WorldWideScience

Sample records for biologically inspired artificial

  1. Biologically inspired robots as artificial inspectors

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  2. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  3. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  4. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  5. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  6. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  7. Seeing by Touch: Evaluation of a Soft Biologically-Inspired Artificial Fingertip in Real-Time Active Touch

    Directory of Open Access Journals (Sweden)

    Tareq Assaf

    2014-02-01

    Full Text Available Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects. The softness of the optical sensor’s contact surface also allows safer interactions with objects. High-level tactile features such as edges are extrapolated from the sensor’s output and the information is used to generate a tactile image. The work presented in this paper aims to investigate and evaluate this artificial fingertip for 2D shape reconstruction. The sensor was mounted on a robot arm to allow autonomous exploration of different objects. The sensor and a number of human participants were then tested for their abilities to track the raised perimeters of different planar objects and compared. By observing the technique and accuracy of the human subjects, simple but effective parameters were determined in order to evaluate the artificial system’s performance. The results prove the capability of the sensor in such active exploration tasks, with a comparable performance to the human subjects despite it using tactile data alone whereas the human participants were also able to use proprioceptive cues.

  8. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2014-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.

  9. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  10. Arbitrary waveform generator biologically inspired

    International Nuclear Information System (INIS)

    Vázquez-Medina, R.; Jiménez-Ramírez, O.; Quiroz-Juárez, M.A.; Aragón, J.L.

    2013-01-01

    Highlights: • A system biologically inspired that produces arbitrary analog signals is studied. • The proposed system is based in the BVAM biological model. • The system is analyzed with a discrete equivalent system defined by a Poincaré map. • The operation regimes of the system are identified changing the control parameter. • The system functionality is shown by the simulations obtained from SIMULINK™. -- Abstract: This work shows and analyzes a system that produces arbitrary waveforms, which is a simplification, based on spatial discretization, of the BVAM model proposed by Barrio et al. in 1999 [1] to model the biological pattern formation. Since the analytical treatment of non-linear terms of this system is often prohibitive, its dynamic has been analyzed using a discrete equivalent system defined by a Poincaré map. In this analysis, the bifurcation diagrams and the Lyapunov exponent are the tools used to identify the different operating regimes of the system and to provide evidence of the periodicity and randomness of the generated waveforms. Also, it is shown that the analyzed system presents the period doubling phenomenon, the values of its bifurcation points are related by the Feigenbaum constant and they converge to the onset of chaos. It is shown that, the analyzed system can be electronically implemented using operational amplifiers to produce arbitrary waveforms when varying a single control parameter. The functionality and behavior of the ideal electronic implementation of the analyzed system is shown by the simulations obtained from the MatLab–Simulink™ toolbox. Finally, some problems related to a real electronic implementation are discussed. This paper gives a brief overview of how ideas from biology can be used to design new systems that produce arbitrary waveforms

  11. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    The conference 'From DNA-Inspired Physics to Physics-Inspired Biology' (1-5 June 2009, International Center for Theoretical Physics, Trieste, Italy) that myself and two former presidents of the American Biophysical Society—Wilma Olson (Rutgers University) and Adrian Parsegian (NIH), with the support of an ICTP team (Ralf Gebauer (Local Organizer) and Doreen Sauleek (Conference Secretary)), have organized was intended to establish stronger links between the biology and physics communities on the DNA front. The relationships between them were never easy. In 1997, Adrian published a paper in Physics Today ('Harness the Hubris') summarizing his thoughts about the main obstacles for a successful collaboration. The bottom line of that article was that physicists must seriously learn biology before exploring it and even having an interpreter, a friend or co-worker, who will be cooperating with you and translating the problems of biology into a physical language, may not be enough. He started his story with a joke about a physicist asking a biologist: 'I want to study the brain. Tell me something about it!' Biologist: 'First, the brain consists of two parts, and..' Physicist: 'Stop. You have told me too much.' Adrian listed a few direct avenues where physicists' contributions may be particularly welcome. This gentle and elegantly written paper caused, however, a stormy reaction from Bob Austin (Princeton), published together with Adrian's notes, accusing Adrian of forbidding physicists to attack big questions in biology straightaway. Twelve years have passed and many new developments have taken place in the biologist-physicist interaction. This was something I addressed in my opening conference speech, with my position lying somewhere inbetween Parsegian's and Austin's, which is briefly outlined here. I will first recall certain precepts or 'dogmas' that fly in the air like Valkyries, poisoning those relationships. Since the early seventies when I was a first year Ph

  12. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  13. Biology-inspired AMO physics

    International Nuclear Information System (INIS)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  14. Biologically inspired coupled antenna beampattern design

    International Nuclear Information System (INIS)

    Akcakaya, Murat; Nehorai, Arye

    2010-01-01

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  15. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  16. Fluid-driven origami-inspired artificial muscles

    Science.gov (United States)

    Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.

    2017-12-01

    Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ˜600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

  17. Drawing inspiration from biological optical systems

    Science.gov (United States)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  18. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  19. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  20. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...... that useful conclusions as to the future of on-chip learning can be drawn from this work....

  1. Biology-inspired Architecture for Situation Management

    Science.gov (United States)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft.

  2. Antireflective surface inspired from biology: A review

    Directory of Open Access Journals (Sweden)

    Z.W. Han

    2016-12-01

    Full Text Available Optical anti-reflection means the decrease of reflection as much as possible, which has been used in many fields such as solar cells, diodes, optical and optoelectronic devices, screens, sensors, anti-glare glasses and so on. Over millions of years, natural creatures have been uninterruptedly combating with extreme environmental conditions. In particular, some biology has evolved a diversity of antireflective functional surfaces gradually. More importantly, as a result of the same order of magnitude in the ingenious structures and the wavelength of visible light, these structures can interact strongly and present excellent antireflective performance. It is worth to be mentioned that these wonderful architectures lead to a perfect performance on antireflection. This review mainly covers recent progress on the bionic antireflective structures. Then, the mechanism of the structure-based antireflective properties of some biology is analyzed. Besides, some typical models and the basic theory of these bionic structures for antireflection have been reported to facilitate mechanism analysis. At last, the prospects and the challenge researchers may faced with are also addressed. It is hoped that this review could be beneficial to provide some innovative inspirations and new ideas to the researchers in the fields of engineering, and materials science.

  3. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  4. Biologically inspired path to quantum computer

    Science.gov (United States)

    Ogryzko, Vasily; Ozhigov, Yuri

    2014-12-01

    We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.

  5. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    Science.gov (United States)

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Biologically inspired hairy surfaces for liquid repellency

    Science.gov (United States)

    Hsu, Shu-Hau

    Owing to remarkable features, such as self-cleaning, anti-biofouling and drag reduction, interest on rendering surfaces water-repellent has significantly grown within this decade. Attempts on making surfaces "superhydrophobic", where high water contact angle (θc >150°) accompanied with only few degrees of roll-off angle, have been extensively demonstrated through the mimicking of the surface chemistry and morphology of lotus leaves. This appealing phenomenon also exists on another structure from nature: surfaces comprising soft hairs. Although the role of this piliferous integument has long been recognized for providing life, arthropods in particular, waterrepellency, the synthetic superhydrophobic surfaces based on this structure are still very limited. In this study, the goal was to develop a novel liquid-repellent surface by mimicking the hairy exterior of species. The artificial hairy surfaces were prepared by means of pressurized membrane casting, in which thermoplastic sheets were forced to flow into porous membranes at elevated temperature. The G-shaped pillars on the membrane cast polypropylene substrate are particularly similar to the conformation of natural hairs. The principle of this fabrication technique is relatively accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces. The artificial hairy surface features perfectly hydrophobic response where no contact angle hysteresis was observed from video assessment. Thus the artificial hairy surface of the current work appears to be the first report to have such extreme hydrophobicity with only structural modification from the original substrate. This ultralow adhesion to water droplet is believed to be attributed to the hydrophobic methyl groups and the mechanical response of the artificial hairs. Liquid repellency of the hairy surfaces was further enhanced by coating with fluorocarbon (CF) layers via deep reactive ion etching (DRIE). The contact angle of

  7. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  8. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  9. Handwritten-word spotting using biologically inspired features

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    2008-01-01

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language, and collection. We propose a biologically inspired

  10. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  11. Biological Implications of Artificial Illumination.

    Science.gov (United States)

    Wurtman, Richard J.

    1968-01-01

    Environmental lighting exerts profound biologic effects on humans and other mammals, in addition to providing the visual stimulus. Light acts on the skin to stimulate the synthesis of Vitamin D. It also acts, through the eyes, to control several glands and many metabolic processes. Light, or its absence, "induces" certain biologic functions. Light…

  12. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  13. Biologically-inspired hexapod robot design and simulation

    Science.gov (United States)

    Espenschied, Kenneth S.; Quinn, Roger D.

    1994-01-01

    The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.

  14. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  15. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Science.gov (United States)

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  16. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  17. Bio-inspired nanomedicine strategies for artificial blood components.

    Science.gov (United States)

    Sen Gupta, Anirban

    2017-11-01

    Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  18. 7th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Engelbrecht, Andries; Abraham, Ajith; Plessis, Mathys; Snášel, Václav; Muda, Azah

    2016-01-01

    World Congress on Nature and Biologically Inspired Computing (NaBIC) is organized to discuss the state-of-the-art as well as to address various issues with respect to Nurturing Intelligent Computing Towards Advancement of Machine Intelligence. This Volume contains the papers presented in the Seventh World Congress (NaBIC’15) held in Pietermaritzburg, South Africa during December 01-03, 2015. The 39 papers presented in this Volume were carefully reviewed and selected. The Volume would be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  19. Variable gearing in a biologically inspired pneumatic actuator array.

    Science.gov (United States)

    Azizi, Emanuel; Roberts, Thomas J

    2013-06-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions.

  20. VARIABLE GEARING IN A BIOLOGICALLY-INSPIRED PNEUMATIC ACTUATOR ARRAY

    Science.gov (United States)

    Azizi, Emanuel; Roberts, Thomas J.

    2013-01-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle’s gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system’s gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. PMID:23462288

  1. Variable gearing in a biologically inspired pneumatic actuator array

    International Nuclear Information System (INIS)

    Azizi, Emanuel; Roberts, Thomas J

    2013-01-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. (paper)

  2. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  3. Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Shen, Ben

    2017-06-01

    Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Operant Conditioning: A Minimal Components Requirement in Artificial Spiking Neurons Designed for Bio-Inspired Robot’s Controller

    Directory of Open Access Journals (Sweden)

    André eCyr

    2014-07-01

    Full Text Available We demonstrate the operant conditioning (OC learning process within a basic bio-inspired robot controller paradigm, using an artificial spiking neural network (ASNN with minimal component count as artificial brain. In biological agents, OC results in behavioral changes that are learned from the consequences of previous actions, using progressive prediction adjustment triggered by reinforcers. In a robotics context, virtual and physical robots may benefit from a similar learning skill when facing unknown environments with no supervision. In this work, we demonstrate that a simple ASNN can efficiently realise many OC scenarios. The elementary learning kernel that we describe relies on a few critical neurons, synaptic links and the integration of habituation and spike-timing dependent plasticity (STDP as learning rules. Using four tasks of incremental complexity, our experimental results show that such minimal neural component set may be sufficient to implement many OC procedures. Hence, with the described bio-inspired module, OC can be implemented in a wide range of robot controllers, including those with limited computational resources.

  5. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  6. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...... that useful conclusions as to the future of on-chip learning can be drawn from this work....

  7. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  8. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    Science.gov (United States)

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  10. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui

    2009-08-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  11. Synthetic biology and the moral significance of artificial life

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    2016-01-01

    I discuss the moral significance of artificial life within synthetic biology via a discussion of Douglas, Powell and Savulescu's paper 'Is the creation of artificial life morally significant’. I argue that the definitions of 'artificial life’ and of 'moral significance’ are too narrow. Douglas, P...

  12. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  13. Handwritten-word spotting using biologically inspired features.

    Science.gov (United States)

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    2008-11-01

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language and collection. We propose a biologically inspired whole-word recognition method which is used to incrementally elicit word labels in a live, web-based annotation system, named Monk. Since human labor should be minimized given the massive amount of image data, it becomes important to rely on robust perceptual mechanisms in the machine. Recent computational models of the neuro-physiology of vision are applied to isolated word classification. A primate cortex-like mechanism allows to classify text-images that have a low frequency of occurrence. Typically these images are the most difficult to retrieve and often contain named entities and are regarded as the most important to people. Usually standard pattern-recognition technology cannot deal with these text-images if there are not enough labeled instances. The results of this retrieval system are compared to normalized word-image matching and appear to be very promising.

  14. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  15. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  16. Locomotion Efficiency Optimization of Biologically Inspired Snake Robots

    OpenAIRE

    Eleni Kelasidi; Mansoureh Jesmani; Kristin Y. Pettersen; Jan Tommy Gravdahl

    2018-01-01

    Snake robots constitute bio-inspired solutions that have been studied due to their ability to move in challenging environments where other types of robots, such as wheeled or legged robots, usually fail. In this paper, we consider both land-based and swimming snake robots. One of the principal concerns of the bio-inspired snake robots is to increase the motion efficiency in terms of the forward speed by improving the locomotion methods. Furthermore, energy efficiency becomes a crucial challen...

  17. Synthetic Biology: A Bridge between Artificial and Natural Cells

    Science.gov (United States)

    Ding, Yunfeng; Wu, Fan; Tan, Cheemeng

    2014-01-01

    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications. PMID:25532531

  18. Artificial NO and Light Cooperative Nanofluidic Diode Inspired by Stomatal Closure of Guard Cells.

    Science.gov (United States)

    Li, Ruirui; Sui, Xin; Li, Chao; Jiang, Jiaqiao; Zhai, Jin; Gao, Longcheng

    2018-01-31

    Gas messenger molecule (NO) plays important roles in K + nanochannels of guard cells by binding directly to the heme-containing enzymes. Inspired by this natural phenomenon, we developed artificial K + nanochannels modified with ferroporphyrin, where NO triggered the nanochannels to turn "ON" states from the ferroporphyrin blocked "OFF" states. The mechanism relies on the fact that NO has higher affinity with ferroporphyrin compared to carboxyl groups on the nanochannel surface. The synergistic effect of the released carboxyl groups and the conically asymmetric shape leads the ion transportation to be diode-like. However, the nanofluidic diode properties vanished after illumination with light to remove NO from the ferroporphyrin-NO complex. This NO and light cooperative nanofluidic diode possesses excellent stability and reversibility, which shows great promise for use in gas detection and remote control of mass delivery.

  19. Feasibility Study of a Bio-inspired Artificial Pancreas in Adults with Type 1 Diabetes

    Science.gov (United States)

    Herrero, Pau; El Sharkawy, Mohamed; Pesl, Peter; Jugnee, Narvada; Thomson, Hazel; Pavitt, Darrell; Toumazou, Christofer; Johnston, Desmond; Georgiou, Pantelis; Oliver, Nick

    2014-01-01

    Abstract Background: This study assesses proof of concept and safety of a novel bio-inspired artificial pancreas (BiAP) system in adults with type 1 diabetes during fasting, overnight, and postprandial conditions. In contrast to existing glucose controllers in artificial pancreas systems, the BiAP uses a control algorithm based on a mathematical model of β-cell physiology. The algorithm is implemented on a miniature silicon microchip within a portable hand-held device that interfaces the components of the artificial pancreas. Materials and Methods: In this nonrandomized open-label study each subject attended for a 6-h fasting study followed by a 13-h overnight and post-breakfast study on a separate occasion. During both study sessions the BiAP system was used, and microboluses of insulin were recommended every 5 min by the control algorithm according to subcutaneous sensor glucose levels. The primary outcome was percentage time spent in the glucose target range (3.9–10.0 mmol/L). Results: Twenty subjects (55% male; mean [SD] age, 44 [10] years; duration of diabetes, 22 [12] years; glycosylated hemoglobin, 7.4% [0.7%] [57 (7) mmol/mol]; body mass index, 25 [4] kg/m2) participated in the fasting study, and the median (interquartile range) percentage time in target range was 98.0% (90.8–100.0%). Seventeen of these subjects then participated in the overnight/postprandial study, where 70.7% (63.9–77.4%) of time was spent in the target range and, reassuringly, 0.0% (0.0–2.3%) of time was spent in hypoglycemia (<3.9 mmol/L). Conclusions: The BiAP achieves safe glycemic control during fasting, overnight, and postprandial conditions. PMID:24801544

  20. Locomotion Efficiency Optimization of Biologically Inspired Snake Robots

    Directory of Open Access Journals (Sweden)

    Eleni Kelasidi

    2018-01-01

    Full Text Available Snake robots constitute bio-inspired solutions that have been studied due to their ability to move in challenging environments where other types of robots, such as wheeled or legged robots, usually fail. In this paper, we consider both land-based and swimming snake robots. One of the principal concerns of the bio-inspired snake robots is to increase the motion efficiency in terms of the forward speed by improving the locomotion methods. Furthermore, energy efficiency becomes a crucial challenge for this type of robots due to the importance of long-term autonomy of these systems. In this paper, we take into account both the minimization of the power consumption and the maximization of the achieved forward velocity in order to investigate the optimal gait parameters for bio-inspired snake robots using lateral undulation and eel-like motion patterns. We furthermore consider possible negative work effects in the calculation of average power consumption of underwater snake robots. To solve the multi-objective optimization problem, we propose transforming the two objective functions into a single one using a weighted-sum method. For different set of weight factors, Particle Swarm Optimization is applied and a set of optimal points is consequently obtained. Pareto fronts or trade-off curves are illustrated for both land-based and swimming snake robots with different numbers of links. Pareto fronts represent trade-offs between the objective functions. For example, how increasing the forward velocity results in increasing power consumption. Therefore, these curves are a very useful tool for the control and design of snake robots. The trade-off curve thus constitutes a very useful tool for both the control and design of bio-inspired snake robots. In particular, the operators or designers of bio-inspired snake robots can choose a Pareto optimal point based on the trade-off curve, given the preferred number of links on the robot. The optimal gait parameters

  1. Inspiring Integration in College Students Reading Multiple Biology Texts

    Science.gov (United States)

    Firetto, Carla

    2013-01-01

    Introductory biology courses typically present topics on related biological systems across separate chapters and lectures. A complete foundational understanding requires that students understand how these biological systems are related. Unfortunately, spontaneous generation of these connections is rare for novice learners. These experiments focus…

  2. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  3. Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    Science.gov (United States)

    Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara

    2009-01-01

    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304

  4. Design of a bio-inspired pneumatic artificial muscle with self-contained sensing.

    Science.gov (United States)

    Erin, Onder; Pol, Nishant; Valle, Luis; Yong-Lae Park

    2016-08-01

    Pneumatic artificial muscles (PAMs) are one of the most famous linear actuators in bio-inspired robotics. They can generate relatively high linear force considering their form factors and weights. Furthermore, PAMs are inexpensive compared with traditional electromagnetic actuators (e.g. DC motors) and also inherently light and compliant. In robotics applications, however, they typically require external sensing mechanisms due to their nonlinear behaviors, which may make the entire mechanical system bulky and complicated, limiting their use in simple systems. This study presents the design and fabrication of a low-cost McKibben-type PAM with a self-contained displacement and force sensing capability that does not require any external sensing elements. The proposed PAM can detect axial contraction force and displacement at the same time. In this study, the design of a traditional McKibben muscle was modified to include an inductive coil surrounding the muscle fibers. Then, a thin, soft silicone layer was coated outside of the muscle to protect and hold the sensing coil on the actuator. This novel design measures coil inductance change to determine the contraction force and the displacement. The process can be applied to a variety of existing McKibben actuator designs without significantly changing the rigidity of the actuator while minimizing the device's footprint.

  5. Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array

    Directory of Open Access Journals (Sweden)

    Calogero Maria Oddo

    2009-04-01

    Full Text Available A compliant 2x2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

  6. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal......Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired...

  7. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    Science.gov (United States)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  8. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions.

    Science.gov (United States)

    Mazzolai, B; Margheri, L; Cianchetti, M; Dario, P; Laschi, C

    2012-06-01

    Soft robotics is a current focus in robotics research because of the expected capability of soft robots to better interact with real-world environments. As a point of inspiration in the development of innovative technologies in soft robotics, octopuses are particularly interesting 'animal models'. Octopus arms have unique biomechanical capabilities that combine significant pliability with the ability to exert a great deal of force, because they lack rigid structures but can change and control their degree of stiffness. The octopus arm motor capability is a result of the peculiar arrangement of its muscles and the properties of its tissues. These special abilities have been investigated by the authors in a specific study dedicated to identifying the key principles underlying these biological functions and deriving engineering requirements for robotics solutions. This paper, which is the second in a two-part series, presents how the identified requirements can be used to create innovative technological solutions, such as soft materials, mechanisms and actuators. Experiments indicate the ability of these proposed solutions to ensure the same performance as in the biological model in terms of compliance, elongation and force. These results represent useful and relevant components of innovative soft-robotic systems and suggest their potential use to create a new generation of highly dexterous, soft-bodied robots.

