Engineering Optimization

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    Biology-derived algorithms are an important part of computational sciences, which are essential to many scientific disciplines and engineering applications. Many computational methods are derived from or based on the analogy to natural evolution and biological activities, and these biologically inspired computations include genetic algorithms, neural networks, cellular automata, and other algorithms.

  4. Computational Biology: A Programming Perspective

    DEFF Research Database (Denmark)

    Hartmann, Lars; Jones, Neil; Simonsen, Jakob Grue;

    2011-01-01

    identify some strengths and shortcomings from a programming perspective. To show concretely what one could see as programming in biocomputing, we outline (from recent work) a computation model and a small programming language that are biologically more plausible than existing silicon-inspired models....... Whether or not the model is biologically plausible in an absolute sense, we believe it sets a standard for a biological device that can be both universal and programmable....

  5. VFM:Visual Feedback Model for Robust Object Recognition

    Institute of Scientific and Technical Information of China (English)

    王冲; 黄凯奇

    2015-01-01

    Object recognition, which consists of classification and detection, has two important attributes for robustness:1) closeness: detection windows should be as close to object locations as possible, and 2) adaptiveness: object matching should be adaptive to object variations within an object class. It is difficult to satisfy both attributes using traditional methods which consider classification and detection separately; thus recent studies propose to combine them based on confidence contextualization and foreground modeling. However, these combinations neglect feature saliency and object structure, and biological evidence suggests that the feature saliency and object structure can be important in guiding the recognition from low level to high level. In fact, ob ject recognition originates in the mechanism of “what” and “where”pathways in human visual systems. More importantly, these pathways have feedback to each other and exchange useful information, which may improve closeness and adaptiveness. Inspired by the visual feedback, we propose a robust object recognition framework by designing a computational visual feedback model (VFM) between classification and detection. In the “what” feedback, the feature saliency from classification is exploited to rectify detection windows for better closeness;while in the “where” feedback, object parts from detection are used to match object structure for better adaptiveness. Experimental results show that the “what” and “where” feedback is effective to improve closeness and adaptiveness for ob ject recognition, and encouraging improvements are obtained on the challenging PASCAL VOC 2007 dataset.

  6. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  7. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  8. Nature Inspired Hay Fever Therapy

    Institute of Scientific and Technical Information of China (English)

    Andrei P.Sommer; Dan Zhu

    2008-01-01

    The survival oriented adaptation of evolved biosystems to variations in their environment is a selective optimization process. Recognizing the optimised end product and its functionality is the classical arena of bionic engineering. In a primordial world, however, the molecular organization and functions of prebiotic systems were solely defined by formative processes in their physical and chemical environment, for instance, the interplay between interracial water layers on surfaces and solar light. The formative potential of the interplay between light (laser light) and interfacial water layers on surfaces was recently exploited in the formation of supercubane carbon nanocrystals. In evolved biosystems the formative potential of interracial water layers can still be activated by light. Here we report a case of hay fever, which was successfully treated in the course of a facial reju-venation program starting in November 2007. Targeting primarily interfacial water layers on elastin fibres in the wrinkled areas, we presumably also activated mast cells in the nasal mucosa, reported to progressively decrease in the nasal mucosa of the rabbit, when frequently irradiated. Hay fever is induced by the release of mediators, especially histamine, a process associated with the degranulation of mast cells. Decrease in mast cells numbers implies a decrease in the release of histamine. To the best of our knowledge this is the first report on the treatment of hay fever with visible light. This approach was inspired by bionic thinking, and could help ameliorating the condition of millions of people suffering from hay fever world wide.

  9. Visual Signs of Ageing

    Directory of Open Access Journals (Sweden)

    Helle Rexbye

    2007-07-01

    Full Text Available Consumer culture has placed the ageing body in a dilemma of representation. Physical appearance has become increasingly important as a symbol of identity, and at the same time society idealizes youth. This study explores visual ageing empirically. By using photographs of older persons (70+ as starting point, it is explored how visual age is assessed and interpreted. It is shown that informants read age in a spread of stages and categories. Main age indicators are biological markers: skin, eyes, and hair colour, but supplemented by vigour, style, and grooming. Furthermore, in-depth interviews indicate that visual age is mainly interpreted into categories and moral regulations rooted in early modernity. Subsequently the question of a postmodern perspective of visual ageing is discussed in this article. The empirical findings in the study question a postmodern fluidity of visual signs – at least when the concern is signs of ageing.

  10. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  11. Bio-inspired nano-photodiode for Low Light, High Resolution and crosstalk-free CMOS image sensing

    KAUST Repository

    Saffih, Faycal

    2011-05-01

    Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets. © 2011 IEEE.

  12. Visual agnosia.

    Science.gov (United States)

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes.

  13. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials.

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Pardeshi, Sunil; Sharma, Jai Gopal; Lee, Seung Hyun; Choi, Eun Ha

    2015-11-11

    The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

  14. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials

    Directory of Open Access Journals (Sweden)

    Nagendra Kumar Kaushik

    2015-11-01

    Full Text Available The substance secreted by mussels, also known as nature’s glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs, a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

  15. Role of Inspiration in Creating Textile Design

    Directory of Open Access Journals (Sweden)

    Bakhtawer Sabir Malik

    2015-05-01

    Full Text Available In design-making process, Source of inspiration has a vital role, both in defining the characteristics of a new design and in informing the creation of a distinct design. This study was based on the idea to promote creative and original textile designs by using a source of inspiration. The purpose of the study was to create some original and innovative designs for textiles by using natural paintings of William Morris as an inspiration and incorporating modern elements in the design. Several designs were made and three were selected that were innovative and suitable for textile designing. This study marks the significance of a source of inspiration in textile designing.

  16. Engaging Students through Astronomically Inspired Music

    Science.gov (United States)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  17. Innovative Didactics in an International Internship - inspiration

    DEFF Research Database (Denmark)

    Lembcke, Steen; Skibsted, Else Bengaard; Mølgaard, Niels;

    An inspiration handbook for the international team from the teacher education programme in VIA. Aimed to assist internship supervisors and students during international internships in regards to innovation, social entrepreneurship and development of the international teacher. Introduces why and h...

  18. Towards gecko-feet-inspired bandages.

    Science.gov (United States)

    Yanik, Mehmet Fatih

    2009-01-01

    A novel bandage inspired by gecko feet might one day be used during emergencies and internal surgeries. The bandage uses a combination of nanofabricated structures, biodegradable materials and adhesive surface chemistry that allows adhesion onto even wet, moving tissue.

  19. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  20. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  1. Voice Coil Controlled Inspiration and Expiration Valves

    OpenAIRE

    Bergqvist, Per; Kemmler, Linus

    2012-01-01

    This master thesis was performed at Maquet Critical Care located in Solna, Stockholm. Maquet Critical Care is a market leader in high performance medical ventilators. A ventilator is a medical device that helps patients to breathe. Two of the most vital components of a ventilator are the valves that are closest to the patient. These are the inspiration valve and the expiration valve. The main purpose with this thesis is to get, theoretical as well as practical insights into the inspiration an...