  9. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions

    International Nuclear Information System (INIS)

    Mazzolai, B; Margheri, L; Cianchetti, M; Dario, P; Laschi, C

    2012-01-01

    Soft robotics is a current focus in robotics research because of the expected capability of soft robots to better interact with real-world environments. As a point of inspiration in the development of innovative technologies in soft robotics, octopuses are particularly interesting ‘animal models’. Octopus arms have unique biomechanical capabilities that combine significant pliability with the ability to exert a great deal of force, because they lack rigid structures but can change and control their degree of stiffness. The octopus arm motor capability is a result of the peculiar arrangement of its muscles and the properties of its tissues. These special abilities have been investigated by the authors in a specific study dedicated to identifying the key principles underlying these biological functions and deriving engineering requirements for robotics solutions. This paper, which is the second in a two-part series, presents how the identified requirements can be used to create innovative technological solutions, such as soft materials, mechanisms and actuators. Experiments indicate the ability of these proposed solutions to ensure the same performance as in the biological model in terms of compliance, elongation and force. These results represent useful and relevant components of innovative soft-robotic systems and suggest their potential use to create a new generation of highly dexterous, soft-bodied robots. (paper)

  10. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  11. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-03

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.

  12. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Ehlert, Gregory J; Baur, Jeffery W; Dickinson, Ben

    2012-01-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0–1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats. (paper)

  13. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle.

    Science.gov (United States)

    Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Anderson, Sean R; Porrill, John; Dean, Paul

    2016-09-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. © 2016 The Authors.

  14. Biologically Inspired Nanofibers for Use in Translational Bioanalytical Systems

    Science.gov (United States)

    Matlock-Colangelo, Lauren; Baeumner, Antje J.

    2014-06-01

    Electrospun nanofiber mats are characterized by large surface-area-to-volume ratios, high porosities, and a diverse range of chemical functionalities. Although electrospun nanofibers have been used successfully to increase the immobilization efficiency of biorecognition elements and improve the sensitivity of biosensors, the full potential of nanofiber-based biosensing has not yet been realized. Therefore, this review presents novel electrospun nanofiber chemistries developed in fields such as tissue engineering and drug delivery that have direct application within the field of biosensing. Specifically, this review focuses on fibers that directly encapsulate biological additives that serve as immobilization matrices for biological species and that are used to create biomimetic scaffolds. Biosensors that incorporate these nanofibers are presented, along with potential future biosensing applications such as the development of cell culture and in vivo sensors.

  15. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  16. Melodic Similarity and Applications Using Biologically-Inspired Techniques

    Directory of Open Access Journals (Sweden)

    Dimitrios Bountouridis

    2017-12-01

    Full Text Available Music similarity is a complex concept that manifests itself in areas such as Music Information Retrieval (MIR, musicological analysis and music cognition. Modelling the similarity of two music items is key for a number of music-related applications, such as cover song detection and query-by-humming. Typically, similarity models are based on intuition, heuristics or small-scale cognitive experiments; thus, applicability to broader contexts cannot be guaranteed. We argue that data-driven tools and analysis methods, applied to songs known to be related, can potentially provide us with information regarding the fine-grained nature of music similarity. Interestingly, music and biological sequences share a number of parallel concepts; from the natural sequence-representation, to their mechanisms of generating variations, i.e., oral transmission and evolution respectively. As such, there is a great potential for applying scientific methods and tools from bioinformatics to music. Stripped-down from biological heuristics, certain bioinformatics approaches can be generalized to any type of sequence. Consequently, reliable and unbiased data-driven solutions to problems such as biological sequence similarity and conservation analysis can be applied to music similarity and stability analysis. Our paper relies on such an approach to tackle a number of tasks and more notably to model global melodic similarity.

  17. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  18. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  19. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures.

    Science.gov (United States)

    Kang, Rongjie; Branson, David T; Zheng, Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G

    2013-09-01

    Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two.

  20. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures

    International Nuclear Information System (INIS)

    Kang, Rongjie; Zheng Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G; Branson, David T

    2013-01-01

    Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two. (paper)

  1. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    Science.gov (United States)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  2. Comparing novelty of designs from biological-inspiration with those from brainstorming

    DEFF Research Database (Denmark)

    Keshwani, Sonal; Lenau, Torben Anker; Ahmed-Kristensen, Saeema

    2017-01-01

    This research aims to understand the significance of biological-analogies in fostering novelty by comparing biological-analogies with other design methods for idea generation. Among other design methods, brainstorming was chosen here as benchmark. Four studies were conducted to compare: (i) the l...... reasons behind the results. The results demonstrate that the design methods substantially influence the novelty of concepts generated, while indicating the need for better training in effective use of biological-analogies.......This research aims to understand the significance of biological-analogies in fostering novelty by comparing biological-analogies with other design methods for idea generation. Among other design methods, brainstorming was chosen here as benchmark. Four studies were conducted to compare: (i......) the levels of abstraction at which concepts were ideated using biological inspiration (represented using biocards) with that using traditional brainstorming; and (ii) the novelty of concepts produced by using these two design methods. Concepts produced in these studies were evaluated for levels...

  3. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Synthetic biology routes to bio-artificial intelligence

    Science.gov (United States)

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  5. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  6. Agile Robust Autonomy: Inspired by Connecting Natural Flight and Biological Sensors

    Science.gov (United States)

    2017-03-01

    DISTRIBUTION A i AFRL-RW-EG-TR-2017-030 Agile Robust Autonomy: Inspired by Connecting Natural Flight and Biological Sensors Jennifer Talley...Air Force Eglin Air Force Base, FL 32542 DISTRIBUTION A ii NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data...included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government . The fact that the

  7. On the Idea of a New Artificial Intelligence Based Optimization Algorithm Inspired From the Nature of Vortex

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2015-07-01

    Full Text Available In this paper, the idea of a new artificial intelligence based optimization algorithm, which is inspired from the nature of vortex, has been provided briefly. As also a bio-inspired computation algorithm, the idea is generally focused on a typical vortex flow / behavior in nature and inspires from some dynamics that are occurred in the sense of vortex nature. Briefly, the algorithm is also a swarm-oriented evolutional problem solution approach; because it includes many methods related to elimination of weak swarm members and trying to improve the solution process by supporting the solution space via new swarm members. In order have better idea about success of the algorithm; it has been tested via some benchmark functions. At this point, the obtained results show that the algorithm can be an alternative to the literature in terms of single-objective optimizationsolution ways. Vortex Optimization Algorithm (VOA is the name suggestion by the authors; for this new idea of intelligent optimization approach.

  8. BiLBIQ A Biologically Inspired Robot with Walking and Rolling Locomotion

    CERN Document Server

    King, Ralf Simon

    2013-01-01

    The book ‘BiLBIQ: A biologically inspired Robot with walking and rolling locomotion’ deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed.   The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature’s inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a speci...

  9. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  10. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns...

  11. Trienamine catalyzed asymmetric synthesis and biological investigation of a cytochalasin B-inspired compound collection.

    Science.gov (United States)

    Sellstedt, Magnus; Schwalfenberg, Melanie; Ziegler, Slava; Antonchick, Andrey P; Waldmann, Herbert

    2016-01-07

    Due to their enhanced metabolic needs many cancers need a sufficient supply of glucose, and novel inhibitors of glucose import are in high demand. Cytochalasin B (CB) is a potent natural glucose import inhibitor which also impairs the actin cytoskeleton leading to undesired toxicity. With a view to identifying selective glucose import inhibitors we have developed an enantioselective trienamine catalyzed synthesis of a CB-inspired compound collection. Biological analysis revealed that indeed actin impairment can be distinguished from glucose import inhibition and led to the identification of the first selective glucose import inhibitor based on the basic structural architecture of cytochalasin B.

  12. Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives.

    Science.gov (United States)

    Kim, Seok; Cheung, Eugene; Sitti, Metin

    2009-07-07

    We report that hydrophilic polyurethane mushroom shaped microfiber arrays possess wet self-cleaning ability using the lotus effect as biologically inspired synthetic fibrillar adhesives. In comparison with a flat surface made of the same polyurethane, the fiber array exhibited almost 100% wet self-cleaning without any degradation of adhesive strength. We attribute this cleaning ability to the mushroom shaped tip ending geometry of the fiber array, which causes the fiber array to be apparently hydrophobic even though the fiber material is hydrophilic. These results suggest that tip ending shape is one of the significant design parameters for developing contamination-resistant polymer fibrillar adhesives.

  13. Synthetic biology routes to bio-artificial intelligence.

    Science.gov (United States)

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  14. Particle Swarm and Bacterial Foraging Inspired Hybrid Artificial Bee Colony Algorithm for Numerical Function Optimization

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-01-01

    Full Text Available Artificial bee colony (ABC algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.

  15. Soft Robotics: Biological Inspiration, State of the Art, and Future Research

    Directory of Open Access Journals (Sweden)

    Deepak Trivedi

    2008-01-01

    Full Text Available Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

  16. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Science.gov (United States)

    Nurzaman, Surya G.

    2016-01-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843

  17. Bottom-up synthetic biology: modular design for making artificial platelets

    Science.gov (United States)

    Majumder, Sagardip; Liu, Allen P.

    2018-01-01

    Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.

  18. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  19. Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Kyu; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2010-04-15

    Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

  20. Seeding-inspired chemotaxis genetic algorithm for the inference of biological systems.

    Science.gov (United States)

    Wu, Shinq-Jen; Wu, Cheng-Tao

    2014-09-18

    A large challenge in the post-genomic era is to obtain the quantitatively dynamic interactive information of the important constitutes of underlying systems. The S-system is a dynamic and structurally rich model that determines the net strength of interactions between genes and/or proteins. Good generation characteristics without the need for prior information have allowed S-systems to become one of the most promising canonical models. Various evolutionary computation technologies have recently been developed for the identification of system parameters and skeletal-network structures. However, the gaps between the truncated and preserved terms remain too small. Additionally, current research methods fail to identify the structures of high dimensional systems (e.g., 30 genes with 1800 connections). Optimization technologies should converge fast and have the ability to adaptively adjust the search. In this study, we propose a seeding-inspired chemotaxis genetic algorithm (SCGA) that can force evolution to adjust the population movement to identify a favorable location. The seeding-inspired training strategy is a method to achieve optimal results with limited resources. SCGA introduces seeding-inspired genetic operations to allow a population to possess competitive power (exploitation and exploration) and a winner-chemotaxis-induced population migration to force a population to repeatedly tumble away from an attractor and swim toward another attractor. SCGA was tested on several canonical biological systems. SCGA not only learned the correct structure within only one to three pruning steps but also ensures pruning safety. The values of the truncated terms were all smaller than 10 -14 , even for a thirty-gene system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Directory of Open Access Journals (Sweden)

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  2. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.

    Science.gov (United States)

    Merindol, Rémi; Diabang, Seydina; Felix, Olivier; Roland, Thierry; Gauthier, Christian; Decher, Gero

    2015-02-24

    Nanocomposite films possessing multiple interesting properties (mechanical strength, optical transparency, self-healing, and partial biodegradability) are discussed. We used Layer-by-Layer assembly to prepare micron thick wood-inspired films from anionic nanofibrillated cellulose and cationic poly(vinyl amine). The film growth was carried out at different pH values to obtain films of different chemical composition, whereby, and as expected, higher pH values led to a higher polycation content and also to 6 times higher film growth increments (from 9 to 55 nm per layer pair). In the pH range from 8 to 11, micron thick and optically transparent LbL films are obtained by automated dipping when dried regularly in a stream of air. Films with a size of 10 cm(2) or more can be peeled from flat surfaces; they show tensile strengths up to about 250 MPa and Young's moduli up to about 18 GPa as controlled by the polycation/polyanion ratio of the film. Experiments at different humidities revealed the plasticizing effect of water in the films and allowed reversible switching of their mechanical properties. Whereas dry films are strong and brittle (Young's modulus: 16 GPa, strain at break: 1.7%), wet films are soft and ductile (Young's modulus: 0.1 GPa, strain at break: 49%). Wet film surfaces even amalgamate upon contact to yield mechanically stable junctions. We attribute the switchability of the mechanical properties and the propensity for self-repair to changes in the polycation mobility that are brought about by the plastifying effect of water.

  3. A biologically inspired meta-control navigation system for the Psikharpax rat robot

    International Nuclear Information System (INIS)

    Caluwaerts, K; Staffa, M; N’Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-01-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment—recognized as new contexts—and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. (paper)

  4. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.

    Science.gov (United States)

    Lenz, Alexander; Anderson, Sean R; Pipe, A G; Melhuish, Chris; Dean, Paul; Porrill, John

    2009-12-01

    In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans. The cerebellar model is structurally based on the adaptive filter, and the learning rule is computationally analogous to least-mean squares, where parameter adaptation at the parallel fiber/Purkinje cell synapse is driven by the correlation of the sensory error signal (carried by the climbing fiber) and the motor command signal. Convergence of the algorithm is first analyzed in simulation on a model of the robot and then tested online in both one and two degrees of freedom. The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VOR.

  5. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  6. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

    Science.gov (United States)

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

  7. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    Directory of Open Access Journals (Sweden)

    Humayun Irshad

    2013-01-01

    Full Text Available Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM, and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. Results: The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS dataset provided for an International Conference on Pattern Recognition (ICPR 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Conclusions: Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and

  8. Biologically-inspired approaches for self-organization, adaptation, and collaboration of heterogeneous autonomous systems

    Science.gov (United States)

    Steinberg, Marc

    2011-06-01

    This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.

  9. The use of inspiration as a multimedia plenary activity for improving the cognitive assimilation of Biology 12 students

    Science.gov (United States)

    Barnett, Christopher

    Unit plenary activities are review activities used at the end of an educational unit. This thesis examined the effects of using Inspiration, a concept mapping computer program, as a plenary activity on summative assessment scores, compared the effectiveness of Inspiration to Review Worksheets/Discussion, explored the effects of Inspiration on Understanding, Knowledge and Higher Order Process, examined time on-task behaviours and plenary completion rates, and examined student perception of the effectiveness of Inspiration as a plenary with two classes of Biology 12 students. An action research methodology was applied to collect data from two senior classes. Quantitative data was collected using pre-/post-test results, time on-task behaviour, and assignment completion. Qualitative data was collected to identify student perception of the plenary and student study habits. The findings indicate that Inspiration statistically significantly improved summative scores, Understanding, Knowledge, time on-task behaviours, and plenary completion rates. The Inspiration and Review Worksheet/Discussion plenary activities were not statistically different in improving summative scores.

  10. Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning.

    Science.gov (United States)

    Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei

    2016-10-01

    Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.

  11. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Science.gov (United States)

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D

    2009-11-01

    While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  12. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Directory of Open Access Journals (Sweden)

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  13. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  14. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation

    Science.gov (United States)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  15. A biologically inspired controller to solve the coverage problem in robotics.

    Science.gov (United States)

    Rañó, Iñaki; Santos, José A

    2017-06-05

    The coverage problem consists on computing a path or trajectory for a robot to pass over all the points in some free area and has applications ranging from floor cleaning to demining. Coverage is solved as a planning problem-providing theoretical validation of the solution-or through heuristic techniques which rely on experimental validation. Through a combination of theoretical results and simulations, this paper presents a novel solution to the coverage problem that exploits the chaotic behaviour of a simple biologically inspired motion controller, the Braitenberg vehicle 2b. Although chaos has been used for coverage, our approach has much less restrictive assumptions about the environment and can be implemented using on-board sensors. First, we prove theoretically that this vehicle-a well known model of animal tropotaxis-behaves as a charge in an electro-magnetic field. The motion equations can be reduced to a Hamiltonian system, and, therefore the vehicle follows quasi-periodic or chaotic trajectories, which pass arbitrarily close to any point in the work-space, i.e. it solves the coverage problem. Secondly, through a set of extensive simulations, we show that the trajectories cover regions of bounded workspaces, and full coverage is achieved when the perceptual range of the vehicle is short. We compare the performance of this new approach with different types of random motion controllers in the same bounded environments.

  16. A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification

    Directory of Open Access Journals (Sweden)

    Nurhan Gursel Ozmen

    2018-01-01

    Full Text Available Classification of electroencephalogram (EEG signal is important in mental decoding for brain-computer interfaces (BCI. We introduced a feature extraction approach based on frequency domain analysis to improve the classification performance on different mental tasks using single-channel EEG. This biologically inspired method extracts the most discriminative spectral features from power spectral densities (PSDs of the EEG signals. We applied our method on a dataset of six subjects who performed five different imagination tasks: (i resting state, (ii mental arithmetic, (iii imagination of left hand movement, (iv imagination of right hand movement, and (v imagination of letter “A.” Pairwise and multiclass classifications were performed in single EEG channel using Linear Discriminant Analysis and Support Vector Machines. Our method produced results (mean classification accuracy of 83.06% for binary classification and 91.85% for multiclassification that are on par with the state-of-the-art methods, using single-channel EEG with low computational cost. Among all task pairs, mental arithmetic versus letter imagination yielded the best result (mean classification accuracy of 90.29%, indicating that this task pair could be the most suitable pair for a binary class BCI. This study contributes to the development of single-channel BCI, as well as finding the best task pair for user defined applications.

  17. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.

    Science.gov (United States)

    Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish

    2016-08-01

    The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.

  18. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  19. A Comparative Study of Biologically Inspired Walking Gaits through Waypoint Navigation

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2011-01-01

    Full Text Available This paper investigates the locomotion of a walking robot by delivering a comparative study of three different biologically inspired walking gaits, namely: tripod, ripple, and wave, in terms of ground slippage they experience while walking. The objective of this study is to identify the gait model which experiences the minimum slippage while walking on a ground with a specific coefficient of friction. To accomplish this feat, the robot is steered over a reference path using a waypoint navigation algorithm, and the divergence of the robot from the reference path is investigated in terms of slip errors. Experiments are conducted through closed-loop simulations using an open dynamics engine which emphasizes the fact that due to uneven and unsymmetrical distribution of payload in tripod and ripple gait models, the robot experiences comparatively larger drift in these gaits than when using the wave gait model in which the distribution of payload is even and symmetrical on both sides of the robot body. The paper investigates this phenomenon on the basis of force distribution of supporting legs in each gait model.

  20. Modelling of a biologically inspired robotic fish driven by compliant parts

    International Nuclear Information System (INIS)

    Daou, Hadi El; Salumäe, Taavi; Kruusmaa, Maarja; Chambers, Lily D; Megill, William M

    2014-01-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill’s elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. (paper)

  1. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  2. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  3. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation

    International Nuclear Information System (INIS)

    Childs, Allie; Castro, Nathan J; Zhang, Lijie Grace; Hemraz, Usha D; Fenniri, Hicham

    2013-01-01

    Cartilage defects are a persistent issue in orthopedic tissue engineering where acute and chronic tissue damage stemming from osteoarthritis, trauma, and sport injuries, present a common and serious clinical problem. Unlike bone, cartilage repair continues to be largely intractable due to the tissue's inherently poor regenerative capacity. Thus, the objective of this study is to design a novel tissue engineered nanostructured cartilage scaffold via biologically-inspired self-assembling rosette nanotubes (RNTs) and biocompatible non-woven poly (l-lactic acid) (PLLA) for enhanced human bone marrow mesenchymal stem cell (hMSC) chondrogenic differentiation. Specifically, RNTs are a new class of biomimetic supramolecular nanomaterial obtained through the self-assembly of low-molecular-weight modified guanine/cytosine DNA base hybrids (the G∧C motif) in an aqueous environment. In this study, we synthesized a novel twin G∧C-based RNT (TB-RGDSK) functionalized with cell-favorable arginine–glycine–aspartic acid–serine–lysine (RGDSK) integrin binding peptide and a twin G∧C based RNT with an aminobutane linker molecule (TBL). hMSC adhesion, proliferation and chondrogenic differentiation were evaluated in vitro in scaffold groups consisting of biocompatible PLLA with TBL, 1:9 TB-RGDSK:TBL, and TB-RGDSK, respectively. Our results show that RNTs can remarkably increase total glycosaminoglycan, collagen, and protein production when compared to PLLA controls without nanotubes. Furthermore, the TB-RGDSK with 100% well-organized RGDSK peptides achieved the highest chondrogenic differentiation of hMSCs. The current in vitro study illustrated that RNT nanotopography and surface chemistry played an important role in enhancing hMSC chondrogenic differentiation thus making them promising for cartilage regeneration. (paper)

  4. Biological Inspired Direct Adaptive Guidance and Control for Autonomous Flight Systems

    National Research Council Canada - National Science Library

    Corban, J. E; Gilbert, Cole; Calise, Anthony J; Tannenbaum, Allen R

    2004-01-01

    ... of the target on the eye during the pursuit. The results provided a means to compare the guidance strategy of the fly with traditional proportional navigation, and to look for inspiration in the development of new guidance laws...

  5. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    Science.gov (United States)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  6. BR3: a biologically inspired fish-like robot actuated by SMA-based artificial muscles

    OpenAIRE

    Coral Cuéllar, William

    2015-01-01

    Los peces son animales, donde en la mayoría de los casos, son considerados como nadadores muy eficientes y con una alta capacidad de maniobra. En general los peces se caracterizan por su capacidad de maniobra, locomoción silencioso, giros y partidas rápidas y viajes de larga distancia. Los estudios han identificado varios tipos de locomoción que los peces usan para generar maniobras y natación constante. A bajas velocidades la mayoría de los peces utilizan sus aletas pares y / o impares para ...