  2. Old Ohrid features - inspiration for contemporary exterior

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    The old architecture of Ohrid from the 18th century, is a strong inspiration that is associated with the location of the city (The Macedonian Pearl), and it is an artistic influence of architects, artists, esthetes in Macedonia and beyond. The coastal area of Lake Ohrid is the perfect place for arranging the cafe patio, which will be also a sample of past and a contemporary reflection of the present. The Inspiration of the folklore is incorporated in contemporary and appropriate materials to ...

  3. Voros product and noncommutative inspired black holes

    OpenAIRE

    Gangopadhyay, Sunandan

    2013-01-01

    We emphasize the importance of the Voros product in defining noncommutative inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordstr\\"{o}m black holes show that the area law holds upto order $\\frac{1}{\\sqrt{\\theta}}e^{-M^2/\\theta}$. The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy $E$ for these black holes is then obtained and a deviation from the standard id...

  4. A survey of bio-inspired compliant legged robot designs

    International Nuclear Information System (INIS)

    The roles of biological springs in vertebrate animals and their implementations in compliant legged robots offer significant advantages over the rigid legged ones in certain types of scenarios. A large number of robotics institutes have been attempting to work in conjunction with biologists and incorporated these principles into the design of biologically inspired robots. The motivation of this review is to investigate the most published compliant legged robots and categorize them according to the types of compliant elements adopted in their mechanical structures. Based on the typical robots investigated, the trade-off between each category is summarized. In addition, the most significant performances of these robots are compared quantitatively, and multiple available solutions for the future compliant legged robot design are suggested. Finally, the design challenges for compliant legged robots are analysed. This review will provide useful guidance for robotic designers in creating new designs by inheriting the virtues of those successful robots according to the specific tasks. (topical review)

  5. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  6. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  7. A method for fast pavement cracking detection based on the biological inspired model%一种快速的基于生物启发模型的路面裂缝特征提取与识别方法

    Institute of Scientific and Technical Information of China (English)

    徐奕奕; 唐培和; 倪志平

    2012-01-01

    路面裂缝形态复杂、表观差异较大,难以用明确的特征来表示,而通常的wavelet、Gabor变换及其函数都是预定义的,不能适应路面裂缝图像的特点,为此提出一种新颖的基于生物启发模型(BIM)特征的弹性领域联合最大化处理识别算法,采用弹性邻域,先对相邻四邻域或八邻域进行图像分割,并在每一区域引入Adaboost分类器选择,保留关键信息,去掉无用或负面信息.该算法获得的特征向量全面反映了原图像信息,且计算复杂度低,有利于实时应用.实验结果表明:本文所提出的方法在路面裂缝的总体识别率高达99.13%,且响应时间快,充分显示了本方法的有效性.%Due to the complexity of shape and apparent differences of pavement cracks, it is difficult to characterize them with definite features. The wavelet, Gabor transform and its functions are usually predefined and cannot adapt to the characteristics of the pavement crack images. This paper proposes a novel joint maximization recognition algorithm in the resilient area, which is based on the characteristics of biologically inspired model (BIM). The algorithm uses the elastic neighborhood, the first adjacent neighbors domain or eight neighborhood image segmentation. Adaboost classifier is introduced in each region to select and retain key information, get rid of unwanted or negative information. Its eigenvectors can reflect the information in the original image comprehensively and its low computational complexity is helpful in real-time applications. The experimental results show that the overall recognition rate of the proposed method in pavement cracks is up to 99.13%, and its fast response time fully demonstrate the effectiveness of this method.

  8. Observations and Measurements Design Patterns within INSPIRE

    Science.gov (United States)

    Schleidt, K.; Cox, S.; Grellet, S.; Lowe, D.; Lutz, M.; Portele, C.; Sarretta, A.; Ventouras, S.

    2012-04-01

    Several INSPIRE spatial data themes have been specified so that their scope, in addition to classical geographic information, includes measured, modelled or simulated data. The FprEN ISO 19156 standard on Observations and Measurements (O&M) was designed for the explicit purpose of creating application schemas for such data, and thus shall be used in INSPIRE as a basis for developing data models for these themes. The following INSPIRE themes have identified O&M as integrally relevant to their thematic domain and are including elements of O&M in their data specifications: • Geology • Oceanographic geographical features • Atmospheric conditions and Meteorological geographical features • Environmental monitoring facilities • Soil In addition to these themes, several other INSPIRE themes have been identified to which observational information, while not at the core of the data specification, is relevant. Some examples of this are the INSPIRE theme "Species distribution", where primary occurrence data could be provided together with the aggregate distribution, as well as "Industrial and production facilities", where the provision of emissions data on such facilities would be useful for various environmental reporting obligations. While the O&M standard provides a generic framework for the provision of measurement data, it is also kept very abstract, and there are many ways of implementing the core structures in specific application schemas. In order to assure the consistent application of the O&M classes and properties across different INSPIRE themes, a cross-thematic working group on the use of O&M in INSPIRE has been convened. This group has analysed the requirements towards O&M within INSPIRE, identified the types of O&M design patterns required in INSPIRE and developed both additional classes identified as necessary within INSPIRE as well as guidelines detailing how this standard is to be used within INSPIRE. Some examples for these additional classes are

  9. Visual Processing of Biological Motion in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: An Event Related Potential-Study

    Science.gov (United States)

    Kröger, Anne; Hof, Katharina; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD). However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion–recently discussed as a marker of social cognition–was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD. PMID:24520402

  10. Visual processing of biological motion in children and adolescents with attention-deficit/hyperactivity disorder: an event related potential-study.

    Directory of Open Access Journals (Sweden)

    Anne Kröger

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is often accompanied by problems in social behaviour, which are sometimes similar to some symptoms of autism-spectrum disorders (ASD. However, neuronal mechanisms of ASD-like deficits in ADHD have rarely been studied. The processing of biological motion-recently discussed as a marker of social cognition-was found to be disrupted in ASD in several studies. Thus in the present study we tested if biological motion processing is disrupted in ADHD. We used 64-channel EEG and spatio-temporal source analysis to assess event-related potentials associated with human motion processing in 21 children and adolescents with ADHD and 21 matched typically developing controls. On the behavioural level, all subjects were able to differentiate between human and scrambled motion. But in response to both scrambled and biological motion, the N200 amplitude was decreased in subjects with ADHD. After a spatio-temporal dipole analysis, a human motion specific activation was observable in occipital-temporal regions with a reduced and more diffuse activation in ADHD subjects. These results point towards neuronal determined alterations in the processing of biological motion in ADHD.

  11. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  12. Design considerations for an underwater soft-robot inspired from marine invertebrates.

    Science.gov (United States)

    Krieg, Michael; Sledge, Isaac; Mohseni, Kamran

    2015-12-01

    This article serves as an overview of the unique challenges and opportunities made possible by a soft, jellyfish inspired, underwater robot. We include a description of internal pressure modeling as it relates to propulsive performance, leading to a desired energy-minimizing volume flux program. Strategies for determining optimal actuator placement derived from biological body motions are presented. In addition a feedback mechanism inspired by the epidermal line sensory system of cephalopods is presented, whereby internal pressure distribution can be used to determine pertinent deformation parameters. PMID:26513603

  13. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    Science.gov (United States)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  14. Design and globalization can graphic design in mass communication inspire a global culture?

    OpenAIRE

    Nguyen, V. (V.); Prebys, C. (C.)