  7. Evolving Artificial Neural Networks with Generative Encodings Inspired by Developmental Biology

    Science.gov (United States)

    2010-01-01

    role in our lives in generations to come. Legged consumer robots already exist, such as the biped ASIMO and the quadruped AIBO. Both the military and...gaits for legged robots . . . . . . . . . . . . . 28 4.2 Previous work evolving gaits for legged robots . . . . . . . . . . . . . . . . 28 4.3 Applying...The Simulated Robot in the Quadruped Controller Problem. . . . . . . . . 31 ix 4.2 ANN Configuration for HyperNEAT and FT-NEAT Treatments. The first

  8. Artificial gametes: a systematic review of biological progress towards clinical application.

    Science.gov (United States)

    Hendriks, Saskia; Dancet, Eline A F; van Pelt, Ans M M; Hamer, Geert; Repping, Sjoerd

    2015-01-01

    Recent progress in the formation of artificial gametes, i.e. gametes generated by manipulation of their progenitors or of somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction (MAR). Artificial gametes could potentially help infertile men and women but also post-menopausal women and gay couples conceive genetically related children. This systematic review aimed to provide insight in the progress of biological research towards clinical application of artificial gametes. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading (MesH) terms, and reference lists of eligible studies were hand searched. Studies in English between January 1970 and December 2013 were selected based on meeting a priori defined starting- and end-points of gamete development, including gamete formation, fertilization and the birth of offspring. For each biologically plausible method to form artificial gametes, data were extracted on the potential to generate artificial gametes that might be used to achieve fertilization and to result in the birth of offspring in animals and humans. The systematic search yielded 2424 articles, and 70 studies were included after screening. In animals, artificial sperm and artificial oocytes generated from germline stem cells (GSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have resulted in the birth of viable offspring. Also in animals, artificial sperm and artificial oocytes have been generated from somatic cells directly, i.e. without documentation of intermediate stages of stem- or germ cell development or (epi)genetic status. Finally, although the subsequent embryos showed hampered development, haploidization by transplantation of a somatic cell nucleus into an enucleated donor oocyte has led to fertilized artificial oocytes. In humans, artificial sperm has been generated from ESCs and iPSCs. Artificial human oocytes have been

  9. Potential biological and ecological effects of flickering artificial light.

    Directory of Open Access Journals (Sweden)

    Richard Inger

    Full Text Available Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.

  10. A Biologically Inspired Model of Distributed Online Communication Supporting Efficient Search and Diffusion of Innovation

    Directory of Open Access Journals (Sweden)

    Soumya Baneerjee

    2016-01-01

    Full Text Available We inhabit a world that is not only “small” but supports efficient decentralized search – an individual using local information can establish a line of communication with another completely unknown individual. Here we augment a hierarchical social network model with communication between and within communities. We argue that organization into communities would decrease overall decentralized search times. We take inspiration from the biological immune system which organizes search for pathogens in a hybrid modular strategy. Our strategy has relevance in search for rare amounts of information in online social networks and could have implications for massively distributed search challenges. Our work also has implications for design of efficient online networks that could have an impact on networks of human collaboration, scientific collaboration and networks used in targeted manhunts. Real world systems, like online social networks, have high associated delays for long-distance links, since they are built on top of physical networks. Such systems have been shown to densify i.e. the average number of neighbours that an individual has increases with time. Hence such networks will have a communication cost due to space and the requirement of building and maintaining and increasing number of connections. We have incorporated such a non-spatial cost to communication in order to introduce the realism of individuals communicating within communities, which we call participation cost. We introduce the notion of a community size that increases with the size of the system, which is shown to reduce the time to search for information in networks. Our final strategy balances search times and participation costs and is shown to decrease time to find information in decentralized search in online social networks. Our strategy also balances strong-ties (within communities and weak-ties over long distances (between communities that bring in diverse ideas and

  11. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.

    Science.gov (United States)

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based

  12. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  13. Biological factors of natural and artificial ecosystems stable (unstable) functioning

    Science.gov (United States)

    Pechurkin, Nikolai S.

    The problem of sustainable development of humanity on Earth and the problem of supporting human life in space have the same scientific and methodological bases. The key to solve both problems is a long term maintenance of balanced material cycle. As a whole, natural or artificial ecosystems are to be more closed than open, but their elements (links of systems) are to be substantially open in interactions with each other. Prolonged stable interactions of different links have to have unique joint results - closed material cycling or biotic turnover. It is necessary to include, at least, three types of main links into any system to support real material cycling: producers, consumers, reducers. Producer links are now under studies in many laboratories. It is evident that the higher productivity of link, the lower link stability. Especially, it concerns with parasite impact to plants. As usual, artificial ecosystems are more simple (incomplete) than natural ecosystems, sometimes, they have not enough links for prolonged stable functioning. For example, life support system for space flight can be incomplete in consumer link, having only some crew persons, instead of interacting populations of consumers. As for reducer link, it is necessary to "organize" a special coordinated work of microbial biocenoses to fulfill proper cycling. Possible evolution of links, their self development is a matter of special attention for the maintenance of prolonged stable functioning. It's the most danger for systems with populations of quickly reproducing, so-called, R - strategists, according to symbols of logistic equation. From another side, quick reproduction of R - strategists is able to increase artificial ecosystems and their links functioning. After some damages of system, R - strategist's link can be quickly "self repaired" up to level of normal functioning. Some experimental data of this kind and mathematical models are to be discussed in the paper. This work is supported by

  14. Quo Vadis, Artificial Intelligence?

    Directory of Open Access Journals (Sweden)

    Daniel Berrar

    2010-01-01

    Full Text Available Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.

  15. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  16. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    Science.gov (United States)

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…

  17. A Biologically-Inspired Power Control Algorithm for Energy-Efficient Cellular Networks

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Choi

    2016-03-01

    Full Text Available Most of the energy used to operate a cellular network is consumed by a base station (BS, and reducing the transmission power of a BS can therefore afford a substantial reduction in the amount of energy used in a network. In this paper, we propose a distributed transmit power control (TPC algorithm inspired by bird flocking behavior as a means of improving the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm, each mobile station (MS in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. We verify that this bio-inspired TPC algorithm using a local rate-average process achieves an exponential convergence and maximizes the minimum rate of the MSs concerned. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking algorithm and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases; in so doing, it significantly improves the energy efficiency of a cellular network.

  18. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  19. Tribological performance of the biological components of synovial fluid in artificial joint implants

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Moradi, Ali; Masjuki, H H; Pingguan-Murphy, Belinda

    2015-01-01

    The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient. PMID:27877822

  20. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  1. On building meaning: a biologically-inspired experiment on symbol-based communication.

    Science.gov (United States)

    Loula, Angelo; Gudwin, Ricardo; Ribeiro, Sidarta; Queiroz, João

    2010-01-01

    The use of an appropriate set of empirical and theoretical constraints to guide the construction of synthetic experiments leads to a better understanding of the natural phenomena under study, and allows for a greater understanding of the experimental results. We begin this chapter with a description of a general approach for conducting experiments with artificial creatures within a synthetic ethological context. Next, we describe how this approach was used to build a computational experiment regarding the emergence of self-organized symbols. Our experiment simulated a community of artificial creatures undergoing complex intra and inter-specific interactions in which meaning evolved over time, from a tabula rasa repertoire of random alarm-calls to a specific set of optimal referential alarm-calls. To design different kinds of creatures as well as innanimate elements of the environment, we applied theoretical constraints from the Peircean philosophy of sign and empirical constraints from neuroethology. Our results suggest that the constraints chosen were both necessary and sufficient to produce symbolic communication.

  2. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  3. A Biologically-Inspired Framework for Contour Detection Using Superpixel-Based Candidates and Hierarchical Visual Cues

    Directory of Open Access Journals (Sweden)

    Xiao Sun

    2015-10-01

    Full Text Available Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes.

  4. A biologically-inspired framework for contour detection using superpixel-based candidates and hierarchical visual cues.

    Science.gov (United States)

    Sun, Xiao; Shang, Ke; Ming, Delie; Tian, Jinwen; Ma, Jiayi

    2015-10-20

    Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes.

  5. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  6. Synchronization in material flow networks with biologically inspired self-organized control

    Energy Technology Data Exchange (ETDEWEB)

    Donner, Reik; Laemmer, Stefan [TU Dresden (Germany); Helbing, Dirk [ETH Zuerich (Switzerland)

    2009-07-01

    The efficient operation of material flows in traffic or production networks is a subject of broad economic interest. Traditional centralized as well as decentralized approaches to operating material flow networks are known to have severe disadvantages. As an alternative approach that may help to overcome these problems, we propose a simple self-organization mechanism of conflicting flows that is inspired by oscillatory phenomena of pedestrian or animal counter-flows at bottlenecks. As a result, one may observe a synchronization of the switching dynamics at different intersections in the network. For regular grid topologies, we find different synchronization regimes depending on the inertia of the switching from one service state to the next one. In order to test the robustness of our corresponding observations, we study how the detailed properties of the network as well as dynamic feedbacks between the relevant state variables affect the degree of achievable synchronization and the resulting performance of the network. Our results yield an improved understanding of the conditions that have to be present for efficiently operating material flow networks by a decentralized control, which is of paramount importance for future implementations in real-world traffic or production systems.

  7. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  8. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  9. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.

    Science.gov (United States)

    Mooney, Luke M; Lai, Cara H; Rouse, Elliott J

    2014-01-01

    By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.

  10. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    NARCIS (Netherlands)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various

  11. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  12. Biologically-inspired synthetic dry adhesives for wall-climbing robots

    Science.gov (United States)

    Murphy, Michael P.

    Animals such as insects, spiders, and lizards are capable of clinging to and climbing on a variety of surfaces, from rough stone to smooth silicon. Hairy microscale arrays of structures on their feet conform to surface roughness to create millions of points of contact, creating a large overall contact area. Weak intermolecular forces (van der Waals forces) between each fiber tip and the surface sum to large overall forces due to the high number of contacts. In this work we present the fabrication, characterization, and demonstration of synthetic polyurethane fibrillar adhesives inspired by these animals. Angled polymer micro-fiber arrays are fabricated and characterized. A tip modification technique is presented which enables fabrication of fibers with flat mushroom shaped tips which greatly increase the adhesion of the fibers, up to 5N/cm 2 (normal direction), and with a magnitude within the range of geckos (10 N/cm2) in the shear direction on smooth surfaces. We present a fabrication technique to create fibers with angled flat mushroom-shaped tips which replicate the directional characteristics of geckos, gripping in one direction (within the range of gecko adhesion) and releasing easily in the other. Multilevel hierarchical structures with specialized tips for roughness adaptation are also presented. Fiber hierarchies from the millimeter scale to the sub-micron scale are demonstrated, including three-level fiber fabrication with specialized tips. Hierarchical structures demonstrate up to 5 times the adhesion of an unstructured sample, and requiring up to 10 times the detachment energy. Finally, an agile, wireless, palm-sized wall climbing robot which uses the synthetic fibrillar dry adhesives to climb is presented. Waalbot , named after the van der Waals forces it uses to climb, exploits the attachment and detachment characteristics of the developed dry adhesives, capabilities include climbing smooth surfaces such as glass in any orientation on any surface slope

  13. Bio-inspired variable structural color materials.

    Science.gov (United States)

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references). This journal is © The Royal Society of Chemistry 2012

  14. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2017-01-01

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030

  15. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    Science.gov (United States)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  17. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  18. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  19. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.

    Science.gov (United States)

    Hauser, Helmut; Neumann, Gerhard; Ijspeert, Auke J; Maass, Wolfgang

    2011-05-01

    Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.

  20. The effect of shape on drag: a physics exercise inspired by biology

    Science.gov (United States)

    Fingerut, Jonathan; Johnson, Nicholas; Mongeau, Eric; Habdas, Piotr

    2017-07-01

    As part of a biomechanics course aimed at upper-division biology and physics majors, but applicable to a range of student learning levels, this laboratory exercise provides an insight into the effect of shape on hydrodynamic performance, as well an introduction to computer aided design (CAD) and 3D printing. Students use hydrodynamic modeling software and simple CAD programs to design a shape with the least amount of drag based on strategies gleaned from the study of natural forms. Students then print the shapes using a 3D printer and test their shapes against their classmates in a friendly competition. From this exercise, students gain a more intuitive sense of the challenges that organisms face when moving through fluid environments, the physical phenomena involved in moving through fluids at high Reynolds numbers and observe how and why certain morphologies, such as streamlining, are common answers to the challenge of swimming at high speeds.

  1. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... are achieved by a phase switching network (PSN) module. The combination of these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The complete neural circuitry...

  2. A biologically inspired model of bat echolocation in a cluttered environment with inputs designed from field Recordings

    Science.gov (United States)

    Loncich, Kristen Teczar

    Bat echolocation strategies and neural processing of acoustic information, with a focus on cluttered environments, is investigated in this study. How a bat processes the dense field of echoes received while navigating and foraging in the dark is not well understood. While several models have been developed to describe the mechanisms behind bat echolocation, most are based in mathematics rather than biology, and focus on either peripheral or neural processing---not exploring how these two levels of processing are vitally connected. Current echolocation models also do not use habitat specific acoustic input, or account for field observations of echolocation strategies. Here, a new approach to echolocation modeling is described capturing the full picture of echolocation from signal generation to a neural picture of the acoustic scene. A biologically inspired echolocation model is developed using field research measurements of the interpulse interval timing used by a frequency modulating (FM) bat in the wild, with a whole method approach to modeling echolocation including habitat specific acoustic inputs, a biologically accurate peripheral model of sound processing by the outer, middle, and inner ear, and finally a neural model incorporating established auditory pathways and neuron types with echolocation adaptations. Field recordings analyzed underscore bat sonar design differences observed in the laboratory and wild, and suggest a correlation between interpulse interval groupings and increased clutter. The scenario model provides habitat and behavior specific echoes and is a useful tool for both modeling and behavioral studies, and the peripheral and neural model show that spike-time information and echolocation specific neuron types can produce target localization in the midbrain.

  3. Biologically inspired crack delocalization in a high strain-rate environment.

    Science.gov (United States)

    Knipprath, Christian; Bond, Ian P; Trask, Richard S

    2012-04-07

    Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an 'engineered' nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the

  4. Biology-inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing

    Science.gov (United States)

    Marx, Uwe; Andersson, Tommy B.; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R.; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B.; Hoeng, Julia; de Jong, Wim H.; Kojima, Hajime; Kuehnl, Jochen; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J. A. M.; Steger-Hartmann, Thomas; Tagle, Danilo A.; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2017-01-01

    Summary The recent advent of microphysiological systems – microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro – is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-five experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100

  5. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.

    Science.gov (United States)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.

  6. Synthetic biology with artificially expanded genetic information systems. From personalized medicine to extraterrestrial life.

    Science.gov (United States)

    Benner, Steven A; Hutter, Daniel; Sismour, A Michael

    2003-01-01

    Over 15 years ago, the Benner group noticed that the DNA alphabet need not be limited to the four standard nucleotides known in natural DNA. Rather, twelve nucleobases forming six base pairs joined by mutually exclusive hydrogen bonding patterns are possible within the geometry of the Watson-Crick pair (Fig. 1). Synthesis and studies on these compounds have brought us to the threshold of a synthetic biology, an artificial chemical system that does basic processes needed for life (in particular, Darwinian evolution), but with unnatural chemical structures. At the same time, the artificial genetic information systems (AEGIS) that we have developed have been used in FDA-approved commercial tests for managing HIV and hepatitis C infections in individual patients, and in a tool that seeks the virus for severe acute respiratory syndrome (SARS). AEGIS also supports the next generation of robotic probes to search for genetic molecules on Mars, Europa, and elsewhere where NASA probes will travel.

  7. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system*

    Science.gov (United States)

    Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua

    2010-01-01

    This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system. PMID:21121071

  8. Synthesis and biological screening by novel hybrid fluorocarbon hydrocarbon compounds for use as artificial blood substitutes

    Science.gov (United States)

    Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.

    1979-01-01

    A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.

  9. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. How can selection of biologically inspired features improve the performance of a robust object recognition model?

    Directory of Open Access Journals (Sweden)

    Masoud Ghodrati

    Full Text Available Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages. These object parts are used for training procedure in the model and have an important role in object recognition. These patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more informative than usual random patches. We demonstrate the strength of the proposed model on a range of object recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen from the experiments that selected features are generally particular parts of target images. Our results suggest that selected features which are parts of target objects provide an efficient set for robust object recognition.

  11. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  12. Dynamics Analysis of Fluid-Structure Interaction for a Biologically-Inspired Biped Robot Running on Water

    Directory of Open Access Journals (Sweden)

    Linsen Xu

    2013-10-01

    Full Text Available A kinematics analysis of a biologically-inspired biped robot is carried out, and the trajectory of the robot foot is understood. For calculating the pressure distribution across a robot foot before touching the surface of water, the compression flow of air and the depression motion of the water surface are considered. The pressure model after touching the water surface has been built according to the theory of rigid body planar motion. The multi-material ALE algorithm is applied to emulate the course of the foot slapping water. The simulation results indicate that the model of the bionic robot can satisfy the water-running function. The real prototype of the robot is manufactured to test its function of running on water. When the biped robot is running on water, the average force generated by the propulsion mechanism is about 1.3N. The experimental results show that the propulsion system can satisfy the requirement of biped robot running on water.

  13. A biologically inspired modular structure to control the sit-to-stand transfer of a biped robot.

    Science.gov (United States)

    Andani, M Emadi; Bahrami, F; Maralani, P Jabedar

    2007-01-01

    In this study, a biologically inspired control structure to control the sit-to-stand (STS) transfer from a chair is developed and simulated. STS movement is consisted of two main phases. First phase of the movement is before leaving the seat (seat-off moment). In this phase seat reactions forces act on the body parts which are in contact with the seat. The second phase is after seat-off, where the only external forces acting on the body are ground reaction forces. A proper control algorithm of the STS transfer needs to consider switching between these two phases, which correspond to two different dynamical structures. The control structure developed and discussed in this work is based on the MOSAIC structure, proposed first by Wolpert and Kawato [1]. Original MOSAIC structure has a modular architecture which is based on multiple pairs of forward and inverse models of the dynamical system to be controlled, and each module is trained separately to learn one part of a given task. The number of effective modules is predetermined. We have developed a new method to train all modules simultaneously. This method is based on reinforcement and cooperative competitive learning, and the number of effective modules is determined automatically. In this study, the simulation was begun with four modules. Our results showed that only two modules out of four were selected to control the STS task. Responsibility of controlling the task was switched between the two modules around the seat-off moment.

  14. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  15. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes.

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents.

  16. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  17. Radiolabeling of gemifloxacin with technetium-99m and biological evaluation in artificially Streptococcus pneumoniae infected rats

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Muhammad Rafiullah Khan

    2011-01-01

    In the current investigation complexation of the gemifloxacin (GIN) with technetium-99 m ( 99m Tc) and its biological evaluation in artificially Streptococcus pneumoniae (S. pneumoniae) infected rats was assessed as potential S. pneumoniae infection radiotracer. Radiochemically the 99m Tc-GIN complex was further analyzed in terms of stability in saline, in vitro stability in serum at 37 deg C, in vitro binding with S. pneumoniae and biodistribution in artificially S. pneumoniae (living and heat killed) infected rats. The complex was found 97.25 ± 0.25% radiochemically stable in saline at 30 min after reconstitution. The stability of the 99m Tc-GIN complex was decreased to 90.50 ± 0.20% within 240 min after reconstitution. In serum the 99m Tc-GIN complex showed stable profile with the appearance of 18.85% free tracer within 16 h of incubation. The 99m Tc-GIN complex showed saturated in vitro binding with S. pneumoniae after different intervals. Almost five fold uptake was observed in living S. pneumoniae infected muscle of the rats as compared to the inflamed and normal muscle. No significant difference in the uptake of heat killed S. pneumoniae infected, inflamed and normal muscles of the rats. The high RCP yield in saline, in vitro permanence in serum, in vitro binding with living S. pneumoniae and biodistribution in artificially S. pneumoniae infected rats we recommend the 99m Tc-GIN as potential S. pneumoniae infection radiotracer. (author)

  18. Biomimetics: biologically inspired technologies

    National Research Council Canada - National Science Library

    Bar-Cohen, Yoseph

    2006-01-01

    ...: 0-8493-3163-3 (Hardcover) International Standard Book Number-13: 978-0-8493-3163-3 (Hardcover) Library of Congress Card Number 2005048511 This book contains information obtained from authentic and...

  19. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    Directory of Open Access Journals (Sweden)

    Kan Li

    2018-04-01

    Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.

  20. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.

    Science.gov (United States)

    Elani, Yuval

    2016-06-15

    The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved. © 2016 The Author(s).

  1. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  2. Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles.

    Science.gov (United States)

    Carugo, Dario; Aron, Miles; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Kuimova, Marina K; Eggeling, Christian; Stride, Eleanor

    2017-01-01

    The transfer of material from phospholipid-coated microbubbles to cell membranes has been hypothesized to play a role in ultrasound-mediated drug delivery. In this study, we employed quantitative fluorescence microscopy techniques to investigate this phenomenon in both artificial and biological membrane bilayers in an acoustofluidic system. The results of the present study provide strong evidence for the transfer of material from microbubble coatings into cell membranes. Our results indicate that transfer of phospholipids alters the organization of molecules in cell membranes, specifically the lipid ordering or packing, which is known to be a key determinant of membrane mechanical properties, protein dynamics, and permeability. We further show that polyethylene-glycol, used in many clinical microbubble formulations, also has a major impact on both membrane lipid ordering and the extent of lipid transfer, and that this occurs even in the absence of ultrasound exposure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effect of different artificial diets on the biology of adult green lacewing (Chrysoperla carnea Stephens.