    2010-01-01

    In this paper I deliver four points which support my assertion that graphic design in mass communication can inspire a global culture informed by Christianity. First, I argue that the environment in which people consistently find themselves will over time influence and affect the interior dispositions of the person, and when occurring in great numbers, the culture. I argue for the importance of graphic design as a vital component in the development of culture and how as visual ...

  15. CT scans of the hypopharynx and larynx during inspiration, expiration, breath holding and phonation

    International Nuclear Information System (INIS)

    CT scans of the hypopharynx and larynx during inspiration, expiration, breath holding and phonation of the letter E were performed on seven volunteers. Two mm contiguous scans were obtained to span the glottis and supraglottic area. The vocal cords were shown in the paramedian or median position on breath holding and phonation. The ditails of the arytenoid cartilages were better visualized with thin slices. The laryngeal ventricles were demonstrable on phonation scans. (author)

  16. Visualizing structures of speech expressiveness

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Jensen, Karl Kristoffer; Graugaard, Lars

    2008-01-01

    Speech is both beautiful and informative. In this work, a conceptual study of the speech, through investigation of the tower of Babel, the archetypal phonemes, and a study of the reasons of uses of language is undertaken in order to create an artistic work investigating the nature of speech....... The Babel myth speaks about distance created when aspiring to the heaven as the reason for language division. Meanwhile, Locquin states through thorough investigations that only a few phonemes are present throughout history. Our interpretation is that a system able to recognize archetypal phonemes through...... vowels and consonants, and which converts the speech energy into visual particles that form complex visual structures, provides us with a mean to present the expressiveness of speech into a visual mode. This system is presented in an artwork whose scenario is inspired from the reasons of language...

  17. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti;

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization te...

  18. Highly eccentric inspirals into a black hole

    CERN Document Server

    Osburn, Thomas; Evans, Charles R

    2015-01-01

    We model the inspiral of a compact stellar-mass object into a massive non-rotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as $e\\sim0.8$ and initial separations as large as $\\sim 100M$ to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within $\\sim0.1$ radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  19. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  20. Biological physics--origin and perspectives.

    Science.gov (United States)

    Sackmann, Erich

    2002-03-12

    Biology and Physics share common ancestors. The two sciences have drifted apart during the last century, although they have often mutually fertilized each other. Often the discovery of a new physical method has triggered dramatic progresses in biology but there are also numerous examples of biology-inspired new developments in physics. In this special issue of ChemPhysChem, various facets and new developments of the interface between physics and biology are pointed out.

  1. Invariance Evaluation for Biological Visual Model Based on Analysis of Textured Images%基于纹理图像分析的生物视觉模型不变性评价

    Institute of Scientific and Technical Information of China (English)

    储宇潼; 霍宏; 钱康; 朱辰阳; 方涛

    2012-01-01

    基于纹理图像,从计算机视觉角度对生物视觉模型——视皮层目标识别的标准模型进行定量分析与评价.对原始图像分别进行尺度、旋转及仿射等变化,利用标准模型提取变化后图像的生物视觉特征,再根据提取的生物视觉特征对纹理图像进行分类,采用图像分类结果的曲线下面积来定量分析和评价生物视觉模型是否具有不变性.大量与局部二元模式特征的对比实验表明,该模型提取的生物视觉特征对于纹理图像具备优良的尺度、旋转与仿射不变性.%From the view of computer vision, the particular quantitative analyses and evaluations about rotational, scale and affine invariance of standard model of object recognition in cortex are made based on textured images. The original textured images are scaled, rotated and affinely transformed respectively. Biological visual features of these transformed images, also called Standard Model Features(SMFs), are extracted by the standard model. The SMFs are used to classify the images. After classification, the area under curve is utilized to quantitatively analyze and evaluate whether the standard model has invariance or not. Compared with the Local Binary Pattern(LBP) feature, a great deal of experiments show that the biological visual features extracted by the standard model have superior scale, rotational and affine invariance to textured images.

  2. String and string-inspired phenomenology

    CERN Document Server

    López, J L

    1994-01-01

    In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)

  3. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  4. Visual Language in Visual Communication

    OpenAIRE

    Jia Wang

    2009-01-01

    In visual communication the design information is mainly communicated by visual language, the correct use of which is the standard of evaluation of a graphic design composition. Therefore it is necessary to understand and percept visual language properly. It will be helpful for viewers to percept the desired information from the designer as well as the significance within the work.

  5. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.

    Science.gov (United States)

    Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S

    2016-04-01

    Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments. PMID:26942469

  6. Quantum-inspired resonance for associative memory

    International Nuclear Information System (INIS)

    A new kind of dynamics for simulations based upon quantum-classical hybrid is discussed. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen potentials. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for quantum-inspired information processing. In this paper, the retrieval of stored items from an exponentially large unsorted database is performed by quantum-inspired resonance using polynomial resources due to quantum-like superposition effect.

  7. Innovation inspired by nature: capabilities, potentials, and challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2012-10-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.

  8. Innovation Inspired by Nature: Capabilities, Potentials and Challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2012-01-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.

  9. Optimized bio-inspired stiffening design for an engine nacelle.

    Science.gov (United States)

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-12-01

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint. PMID:26531222

  10. Multi-objective optimization of aerostructures inspired by nature

    Science.gov (United States)

    Kearney, Adam C.

    The focus of this doctoral work is on the optimization of aircraft wing structures. The optimization was performed against the shape, size and topology of simple aircraft wing designs. A simple morphing wing actuator optimization is performed as well as a wing panel buckling topology optimization. This is done with biologically-inspired mathematical systems including a map L-system, a multi-objective genetic algorithm, and cellular structures represented by Voronoi diagrams. As with most aircraft optimizations, both studies aim to minimize the total weight of a wing while simultaneously meeting stiffness and strength requirements. Optimization is performed with the scripts developed in MATLAB as well as through the use of finite element codes, NASTRAN and LS-Dyna. The intent of this methodology is to develop unique designs inspired by nature and optimized through natural selection. The optimal designs are those with minimal weight as well as additional requirements specific to the problems. The designs and methodology have the potential to be of use in determining minimum weight designs in aircraft structures. A literature review of optimization techniques, methodology and method validation, and optimization comparisons is presented. The buckling panel optimization considered here also includes composite buckling failure and manufacturing assumptions for composite panels. The panels are optimized for mass and strength by controlling the laminate stacking sequence, stiffener size, and topology. The morphing wing is optimized for actuator loading and redundancy.