    Directory of Open Access Journals (Sweden)

    Sana Ullah Khan Khattak

    2006-01-01

    Full Text Available Chrysoperla carnea (Green lacewing is voracious predator of insect eggs and varieties of soft-bodied arthropods such as caterpilllars, aphids, jassids and mealy bugs. It is currently mass-reared and used in biological control of insect pests. Experiments were conducted to find out a better and cheaper artificial diet for mass-rearing of adult C. carnea. Three adult diets were tested in the laboratory conditions in comparison with standard diet; that was mixture of yeast extract, casein, honey, sugar and distilled water. Parameters were fecundity, larval period, pupal period and adult longevity. The results revealed that the mixture of egg yolk, milk and honey was better than all other diets.

  4. Physicochemical properties and biological activities of Thai plant mucilages for artificial saliva preparation.

    Science.gov (United States)

    Manosroi, Aranya; Pattamapun, Kassara; Khositsuntiwong, Narinthorn; Kietthanakorn, Bang-on; Issarangporn, Witchapong; Chankhampan, Charinya; Manosroi, Worapaka; Manosroi, Jiradej

    2015-01-01

    Plant mucilages can be found in various parts of several Thai plants, which can be used as thickening, moisturizing, and lubricating agents in artificial saliva formulations. The objective of this study was to evaluate the physicochemical properties, biological activity, and cytotoxicity of Thai plant mucilages. The mucilages from Thai plants were extracted by various processes (temperature and pH variation, microwave oven, steam, and Tris-HCl buffer extraction). The viscosity and the rheology were evaluated using viscometer. Antioxidative activities including DPPH radical scavenging and metal chelating activities were investigated. The mucilages were determined for cytotoxicity on normal human gingival fibroblasts and anti-adherent activity of Streptococcus mutans. Mucilages from Ocimum citriodorum Vis. (Lamiaceae), Artocarpus heterophyllus Lam. (Moraceae), Abelmoschus esculentus (Linn.) Moench. (Malvaceae), and Basella alba Linn. (Basellaceae) exhibited pseudoplastic non-Newtonian rheology. The highest DPPH radical-scavenging and metal-chelating activities were observed in the mucilages from B. alba (microwave, 3 min) and A. esculentus (microwave, 1 min) with the SC50 and MC50 values (50% of scavenging activity and 50% of metal chelating activity, respectively) of 0.71 ± 0.32 and 1.11 ± 0.52 mg/ml, respectively. Most mucilages exhibited no cytotoxicity to normal human gingival fibroblasts. The mucilage from A. esculentus (microwave, 5 min) gave the shortest wetting time of 2.75 ± 0.51 min. The highest S. mutans adhesion inhibition was observed in A. esculentus (pH 11) of 5.39 ± 9.70%. This study has indicated the suitable physicochemical and biological properties and the potential application of mucilages from Thai plants for artificial saliva preparation.

  5. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  6. Biology and fertility life table of Agrotis ipsilon on artificial diet; Biologia e tabela de vida de fertilidade de Agrotis ipsilon em dieta artificial

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Flavia de Moura Manoel; Fortes, Priscila; Zerio, Neide Graciano; Parra, Jose Roberto Postali [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ). Dept. Entomologia, Fitopatologia e Zoologia Agricola]. E-mail: flaviam@esalq.usp.br, pfortes@esalq.usp.br, ngzerio@esalq.usp.br, jrpparra@esalq.usp.br; Magro, Sandra Regina [Universidade Camilo Castelo Branco, Fernandopolis, SP (Brazil)]. E-mail: sandra.magro@gmail.com

    2007-10-15

    The objective of this work was to develop an artificial diet to rear Agrotis ipsilon in laboratory using biological parameters and fertility life table. The artificial diet was prepared with bean, casein, soybean protein, yeast and wheat germ as protein sources. The biological aspects duration and viability of larval and pupal stages, pupal weight, sex ratio, life span of adults, preoviposition period, egg laying capacity and fertility life table were evaluated. Six larval instars were observed comprising larval duration of 28,4 days and 93% of viability mean pupal duration of 12,4 days and viability of 96%. The total viability of the life cycle was 72%. The pupae weight was 387 mg for males and 484 mg for females. The sex ratio was 0,46 and the preoviposition period lasted one day and egg laying was 1,806 eggs per female. The net reproductive rate per generation and increase finite rate were 616,9 and 1,14, respectively. Artificial diet is adequate for rearing A. ipsilon in laboratory. (author)

  7. Design and fabrication process for artificial lateral line sensors

    NARCIS (Netherlands)

    Izadi, N.; Krijnen, Gijsbertus J.M.; Barth, Friedrich G.; Humphrey, Joseph A.C.; Srinivasan, Mandyam V.

    2011-01-01

    Biological sensory systems often display great performance, inspiring engineers to develop artificial counterparts. The lateral line system of fish has been widely studied by biologists for its crucial role in fish behaviour. Moreover, recently the robustness, sensitivity and consequently wide range

  8. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    Science.gov (United States)

    Ki, S. H.; Park, J. K.; Sung, C.; Lee, C. B.; Uhm, H.; Choi, E. H.; Baik, K. Y.

    2016-03-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma.

  9. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  10. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  11. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  12. [A method of recognizing biology surface spectrum using cascade-connection artificial neural nets].

    Science.gov (United States)

    Shi, Wei-Jie; Yao, Yong; Zhang, Tie-Qiang; Meng, Xian-Jiang

    2008-05-01

    A method of recognizing the visible spectrum of micro-areas on the biological surface with cascade-connection artificial neural nets is presented in the present paper. The visible spectra of spots on apples' pericarp, ranging from 500 to 730 nm, were obtained with a fiber-probe spectrometer, and a new spectrum recognition system consisting of three-level cascade-connection neural nets was set up. The experiments show that the spectra of rotten, scar and bumped spot on an apple's pericarp can be recognized by the spectrum recognition system, and the recognition accuracy is higher than 85% even when noise level is 15%. The new recognition system overcomes the disadvantages of poor accuracy and poor anti-noise with the traditional system based on single cascade neural nets. Finally, a new method of expression of recognition results was proved. The method is based on the conception of degree of membership in fuzzing mathematics, and through it the recognition results can be expressed exactly and objectively.

  13. Biological aspects of Argyrotaenia sphaleropa (Meyrick, 1909) (Lepidoptera: Tortricidae) in artificial diets with different protein sources

    International Nuclear Information System (INIS)

    Manfredi-Coimbra, Silvana; Garcia, Mauro Silveira; Loeck, Alci Enimar; Foresti, Josemar

    2005-01-01

    Biology aspects of Argyrotaenia sphaleropa Meyrick fed on artificial diets with different protein sources were studied: D1-white bean, wheat germ, soybean protein and casein; D2-common bean and yeast and D3-common bean, yeast and wheat germ, evaluating the duration and viability of all developmental stages (egg, larval, prepupa and pupa) and of the total cycle (egg-adult), sex ratio, pupa weight, fecundity, longevity and life table of fertility. Tests were conducted in the laboratory at 25 ± 1 deg C, 65 ±10% RH and 14h of photophase. Duration of the egg stage was 6.6 days on all diets. The longest duration of larval and prepupal stages on D1 and pupal stages on D2, resulting in a longer duration of the total cycle on these two diets (30,9 and 30,8 days). The total viability was higher than 62% on all diets, and there was no statistical difference among the treatments. The number of instars was four or five on all treatments. The lowest fecundity was observed in D1. Based on the fertility life table, D3 was the most suitable diet for rearing A. sphaleropa, due to the lowest development time (T), the highest finite increasing rate (l), and total viability exceeding 75%. (author)

  14. Manufacturing and Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the Manduca Sexta Wing Under Simulated Flapping Conditions

    Science.gov (United States)

    2011-03-24

    thorax to the wings will continue for a short period of time, preserving the integrity of these wings. This small window was considered in order to...PromasterTM Digital XR EDO Aspherical LD (IF) 17-50 mm 1:2.8 Macro φ 67. Photomodeler provides the means to calibrate a camera via subroutine within...36. 20. DeLeón, N., O’Hara, R., and Palazotto, A., “Manufacturing of Engineering Bio- logically Inspired Flapping Wings,” 25th Annual US- Japan

  15. [Preparation and biomechanics study of biological artificial knee joint prosthesis with stereo mesh surface in rabbit].

    Science.gov (United States)

    Liu, Jianhua; Xu, Dongliang; Yu, Shiming; Hu, Junyong; Chen, Jianwei; Lei, Lei; Li, Zhanchun; Zeng, Xianshang

    2009-04-01

    To develop a kind of biological artificial knee joint prosthesis with stereo mesh surface for rabbit, to observe its function after being implanted into rabbit knee joint and to evaluate its biomechanical property. Thirty adult New Zealand rabbits were randomized into experimental and control groups (n=15), total left knee arthroplasty was performed in both groups, no patella replacement was performed. Biological artificial knee joint prosthesis with stereo mesh surface was self-designed. The adjacent 4/5 surface of femur and tibia stem of the prosthesis was covered by stainless steel stereo mesh, the inner surface of femur condyles and tibia plateau was welded with two layers of stainless steel stereo mesh, then the prosthesis underwent biological fixation in the experimental group. Meanwhile, prosthesis having smooth marrow internal stem, femoral condyle and tibial plateau internal surface and sharing the same shape and size with the experimental group were prepared and fixed with bone cement in the control group. The postoperative general condition of animal was observed. At 1, 3 and 6 months after operation, the rabbits were killed for gross observation, X-ray examination was conducted to observe the fixation condition of prosthesis and healing condition, the range of motion (ROM) of knee joints was tested, biomechanics test was carried out and the maximum shear strength of prosthesis bone interface was calculated. In each group, there was 1 rabbit died and new one was added during the second experiment. The others survived till the end of the experiment and crawled normally 7 days after operation. For the excellent and good rate concerning the recovery of ROM of the knee joint at 1, 3 and 6 months after operation, the experimental group was 60%, 80% and 80%, respectively, and the control group was 60%, 80% and 60%, respectively, indicating there were no significant differences between two groups (P > 0.05). For the experimental group, the gross observation

  16. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    Science.gov (United States)

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Artificial gametes: a systematic review of biological progress towards clinical application

    NARCIS (Netherlands)

    Hendriks, Saskia; Dancet, Eline A. F.; van Pelt, Ans M. M.; Hamer, Geert; Repping, Sjoerd

    2015-01-01

    Recent progress in the formation of artificial gametes, i.e. gametes generated by manipulation of their progenitors or of somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction (MAR). Artificial gametes could potentially help infertile men and

  18. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  19. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.

    Science.gov (United States)

    Hassanalian, M; Abdelmoula, H; Ben Ayed, S; Abdelkefi, A

    2017-05-01

    The thermal impact of the birds' color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10°C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inteligência biológica versus inteligência artificial: uma abordagem crítica Biologic intelligence versus artificial intelligence: a critical approach

    Directory of Open Access Journals (Sweden)

    Wilson Luiz Sanvito

    1995-09-01

    Full Text Available Após considerações iniciais sobre inteligência, um estudo comparativo entre inteligência biológica e inteligência artificial é feito. Os especialistas em Inteligência Artificial são de opinião que inteligência é simplesmente uma matéria de manipulação de símbolos físicos. Neste sentido, o objetivo da Inteligência Artificial é entender como a inteligência cerebral funciona em termos de conceitos e técnicas de engenharia. De modo diverso os filósofos da ciência acreditam que os computadores podem ter uma sintaxe, porém não têm uma semântica. No presente trabalho é ressaltado que o complexo cérebro/mente constitui um sistema monolítico, que funciona com funções emergentes em vários níveis de organização hierárquica. Esses níveis hierárquicos não são redutíveis um ao outro. Eles são, no mínimo, três (neuronal, funcional e semântico e funcionam dentro de um plano interacional. Do ponto de vista epistemológico, o complexo cérebro/mente se utiliza de mecanismos lógicos e não-lógicos para lidar com os problemas do dia-a-dia. A lógica é necessária para o processo do pensamento, porém não é suficiente. Ênfase é dada aos mecanismos não-lógicos (lógica nebulosa, heurística, raciocínio intuitivo, os quais permitem à mente desenvolver estratégias para encontrar soluções.After brief considerations about intelligence, a comparative study between biologic and artificial intelligence is made. The specialists in Artificial Intelligence found that intelligence is purely a matter of physical symbol manipulation. The enterprise of Artificial Intelligence aims to understand what we might call Brain Intelligence in terms of concepts and techniques of engineering. However the philosophers believed that computer-machine can have syntax, but can never have semantics. In other words, that they can follow rules, such as those of arithmetic or grammar, but not understand what to us are meanings of symbols

  1. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    Science.gov (United States)

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-01-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749

  2. Artificial lateral line with biomimetic neuromasts to emulate fish sensing

    International Nuclear Information System (INIS)

    Yang Yingchen; Chen Nannan; Tucker, Craig; Hu Huan; Liu Chang; Nguyen, Nam; Lockwood, Michael; Jones, Douglas L; Bleckmann, Horst

    2010-01-01

    Hydrodynamic imaging using the lateral line plays a critical role in fish behavior. To engineer such a biologically inspired sensing system, we developed an artificial lateral line using MEMS (microelectromechanical system) technology and explored its localization capability. Arrays of biomimetic neuromasts constituted an artificial lateral line wrapped around a cylinder. A beamforming algorithm further enabled the artificial lateral line to image real-world hydrodynamic events in a 3D domain. We demonstrate that the artificial lateral line system can accurately localize an artificial dipole source and a natural tail-flicking crayfish under various conditions. The artificial lateral line provides a new sense to man-made underwater vehicles and marine robots so that they can sense like fish.

  3. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...

  4. MIAMI cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J.-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F.; Armour, Maxime R.; Montero, Ramon B.; Schiller, Paul C.; Andreopoulos, Fotios M.; D’Ippolito, Gianluca

    2017-01-01

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of 2 layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration. PMID:28211362

  5. International Inspiration

    Science.gov (United States)

    Finkel, Ed

    2017-01-01

    As the U.S. Department of Labor (DOL) expands its Registered Apprenticeship College Consortium (RACC) among community colleges and employer partners, those involved are looking to countries like Germany and Switzerland for inspiration. In some cases, that has meant partnering with companies from those countries, which have had more comprehensive…

  6. Inspired Landscapes

    Science.gov (United States)

    Brandon, Robert; Spruch, Arthur

    2008-01-01

    It has been nearly 400 years since Harvard College was created, and since then, thousands of colleges and universities have been built across the United States. From the classically inspired lines of Thomas Jefferson's University of Virginia to the Spanish architecture at Stanford University, every campus has its own personality. It's not unusual,…

  7. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces

    Directory of Open Access Journals (Sweden)

    Yasuhiko Iwasaki

    2012-01-01

    Full Text Available This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion – in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures.

  8. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  9. The dilemma of the symbols: analogies between philosophy, biology and artificial life.

    Science.gov (United States)

    Spadaro, Salvatore

    2013-01-01

    This article analyzes some analogies going from Artificial Life questions about the symbol-matter connection to Artificial Intelligence questions about symbol-grounding. It focuses on the notion of the interpretability of syntax and how the symbols are integrated in a unity ("binding problem"). Utilizing the DNA code as a model, this paper discusses how syntactic features could be defined as high-grade characteristics of the non syntactic relations in a material-dynamic structure, by using an emergentist approach. This topic furnishes the ground for a confutation of J. Searle's statement that syntax is observer-relative, as he wrote in his book "Mind: A Brief Introduction". Moreover the evolving discussion also modifies the classic symbol-processing doctrine in the mind which Searle attacks as a strong AL argument, that life could be implemented in a computational mode. Lastly, this paper furnishes a new way of support for the autonomous systems thesis in Artificial Life and Artificial Intelligence, using, inter alia, the "adaptive resonance theory" (ART).

  10. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  11. Role of nitrification in the biodegradation of selected artificial sweetening agents in biological wastewater treatment process.

    Science.gov (United States)

    Tran, N H; Nguyen, V T; Urase, T; Ngo, H H

    2014-06-01

    The biodegradation of the six artificial sweetening agents including acesulfame (ACE), aspartame (ASP), cyclamate (CYC), neohesperidindihydrochalcone (NHDC), saccharin (SAC), and sucralose (SUC) by nitrifying activated sludge was first examined. Experimental results showed that ASP and NHDC were the most easily degradable compounds even in the control tests. CYC and SAC were efficiently biodegraded by the nitrifying activated sludge, whereas ACE and SUC were poorly removed. However, the biodegradation efficiencies of the ASs were increased with the increase in initial ammonium concentrations in the bioreactors. The association between nitrification and co-metabolic degradation was investigated and a linear relationship between nitrification rate and co-metabolic biodegradation rate was observed for the target artificial sweeteners (ASs). The contribution of heterotrophic microorganisms and autotrophic ammonia oxidizers in biodegradation of the ASs was elucidated, of which autotrophic ammonia oxidizers played an important role in the biodegradation of the ASs, particularly with regards to ACE and SUC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Electrokinetic migration across artificial liquid membranes. New concept for rapid sample preparation of biological fluids.

    Science.gov (United States)

    Pedersen-Bjergaard, Stig; Rasmussen, Knut Einar

    2006-03-24

    Basic drug substances were transported across a thin artificial organic liquid membrane by the application of 300 V d.c. From a 300 microl aqueous donor compartment (containing 10 mM HCl), the drugs migrated through a 200 microm artificial liquid membrane of 2-nitrophenyl octyl ether immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10 mM HCl inside the lumen of the hollow fiber. The transport was forced by an electrical potential difference sustained over the liquid membrane, resulting in electrokinetic migration of drug substances from the donor compartment to the acceptor solution. Within 5 min of operation at 300 V, pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted with recoveries in the range 70-79%, which corresponded to enrichments in the range 7.0-7.9. The chemical composition of the organic liquid membrane strongly affected the permeability, and may serve as an efficient tool for controlling the transport selectivity. Water samples, human plasma, and human urine were successfully processed, and in light of the present report, electrokinetic migration across thin artificial liquid membranes may be an interesting tool for future isolation within chemical analysis.

  13. Clinical observation on the treatment of acute liver failure by combined non-biological artificial liver.

    Science.gov (United States)

    Li, Maoqin; Sun, Jingxi; Li, Jiaqiong; Shi, Zaixiang; Xu, Jiyuan; Lu, Bo; Cheng, Shuli; Xu, Yanjun; Wang, Xiaomeng; Zhang, Xianjiang

    2016-12-01

    The clinical efficacy and safety of different combinations of non-bio artificial liver in the treatment of acute liver failure was examined. A total of 61 cases were selected under blood purification treatment from the patients with severe acute liver failure admitted to the severe disease department of the hospital from December, 2010 to December, 2015. Three types of artificial liver combinations were observed, i.e., plasma exchange plus hemoperfusion plus continuous venovenous hemodiafiltration (PE+HP+CVVHDF), PE+CVVHDF and HP+CVVHDF. The heart rate (HR), mean arterial pressure (MAP), respiratory index (PaO 2 /FiO 2 ), liver and kidney function indicator, as well as platelet and coagulation function were compared. A comparison before and after the treatment using the three methods, showed improvement in the HRs, MAPs, PaO 2 /FiO 2 , total bilirubins (TBIL) and alanine aminotransferases (ALT) (Prate of 62.3% (38/61), and a viral survival rate of 35.0% (7/20); with the non-viral survival rate being 75.6% (31/41). In conclusion, following the treatment of three types of artificial livers, the function was improved to varying degrees, with the PE+HP+CVVHDF and the PE+CVVHDF method being better. By contrast, after the treatment of non-viral liver failure, the survival rate was significantly higher than the patients with viral liver failure.

  14. A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication

    Science.gov (United States)

    Ghosh, Soumendu; Mishra, Bhavya; Patra, Shubhadeep; Schadschneider, Andreas; Chowdhury, Debashish

    2018-04-01

    We introduce a two-species exclusion model to describe the key features of the conflict between the RNA polymerase (RNAP) motor traffic, engaged in the transcription of a segment of DNA, concomitant with the progress of two DNA replication forks on the same DNA segment. One of the species of particles (P) represents RNAP motors while the other (R) represents the replication forks. Motivated by the biological phenomena that this model is intended to capture, a maximum of two R particles only are allowed to enter the lattice from two opposite ends whereas the unrestricted number of P particles constitutes a totally asymmetric simple exclusion process (TASEP) in a segment in the middle of the lattice. The model captures three distinct pathways for resolving the co-directional as well as head-on collision between the P and R particles. Using Monte Carlo simulations and heuristic analytical arguments that combine exact results for the TASEP with mean-field approximations, we predict the possible outcomes of the conflict between the traffic of RNAP motors (P particles engaged in transcription) and the replication forks (R particles). In principle, the model can be adapted to experimental conditions to account for the data quantitatively.

  15. Neural networks and neuroscience-inspired computer vision.

    Science.gov (United States)

    Cox, David Daniel; Dean, Thomas

    2014-09-22

    Brains are, at a fundamental level, biological computing machines. They transform a torrent of complex and ambiguous sensory information into coherent thought and action, allowing an organism to perceive and model its environment, synthesize and make decisions from disparate streams of information, and adapt to a changing environment. Against this backdrop, it is perhaps not surprising that computer science, the science of building artificial computational systems, has long looked to biology for inspiration. However, while the opportunities for cross-pollination between neuroscience and computer science are great, the road to achieving brain-like algorithms has been long and rocky. Here, we review the historical connections between neuroscience and computer science, and we look forward to a new era of potential collaboration, enabled by recent rapid advances in both biologically-inspired computer vision and in experimental neuroscience methods. In particular, we explore where neuroscience-inspired algorithms have succeeded, where they still fail, and we identify areas where deeper connections are likely to be fruitful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate

    International Nuclear Information System (INIS)

    Gulliford, Sarah L.; Webb, Steve; Rowbottom, Carl G.; Corne, David W.; Dearnaley, David P.