  11. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  12. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    Science.gov (United States)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the

  13. Visual guidance based on optic flow: a biorobotic approach.

    Science.gov (United States)

    Franceschini, Nicolas

    2004-01-01

    This paper addresses some basic questions as to how vision links up with action and serves to guide locomotion in both biological and artificial creatures. The thorough knowledge gained during the past five decades on insects' sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some useful tricks for designing agile autonomous robots. Since constructing a "biorobot" first requires exactly formulating the biological principles presumably involved, it gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. "Biorobotics" therefore goes one step beyond computer simulation. It leads to experimenting with real physical robots which have to pass the stringent test of the real world. Biorobotics provide us with a new tool, which can help neurobiologists and neuroethologists to identify and investigate worthwhile issues in the field of sensory-motor control. Here we describe some of the visually guided terrestrial and aerial robots we have developed since 1985 on the basis of our biological findings. All these robots behave in response to the optic flow, i.e., they work by measuring the slip speed of the retinal image. Optic flow is sensed on-board by miniature electro-optical velocity sensors. The very principle of these sensors was based on studies in which we recorded the responses of single identified neurons to single photoreceptor stimulation in a model visual system: the fly's compound eye. PMID:15477039

  14. Visual guidance based on optic flow: a biorobotic approach.

    Science.gov (United States)

    Franceschini, Nicolas

    2004-01-01

    This paper addresses some basic questions as to how vision links up with action and serves to guide locomotion in both biological and artificial creatures. The thorough knowledge gained during the past five decades on insects' sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some useful tricks for designing agile autonomous robots. Since constructing a "biorobot" first requires exactly formulating the biological principles presumably involved, it gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. "Biorobotics" therefore goes one step beyond computer simulation. It leads to experimenting with real physical robots which have to pass the stringent test of the real world. Biorobotics provide us with a new tool, which can help neurobiologists and neuroethologists to identify and investigate worthwhile issues in the field of sensory-motor control. Here we describe some of the visually guided terrestrial and aerial robots we have developed since 1985 on the basis of our biological findings. All these robots behave in response to the optic flow, i.e., they work by measuring the slip speed of the retinal image. Optic flow is sensed on-board by miniature electro-optical velocity sensors. The very principle of these sensors was based on studies in which we recorded the responses of single identified neurons to single photoreceptor stimulation in a model visual system: the fly's compound eye.

  15. Bionics: Biological insight into mechanical design

    OpenAIRE

    Dickinson, Michael H

    1999-01-01

    When pressed with an engineering problem, humans often draw guidance and inspiration from the natural world (1). Through the process of evolution, organisms have experimented with form and function for at least 3 billion years before the first human manipulations of stone, bone, and antler. Although we cannot know for sure the extent to which biological models inspired our early ancestors, more recent examples of biomimetic designs are well documented. For example, birds and bats played a cen...

  16. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  17. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies. PMID:21626306

  18. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  19. Nature inspires sensors to do more with less.

    Science.gov (United States)

    Mulvaney, Shawn P; Sheehan, Paul E

    2014-10-28

    The world is filled with widely varying chemical, physical, and biological stimuli. Over millennia, organisms have refined their senses to cope with these diverse stimuli, becoming virtuosos in differentiating closely related antigens, handling extremes in concentration, resetting the spent sensing mechanisms, and processing the multiple data streams being generated. Nature successfully deals with both repeating and new stimuli, demonstrating great adaptability when confronted with the latter. Interestingly, nature accomplishes these feats using a fairly simple toolbox. The sensors community continues to draw inspiration from nature's example: just look at the antibodies used as biosensor capture agents or the neural networks that process multivariate data streams. Indeed, many successful sensors have been built by simply mimicking natural systems. However, some of the most exciting breakthroughs occur when the community moves beyond mimicking nature and learns to use nature's tools in innovative ways.

  20. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  1. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Yun Ju Choi

    2016-03-01

    Full Text Available We sought to visualize the migration of tumor-associated macrophages (TAMs to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI and fluorescence imaging (FLI was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX, a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.

  2. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...

  3. SUPPORTING SME'S THROUGH ISLAMIC FINANCE INSPIRED OPERATIONS

    OpenAIRE

    Bradut-Vasile BOLOS; Hesham MAGD

    2013-01-01

    In this paper we attempt to model a moudaraba inspired financing system for SME support, especially for start-ups, using public funding as high-risk investments instead of grants. The model obtained suggests such an approach may prove to be more efficient, but further research is required.

  4. What is Mathematics? Perspectives inspired by anthropology

    DEFF Research Database (Denmark)

    Høyrup, Jens

    The paper discusses the question “what is mathematics” from a point of view inspired by anthropology. In this perspective, the character of mathematical thinking and argument is strongly affected – almost essentially determined, indeed – by the dynamics of the specific social, mostly professional...

  5. Water Treatment Technologies Inspire Healthy Beverages

    Science.gov (United States)

    2013-01-01

    Mike Johnson, a former technician at Johnson Space Center, drew on his expertise as a wastewater engineer to create a line of kombucha-based probiotic drinks. Unpeeled Inc., based in Minneapolis-St. Paul, Minnesota, employs 12 people and has sold more than 6 million units of its NASA-inspired beverage.

  6. Noncommutative geometry inspired dirty black holes

    OpenAIRE

    Nicolini, Piero; Spallucci, Euro

    2009-01-01

    We provide a new exact solution of the Einstein equations which generalizes the noncommutative geometry inspired Schwarzschild metric, we previously obtained. We consider here more general relations between the energy density and the radial pressure and find new a geometry describing a regular ``dirty black hole''. We discuss strong and weak energy condition violations and various aspects of the regular dirty black hole thermodynamics.

  7. Basket Weaving Inspired by the Gullah

    Science.gov (United States)

    Baker, Rita

    2010-01-01

    Many different cultures created and used the basket not only for utilitarian purposes, but also for ceremonial uses. In this article, the author describes an eighth-grade project inspired by the basket making of the Gullah people, who live along the coast of South Carolina, Georgia and Florida.

  8. Towards Ecology-Inspired Software Engineering

    CERN Document Server

    Baudry, Benoit

    2012-01-01

    Ecosystems are complex and dynamic systems. Over billions of years, they have developed advanced capabilities to provide stable functions, despite changes in their environment. In this paper, we argue that the laws of organization and development of ecosystems provide a solid and rich source of inspiration to lay the foundations for novel software construction paradigms that provide stability as much as openness.

  9. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  10. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)

  11. Visual Analysis of Weblog Content

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  12. Solar Image Analysis and Visualization

    CERN Document Server

    Ireland, J

    2009-01-01

    This volume presents a selection of papers on the state of the art of image enhancement, automated feature detection, machine learning, and visualization tools in support of solar physics that focus on the challenges presented by new ground-based and space-based instrumentation. The articles and topics were inspired by the Third Solar Image Processing Workshop, held at Trinity College Dublin, Ireland but contributions from other experts have been included as well. This book is mainly aimed at researchers and graduate students working on image processing and compter vision in astronomy and solar physics.

  13. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  14. BATMAV: a 2-DOF bio-inspired flapping flight platform

    Science.gov (United States)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  15. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  16. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  17. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently, a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV’s working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV’s sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV’s allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  18. Visual art and visual perception

    OpenAIRE

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their weight in gold”. I perceive a metabletic (van den Berg, 1956) parallel to philosophy transforming itself into speculative logic games, and psychology going cognitive by freeing itself from phenomen...

  19. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  20. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  1. Visual Education

    DEFF Research Database (Denmark)

    Buhl, Mie; Flensborg, Ingelise

    2010-01-01

    The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating the functi......The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating...... to emerge in the interlocutory space of a global visual repertoire and diverse local interpretations. The two perspectives represent challenges for future visual education which require visual competences, not only within the arts but also within the subjects of natural sciences, social sciences, languages...

  2. The Inspiration of Hope in Substance Abuse Counseling

    Science.gov (United States)

    Koehn, Corinne; Cutcliffe, John R.

    2012-01-01

    This study used a grounded theory method to explore how counselors inspire hope in clients struggling with substance abuse. Findings from 10 participants revealed that hope inspiration occurred in 3 phases and consisted of several categories of hope-inspiring processes. Implications for counseling practice, counselor education, and research are…

  3. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.

    Science.gov (United States)

    Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Adamatzky, Andrew I

    2015-09-01

    Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould. PMID

  4. Minimizing Human Intervention in the Development of Basal Ganglia-Inspired Robot Control

    OpenAIRE

    F. Montes-Gonzalez; Prescott, T.J; Negrete-Martinez, J.

    2007-01-01

    A biologically inspired mechanism for robot action selection, based on the vertebrate basal ganglia, has been previously presented (Prescott et al. 2006, Montes Gonzalez et al. 2000). In this model the task confronting the robot is decomposed into distinct behavioural modules that integrate information from multiple sensors and internal state to form ‘salience’ signals. These signals are provided as inputs to a computational model of the basal ganglia whose intrinsic processes cause the selec...

  5. Bio-inspired decision making system for an autonomous social robot: the role of fear

    OpenAIRE

    Castro González, Álvaro

    2012-01-01

    Robotics is an emergent field which is currently in vogue. In the near future, many researchers anticipate the spread of robots coexisting with humans in the real world. This requires a considerable level of autonomy in robots. Moreover, in order to provide a proper interaction between robots and humans without technical knowledge, these robots must behave according to the social and cultural norms. This results in social robots with cognitive capabilities inspired by biological organisms suc...

  6. Correlation networks visualization

    Directory of Open Access Journals (Sweden)

    Nicholas J. Provart

    2012-10-01

    Full Text Available New, in silico ways of generating hypotheses based on large data sets have emerged in the past decade. These data sets have been used to investigate different aspects of plant biology, especially at the level of transcriptome, from tissue-specific expression patterns to patterns in as little as a few cells. Such publicly-available data are a boon to researchers for hypothesis generation by providing a guide for experimental work such as phenotyping or genetic analysis. More advanced computational methods can leverage these data via gene coexpression analysis, the results of which can be visualized and refined using network analysis. Other kinds of networks of e.g. protein-protein interactions, can also be used to inform biology. These networks can be visualized and analyzed with additional information on gene expression levels, subcellular localization, etc., or with other emerging kinds information. Finally, cross-level correlation is an area that will become increasingly important. Visualizing these cross-level correlations will require new data visualization tools.

  7. Visualizing Summary Statistics and Uncertainty

    KAUST Repository

    Potter, K.

    2010-08-12

    The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual portrayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create visual representations that show not only the data value, but also important characteristics of the data including uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an extension of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented, demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of the underlying data distribution. © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  8. Learned image representations for visual recognition

    OpenAIRE

    Larsen, Anders Boesen Lindbo; Larsen, Rasmus; Dahl, Anders Bjorholm

    2016-01-01

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development. The solutions are inspired by and extend state-of-the-art techniques for describing and learning image content.More specifically, the thesis explores two approaches to constructing image representa...

  9. Voros product and noncommutative inspired black holes

    CERN Document Server

    Gangopadhyay, Sunandan

    2013-01-01

    We emphasize the importance of the Voros product in defining noncommutative inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordstr\\"{o}m black holes show that the area law holds upto order $\\frac{1}{\\sqrt{\\theta}}e^{-M^2/\\theta}$. The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy $E$ for these black holes is then obtained and a deviation from the standard identity $E=2ST_H$ is found at the order $\\sqrt{\\theta}e^{-M^2/\\theta}$. This deviation leads to a nonvanishing Komar energy at the extremal point $T_{H}=0$ of these black holes. The Smarr formula is finally worked out for the noncommutative Schwarzschild black hole. Similar features also exist for a deSitter--Schwarzschild geometry.

  10. Voros Product and Noncommutative Inspired Black Holes

    Science.gov (United States)

    Gangopadhyay, Sunandan

    2013-03-01

    We emphasize the importance of the Voros product in defining the noncommutative (NC) inspired black holes. The computation of entropy for both the noncommutative inspired Schwarzschild and Reissner-Nordström (RN) black holes show that the area law holds up to order (1)/(√ {θ )}e-M2/θ . The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy E for these black holes is then obtained and a deviation from the standard identity E = 2STH is found at the order √ {θ }e-M2/θ . This deviation leads to a nonvanishing Komar energy at the extremal point TH = 0 of these black holes. The Smarr formula is finally worked out for the NC Schwarzschild black hole. Similar features also exist for a de Sitter-Schwarzschild geometry.

  11. Shadow of noncommutative geometry inspired black hole

    Science.gov (United States)

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan

    2015-08-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M0 with M0 black hole mass and inclination angle i, the dimensionless noncommutative parameter √vartheta/M0 is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √vartheta/M0, while the distortion increases with it. Compared to the Kerr black hole, the parameter √vartheta/M0 increases the deformation of the shadow. This may offer a way to distinguish noncommutative geometry inspired black hole from Kerr one via astronomical instruments in the near future.

  12. Taxonomic etymology – in search of inspiration

    Directory of Open Access Journals (Sweden)

    Piotr Jozwiak

    2015-07-01

    Full Text Available We present a review of the etymology of zoological taxonomic names with emphasis on the most unusual examples. The names were divided into several categories, starting from the most common – given after morphological features – through inspiration from mythology, legends, and classic literature but also from fictional and nonfictional pop-culture characters (e.g., music, movies or cartoons, science, and politics. A separate category includes zoological names created using word-play and figures of speech such as tautonyms, acronyms, anagrams, and palindromes. Our intention was to give an overview of possibilities of how and where taxonomists can find the inspirations that will be consistent with the ICZN rules and generate more detail afterthought about the naming process itself, the meaningful character of naming, as well as the recognition and understanding of names.

  13. Taxonomic etymology - in search of inspiration.

    Science.gov (United States)

    Jóźwiak, Piotr; Rewicz, Tomasz; Pabis, Krzysztof

    2015-01-01

    We present a review of the etymology of zoological taxonomic names with emphasis on the most unusual examples. The names were divided into several categories, starting from the most common - given after morphological features - through inspiration from mythology, legends, and classic literature but also from fictional and nonfictional pop-culture characters (e.g., music, movies or cartoons), science, and politics. A separate category includes zoological names created using word-play and figures of speech such as tautonyms, acronyms, anagrams, and palindromes. Our intention was to give an overview of possibilities of how and where taxonomists can find the inspirations that will be consistent with the ICZN rules and generate more detail afterthought about the naming process itself, the meaningful character of naming, as well as the recognition and understanding of names. PMID:26257573

  14. Visually Exploring Transportation Schedules.

    Science.gov (United States)

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration.

  15. Four types of ensemble coding in data visualizations.

    Science.gov (United States)

    Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven

    2016-01-01

    Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research. PMID:26982369

  16. Spider-Web Inspired Mechanical Metamaterials

    OpenAIRE

    Miniaci, Marco; Krushynska, Anastasiia; Movchan, Alexander B.; Bosia, Federico; Pugno, Nicola M.

    2016-01-01

    Spider silk is a remarkable example of bio-material with superior mechanical characteristics. Its multilevel structural organization of dragline and viscid silk leads to unusual and tunable properties, extensively studied from a quasi-static point of view. In this study, inspired by the Nephila spider orb web architecture, we propose a novel design for mechanical metamaterials based on its periodic repetition. We demonstrate that spider-web metamaterial structure plays an important role in th...