    2004-01-01

    Background and purpose: This paper discusses the application of artificial neural networks (ANN) in predicting biological outcomes following prostate radiotherapy. A number of model-based methods have been developed to correlate the dose distributions calculated for a patient receiving radiotherapy and the radiobiological effect this will produce. Most widely used are the normal tissue complication probability and tumour control probability models. An alternative method for predicting specific examples of tumour control and normal tissue complications is to use an ANN. One of the advantages of this method is that there is no need for a priori information regarding the relationship between the data being correlated. Patients and methods: A set of retrospective clinical data from patients who received radical prostate radiotherapy was used to train ANNs to predict specific biological outcomes by learning the relationship between the treatment plan prescription, dose distribution and the corresponding biological effect. The dose and volume were included as a differential dose-volume histogram in order to provide a holistic description of the available data. Results: It was shown that the ANNs were able to predict biochemical control and specific bladder and rectum complications with sensitivity and specificity of above 55% when the outcomes were dichotomised. It was also possible to analyse information from the ANNs to investigate the effect of individual treatment parameters on the outcome. Conclusion: ANNs have been shown to learn something of the complex relationship between treatment parameters and outcome which, if developed further, may prove to be a useful tool in predicting biological outcomes

  17. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  18. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems

    Directory of Open Access Journals (Sweden)

    Weixing Su

    2017-03-01

    Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  20. Artificial intelligence in label-free microscopy biological cell classification by time stretch

    CERN Document Server

    Mahjoubfar, Ata; Jalali, Bahram

    2017-01-01

    This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intell...

  1. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  2. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  3. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    forearm musculature to actively extend and retract the wing and to change both the chordwise and spanwise shape. Bats, in particular, have astounding...human input and do not overload the human operator. Moving the human input to a higher system level (e.g., from active moment-to-moment decision...which the insect coordinates its abdominal motion with the motion of its wings during a flight maneuver. Furthermore, the manner in which this

  4. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness

    Science.gov (United States)

    Jones, Therésa M.; Durrant, Joanna; Michaelides, Ellie B.; Green, Mark P.

    2015-01-01

    The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN. PMID:25780235

  5. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1975-01-01

    Results are reported from a study of the biological effects of radiation from mock plutonium power sources in dogs and a study of the feasibility of a tissue heat sink for waste heat from such sources in calves. It is also designed to evaluate effects of heat and radiation from plutonium sources in calves. The work is part of a program to evaluate the use of plutonium as a power source for an artificial heart device. A total of 60 dogs have been implanted with mock plutonium sources (producing a similar radiation flux as plutonium but having no associated heat) at levels of from 1 to 70 times the expected radiation flux from a 30 watt plutonium source. Results up to 4.5 years after implantation indicate that mammals may be able to tolerate the radiation flux from such sources. Results in calves indicate that 30 watts of additional endogenous heat can be dissipated to a connective tissue covered heat exchanger with a surface area of 494 cm 2 providing a heat flux of 0.06 watts/cm 2 . (U.S.)

  6. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  7. Jellyfish inspired underwater unmanned vehicle

    Science.gov (United States)

    Villanueva, Alex; Bresser, Scott; Chung, Sanghun; Tadesse, Yonas; Priya, Shashank

    2009-03-01

    An unmanned underwater vehicle (UUV) was designed inspired by the form and functionality of a Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency of locomotion, lack of natural predators, proper form and shape to incorporate payload, and varying range of sizes. The structure consists of a hub body surrounded by bell segments and microcontroller based drive system. The locomotion of UUV was achieved by shape memory alloy "Biometal Fiber" actuation which possesses large strain and blocking force with adequate response time. The main criterion in design of UUV was the use of low-profile shape memory alloy actuators which act as artificial muscles. In this manuscript, we discuss the design of two Jellyfish prototypes and present experimental results illustrating the performance and power consumption.

  8. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  9. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  10. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  11. A regenerative biology view on artificial tissue construction and 3D bioprinting: what may we learn from natural regenerative phenomena?

    DEFF Research Database (Denmark)

    Lauridsen, Henrik

    2017-01-01

    organ structures by decellularisation/recellularisation procedures and recently with three-dimensional (3D) bioprinting show promising results in obtaining anatomically accurate constructs, however, the function of these artificial tissues is still lacking compared to natural tissues. This review...

  12. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  13. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  14. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  15. ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Tamara Gvozdenović

    2007-06-01

    Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.

  16. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  17. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  18. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  19. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  20. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  1. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi

    Science.gov (United States)

    Baik, Sangyul; Kim, Da Wan; Park, Youngjin; Lee, Tae-Jin; Ho Bhang, Suk; Pang, Changhyun

    2017-06-01

    Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well—and repeatedly—under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.

  2. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  3. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  4. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  5. Artificial learners adopting normative conventions from human teachers

    Directory of Open Access Journals (Sweden)

    Cederborg Thomas

    2017-11-01

    Full Text Available This survey provides an overview of implemented systems, theoretical work, as well as studies of biological systems relevant to the design of artificial learners trying to figure out what a human teacher would like them to do. Implementations of artificial learners are covered, with a focus on experiments trying to find better interpretations of human behavior, as well as algorithms that autonomously improve a model of the teacher. A distinction is made between learners trying to interpret teacher behavior in order to learn what the teacher would like the learner to do on the one hand, and learners whose explicit or implicit goal is to get something from the teacher on the other hand (for example rewards, or knowledge about how the world works. The survey covers the former type of systems. Human teachers are covered, focusing on studies that say something concrete about how one should interpret the behavior of a human teacher that is interacting with an artificial learner. Certain types of biological learners are interesting as inspiration for the types of artificial systems we are concerned with. The survey focus on studies of biological learners adopting normative conventions, as well as joint intentionality team efforts.

  6. Efeitos de extratos de plantas na biologia de Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae mantida em dieta artificial Effects of plant extracts on the biology of Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae maintained under artificial diet

    Directory of Open Access Journals (Sweden)

    Gilberto Pedreira Santiago

    2008-06-01

    Full Text Available Avaliaram-se os efeitos dos extratos aquosos a 10% de folhas e ramos de arruda (Ruta graveolens L., folhas e ramos de melão-de-são-caetano (Momordica charantia L., folhas do alecrim-pimenta (Lippia sidoides Cham. e fruto verde de mamona (Ricinus communis L., sobre a biologia da lagarta-do-cartucho do milho (Spodoptera frugiperda, mantida em dieta artificial. Os parâmetros avaliados foram duração e viabilidade das fases larval e pupal, peso de pupa, fecundidade, fertilidade e longevidade de adultos. Larvas de S. frugiperda recém-eclodidas foram colocadas em tubos de ensaio com dieta artificial, contendo os extratos de cada material testado. O extrato aquoso do fruto verde de R. communis apresentou bioatividade, nos parâmetros duração larval e pupal e peso de pupa. O extrato aquoso de R. graveolens reduziu o peso de pupa. A dieta contendo extrato de folhas e ramos de M. charantia reduziu a viabilidade larval e o peso de pupa. O extrato aquoso de folhas de L. sidoides não afetou as fases larval e pupal, reduziu a postura e a viabilidade de ovos e aumentou a longevidade de adultos de S. frugiperda. A viabilidade de pupa não foi afetada pelos extratos testados.The effects of aqueous extracts, at 10% concentration of leaves and branches of Ruta graveolens L., leaves and branches of Momordica charantia L., leaves of Lippia sidoides Cham. and green fruits of Ricinus communis L. were evaluated on the biology of fall armyworm (Spodoptera frugiperda maintained under artificial diet. The evaluated parameters were: duration and viability of the larval and pupal phases, pupa weight, fecundity, fertility and longevity of adults. Just-hatched larvae of S. frugiperda was placed in test tube with artificial diet containing extracts of each tested material. The aqueous extract of the green fruits of R. communis presented bioactivity upon duration and weight of larval and pupal phases. The aqueous extract of R. graveolens reduced weight of pupa. The diet

  7. Inspiration from britain?

    DEFF Research Database (Denmark)

    Vagnby, Bo

    2008-01-01

    Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November......Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November...

  8. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  9. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  10. Dielectric elastomer actuators for octopus inspired suction cups.

    Science.gov (United States)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  11. Dielectric elastomer actuators for octopus inspired suction cups

    International Nuclear Information System (INIS)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-01-01

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms. (paper)

  12. Biological and Archaeological Analysis of Deepwater Shipwrecks in the Gulf of Mexico: Studying the Artificial Reef Effect of Six World War II Shipwrecks

    Science.gov (United States)

    Church, R. A.; Irion, J. B.; Schroeder, W. W.; Warren, D. J.

    2006-12-01

    In the summer of 2004 researchers from across the United States and Canada partnered together to investigate biological and archaeological questions relating to six World War II era shipwrecks discovered in the Gulf of Mexico. The science team included microbiologists, marine vertebrate and invertebrate zoologists, a molecular biologist, an oceanographer, marine archaeologists, remotely operated vehicle (ROV) technicians, and a professional marine survey crew. The United States Department of the Interior, Minerals Management Service, and the NOAA Office of Ocean Exploration sponsored this multidisciplinary project under the auspices of the National Oceanographic Partnership Program. The organizational involvement included six universities, two non-profit organizations, three commercial companies, and three U. S. federal agencies. The depth of the shipwrecks ranged from 87 to 1,964 meters. All six shipwrecks were war casualties, found during the past two decades on oil and gas surveys. These wrecks serve as artificial reefs sunk on well- documented dates, thereby offering biologists a unique opportunity to study the "artificial reef effect" of man- made structures in deep water. Taken together, these sites are an underwater battlefield, and a vital historical resource documenting a little-studied area in a crucial period of world history. They preserve information vital to scholarly and popular understanding of the war's impact in the Gulf of Mexico, on the American home front, and the global conflict. This paper will discuss the field methodology and touch on many of the scientific and technical aspects, and findings of the project.

  13. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt 238 Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq

  14. Physicists get INSPIREd

    CERN Document Server

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  15. Quantum-inspired teleportation

    International Nuclear Information System (INIS)

    Zak, Michail

    2009-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. A special class of situations when such transmissions are useful is outlined. Application of such a quantum-inspired teleportation, i.e. instantaneous transmission of conditional information on remote distances for security of communications is discussed. Similarities and differences between quantum systems and quantum-classical hybrids are emphasized.

  16. A light-driven artificial flytrap

    Science.gov (United States)

    Wani, Owies M.; Zeng, Hao; Priimagi, Arri

    2017-05-01

    The sophistication, complexity and intelligence of biological systems is a continuous source of inspiration for mankind. Mimicking the natural intelligence to devise tiny systems that are capable of self-regulated, autonomous action to, for example, distinguish different targets, remains among the grand challenges in biomimetic micro-robotics. Herein, we demonstrate an autonomous soft device, a light-driven flytrap, that uses optical feedback to trigger photomechanical actuation. The design is based on light-responsive liquid-crystal elastomer, fabricated onto the tip of an optical fibre, which acts as a power source and serves as a contactless probe that senses the environment. Mimicking natural flytraps, this artificial flytrap is capable of autonomous closure and object recognition. It enables self-regulated actuation within the fibre-sized architecture, thus opening up avenues towards soft, autonomous small-scale devices.

  17. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  18. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  19. BATMAV: a 2-DOF bio-inspired flapping flight platform

    Science.gov (United States)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  20. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  2. Synthesis, biological evaluation and biodistribution of the 99mTc-Garenoxacin complex in artificially infected rats

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Aakif Ullah Khan; Muhammad Rafiullah Khan

    2011-01-01

    The labeling of garenoxacin (GXN) with technetium-99m ( 99m Tc) using different concentrations of GXN, sodium pertechnetate (Na 99m TcO 4 ), stannous chloride dihydrate (SnCl 2 · 2H 2 O) at different pH was investigated and evaluated in terms of in-vitro stability in saline, serum, binding with multi-resistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC) and its biodistribution in artificially MDRSA and PRSC infected rats. 99m Tc-GXN complex with 97.45 ± 0.18% radiochemical stability was prepared by mixing 3 mg of GXN with 3 mCi of Na 99m TcO 4 in the presence of 150 μL of SnCl 2 · 2H 2 O (1 μg/μL in 0.01 N HCl) at a pH 5.6. The radiochemical stability of the complex was evaluated in normal saline up to 240 min of reconstitution. It was observed that the complex showed maximum RCP values after 30 min of the reconstitution and remained more than 90% up to 240 min. The complex showed radiochemical stability in normal saline at 37 deg C up to 16 h with a 17.80% de-tagging. The complex showed saturated in-vitro binding with living MDRSA and PRSC as compared to the insignificant binding with heat killed MDRSA and PRSC. Biodistribution behavior of the complex was assessed in artificially infected with living and heat killed MDRSA and PRSC rats. It was observed that the accumulation of the complex in the infected (live MDRSA and PRSC) tissue of the rats was almost five fold than in the inflamed and normal tissue. The high radiochemical stability in normal saline at room temperature, promising in-vitro stability in serum at 37 deg C, saturated in-vitro binding with living MDRSA and PRSC, specific biodistribution behavior and high infected (target) to normal (non-target) tissue and low inflamed (non-target) to normal (non-target) tissue ratios we recommend 99m Tc-GXN complex for in-vivo localization of infection caused by MDRSA and PRSC effective stains. (author)

  3. Developing an active artificial hair cell using nonlinear feedback control

    Science.gov (United States)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  4. Artificial Neural Networks (ANN) for the Simultaneous Spectrophotometric Determination of Fluoxetine and Sertraline in Pharmaceutical Formulations and Biological Fluid.

    Science.gov (United States)

    Akbari Hasanjani, Hamid Reza; Sohrabi, Mahmoud Reza

    2017-01-01

    Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV-Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200-300 nm wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mixture (prepared using orthogonal design). Three layers feed-forward neural networks using the back-propagation algorithm (B.P) has been employed for building and testing models. Several parameters such as the number of neurons in the hidden layer, learning rate and the number of epochs were optimized. The Relative Standard Deviation (RSD) for each component in real sample was calculated as 1.06 and 1.33 for Fluoxetine and Sertraline, respectively. The results showed a very good agreement between true values and predicted concentration values. The proposed procedure is a simple, precise and convenient method for the determination of Fluoxetine and Sertraline in commercial tablets.

  5. ARM-Cortex M3-Based Two-Wheel Robot for Assessing Grid Cell Model of Medial Entorhinal Cortex: Progress towards Building Robots with Biologically Inspired Navigation-Cognitive Maps

    Directory of Open Access Journals (Sweden)

    J. Cuneo

    2017-01-01

    Full Text Available This article presents the implementation and use of a two-wheel autonomous robot and its effectiveness as a tool for studying the recently discovered use of grid cells as part of mammalian’s brains space-mapping circuitry (specifically the medial entorhinal cortex. A proposed discrete-time algorithm that emulates the medial entorhinal cortex is programed into the robot. The robot freely explores a limited laboratory area in the manner of a rat or mouse and reports information to a PC, thus enabling research without the use of live individuals. Position coordinate neural maps are achieved as mathematically predicted although for a reduced number of implemented neurons (i.e., 200 neurons. However, this type of computational embedded system (robot’s microcontroller is found to be insufficient for simulating huge numbers of neurons in real time (as in the medial entorhinal cortex. It is considered that the results of this work provide an insight into achieving an enhanced embedded systems design for emulating and understanding mathematical neural network models to be used as biologically inspired navigation system for robots.

  6. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  7. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    Science.gov (United States)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  8. Growing adaptive machines combining development and learning in artificial neural networks

    CERN Document Server

    Bredeche, Nicolas; Doursat, René

    2014-01-01

    The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a...

  9. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  10. Synthesis of 99mTcV ≡ N-Pazufloxacin dithiocarbamate complex and biological evaluation in Wister rats artificially infected with Escherichia coli

    International Nuclear Information System (INIS)

    Syed Qaiser Shah; Muhammad Rafiullah Khan

    2011-01-01

    99m Tc ≡ N-Pazufloxacin dithiocarbamate ( 99m Tc ≡ N-PZN) complex was synthesized through the [ 99m Tc ≡ N] 2+ core and its aptness was radiochemically and biologically evaluated in terms of radiochemical purity (RCP) in saline, in vitro stability in serum, in vitro bacterial uptake and percent in vivo uptake in male Wister rats (MWR) artificially infected with alive and heat killed Escherichia coli (E. coli). The 99m Tc ≡ N-PZN complex showed more than 90% RCP up to 4 h after reconstitution in normal saline at room temperature with a maximum RCP value of 98.40 ± 0.28% (at 30 min). At 37 deg C in serum the complex showed stable behaviour up to 4 h with the appearance of 15.95% undesirable by products within 16 h of the incubation. The complex showed saturated in vitro binding with E. coli with a maximum uptake of 74.25 ± 0.50% (at 90 min). Normal biodistribution behaviour was noted with a sixfold higher accumulation in the muscle of the MWR, artificially infected with live E. coli as compared to the MWR infected with heat killed E. coli, inflamed and normal muscle. The high RCP in saline, elevated in vitro stability in serum, saturated in vitro binding with E. coli and the sixfold higher accumulation in the infected (live) muscle of the MWR as compared to the inflamed and normal muscle, recognized the aptness of the 99m Tc ≡ N-PZND complex as a prospective E. coli in vivo infection radiotracer. (author)

  11. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  12. Biological artificial fluid-induced non-lamellar phases in glyceryl monooleate: the kinetics pathway and its digestive process by bile salts.

    Science.gov (United States)

    Zhou, Yanyan; Wang, Qifang; Wang, Yan; Xu, Hui; Yuan, Bo; Li, Sanming; Liu, Hongzhuo

    2014-02-01

    The cubic (Q(II)) phase is a promising sustained-release system. However, its rigid gel-like propensity is highly viscous, which makes it difficult to handle in pharmaceutical applications. To circumvent this problem, a less viscous lamellar (L(α)) phase that could spontaneously transform to Q(II) phase by the introduction of water or biological artificial fluid can be used. However, the kinetics pathway of phase transition, susceptibility to digestive processes and impact of the transition on drug release are not yet well understood. We investigated various biological artificial fluid-induced L(α) to inverse Q(II) phase transition over time in glyceryl monooleate (GMO) by water penetration scan and light polarizing microscopy. To reveal the structure stability, fluorescence spectroscopy studies were conducted using pyrene as a probe. Furthermore, the release mechanism of pyrene as a lipophilic drug model in the spontaneously formed Q(II) was investigated. Although hexagonal (H(II)) mesophases occurred when phosphate buffered saline (PBS) 7.4, 0.1 M HCl or sodium taurocholate (NaTC) solutions were introduced to GMO at room temperature, they disappear with the exception of 0.1 M HCl at 37 °C. Compared with 25 °C, L(α) to Q(II) phase transition was in a faster rate as almost completely transforms were observed after 2 h post-immersion. The spontaneously formed mesophases were stable over 24 h immersions in PBS or pancreatic lipase solutions as proven by the extremely low fluorescence signal, however they were digestible by bile salts. This result indicated that digestion by bile salts was the major pathway instead of digestion by lipases. Moreover, pyrene fluorescence spectroscopy confirmed that the digestion by bile salts induced the formation of GMO-bile salt mixed micelles whose performance depended on the bile salt concentrations. This dependence influenced the drug release from the spontaneously formed Q(II) phase. All the results concluded that

  13. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  14. In Search of Inspiration

    Science.gov (United States)

    Powers, Keith

    2013-01-01

    Keeping one's self inspired in the music classroom is all about connections. Sometimes educators need to look at what they're doing from a different perspective. Luckily, there's no shortage of ways to revitalize one's classroom approach, and to help the author explores a few, he made use of some connections of his own, turning to five educators…

  15. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  16. Biologically Inspired Algorithms for Optimal Control

    National Research Council Canada - National Science Library

    Shao, Cheng; Hristu-Varsakelis, Dimitrios

    2004-01-01

    .... For example, mobile exploration and information gathering tasks can often be accomplished cheaply and more reliably by swarms of small autonomous robots as opposed to a single more sophisticated one...

  17. Biological Inspiration for Agile Autonomous Air Vehicles

    National Research Council Canada - National Science Library

    Evers, Johnny H

    2007-01-01

    .... Flying animals exhibit capabilities for aerial acrobatics, insensitivity to wind gusts, avoiding collision with or intercepting fixed and moving objects, landing and take off from small perches...

  18. Trusted computation through biologically inspired processes

    Science.gov (United States)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  19. RHex: A Biologically Inspired Hexapod Runner

    National Research Council Canada - National Science Library

    Altendorfer, R; Moore, N; Komsuoglu, H; Buehler, M; Brown, H. B., Jr; McMordie, D; Saranli, U; Full, R; Koditschek, D. E

    2001-01-01

    .... We present empirical data establishing that RHex exhibits a dynamical ("bouncing") gait - its mass center moves in a manner well approximated by trajectories from a Spring Loaded Inverted Pendulum (SLIP...

  20. Learning from nature : Biologically-inspired sensors

    NARCIS (Netherlands)

    Wicaksono, D.H.B.

    2008-01-01

    New emerging sensing applications demand novel sensors in micro-/nano-scale to enable integration and embedding into higher level structures or systems. Downsizing the structure will usually decrease the sensitivity of the sensors, since the sensitivity is a function of geometrical parameters, e.g.