  17. Wormhole inspired by non-commutative geometry

    OpenAIRE

    Farook Rahaman; Sreya Karmakar; Indrani Karar; Saibal Ray

    2015-01-01

    In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitat...

  18. Detection Strategies for Extreme Mass Ratio Inspirals

    OpenAIRE

    Cornish, N. J.

    2008-01-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The w...

  19. Spider's web inspires fibres for industry

    Science.gov (United States)

    Dacey, James

    2010-03-01

    Spiders may not be everybody's idea of natural beauty, but nobody can deny the artistry in the webs that they spin, especially when decorated with water baubles in the morning dew. Inspired by this spectacle, a group of researchers in China has mimicked the structural properties of the spider's web to create a fibre for industry that can manipulate water with the same skill and efficiency, writes James Dacey.

  20. Noncommutative geometry-inspired dirty black holes

    International Nuclear Information System (INIS)

    We provide a new exact solution of the Einstein equations which generalize the noncommutative geometry-inspired Schwarzschild metric, we previously obtained. We consider here a more general relation between the energy density and the radial pressure and find new geometries describing a regular 'dirty black hole'. We discuss strong and weak energy condition violation and various aspects of the regular dirty black hole thermodynamics.

  1. Shadow of noncommutative geometry inspired black hole

    OpenAIRE

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan

    2015-01-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter $a/M_{0}$ with $M_{0}$ black hole mass and inclination angle $i$, the dimensionless noncommutative parameter $\\sqrt{\\vartheta}/M_{0}$ is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter $\\sqrt{\\vartheta}/M_{0}$, while the distortion increases wi...

  2. Noncommutative geometry-inspired dirty black holes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolini, Piero [Physics Department, California State University Fresno, Fresno, CA 93740-8031 (United States); Spallucci, Euro, E-mail: nicolini@th.physik.uni-frankfurt.d, E-mail: spallucci@trieste.infn.i [Dipartimento di Fisica, Universita degli Studi di Trieste, and INFN, Strada Costiera 11, 34014 Trieste (Italy)

    2010-01-07

    We provide a new exact solution of the Einstein equations which generalize the noncommutative geometry-inspired Schwarzschild metric, we previously obtained. We consider here a more general relation between the energy density and the radial pressure and find new geometries describing a regular 'dirty black hole'. We discuss strong and weak energy condition violation and various aspects of the regular dirty black hole thermodynamics.

  3. InSpiRe - Intelligent Spine Rehabilitation

    DEFF Research Database (Denmark)

    Bøg, Kasper Hafstrøm; Helms, Niels Henrik; Kjær, Per;

    InSpiRe er et projekt, der har haft omdrejningspunkt i etableringen af et nyt netværk indenfor intelligent genoptræning med særligt fokus på rygsmerter. Projektet er gennemført i perioden 1/3 2011 2011-1/3 2012, med støtte fra Syddansk Vækstforum, og er blevet drevet af projektparterne Knowledge...

  4. Bouncing cosmology inspired by regular black holes

    CERN Document Server

    Neves, J C S

    2016-01-01

    In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes an universe almost homogeneous only for large scales, such as our observable universe.

  5. Autobiography: Inspiring new visions of teacher learning

    OpenAIRE

    Irene Simon

    2006-01-01

    Abstract: The purpose of this article is to broaden the tradition of autobiography by using it as a way in which teachers can identify sources of inspiration in their educational experience. In the process, my aim is to make explicit the links between autobiography, learning and meta learning. Extending autobiographical inquiry to include different levels at which learning takes place serves to highlight the importance not only of the individual context of learning (the private self), but als...

  6. Binary compact object inspiral: Detection expectations

    Indian Academy of Sciences (India)

    Vassiliki Kalogera

    2004-10-01

    We review the current estimates of binary compact object inspiral rates in particular in view of the recently discovered highly relativistic binary pulsar J0737-3039. One of the robust results is that, because of this discovery, the rate estimates for binary neutron stars have increased by a factor of 6-7 independent of any uncertainties related to the pulsar population properties. This rate increase has dramatic implications for gravitational wave detectors. For initial LIGO, the most probable detection rates for double neutron star (DNS) inspirals is 1 event/(5{250) yr; at 95% confidence we obtain rates up to 1/1.5 yr. For advanced LIGO, the most probable rates are 20-1000 events/yr. These predictions, for the first time, bring the expectations for DNS detections by initial LIGO to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. In comparison, rate estimates for binaries with black holes are derived based on binary evolution calculation, and based on the optimistic ends of the ranges, remain an important candidate for inspiral detection in the next few years. We also consider another aspect of the detectability of binary inspiral: the effect of precession on the detection efficiency of astrophysically relevant binaries. Based on our current astrophysical expectations, large tilt angles are not favored. As a result the decrease in detection rate varies rather slowly with black hole spin magnitude and is within 20-30% of the maximum possible values.

  7. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This book consists of essays covering issues in visual cognition presenting experimental techniques from cognitive psychology, methods of modeling cognitive processes on computers from artificial intelligence, and methods of studying brain organization from neuropsychology. Topics considered include: parts of recognition; visual routines; upward direction; mental rotation, and discrimination of left and right turns in maps; individual differences in mental imagery, computational analysis and the neurological basis of mental imagery: componental analysis.

  8. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    Science.gov (United States)

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-01

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption. PMID:21668029

  9. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  10. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    Science.gov (United States)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  11. Bio-inspired strategies for designing antifouling biomaterials.

    Science.gov (United States)

    Damodaran, Vinod B; Murthy, N Sanjeeva

    2016-01-01

    Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these approaches draw their inspiration from nature, such as emulating the nitric oxide production in endothelium, use of peptoids that mimic protein repellant peptides, zwitterionic functionalities found in membrane structures, and catechol functionalities used by mussel to immobilize poly(ethylene glycol) (PEG). More intriguing are the physical modifications, creation of micropatterns on the surface to control the hydration layer, making them either superhydrophobic or superhydrophilic. This has led to technologies that emulate the texture of shark skin, and the superhyprophobicity of self-cleaning textures found in lotus leaves. The mechanism of antifouling in each of these methods is described, and implementation of these ideas is illustrated with examples in a way that could be adapted to prevent infection in medical devices. PMID:27326371

  12. Cellular automaton model of crowd evacuation inspired by slime mould

    Science.gov (United States)

    Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.

    2015-04-01

    In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned

  13. Demonstrations of bio-inspired perching landing gear for UAVs

    Science.gov (United States)

    Tieu, Mindy; Michael, Duncan M.; Pflueger, Jeffery B.; Sethi, Manik S.; Shimazu, Kelli N.; Anthony, Tatiana M.; Lee, Christopher L.

    2016-04-01

    Results are presented which demonstrate the feasibility and performance of two concepts of biologically-inspired landing-gear systems that enable bird-sized, unmanned aerial vehicles (UAV's) to land, perch, and take-off from branchlike structures and/or ledges. The first concept follows the anatomy of birds that can grasp ahold of a branch and perch as tendons in their legs are tensioned. This design involves a gravity-activated, cable-driven, underactuated, graspingfoot mechanism. As the UAV lands, its weight collapses a four-bar linkage pulling a cable which curls two opposing, multi-segmented feet to grasp the landing target. Each foot is a single, compliant mechanism fabricated by simultaneouly 3D-printing a flexible thermo-plastic and a stiffer ABS plastic. The design is optimized to grasp structures over a range of shapes and sizes. Quasi-static and flight tests of this landing gear affixed to RC rotorcraft (24 cm to 550 cm in diameter) demonstrate that the aircraft can land, perch, and take-off from a tree branch, rectangular wood board, PVC pipe, metal hand rail, chair armrest, and in addition, a stone wall ledge. Stability tests show that perching is maintained under base and wind disturbances. The second design concept, inspired by roosting bats, is a two-material, 3D-printed hooking mechanism that enables the UAV to stably suspend itself from a wire or small-diameter branch. The design balances structural stiffness for support and flexibility for the perching process. A flight-test demonstrates the attaching and dis-engaging of a small, RC quadcopter from a suspended line.