  1. Project Summary: Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-02-01

    stabilization system will appear as image blur. In the early half of the 20th century, mathematicians such as Norbert Wiener and colleagues...Interscience Publications. 3. Wiener , N., 1948, Cybernetics: Or Control and Communication in the Animal and the Machine, MIT Press, Cambridge Mass. 4

  2. Biologically inspired optimization methods an introduction

    CERN Document Server

    Wahde, M

    2008-01-01

    The advent of rapid, reliable and cheap computing power over the last decades has transformed many, if not most, fields of science and engineering. The multidisciplinary field of optimization is no exception. First of all, with fast computers, researchers and engineers can apply classical optimization methods to problems of larger and larger size. In addition, however, researchers have developed a host of new optimization algorithms that operate in a rather different way than the classical ones, and that allow practitioners to attack optimization problems where the classical methods are either not applicable or simply too costly (in terms of time and other resources) to apply.This book is intended as a course book for introductory courses in stochastic optimization algorithms (in this book, the terms optimization method and optimization algorithm will be used interchangeably), and it has grown from a set of lectures notes used in courses, taught by the author, at the international master programme Complex Ada...

  3. Biologically Inspired mm-size Gliding UAV

    Science.gov (United States)

    Weihs, Daniel; Zussman, Eyal; Yarin, Alexander

    2002-11-01

    We present a first design of an unmanned aerial vehicle whose aerodynamic loads are carried by comb-like permeable surfaces. This concept was based on observation and analysis of the flight capabilities of the Thrip family of insects, whose have wings of this form and various plant seeds which use this concept to form an aerodynamic decelerator. This concept is only practical for at low Reynolds numbers, as the viscous trace of bodies moving in fluid becomes thicker as Re becomes smaller. When Reaerodynamic decelerators (parachutes) made of permeable light mats of submicron diameter nanofibers. We produced the nanofiber matrices (mats) by electrospinning of polymer solutions, obtaining fibers of 200-400 nm diameter. These fibers were then deposited on frames that serve to define the aerodynamic surfaces, thus producing the mat, with controllable density. For stability, the aerodynamic surfaces had positive dihedral ( inverted umbrella) forms with the fuselage hanging below. When dropped, the platforms fell freely through the air, apex down, reaching terminal velocity very quickly. By comparing the sink rate of the permeable structures with equivalent decelerators with continuous (Saran-wrap) surfaces we show that the permeable surfaces are equivalent to continuous surfaces, with significant weight savings, as long as the local Reynolds number is o(1).

  4. Biological effects of implanted nuclear energy sources for artificial heart devices. Final report, September 1, 1968-May 31, 1979

    International Nuclear Information System (INIS)

    Kallfelz, F.A.

    1981-04-01

    This work involved a study of the biological effects of radiation from mock 30 watt plutonium-238 power sources in dogs. Dogs were implanted with radiation sources producing neutron and gamma radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of 1, 5, 15, and 70 times the radiation flux expected from a 30 watt plutonium-238 source. Times of observation varied from 0.25 to 8.0 years depending on experimental design or individual circumstances e.g. premature death from radiation related or non-radiation related causes. A number of clinico-pathologic determinations were performed on each dog at monthly intervals beginning five months before implantation and continuing until termination. Complete necropsy examinations were performed on all animals at termination. Very few abnormalities were observed in the clinical parameters measured except in the highest radiation flux groups (15X and 70X). The sperm count of males in the 15X and 70X groups demonstrated a rapid decrease with time. In the 5X group a gradual decrease in sperm count occurred with increasing time, while 1X males did not differ in sperm counts from controls. With the exception of one 15X dog which remained in the study for 6.5 years, all animals in the 15X and 70X groups were terminated at early time periods due to deterioration at the implant site characterized by abscessation and, not infrequently, tumor formation. The incidence of neoplasia increased with radiation source size. The results suggested that, although no statistically significant increases in tumor incidence were noted among groups, the incidence of neoplasia observed at autopsy tended to increase with increasing source size and radiation dose

  5. Designing micro- and nanostructures for artificial urinary sphincters

    Science.gov (United States)

    Weiss, Florian M.; Deyhle, Hans; Kovacs, Gabor; Müller, Bert

    2012-04-01

    The dielectric elastomers are functional materials that have promising potential as actuators with muscle-like mechanical properties due to their inherent compliancy and overall performance: the combination of large deformations, high energy densities and unique sensory capabilities. Consequently, such actuators should be realized to replace the currently available artificial urinary sphincters building dielectric thin film structures that work with several 10 V. The present communication describes the determination of the forces (1 - 10 N) and deformation levels (~10%) necessary for the appropriate operation of the artificial sphincter as well as the response time to master stress incontinence (reaction time less than 0.1 s). Knowing the dimensions of the presently used artificial urinary sphincters, these macroscopic parameters form the basis of the actuator design. Here, we follow the strategy to start from organic thin films maybe even monolayers, which should work with low voltages but only provide small deformations. Actuators out of 10,000 or 100,000 layers will finally provide the necessary force. The suitable choice of elastomer and electrode materials is vital for the success. As the number of incontinent patients is steadily increasing worldwide, it becomes more and more important to reveal the sphincter's function under static and stress conditions to realize artificial urinary sphincters, based on sophisticated, biologically inspired concepts to become nature analogue.

  6. Studies on the Biotribological and Biological Behavior of Thermally Oxidized Ti6Al4V for Use in Artificial Cervical Disk

    Science.gov (United States)

    Wang, Song; Li, Junhui; Lu, Junzhe; Tyagi, Rajnesh; Liao, Zhenhua; Feng, Pingfa; Liu, Weiqiang

    2017-05-01

    The artificial cervical disk was simplified and considered as a ball-on-socket model with the material configuration of ultra-high molecular weight polyethylene and Ti6Al4V (PE-on-TC4). In order to improve the wear resistance, an optimized thermal oxidation (TO) coating was applied on TC4 component. The long-term wear behavior of the model was assessed in vitro using a wear simulator under 10 million cycles (MC) testing intervals. The biological behavior was investigated by bone marrow-derived mesenchymal stem cells (BMSCs) cell attachment and cell viability/proliferation assays, respectively. The total average wear rate for PE/TC4 pair was found to be 0.81 mg/MC, whereas the same was about 0.96 mg/MC for PE/TO pair. The wear rate of the metal has been neglected in comparison with that of the mating polymer. PE component was found to suffer severe damage characterized by scratches, fatigue cracks and arc-shaped wear grooves on the edge zone of ball. The dominant wear mechanism was abrasion for metal component while the dominant failure mechanism was a mix of plowing, fatigue and plastic deformation for polymer component. TO coating improved the cell attachment property of TC4, and the cell viability results were also quite good. TO coating protected TC4 from being plowed and avoided the release of toxic metal ions. However, this intensified the wear of PE component. Considering the biotribological and biological behavior in totality, TO coating could still be promising when applied in articulation surfaces.

  7. Didactic Strategy Discussion Based on Artificial Neural Networks Results.

    Science.gov (United States)

    Andina, D.; Bermúdez-Valbuena, R.

    2009-04-01

    Artificial Neural Networks (ANNs) are a mathematical model of the main known characteristics of biological brian dynamics. ANNs inspired in biological reality have been useful to design machines that show some human-like behaviours. Based on them, many experimentes have been succesfully developed emulating several biologial neurons characteristics, as learning how to solve a given problem. Sometimes, experimentes on ANNs feedback to biology and allow advances in understanding the biological brian behaviour, allowing the proposal of new therapies for medical problems involving neurons performing. Following this line, the author present results on artificial learning on ANN, and interpret them aiming to reinforce one of this two didactic estrategies to learn how to solve a given difficult task: a) To train with clear, simple, representative examples and feel confidence in brian generalization capabilities to achieve succes in more complicated cases. b) To teach with a set of difficult cases of the problem feeling confidence that the brian will efficiently solve the rest of cases if it is able to solve the difficult ones. Results may contribute in the discussion of how to orientate the design innovative succesful teaching strategies in the education field.

  8. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.

    Science.gov (United States)

    Lorent, Joseph H; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-11-28

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.

  9. Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter.

    Science.gov (United States)

    Rodríguez-Espinosa, P F; Mendoza-Pérez, J A; Tabla-Hernandez, J; Martínez-Tavera, E; Monroy-Mendieta, M M

    2018-01-02

    The objective of the present study was to investigate the ability of water hyacinth (Eichhornia crassipes) to absorb organic compounds (potassium hydrogen phthalate, sodium tartrate, malathion, 2,4-dichlorophenoxy acetic acid (2,4-D), and piroxicam). For the aforementioned purpose, an artificial wetland system (AWS) was constructed and filled with water hyacinth collected from the Valsequillo Reservoir, Puebla, Mexico. Potassium hydrogen phthalate and sodium tartrate were measured in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The present study indicated that the water hyacinths absorbed nearly 1.8-16.6 g of COD kg -1 dm (dry mass of water hyacinth), while the absorbance efficiency of BOD was observed to be 45.8%. The results also indicated that the maximum absorbance efficiency of malathion, 2,4-D, and piroxicam was observed to be 67.6%, 58.3%, and 99.1%, respectively. The kinetics of organic compounds fitted different orders as malathion followed a zeroth-order reaction, while 2,4-D and piroxicam followed the first-order reactions. Preliminary assessment of absorption of heavy metals by the water hyacinth in the AWS was observed to be (all values in mg g -1 ) 7 (Ni), 13.4 (Cd), 16.3 (Pb), and 17.5 (Zn) of dry biomass, thus proving its feasibility to depurate wastewater.

  10. Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor.

    Science.gov (United States)

    Kundu, Pradyut; Debsarkar, Anupam; Mukherjee, Somnath; Kumar, Sunil

    2014-01-01

    Wastewater containing high concentration of oxygen-demanding carbonaceous organics and nitrogenous materials (chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN)) as nutrients emanated from small- to large-scale slaughterhouse units cause depletion of dissolved oxygen in water bodies and attributes to the threat of eutrophication. Biological treatment of wastewater is a useful tool through ages for the treatment of wastewater owing to its cost-effectiveness, reliability along with its innocuous output features. This paper deals with the treatment of slaughter house wastewater by conducting a laboratory scale batch reactor with different input characterized samples, and the experimental results were explored for the formulation of feed-forward back-propagation artificial neural network (ANN) to predict the combined removal of COD and TKN. The ANN modelling was carried out using neural network tool box of MATLAB (version 7.0), with the Levenberg-Marquardt training algorithm. Various trials were examined for the training of the ANN model using the number of neurons in the hidden layer varying from 2 to 30. The mean square error function and regression analysis were also applied for performance analysis of the ANN model. All the input data were logged-in after carrying out detailed experiment in the laboratory with a view to examine the performance of the batch reactor for the treatment of slaughterhouse wastewater. The experimental results were used for testing and validating the ANN model.

  11. Software Reviews. PC Software for Artificial Intelligence Applications.

    Science.gov (United States)

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  12. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  13. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    Science.gov (United States)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  14. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  15. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  16. Bio-Inspired Innovation and National Security

    Science.gov (United States)

    2010-01-01

    of Weapons of Mass Destruction: Assessing the Risks (Washington, DC: U.S. Government Printing Office, August 1993). 11 Jim Monke , Agroterrorism...Six Legs,” The Boston Globe, October 21, 2007. 15 Monke . 50 Bio-inspired innovation and national security1 BioloGical WarFare: a WarFiGHtinG...Scientists and Tibetan Buddhists Examine Human Nature (New York: Oxford University Press, 2002). 50 L. Tickle-Degnan and R. Rosenthal, “The Nature of

  17. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  18. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  19. WPMSD: A Malicious Script Detection Method Inspired by the Process of Immunoglobulin Secretion

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2011-10-01

    Full Text Available Inspired by the process of immunoglobulin secretion in biological body, we present a Web Page Malicious Script Detection Method (WPMSD. In this paper, Firstly, the basic definitions of artificial immune items are given. Secondly, according to the spreading range of malicious script, the immunoglobulin number is changed as the detector clone proliferation is stimulated by malicious scripts. Further more, the nonlinear dynamics of antibody number is discussed. Thirdly, we propose a probability approach to trigger alarms to inform that the detected scripts are harmful. Finally, the WPMSD collects the effective immunoglobulin set based on Hidden Markov Model (HMM to update the detector gene library. Compared with the traditional immune based detection methods, such as Negative Selection Algorithm (NSA, Dynamic Colonel Selection (DynamiCS, and Variable size Detector (Vdetector, the false alarm rate of WPMSD has been reduced by 18.09%, 12.6%, and 7.47% respectively.

  20. Search and optimization by metaheuristics techniques and algorithms inspired by nature

    CERN Document Server

    Du, Ke-Lin

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  1. Biologia floral e polinização artificial de pinhão-manso no norte de Minas Gerais Floral biology and artificial polinization in physic nut in the north of Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Pinto Juhász

    2009-09-01

    Full Text Available O objetivo deste trabalho foi avaliar alguns aspectos da biologia floral e do sistema reprodutivo de Jatropha curcas, em Janaúba, MG. Foram registrados: o número de flores femininas e masculinas; o intervalo de abertura das flores femininas; e a formação de frutos por apomixia, autofecundação, geitonogamia e xenogamia. A proporção de flores masculinas para femininas foi de 20:1. O intervalo de abertura das flores femininas variou de um a sete dias, conforme o número delas na inflorescência. No teste de apomixia, houve formação de frutos em apenas 5% das flores avaliadas. A percentagem de frutificação variou de 79 a 88% na autofecundação manual, na geitonogamia e na xenogamia. Na autofecundação sem a polinização manual a frutificação foi de 20%, e os frutos formados foram significativamente menores, com número inferior de sementes por fruto e menor índice de velocidade de emergência. As sementes foram semelhantes às formadas por polinização natural. é possível a realização de cruzamentos controlados em pinhão-manso, e não há autoincompatibilidade nesta espécie.The aim of this work was to evaluate some aspects of the floral biology and of the reproductive system of Jatropha curcas, in Janaúba county, MG, Brazil. The number of female and male flowers, the interval between the opening of female flowers, and the formation of fruits by apomixis, self-pollination, geitonogamy and by xenogamy were registered. The ratio of male to female flowers was 20:1. The interval of opening of female flowers was of one to seven days, depending on the number of female flowers in the inflorescence. On the apomixy test, the formation of fruits occurred in only 5% of the evaluated flowers. The fruit set was between 79 and 88% through the manual self-pollination, and through the geitonogamy, and the xenogamy. In the self-pollination treatment, without the hand-pollination, the fruit set was of 20%, and the fruits formed were

  2. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  3. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    Science.gov (United States)

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  4. Bio-Inspired Self-Cleaning Surfaces

    Science.gov (United States)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  5. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  6. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    Science.gov (United States)

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  7. [Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area].

    Science.gov (United States)

    Hu, Yi-Gang; Feng, Yu-Lan; Zhang, Zhi-Shan; Huang, Lei; Zhang, Peng; Xu, Bing-Xin

    2014-01-01

    Uncertainties still existed for evaluating greenhouse gases fluxes (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) at the regional scale for desert ecosystem because available GHGs data about biological soil crusts (BSCs) was very scarce. In 2011 and 2012, soil ecosystem covered by various types of BSCs and BSCs at different succession stages in an artificial sand-fixing vegetation region established in various periods at southeast of the Shapotou area in Tengger Desert was selected to measure fluxes of CO2, CH4 and N2O using static chamber and gas chromatography. The results showed that curst type, recovery time and their interactions with sampling date significantly affected CO2 flux. Recovery time and interaction of crust type and sampling date significantly affected CH4 flux. Sampling date significantly affected the fluxes of CO2, CH4 and N2O. The mean annual flux of CO2 for moss crust (105.1 mg x m(-2) x h(-1)) was significantly higher than that of algae crust (37.7 mg x m(-2) x h(-1)) at the same succession stage. Annual mean CH4 and N2O consumption was 19.9 and 3.4 microg x m(-2) x h(-1), respectively. Mean annual consumption of CH4 and N2O for algae crust was slightly higher than that of moss crust, however, significant difference was not found. Ecosystem respiration (Re) of desert soil covered by BSCs increased with the recovery process of desert ecosystem, in contrast, consumption of CH4 and N2O decreased. Re of moss crust was more sensitive to temperature and moisture variation than algae crust and Re sensitivity of temperature and moisture gradually increased with the development and succession of BSCs. Both soil temperature and moisture were not the main factor to determine CH4 and N2O fluxes of BSCs-soil in desert ecosystem.

  8. An immune-inspired semi-supervised algorithm for breast cancer diagnosis.

    Science.gov (United States)

    Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong

    2016-10-01

    Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  10. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  11. Integration of robotics and neuroscience beyond the hand: What kind of synergies?. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    d'Avella, Andrea

    2016-07-01

    Santello et al. [1] review an impressive amount of work on the control of biological and artificial hands that demonstrates how the concept of synergies can lead to a successful integration of robotics and neuroscience. Is it possible to generalize the same approach to the control of biological and artificial limbs and bodies beyond the hand? The human hand synergies that appear most relevant for robotic hands are those defined at the kinematic level, i.e. postural synergies [2]. Postural synergies capture the geometric relations among the many joints of the hand and allow for a low dimensional characterization and synthesis of the static hand postures involved in grasping and manipulating a large set of objects. However, many other complex motor skills such as walking, reaching, throwing, and catching require controlling multi-articular time-varying trajectories rather than static postures. Dynamic control of biological and artificial limbs and bodies, especially when geometric and inertial parameters are uncertain and the joints are compliant, poses great challenges. What kind of synergies might simplify the dynamic control of motor skills involving upper and lower limbs as well as the whole body?

  12. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  13. String-inspired cosmology

    International Nuclear Information System (INIS)

    Wands, David

    2002-01-01

    I discuss cosmological models either derived from, or inspired by, string theory or M-theory. In particular, I discuss solutions in the low-energy effective theory and the role of the dilaton, moduli and antisymmetric form fields in the dimensionally reduced effective action. The pre-big-bang model is an attempt to use cosmological solutions to make observational predictions. I then discuss the effective theory of gravity found in recent braneworld models where we live on a 3-brane embedded in a five-dimensional spacetime and how the study of cosmological perturbations may enable us to test these ideas

  14. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  15. When science inspires art

    CERN Document Server

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  16. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  17. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  18. Biología floral y polinización artificial del guanábano Annona muricata L. en condiciones del Valle del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Escobar T. William

    1986-03-01

    Full Text Available Aunque la flor es hermafrodita presenta protoginia y existe un período de 36 a 48 horas durante el cual pueden encontrarse maduros ambos órganos sexuales, la disposición apretada del cuerpo de estambres, aún estando dehiscentes, no permite disponibilidad de polen. Los insectos asociados con las flores no tienen influencia en el proceso de polinización. Se presume que los frutos se forman a partir de autopolinización (autogamia que ocurre al retener los estambres desprendidos algunos pétalos interiores. En razón a que esta forma es esporádica ya que el tiempo desde la polinización de los estigmas hasta su desprendimiento en muchos casos puede no ser suficiente para que ocurra la fecundación, se presenta bajo prendimiento o cuajamiento de las flores. La polinización manual de las flores aumenta la producción. El tamaño y la velocidad del crecimiento de los frutos están en relación directa con el número de pistilos fecundados.A field study was conducted on floral biology and artificial pollination in soursop (Annona muricata L.. Although flowers are apparently adapted to cross pollination despite being anatomically hermaphrodite, the bunched arrangement of stamens does not results in available fertil pollen. There is a period from 36 to 48 hours in which both sexual organs are simultaneusly, however guanabana flowers functions as physiologically protogineous. None insect genera has any influency on poIlination. It is assumed that generally fruits are formed by autogamy after stigmas get in contact with stamens retained by lower petals. Because this way of pollination is rather sporadic and sometimes stigmas shed after pollination but before fertilization, only a low number of fruit setting is observed as many flowers fall out due to the low number that get fertilized. Manual poIlination resulted in an effective way to increase production. The size and growth rate of these fruits are correlated with the number of pistiIs get

  19. An artificial bioindicator system for network intrusion detection.

    Science.gov (United States)

    Blum, Christian; Lozano, José A; Davidson, Pedro Pinacho

    2015-01-01

    An artificial bioindicator system is developed in order to solve a network intrusion detection problem. The system, inspired by an ecological approach to biological immune systems, evolves a population of agents that learn to survive in their environment. An adaptation process allows the transformation of the agent population into a bioindicator that is capable of reacting to system anomalies. Two characteristics stand out in our proposal. On the one hand, it is able to discover new, previously unseen attacks, and on the other hand, contrary to most of the existing systems for network intrusion detection, it does not need any previous training. We experimentally compare our proposal with three state-of-the-art algorithms and show that it outperforms the competing approaches on widely used benchmark data.

  20. Follow-Up and Risk Assessment in Patients with Myocardial Infarction Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tatjana Gligorijević

    2017-01-01

    Full Text Available Artificial neural networks (ANNs are machine learning technique, inspired by the principles found in biological neurons. This technique has been used for prediction and classification problems in many areas of medical signal processing. The aim of this paper was to identify individuals with high risk of death after acute myocardial infarction using ANN. A training dataset for ANN was 1705 consecutive patients who underwent 24-hour ECG monitoring, short ECG analysis, noninvasive beat-to-beat heart-rate variability, and baroreflex sensitivity that were followed for 3 years. The proposed neural network classifier showed good performance for survival prediction: 88% accuracy, 81% sensitivity, 93% specificity, 0.85 F-measure, and area under the curve value of 0.77. These findings support the theory that patients with high sympathetic activity (reduced baroreflex sensitivity have an increased risk of mortality independent of other risk factors and that artificial neural networks can indicate the individuals with a higher risk.