  14. Stingray-inspired robot with simply actuated intermediate motion

    Science.gov (United States)

    Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.

    2016-04-01

    Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory ( wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.

  15. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    Science.gov (United States)

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions.

  16. Large-scale functional models of visual cortex for remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, Steven P [Los Alamos National Laboratory; Kenyon, Garrett [Los Alamos National Laboratory; Rasmussen, Craig E [Los Alamos National Laboratory; Swaminarayan, Sriram [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Landecker, Will [PORTLAND STATE UNIV.

    2009-01-01

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simple region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.

  17. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    Science.gov (United States)

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum. PMID:26540694

  18. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  19. Neurally inspired rapid detection of sparse objects in videos

    Science.gov (United States)

    Khosla, Deepak; Huber, David J.; Bhattacharyya, Rajan; Daily, Mike; Tasinga, Penn

    2010-04-01

    In this paper, we describe COGNIVA, a closed-loop Cognitive-Neural method and system for image and video analysis that combines recent technological breakthroughs in bio-vision cognitive algorithms and neural signatures of human visual processing. COGNIVA is an "operational neuroscience" framework for intelligent and rapid search and categorization of Items Of Interest (IOI) in imagery and video. The IOI could be a single object, group of objects, specific image regions, specific spatio-temporal pattern/sequence or even the category that the image itself belongs to (e.g., vehicle or non-vehicle). There are two main types of approach for rapid search and categorization of IOI in imagery and video. The first approach uses conventional machine vision or bio-inspired cognitive algorithms. These usually need a predefined set of IOI and suffer from high false alarm rates. The second class of algorithms is based on neural signatures of target detection. These algorithms usually break the entire image into sub-images and process EEG data from these images and classify them based on it. This approach may suffer from high false alarms and is slow because the entire image is chipped and presented to the human observer. The proposed COGNIVA overcomes the limitations of both methods by combining them resulting in a low false alarm rate and high detection with high throughput making it applicable to both image and video analysis. In the most basic form, COGNIVA first uses bioinspired cognitive algorithms for deciding potential IOI in a sequence of images/video. These potential IOI are then shown to a human and neural signatures of visual detection of IOI are collected and processed. The resulting signatures are used to categorize and provide final IOI. We will present the concept and typical results of COGNIVA for detecting Items of interest in image data.

  20. Development of Biomimetic Squid-Inspired Suckers

    Institute of Scientific and Technical Information of China (English)

    Jinping Hou; Edward Wright; Richard H. C. Bonser; George Jeronimidis

    2012-01-01

    Biomechanical properties of squid suckers were studied to provide inspiration for the development of sucker artefacts for a robotic octopus.Mechanical support of the rings found inside squid suckers was studied by bending tests.Tensile tests were carried out to study the maximum possible sucking force produced by squid suckers based on the strength of sucker stalks,normalized by the sucking areas.The squid suckers were also directly tested to obtain sucking forces by a special testing arrangement.Inspired by the squid suckers,three types of sucker artefacts were developed for the arm skin of an octopus inspired robot.The first sucker artefact made of knitted nylon sheet reinforced silicone rubber has the same shape as the squid suckers.Like real squid suckers,this type of artefact also has a stalk that is connected to the arm skin and a ring to give radial support.The second design is a straight cylindrical structure with uniform wall thickness made of silicone rubber.One end of the cylinder is directly connected to the arm skin and the other end is open.The final design of the sucker has a cylindrical base and a concave meniscus top.The meniscus was formed naturally using the surface tension of silicone gel,which leads to a higher level of the liquid around the edge of a container.The wall thickness decreases towards the tip of the sucker opening.Sucking forces of all three types of sucker artefacts were measured.Advantages and disadvantages of each sucker type were discussed.The final design of suckers has been implemented to the arm skin prototypes.

  1. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  2. Bio-inspired approaches to sensing for defence and security applications.

    Science.gov (United States)

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities. PMID:18427675

  3. A Supramolecular Hydrogel Inspired by Elastin

    Institute of Scientific and Technical Information of China (English)

    丁磊; 王淑芳; 武文洁; 胡月晗; 杨翠红; 谭鸣; 孔德领; 杨志谋

    2011-01-01

    Self-assembly prevails in nature and learning from nature will lead to biofunctional materials. Inspired by the protein of elastin, we reported in this study on a supramolecular hydrogel beating the elastin repeating peptide of VPGAG. The visco-elasticity property, morphology of the nanostructures, and aromatic stacking in the self-assembled nanostructure were characterized by a rheometry, transmission electron microscope (TEM), and fluorescence microscope, respectively. The biocompatibility of the gelator was also proved by an MTT assay. Though the supramolecular hydrogel failed to exhibit a high elasticity like elastin, the thixotropic hydrogel might have potentials for the applications in fields of cell culture, controlled-drug release, etc.

  4. Oil Price Trackers Inspired by Immune Memory

    CERN Document Server

    Wilson, WIlliam; Aickelin, Uwe

    2010-01-01

    We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time series data. The proposed solution evolves a short term pool of trackers dynamically, with each member attempting to map trends and anticipate future price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. The resulting sequence of trackers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving trackers also provides valuable insight into the properties of the crude oil market.

  5. Wormhole inspired by non-commutative geometry

    Directory of Open Access Journals (Sweden)

    Farook Rahaman

    2015-06-01

    Full Text Available In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV. A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  6. Price Trackers Inspired by Immune Memory

    CERN Document Server

    Wilson, William; Aickelin, Uwe

    2010-01-01

    In this paper we outline initial concepts for an immune inspired algorithm to evaluate price time series data. The proposed solution evolves a short term pool of trackers dynamically through a process of proliferation and mutation, with each member attempting to map to trends in price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. Tests are performed to examine the algorithm's ability to successfully identify trends in a small data set. The influence of the long term memory pool is then examined. We find the algorithm is able to identify price trends presented successfully and efficiently.

  7. Wormhole inspired by non-commutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Karmakar, Sreya, E-mail: sreya.karmakar@gmail.com [Department of Physics, Calcutta Institute of Engineering and Management, Kolkata 700040, West Bengal (India); Karar, Indrani, E-mail: indrani.karar08@gmail.com [Department of Mathematics, Saroj Mohan Institute of Technology, Guptipara, West Bengal (India); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering & Ceramic Technology, Kolkata 700010, West Bengal (India)

    2015-06-30

    In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  8. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This collection of research papers on visual cognition first appeared as a special issue of Cognition: International Journal of Cognitive Science. The study of visual cognition has seen enormous progress in the past decade, bringing important advances in our understanding of shape perception, visual imagery, and mental maps. Many of these discoveries are the result of converging investigations in different areas, such as cognitive and perceptual psychology, artificial intelligence, and neuropsychology. This volume is intended to highlight a sample of work at the cutting edge of this research area for the benefit of students and researchers in a variety of disciplines. The tutorial introduction that begins the volume is designed to help the nonspecialist reader bridge the gap between the contemporary research reported here and earlier textbook introductions or literature reviews.