  1. The scientific study of inspiration in the creative process: challenges and opportunities.

    Science.gov (United States)

    Oleynick, Victoria C; Thrash, Todd M; LeFew, Michael C; Moldovan, Emil G; Kieffaber, Paul D

    2014-01-01

    Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale (IS), which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect) by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than "perspiration" (effort), and we review empirical evidence that inspiration and effort both play important-but different-roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas "fire the soul," such that individuals are compelled to transform ideas into products and solutions that may benefit society.

  2. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  3. An Exploration of Design Students' Inspiration Process

    Science.gov (United States)

    Dazkir, Sibel S.; Mower, Jennifer M.; Reddy-Best, Kelly L.; Pedersen, Elaine L.

    2013-01-01

    Our purpose was to explore how different sources of inspiration influenced two groups of students' inspiration process and their attitudes toward their design projects. Assigned sources of inspiration and instructor's assistance in the search for inspiration varied for two groups of students completing a small culture inspired product design…

  4. VI International Workshop on Nature Inspired Cooperative Strategies for Optimization

    CERN Document Server

    Otero, Fernando; Masegosa, Antonio

    2014-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm In...

  5. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  6. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  7. Artificial Metalloenzymes

    NARCIS (Netherlands)

    Rosati, Fiora; Roelfes, Gerard

    Artificial metalloenzymes have emerged as a promising approach to merge the attractive properties of homogeneous catalysis and biocatalysis. The activity and selectivity, including enantioselectivity, of natural metalloenzymes are due to the second coordination sphere interactions provided by the

  8. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  9. Artificial sweeteners

    DEFF Research Database (Denmark)

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie......-containing sweeteners. The purpose of this review is to summarize the current evidence on the effect of artificial sweeteners on body weight, appetite, and risk markers for diabetes and CVD in humans....

  10. Holography inspired stringy hadrons

    Science.gov (United States)

    Sonnenschein, Jacob

    2017-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.

  11. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  12. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  13. Touch at a distance sensing: lateral-line inspired MEMS flow sensors

    International Nuclear Information System (INIS)

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-01-01

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s −1 ) and 0.022 V/(m s −1 ) and threshold velocity detection limits of 0.1 m s −1 and 0.015 m s −1 in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance. (paper)

  14. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    works. They have the ability to learn from empirical datal information. They find use in computer science and control engineering fields. In recent years artificial ... However there are vast differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of biologically derived NNs ...

  15. Susceptibility of the eggs of the field slug Deroceras reticulatum to contact with pesticides and substances of biological origin on artificial soil

    NARCIS (Netherlands)

    Iglesias, J.; Castillejo, J.; Ester, A.; Castro, R.; Lombardia, M.J.

    2002-01-01

    The toxicity of 14 substances, including a number of pesticides, to the eggs of the pest slug Deroceras reticulatum was determined in laboratory experiments. Eggs were kept in contact with a precisely defined artificial soil to which a range of concentrations of the test substances had been applied.

  16. Working hard to make a simple definition of synergies. Comment on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    Science.gov (United States)

    Alessandro, Cristiano; Oliveira Barroso, Filipe; Tresch, Matthew

    2016-07-01

    The paper ;Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands; [1] presents a comprehensive review of the work carried out as part of the EU funded project ;The Hand Embodied;. The work uses the concept of ;synergy; to study the neuromuscular control of the human hand and to design novel robotics systems. The project has been very productive and has made important contributions. We are therefore confident that it will lead to further advancements and experiments in the future.

  17. Beyond AI: Artificial Dreams Conference

    CERN Document Server

    Zackova, Eva; Kelemen, Jozef; Beyond Artificial Intelligence : The Disappearing Human-Machine Divide

    2015-01-01

    This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations.  Artificial Dreams epitomize our controversial quest for non-biological intelligence, and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities.   While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which i...

  18. Constraints of Biological Neural Networks and Their Consideration in AI Applications

    Directory of Open Access Journals (Sweden)

    Richard Stafford

    2010-01-01

    Full Text Available Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances. Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.

  19. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  20. Impact detection using ultrasonic waves based on artificial immune system

    Science.gov (United States)

    Okamoto, Keisuke; Mita, Akira

    2009-03-01

    This paper presents a structural health monitoring system for judging structural condition of metallic plates by analyzing ultrasonic waves. Many critical accidents of structures like buildings and aircrafts are caused by small structural errors; cracks and loosened bolts etc. This is a reason why we need to detect little errors at an early stage. Moreover, to improve precision and to reduce cost for damage detection, it is necessary to build and update the database corresponding to environmental change. This study focuses our attention on the automatable structures, specifically, applying artificial immune system (AIS) algorithm to determine the structure safe or not. The AIS is a novelty computational detection algorithm inspired from biological defense system, which discriminates between self and non-self to reject nonself cells. Here, self is defined to be normal data patterns and non-self is abnormal data patterns. Furthermore, it is not only pattern recognition but also it has a storage function. In this study, a number of impact resistance experiments of duralumin plates, with normal structural condition and abnormal structural condition, are examined and ultrasonic waves are acquired by AE sensors on the surface of the aluminum plates. By accumulating several feature vectors of ultrasonic waves, a judging method, which can determine an abnormal wave as nonself, inspired from immune system is created. The results of the experiments show good performance of this method.

  1. Neuro-prosthetic interplay. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al.

    Science.gov (United States)

    Schieber, Marc H.

    2016-07-01

    Control of the human hand has been both difficult to understand scientifically and difficult to emulate technologically. The article by Santello and colleagues in the current issue of Physics of Life Reviews[1] highlights the accelerating pace of interaction between the neuroscience of controlling body movement and the engineering of robotic hands that can be used either autonomously or as part of a motor neuroprosthesis, an artificial body part that moves under control from a human subject's own nervous system. Motor neuroprostheses typically involve a brain-computer interface (BCI) that takes signals from the subject's nervous system or muscles, interprets those signals through a decoding algorithm, and then applies the resulting output to control the artificial device.

  2. Bio-inspired hair-based inertial sensors

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2015-01-01

    In biology, hair-based sensor systems are used regularly for measurement of physical quantities like acceleration, flow, rotational rate, and IR light. In this chapter, two different types of bio-inspired sensors for inertial measurement are discussed, which have been developed using surface

  3. BioMAV : Bio-inspired intelligence for autonomous flight

    NARCIS (Netherlands)

    Gerke, P.K.; Langevoort, J.; Lagarde, S.; Bax, L.; Grootswagers, T.; Drenth, R.J.; Slieker, V.; Vuurpijl, L.; Haselager, P.; Sprinkhuizen-Kuyper, I.; Van Otterlo, M.; De Croon, G.C.H.E.

    2011-01-01

    This paper aims to contribute to research on biologically inspired micro air vehicles in two ways: (i) it explores a novel repertoire of behavioral modules which can be controlled through ?nite state machines (FSM) and (ii) elementary movement detectors (EMD) are combined with a center/surround edge

  4. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments

    Science.gov (United States)

    Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.

    2017-08-01

    Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.

  5. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  6. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  7. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation

    International Nuclear Information System (INIS)

    Park, Yong-Lae; Chen, Bor-rong; Pérez-Arancibia, Néstor O; Young, Diana; Wood, Robert J; Nagpal, Radhika; Stirling, Leia; Goldfield, Eugene C

    2014-01-01

    We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle–foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle–tendon–ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27° (14° dorsiflexion and 13° plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments. (paper)

  8. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-01-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  9. Inspiring to inspire: Developing teaching in higher education

    Directory of Open Access Journals (Sweden)

    Louise Williams

    2016-12-01

    Full Text Available Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through individual reflections to a set of pre-determined questions, a group of Higher Education teachers (n = 5 with a responsibility for the development of learning, teaching and assessment, share their thoughts, feelings and beliefs on inspiring teaching. The interpretive analysis of the data shows from a staff perspective that the notion of inspiring teaching has three main components which are all interrelated, those being; the actual teaching and learning experience; the design of the curriculum and the teacher/student relationship. Staff development initiatives were found to help people explore and develop their own teaching philosophy, to develop new practices and to share and learn from others. However, individual’s mindset, beliefs and attitudes were found to be a challenge. Teachers can frame their development around the different aspects of inspiring teaching and with support from senior leadership as well as a positive culture, teaching communities can work together towards inspiring teaching.

  10. eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan

    2009-01-01

    This paper presents the concept of a biological inspired reconfigurable hardware cell architecture which supports self-organisation and self-healing. Two fundamental processes in biology, namely fertilization-to-birth and cell self-healing have inspired the development of this cell architecture. ...

  11. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  12. Importance of nonverbal expression to the emergence of emotive artificial intelligence systems

    Science.gov (United States)

    Pioggia, Giovanni; Hanson, David; Dinelli, Serena; Di Francesco, Fabio; Francesconi, R.; De Rossi, Danilo

    2002-07-01

    The nonverbal expression of the emotions, especially in the human face, has rapidly become an area of intense interest in computer science and robotics. Exploring the emotions as a link between external events and behavioural responses, artificial intelligence designers and psychologists are approaching a theoretical understanding of foundational principles which will be key to the physical embodiment of artificial intelligence. In fact, it has been well demonstrated that many important aspects of intelligence are grounded in intimate communication with the physical world- so-called embodied intelligence . It follows naturally, then, that recent advances in emotive artificial intelligence show clear and undeniable broadening in the capacities of biologically-inspired robots to survive and thrive in a social environment. The means by which AI may express its foundling emotions are clearly integral to such capacities. In effect: powerful facial expressions are critical to the development of intelligent, sociable robots. Following discussion the importance of the nonverbal expression of emotions in humans and robots, this paper describes methods used in robotically emulating nonverbal expressions using human-like robotic faces. Furthermore, it describes the potentially revolutionary impact of electroactive polymer (EAP) actuators as artificial muscles for such robotic devices.

  13. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  14. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  15. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  16. Modal Processor Effects Inspired by Hammond Tonewheel Organs

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-06-01

    Full Text Available In this design study, we introduce a novel class of digital audio effects that extend the recently introduced modal processor approach to artificial reverberation and effects processing. These pitch and distortion processing effects mimic the design and sonics of a classic additive-synthesis-based electromechanical musical instrument, the Hammond tonewheel organ. As a reverb effect, the modal processor simulates a room response as the sum of resonant filter responses. This architecture provides precise, interactive control over the frequency, damping, and complex amplitude of each mode. Into this framework, we introduce two types of processing effects: pitch effects inspired by the Hammond organ’s equal tempered “tonewheels”, “drawbar” tone controls, vibrato/chorus circuit, and distortion effects inspired by the pseudo-sinusoidal shape of its tonewheels and electromagnetic pickup distortion. The result is an effects processor that imprints the Hammond organ’s sonics onto any audio input.

  17. Inspiring Student Self-Motivation

    Directory of Open Access Journals (Sweden)

    Virginia Brackett

    2007-01-01

    Full Text Available While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The concept of individuals who hold some sense of self that a classroom mentor may nurture through student inspiration is one in which I place a modicum of trust. To “inspire” is literally to “breathe in,” to actively pull sustenance from a proffered external source. Active student determination based on some sense of self may couple with instructor inspiration to promote academic success.

  18. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  19. Artificial structures on Mars

    Science.gov (United States)

    Van Flandern, T.

    2002-05-01

    Approximately 70,000 images of the surface of Mars at a resolution of up to 1.4 meters per pixel, taken by the Mars Global Surveyor spacecraft, are now in public archives. Approximately 1% of those images show features that can be broadly described as `special shapes', `tracks, trails, and possible vegetation', `spots, stripes, and tubes', `artistic imagery', and `patterns and symbols'. Rather than optical illusions and tricks of light and shadow, most of these have the character that, if photographed on Earth, no one would doubt that they were the products of large biology and intelligence. In a few cases, relationships, context, and fulfillment of a priori predictions provide objective evidence of artificiality that is exempt from the influence of experimenter biases. Only controlled test results can be trusted because biases are strong and operate both for and against artificiality.

  20. Inspiration fra NY-times

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    2015-01-01

    NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever.......NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever....

  1. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  2. Solving Systems of Equations with Techniques from Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Irina Maria Terfaloaga

    2015-07-01

    Full Text Available A frequent problem in numerical analysis is solving the systems of equations. That problem has generated in time a great interest among mathematicians and computer scientists, as evidenced by the large number of numerical methods developed. Besides the classical numerical methods, in the last years were proposed methods inspired by techniques from artificial intelligence. Hybrid methods have been also proposed along the time [15, 19]. The goal of this study is to make a survey of methods inspired from artificial intelligence for solving systems of equations

  3. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  4. Artificial Wormhole

    OpenAIRE

    Kirillov, A. A.; Savelova, E. P.

    2012-01-01

    It is shown that recently reported result by the OPERA Collaboration (arXive:1109.4897) of an early arrival time of muon neutrinos with respect to the speed of light in vacuum does not violate standard physical laws. We show that vacuum polarization effects in intensive external fields may form a wormhole-like object. The simplest theory of such an effect is presented and basic principles of formation of an artificial wormhole are also considered.

  5. Artificial vision.

    Science.gov (United States)

    Zarbin, M; Montemagno, C; Leary, J; Ritch, R

    2011-09-01

    A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.

  6. Grasping versus knitting: A geometric perspective. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al.

    Science.gov (United States)

    Laumond, Jean-Paul

    2016-07-01

    Grasping an object is a matter of first moving a prehensile organ at some position in the world, and then managing the contact relationship between the prehensile organ and the object. Once the contact relationship has been established and made stable, the object is part of the body and it can move in the world. As any action, the action of grasping is ontologically anchored in the physical space while the correlative movement originates in the space of the body. Robots-as any living system-access the physical space only indirectly through sensors and motors. Sensors and motors constitute the space of the body where homeostasis takes place. Physical space and both sensor space and motor space constitute a triangulation, which is the locus of the action embodiment, i.e. the locus of operations allowing the fundamental inversion between world-centered and body-centered frames. Referring to these three fundamental spaces, geometry appears as the best abstraction to capture the nature of action-driven movements. Indeed, a particular geometry is captured by a particular group of transformations of the points of a space such that every point or every direction in space can be transformed by an element of the group to every other point or direction within the group. Quoting mathematician Poincaré, the issue is not find the truest geometry but the most practical one to account for the complexity of the world [1]. Geometry is then the language fostering the dialog between neurophysiology and engineering about natural and artificial movement science and technology. Evolution has found amazing solutions that allow organisms to rapidly and efficiently manage the relationship between their body and the world [2]. It is then natural that roboticists consider taking inspiration of these natural solutions, while contributing to better understand their origin.

  7. Processing semblances induced through inter-postsynaptic functional LINKs, presumed biological parallels of K-lines proposed for building artificial intelligence

    Directory of Open Access Journals (Sweden)

    Kunjumon I Vadakkan

    2011-07-01

    Full Text Available The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of virtual internal sensation - namely, semblion. Neuronal networks that undergo continuous oscillatory activity at certain levels of their organization induce semblions enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI. Suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky’s K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system are explained.

  8. Experimental study of physical properties of artificial materials for the development of the tissue-engineered valvular heart apparatus in comparison with biological analogs

    Science.gov (United States)

    Chiryatyeva, Aleksandra; Trebushat, Dmitry; Prokhorokhin, Aleksei; Khakhalkin, Vladimir; Andreev, Mark; Novokhreschenov, Aleksei; Kretov, Evgeny

    2017-12-01

    Cardiovascular diseases are the leading cause of death worldwide. Valvular heart disease often requires valve repair or replacement. Today, surgery uses xenograft—porcine or bovine pericardium. However, bioprosthetic valves do not ensure sufficient durability. We investigated 0.6% glutaraldehyde-treated porcine pericardium to define its properties. Using a tensile test stand, we studied characteristics of the polymeric material—expanded polytetrafluoroethylene (ePTFE)—and compared it to xenopericardium. The artificial material provides a better durability; it has higher elastic modulus and ultimate tensile strength. However, ePTFE samples demonstrated direction anisotropy due to extrusion features. It requires the enhancement of quality of the ePTFE sheet or investigation of other polymeric materials to find the adequate replacement for bioprosthetic heart valves.

  9. 2D neural hardware versus 3D biological ones

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper will present important limitations of hardware neural nets as opposed to biological neural nets (i.e. the real ones). The author starts by discussing neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural nets. Going further, the focus will be on hardware constraints. The author will present recent results for three different alternatives of implementing neural networks: digital, threshold gate, and analog, while the area and the delay will be related to neurons' fan-in and weights' precision. Based on all of these, it will be shown why hardware implementations cannot cope with their biological inspiration with respect to their power of computation: the mapping onto silicon lacking the third dimension of biological nets. This translates into reduced fan-in, and leads to reduced precision. The main conclusion is that one is faced with the following alternatives: (1) try to cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow one to use the third dimension, e.g. using optical interconnections.

  10. LEGO-inspired drug design

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Dao, Trong Tuan; Grifell Junyent, Marta

    2018-01-01

    The fungal plasma membrane H+-ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for design...

  11. Lotus-Inspired Nanotechnology Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 12. Lotus-Inspired Nanotechnology Applications. B Karthick Ramesh Maheshwari. General Article Volume 13 Issue 12 December 2008 pp 1141-1145. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. In Search of Scientific Inspiration.

    Science.gov (United States)

    2017-01-12

    In the ever-expanding sea of scientific advances, how do you find inspiration for your own study? Cell editor Jiaying Tan talked with Mark Lemmon and Joseph (Yossi) Schlessinger about the importance of fueling your research creativity with the conceptual excitement and technical advance from the broad scientific field. An excerpt of the conversation appears below. Copyright © 2017. Published by Elsevier Inc.

  13. London: An Art Teacher's Inspiration

    Science.gov (United States)

    Guhin, Paula

    2012-01-01

    Often overshadowed in people's minds by Paris, London is truly an artist's jewel. The art and architecture, history, gardens and museums are inspiring, yes, but there's so much more to this ancient city. The performances, attractions and markets are a boon to the creative soul. London can be surprisingly inexpensive to visit. Gazing at statues,…

  14. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  15. Molecular machines with bio-inspired mechanisms.

    Science.gov (United States)

    Zhang, Liang; Marcos, Vanesa; Leigh, David A

    2018-02-26

    The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines-which by and large function as switches-and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

  16. SABRE: a bio-inspired fault-tolerant electronic architecture

    International Nuclear Information System (INIS)

    Bremner, P; Samie, M; Dragffy, G; Pipe, A G; Liu, Y; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-01-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. (paper)

  17. Artificial Gravity

    CERN Document Server

    Clément, Gilles

    2007-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient

  18. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  19. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  20. A Tony Thomas-Inspired Guide to INSPIRE

    International Nuclear Information System (INIS)

    O'Connell, Heath B.

    2010-01-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  1. Norsk inspiration til uddannelse og job

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte; Thomsen, Rie; Buhl, Rita

    2017-01-01

    Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job......Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job...

  2. Inspiring to inspire: developing teaching in Higher Education

    OpenAIRE

    Williams, Louise; Nixon, Sarah; Hennessy, Claire; Mahon, Elizabeth; Adams, Gill

    2016-01-01

    Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through individual reflections to a set of pre-determined questions, a group of Higher Education teachers (n = 5) with a responsibility for the development of learni...

  3. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.

    Science.gov (United States)

    De Biase, Pablo M; Markosyan, Suren; Noskov, Sergei

    2015-02-05

    The transport of ions and solutes by biological pores is central for cellular processes and has a variety of applications in modern biotechnology. The time scale involved in the polymer transport across a nanopore is beyond the accessibility of conventional MD simulations. Moreover, experimental studies lack sufficient resolution to provide details on the molecular underpinning of the transport mechanisms. BROMOC, the code presented herein, performs Brownian dynamics simulations, both serial and parallel, up to several milliseconds long. BROMOC can be used to model large biological systems. IMC-MACRO software allows for the development of effective potentials for solute-ion interactions based on radial distribution function from all-atom MD. BROMOC Suite also provides a versatile set of tools to do a wide variety of preprocessing and postsimulation analysis. We illustrate a potential application with ion and ssDNA transport in MspA nanopore. © 2014 Wiley Periodicals, Inc.

  4. Processing Semblances Induced through Inter-Postsynaptic Functional LINKs, Presumed Biological Parallels of K-Lines Proposed for Building Artificial Intelligence.

    Science.gov (United States)

    Vadakkan, Kunjumon I

    2011-01-01

    The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation - namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky's K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system.

  5. Processing Semblances Induced through Inter-Postsynaptic Functional LINKs, Presumed Biological Parallels of K-Lines Proposed for Building Artificial Intelligence

    Science.gov (United States)

    Vadakkan, Kunjumon I.