  9. Digital Art Wonderland Creative Techniques for Inspirational Journaling and Beautiful Blogging

    CERN Document Server

    Sullins, Angi

    2011-01-01

    Headline: Set out on a digital adventure!Come inside Digital Art Wonderland where digital art and art journaling embark together on a luscious visual journey. The daring crew of Angi Sullins and Silas Toball give you a personal tour through a digital art journaling world, showing you how to make your own wonderous creations through instruction, design concepts and lots of inspiration.In Digital Art Wonderland, you'll find:- 8 tutorials with techniques, tricks and trips for the intermediate Adobe Photoshop user to enhance physical art as well as create digital art from scratch.- Instructions a

  10. Development of multifunctional materials exhibiting distributed sensing and actuation inspired by fish

    Science.gov (United States)

    Philen, Michael

    2011-04-01

    This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.

  11. New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches

    CERN Document Server

    Gebeshuber, I C

    2010-01-01

    Inspired by interdisciplinary work touching biology and microtribology, the authors propose a new, dynamic way of publishing research results, the establishment of a tree of knowledge and the localisation of scientific articles on this tree. 'Technomimetics' is proposed as a new method of knowledge management in science and technology: it shall help find and organise information in an era of over-information. Such ways of presenting and managing research results would be accessible by people with different kinds of backgrounds and levels of education, and allow for full use of the ever- increasing number of scientific and technical publications. This approach would dramatically change and revolutionize the way we are doing science, and contribute to overcoming the three gaps between the world of ideas, inventors, innovators and investors as introduced by Gebeshuber, Gruber and Drack in 2009 for accelerated scientific and technological breakthroughs to improve the human condition. Inspiration for the developme...

  12. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    Science.gov (United States)

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  13. Bone regeneration strategy inspired by the study of calcification behavior in deer antler.

    Science.gov (United States)

    Shi, Haishan; Yu, Tao; Li, Zhaoyang; Lu, William; Zhang, Ming; Ye, Jiandong

    2015-12-01

    Bone regeneration has attracted much attention from various researchers and inspired numerous strategies for bone formation. In this study, rapid calcification of deer antlers was studied to unravel bone biology by investigating mineral composition, morphology and microstructure. Calcification model was hypothesized and preliminarily established by in vitro experiments. In our model, mineral deposition and phase conversions in the gel matrix were mimicked. Results revealed that mineral metabolism including deposition and phase conversion plays key roles in calcification in vivo, which inspired the bone regeneration strategy with three main components, i.e. enhanced mineral nucleation, mineral ions sources and crystals habits. Rapid mineral metabolism of implant apatite biomaterials was supposed as the critical aspect of bone regeneration. This study will provide a relatively ideal model for peer bone regeneration studies.

  14. Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    CERN Document Server

    Agarwal, Rachit; Gauthier, Vincent; Becker, Monique; Yeo, Chai Kiat; Lee, Bu Sung

    2011-01-01

    Self-Organization properties of the nodes play an important role in an autonomous wireless sensor environment in achieving network wide characteristics. Self-Organization can be used to achieve small world characteristics in a network. In real networks, however, where there is non-uniform distribution of nodes and overall connectivity of the network is less, achieving small world properties while increasing connectivity must be studied. We believe that network connectivity can be increased and small world properties can be achieved with the help of beamforming, biologically inspired algorithms and using local information. Most of the researches performed in direction of achieving above mentioned goals in wireless networks assume knowledge of network with either heterogeneous or hybrid uniform deployment. We propose that without the knowledge of the global environment or introduction of any special features in the network, we can achieve our goal with the help of inspirations from the nature in a non-uniform n...

  15. Human Vision Inspired Based Image Illumination Enhancement by Using Local Singular Value Decomposition and Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Gholamreza Anbarjafari

    2015-01-01

    Full Text Available Recently, many computer vision applications are being inspired by human behavior, or human visual system. Also it is known that illumination issues have always been an important problem in many image processing applications. In this work we propose a new image illumination enhancement technique which is inspired from the human visual system behavior on illumination correction. The proposed technique uses local singular value decomposition (SVD and discrete wavelet transforms (DWT, inspired from the fact that human visual system equalizes a scene by disregarding the extreme illuminated areas. In other words, human brain uses local illumination enhancement and this localization is based on the extreme illuminations, e.g. existence or absence of too much light. In this technique, after dividing the image into several locals, each local is converted into the DWT domain and after updating the singular value matrix of the respective low-low subband, the local is reconstructed by using inverse DWT (IDWT. Combination of locals results in the equalized image. The technique is compared with the standard general histogram equalization (GHE and local histogram equalization (LHE. The experimental results are showing the superiority of the proposed method over the aforementioned techniques.

  16. Nature-Inspired Design: Strategies for Sustainable Product Development

    OpenAIRE

    De Pauw, I.C.

    2015-01-01

    Product designers can apply different strategies, methods, and tools for sustainable product development. Nature-Inspired Design Strategies (NIDS) offer designers a distinct class of strategies that use ‘nature’ as a guiding source of knowledge and inspiration for addressing sustainability. Biomimicry and Cradle to Cradle, two Nature-Inspired Design Strategies, have already been implemented in product design practice and in curricula of higher education. But how are these strategies applied, ...

  17. Biomimetic multifunctional surfaces inspired from animals.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2016-08-01

    Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. PMID:27085632

  18. Autobiography: Inspiring new visions of teacher learning

    Directory of Open Access Journals (Sweden)

    Irene Simon

    2006-05-01

    Full Text Available Abstract: The purpose of this article is to broaden the tradition of autobiography by using it as a way in which teachers can identify sources of inspiration in their educational experience. In the process, my aim is to make explicit the links between autobiography, learning and meta learning. Extending autobiographical inquiry to include different levels at which learning takes place serves to highlight the importance not only of the individual context of learning (the private self, but also the possibility of learning and constructing meaning from autobiography in dialogue with others. This article identifies four levels of learning-how-to-learn from autobiography. These levels are: 1. learning from autobiographical writing; 2. learning through intergenerational dialogues; 3. developmental learning through the career stages; and 4. whole group co-constructive learning. My ultimate goal is two fold. Firstly, to use these levels of learning to identify operational definitions of inspiration based on significant events and experiences in teacher’s personal stories. Secondly to identify a meta research orientation for linking autobiography with learning and meta-learning.

  19. Visualizing inequality

    Science.gov (United States)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  20. Kinds of inspiration in interaction design

    DEFF Research Database (Denmark)

    Halskov, Kim

    2010-01-01

    In this paper, we explore the role of sources of inspiration in interaction design. We identify four strategies for relating sources of inspiration to emerging ideas: selection; adaptation; translation; and combination. As our starting point, we argue that sources of inspiration are a form...... of knowledge crucial to creativity. Our research is based on empirical findings arising from the use of Inspiration Card Workshops, which are collaborative design events in which domain and technology insight are combined to create design concepts. In addition to the systematically introduced sources...