    2011-01-01

    The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation – namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky’s K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system. PMID:21845180

  6. Ships - inspiring objects in architecture

    Science.gov (United States)

    Marczak, Elzbieta

    2017-10-01

    Sea-going vessels have for centuries fascinated people, not only those who happen to work at sea, but first and foremost, those who have never set foot aboard a ship. The environment in which ships operate is reminiscent of freedom and countless adventures, but also of hard and interesting maritime working life. The famous words of Pompey: “Navigare necesseest, vivere non estnecesse” (sailing is necessary, living - is not necessary), which he pronounced on a stormy sea voyage, arouse curiosity and excitement, inviting one to test the truth of this saying personally. It is often the case, however, that sea-faring remains within the realm of dreams, while the fascination with ships demonstrates itself through a transposition of naval features onto land constructions. In such cases, ship-inspired motifs bring alive dreams and yearnings as well as reflect tastes. Tourism is one of the indicators of people’s standard of living and a measure of a society’s civilisation. Maritime tourism has been developing rapidly in recent decades. A sea cruise offers an insight into life at sea. Still, most people derive their knowledge of passenger vessels and their furnishings from the mass media. Passenger vessels, also known as “floating cities,” are described as majestic and grand, while their on-board facilities as luxurious, comfortable, exclusive and inaccessible to common people on land. Freight vessels, on the other hand, are described as enormous objects which dwarf the human being into insignificance. This article presents the results of research intended to answer the following questions: what makes ships a source of inspiration for land architecture? To what extent and by what means do architects draw on ships in their design work? In what places can we find structures inspired by ships? What ships inspire architects? This article presents examples of buildings, whose design was inspired by the architecture and structural details of sea vessels. An analysis of

  7. Artificial ants deposit pheromone to search for regulatory DNA elements

    Directory of Open Access Journals (Sweden)

    Liu Yunlong

    2006-08-01

    Full Text Available Abstract Background Identification of transcription-factor binding motifs (DNA sequences can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which a combinatorial problem is solved by mimicking the behavior of social insects such as ants. We developed a unique version of ant algorithms to select a set of binding motifs by considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length. Results Human chondrogenesis was used as a model system. The results revealed that the ant algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1, NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a contribution of individual binding motifs as a spectrum of distributed information and predict core consensus motifs from a wider DNA pool. Conclusion The ant algorithm offers an efficient, reproducible procedure to predict a role of individual transcription-factor binding motifs using a unique definition of artificial ants.

  8. Blood Clotting Inspired Polymer Physics

    Science.gov (United States)

    Sing, Charles Edward

    The blood clotting process is one of the human body's masterpieces in targeted molecular manipulation, as it requires the activation of the clotting cascade at a specific place and a specific time. Recent research in the biological sciences have discovered that one of the protein molecules involved in the initial stages of the clotting response, von Willebrand Factor (vWF), exhibits counterintuitive and technologically useful properties that are driven in part by the physical environment in the bloodstream at the site of a wound. In this thesis, we take inspiration from initial observations of the vWF in experiments, and aim to describe the behaviors observed in this process within the context of polymer physics. By understanding these physical principles, we hope to harness nature's ability to both direct molecules in both spatial and conformational coordinates. This thesis is presented in three complementary sections. After an initial introduction describing the systems of interest, we first describe the behavior of collapsed Lennard-Jones polymers in the presence of an infinite medium. It has been shown that simple bead-spring homopolymer models describe vWF quite well in vitro. We build upon this previous work to first describe the behavior of a collapsed homopolymer in an elongational fluid flow. Through a nucleation-protrusion mechanism, scaling relationships can be developed to provide a clear picture of a first-order globule-stretch transition and its ramifications in dilute-solution rheology. The implications of this behavior and its relation to the current literature provides qualitative explanations for the physiological process of vasoconstriction. In an effort to generalize these observations, we present an entire theory on the behavior of polymer globules under influence of any local fluid flow. Finally, we investigate the internal dynamics of these globules by probing their pulling response in an analogous fashion to force spectroscopy. We elucidate

  9. Inspiring Student Self-Motivation

    OpenAIRE

    Virginia Brackett

    2007-01-01

    While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The concept o...

  10. Innovations in nature inspired optimization and learning methods

    OpenAIRE

    Corchado Rodríguez, Emilio; Abraham, Ajith P.

    2017-01-01

    The nine papers included in this special issue represent a selection of extended contributions presented at the Third World Congress on Nature and Biologically Inspired Computing (NaBIC2011), held in Salamanca, Spain, October 19–21, 2011. Papers were selected on the basis of fundamental ideas and concepts rather than the direct usage of well-established techniques. This special issue is then aimed at practitioners, researchers and postgraduate students, who are engaged in developing and apply...

  11. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  12. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Directory of Open Access Journals (Sweden)

    Tashkova Katerina

    2011-10-01

    convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.

  13. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Science.gov (United States)

    2011-01-01

    results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196

  14. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  15. Artificial rheotaxis.

    Science.gov (United States)

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y; Pine, David J; Chaikin, Paul M

    2015-05-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes.

  16. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture

    Directory of Open Access Journals (Sweden)

    Li Minn Ang

    2017-05-01

    Full Text Available This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1 a review of visual information processing applications for viticulture; (2 the development of natural inspired computing algorithms based on artificial immune system (AIS techniques for grape berry detection; and (3 the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2 were developed based on a nature-inspired clonal selection algorithm (CSA which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD respectively.

  17. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    Science.gov (United States)

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  18. Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-12-01

    Full Text Available In the last decade, conventional materials such as steel and concrete are being replaced by fiber reinforced polymer (FRP materials for the strengthening of concrete structures. Among the strengthening techniques based on Fiber Reinforced Polymer composites, the use of near-surface mounted (NSM FRP rods is emerging as a promising technology for increasing flexural and shear strength of deficient concrete, masonry and timber members. An artificial neural network is an information processing tool that is inspired by the way biological nervous systems (such as the brain process the information. The key element of this tool is the novel structure of the information processing system. In engineering applications, a neural network can be a vector mapper which maps an input vector to an output one. In the present study, a new approach is developed to predict the behavior of strengthened concrete beam using a large number of experimental data by applying artificial neural networks. Having parameters used as input nodes in ANN modeling such as elastic modulus of the FRP reinforcement, the ratio of the steel longitudinal reinforcement, dimensions of the beam section, the ratio of the NSM-FRP reinforcement and characteristics of concrete, the output node was the flexural strength of beams. The idealized neural network was employed to generate empirical charts and equations to be used in design. The aim of this study is to investigate the behavior of strengthened RC beam using artificial neural networks.

  19. Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays.

    Science.gov (United States)

    Lee, Gun Ho; Choi, Tae Min; Kim, Bomi; Han, Sang Hoon; Lee, Jung Min; Kim, Shin-Hyun

    2017-11-28

    Chameleons use a non-close-packed array of guanine nanocrystals in iridophores to develop and tune skin colors in the full visible range. Inspired by the biological process uncovered in panther chameleons, we designed photonic films containing a non-close-packed face-centered-cubic array of silica particles embedded in an elastomer. The non-close-packed array is formed by interparticle repulsion exerted by solvation layers on the particle surface, which is rapidly captured in the elastomer by photocuring of the dispersion medium. The artificial skin exhibits a structural color that shifts from red to blue under stretching or compression. The separation between inelastic particles enables tuning without experiencing significant rearrangement of particles, providing elastic deformation and reversible color change, as chameleons do. The simple fabrication procedure consists of film casting and UV irradiation, potentially enabling the continuous high-throughput production. The mechanochromic property of the photonic films enables the visualization of deformation or stress with colors, which is potentially beneficial for various applications, including mechanical sensors, sound-vision transformers, and color display.

  20. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.

    Science.gov (United States)

    Xu, Li-Ping; Peng, Jitao; Liu, Yibiao; Wen, Yongqiang; Zhang, Xueji; Jiang, Lei; Wang, Shutao

    2013-06-25

    Because of the frequent oil spill accidents in marine environment, stable superoleophobic coatings under seawater are highly desired. Current underwater superoleophobic surfaces often suffer from mechanical damages and lose their superoleophobicity gradually. It remains a challenge to fabricate a stable and robust underwater superoleophobic film which can endure harsh conditions in practical application. Nacre is one of most extensively studied rigid biological materials. Inspired by the outstanding mechanical property of seashell nacre and those underwater superoleophobic surfaces from nature, we fabricated a polyelectrolyte/clay hybrid film via typical layer-by-layer (LBL) method based on building blocks with high surface energy. 'Bricks-and-mortar' structure of seashell nacre was conceptually replicated into the prepared film, which endows the obtained film with excellent mechanical property and great abrasion resistance. In addtion, the prepared film also exhibits stable underwater superoleophobicity, low oil adhesion, and outstanding environment durability in artificial seawater. We anticipate that this work will provide a new method to design underwater low-oil-adhesion film with excellent mechanical property and improved stability, which may advance the practical applications in marine antifouling and microfluidic devices.

  1. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  2. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    Directory of Open Access Journals (Sweden)

    Maciej J Mrowinski

    Full Text Available With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy. Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  3. Artificial General Intelligence: Concept, State of the Art, and Future Prospects

    Science.gov (United States)

    Goertzel, Ben

    2014-12-01

    In recent years broad community of researchers has emerged, focusing on the original ambitious goals of the AI field - the creation and study of software or hardware systems with general intelligence comparable to, and ultimately perhaps greater than, that of human beings. This paper surveys this diverse community and its progress. Approaches to defining the concept of Artificial General Intelligence (AGI) are reviewed including mathematical formalisms, engineering, and biology inspired perspectives. The spectrum of designs for AGI systems includes systems with symbolic, emergentist, hybrid and universalist characteristics. Metrics for general intelligence are evaluated, with a conclusion that, although metrics for assessing the achievement of human-level AGI may be relatively straightforward (e.g. the Turing Test, or a robot that can graduate from elementary school or university), metrics for assessing partial progress remain more controversial and problematic.

  4. G. Simons' Are Computers Alive? Evolution and New Life Forms and S. Levy's Artificial Life : A Report From the Frontier Where Computers Meet Biology

    OpenAIRE

    スロビック, H.G.; Harold G., Slovic

    1995-01-01

    Geoff Simons著Are Computers Alive? Evolution and New Life FormsとSteven Levy 著Artificial Life:A Report From the Frontier Where Computers Meet Biologyは最近脚光を浴びている人工生命学の分野における最新の発展やその諸問題を紹介した注目すべき文献である。1987年,New Mexico州Los Alamos市で人工生命学の第一回会議を開催するにあたって,主催者側は人工生命学の目的を次のように説明した。「人工生命学とは自然界に実在する生命体系の行動特性を示す人工体系に関する研究である。……その最終的な目標は合理的な人工生命形態の開発である。」分野として,人工生命学と人工知能学とは酷似しているが,人工知能学は人間の知的な行動を再現することに焦点をあてているのに対し,人工生命学は自然界の行動,即ち,成長,繁殖,代謝そして進化などを再現することを課題としている。Simonsは興味深い発想を力説しているが,むしろ伝統派に属する。技術革新によって改善され...

  5. Inflatable artificial sphincter

    Science.gov (United States)

    ... procedures to treat urine leakage and incontinence include: Anterior vaginal wall repair Urethral bulking with artificial material ... urinary incontinence Images Inflatable artificial sphincter Anal sphincter anatomy Inflatable artificial sphincter - series References Adams MC, Joseph ...

  6. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  7. Commentary: "A systems view on the future of medicine: Inspiration from Chinese medicine?"

    NARCIS (Netherlands)

    Verpoorte, R.; Crommelin, D.; Danhof, M.; Gilissen, L.J.W.J.; Schuitmaker, H.; Greef, de J.; Witkamp, R.F.

    2009-01-01

    Chinese medicine could serve as a source of inspiration for drug development. Using systems biology in combination with reverse pharmacology is a novel way for the discovery of novel biological active compounds and targets as well as for proving the occurrence of synergy and prodrugs. A key factor

  8. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...

  9. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE).

    Science.gov (United States)

    Pugachev, Konstantin V; Schwaiger, Julia; Brown, Nathan; Zhang, Zhen-xi; Catalan, John; Mitchell, Frederick S; Ocran, Simeon W; Rumyantsev, Alexander A; Khromykh, Alexander A; Monath, Thomas P; Guirakhoo, Farshad

    2007-09-17

    Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.

  10. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  11. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  12. Supersymmetry Inspired QCD Beta Function

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2008-01-01

    We propose an all orders beta function for ordinary Yang-Mills theories with or without fermions inspired by the Novikov-Shifman-Vainshtein-Zakharov beta function of N=1 supersymmetric gauge theories. The beta function allows us to bound the conformal window. When restricting to one adjoint Weyl...... fermion we show how the proposed beta function matches the one of supersymmetric Yang-Mills theory. The running of the pure Yang-Mills coupling is computed and the deviation from the two loop result is presented. We then compare the deviation with the one obtained from lattice data also with respect...

  13. The South American fruit fly, Anastrepha fraterculus (Wied.); advances in artificial rearing, taxonomic status and biological studies. Proceedings of a workshop

    International Nuclear Information System (INIS)

    1999-01-01

    One of the fruit flies of major concern, because of its economic and quarantine importance in the Americas, is the exotic Mediterranean fruit fly, Ceratitis capitata, which is established throughout the Central and South American countries, excluding Chile. Chile, Mexico and the USA have conducted multi-million dollar campaigns to prevent the establishment of this and other exotic fruit flies in their respective territories, in support of the development of important fruit production and export industries. Other important fruit fly species, which are native to the American continent, are those of the genus Anastrepha. In this group, of most economic importance are A. obliqua and A. ludens for Mexico and some Central American countries and A. fraterculus and A. obliqua for South America. In this publication, attention is focused on A. fraterculus, the South American fruit fly. This species, as it is presently recognized, occurs from Mexico to Argentina and is reported from approximately 80 host plants, including commercial fruits of economic importance, such as mango, citrus, guava, apple and coffee. As A. fraterculus if considered to be of high economic and quarantine importance in many countries in South America, it is justifiable to recommend and promote the implementation of activities to strengthen knowledge of the species and develop techniques for its control and/or eradication. The development of sterile insect technique (SIT) and other biological control methods are very encouraging alternatives, as can be seen from examples in Mexico and the USA, where these approaches are in use against A. ludens and A. obliqua

  14. Artificial liver support in the third millennium

    NARCIS (Netherlands)

    Chamuleau, Robert A. F. M.

    2003-01-01

    Analogous to the artificial kidney there is a need for an effective and safe liver support system to bridge patients with hepatic failure to liver transplantation or own liver regeneration. An over-view is given of the biological and non-biological systems used in clinical practice in the past and

  15. Artificial Intelligence and brain.

    Science.gov (United States)

    Shapshak, Paul

    2018-01-01

    From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.

  16. Bio-inspired nano-sensor-enhanced CNN visual computer.

    Science.gov (United States)

    Porod, Wolfgang; Werblin, Frank; Chua, Leon O; Roska, Tamas; Rodriguez-Vazquez, Angel; Roska, Botond; Fay, Patrick; Bernstein, Gary H; Huang, Yih-Fang; Csurgay, Arpad I

    2004-05-01

    Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.

  17. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  18. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  19. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    Science.gov (United States)

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

  20. Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

    Directory of Open Access Journals (Sweden)

    Yoseph Bar-Cohen

    2008-11-01

    Full Text Available For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

  1. Decrypting SO(10-inspired leptogenesis

    Directory of Open Access Journals (Sweden)

    Pasquale Di Bari

    2015-04-01

    Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sin⁡δ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.

  2. Has the London 2012 Olympic Inspire Programme Inspired a Generation? A Realist View

    Science.gov (United States)

    Girginov, Vassil

    2016-01-01

    The organisers of the 2012 London Olympics have endeavoured explicitly to use the Games to inspire a generation. This is nothing short of putting the main claim of Olympism to the test, but surprisingly the Inspire project has received virtually no scholarly scrutiny. Using an educationally-informed view of inspiration, this paper interrogates the…

  3. Artificial Flora (AF Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2018-02-01

    Full Text Available Inspired by the process of migration and reproduction of flora, this paper proposes a novel artificial flora (AF algorithm. This algorithm can be used to solve some complex, non-linear, discrete optimization problems. Although a plant cannot move, it can spread seeds within a certain range to let offspring to find the most suitable environment. The stochastic process is easy to copy, and the spreading space is vast; therefore, it is suitable for applying in intelligent optimization algorithm. First, the algorithm randomly generates the original plant, including its position and the propagation distance. Then, the position and the propagation distance of the original plant as parameters are substituted in the propagation function to generate offspring plants. Finally, the optimal offspring is selected as a new original plant through the selection function. The previous original plant becomes the former plant. The iteration continues until we find out optimal solution. In this paper, six classical evaluation functions are used as the benchmark functions. The simulation results show that proposed algorithm has high accuracy and stability compared with the classical particle swarm optimization and artificial bee colony algorithm.

  4. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches

    Directory of Open Access Journals (Sweden)

    Ufuk Çelik

    2015-01-01

    Full Text Available The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  5. Structurally tuned iridescent surfaces inspired by nature

    International Nuclear Information System (INIS)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cedric; Welch, Victoria; Vigneron, Jean Pol; Lucas, Stephane

    2008-01-01

    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO 2 /SiO 2 multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO 2 /SiO 2 layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions

  6. Exploring Artificial Intelligence Utilizing BioArt

    OpenAIRE

    Simou , Panagiota; Tiligadis , Konstantinos; Alexiou , Athanasios

    2013-01-01

    Part 15: First Workshop on Ethics and Philosophy in Artificial Intelligence (EPAI 2013); International audience; While artificial intelligence combined with Bioinformatics and Nanotechnology offers a variety of improvements and a technological and healthcare revolution, Bioartists attempt to replace the traditional artistic medium with biological materials, bio-imaging techniques, bioreactors and several times to treat their own body as an alive canvas. BioArt seems to play the role of a new ...

  7. Artificial hammerhead ribozymes: engineering and applications

    Science.gov (United States)

    Vorobjeva, M. A.; Davydova, A. S.; Venyaminova, Aliya G.

    2011-02-01

    The properties of hammerhead ribozymes are described. Various hammerhead ribozyme constructs for target RNA cleavage were considered. Approaches to enhancement of the stability of artificial ribozymes in biological media and to regulation of the catalytic activity of hammerhead ribozymes using effector molecules are described. The effect of ribozymes on extended structured natural RNAs is discussed. Applications of artificial hammerhead ribozymes as inhibitors of gene expression at matrix RNA level were considered.

  8. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    International Nuclear Information System (INIS)

    Yang, Henry T Y; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J; Hansma, Paul K

    2010-01-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force–displacement–velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators

  9. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.

  10. Bringing Artificial Gravity into the Classroom

    Science.gov (United States)

    Thompson, Grant; Aning, Isaac

    2018-01-01

    We recently conducted an experimental test of artificial gravity by placing various species of plants in centrifuges and analyzed the plants’ germination and growth. This research project incorporated several topics covered in undergraduate astronomy, biology, and physics courses. Given the interest of introductory astronomy students in artificial gravity and their pre-existing images of applications such as rotating spacecraft from pop culture, the results of the experiment may provide a gateway to discuss artificial gravity beyond teaching the traditional examples of Newton’s laws. We will discuss the experiment in detail and provide suggestions for how the experiment could be incorporated into your classroom.

  11. Inspiration til undervisning på museer

    DEFF Research Database (Denmark)

    Hyllested, Trine Elisabeth

    2015-01-01

    collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark......collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark...

  12. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  13. Veto Studies for LIGO Inspiral Triggers

    OpenAIRE

    Christensen, Nelson

    2005-01-01

    LIGO recently conducted its third scientific data run, S3. Here we summarize the veto and data quality studies conducted by the LIGO Scientific Collaboration in connection with the search for binary inspiral signals in the S3 data. LIGO's interferometer channels and physical environmental monitors were monitored, and events in these channels coincident with inspiral triggers were examined.

  14. Robotics — Inspired from Nature

    Directory of Open Access Journals (Sweden)

    Huosheng Hu

    2012-04-01

    Full Text Available It is my great pleasure to welcome you to a new open access journal, Robotics, which is dedicated to both the foundations of artificial intelligence, bio-mechanics, mechatronics and control theories, and the real-world applications of robotic perception, cognition and actions. This includes the innovative scientific trends, and discovery resulting from solving new challenges in the field of robotics. Its open access and rapid dissemination are the unique features separating this journal from all existing journals dedicated to robotics. [...

  15. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  16. A Novel Clustering Algorithm Inspired by Membrane Computing

    Directory of Open Access Journals (Sweden)

    Hong Peng

    2015-01-01

    Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.

  17. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  18. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  19. Additive Layer Manufacturing of Biologically Inspired Short Fibre Reinforced Composites

    Science.gov (United States)

    2014-03-01

    readily accesible given Huygen’s principle, plane 11 p1rr = h 0 n0sin (2✓1) cos ( ) , (A.25) p1tr = h 0 n s sin (✓1 ✓2) cos ( ) , (A.26) p2rr = h...the interference pattern is readily accesible given Huygen’s principle, plane 11 Distribution A: Approved for public release; distribution is...alistic computation of the interference pattern is readily accesible given Huygen’s principle, plane 11 p1rr = h 0 n0sin (2✓1) cos ( ) , (A.25

  20. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I study, the study team will investigate the usability of a microbial fuel cell to power a small microrover, design low-power electronics for effective...

  1. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  2. Biologically Inspired Waveform Diversity for Synthetic Autonomous Navigation Sensing

    Science.gov (United States)

    2009-11-01

    navigation, collision avoidance, ambiguity SUMMARY Echolocating mammals such as bats , whales and dolphins have been using waveform diversity for...we have adopted. Mammals such as bats use echolocation to perform autonomous navigation (or more strictly orientation), detection and classification...understand how bats exploit echolocation for autonomous navigation and collision avoidance we can then begin to build this into synthetic systems

  3. Biologically-Inspired Hardware for Land/Aerial Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — Future generations of NASA land/aerial robots will be required to operate in the harsh, unpredictable environments of extra-terrestrial bodies including asteroids,...

  4. Adaptive leg coordination with a biologically inspired neurocontroller

    Science.gov (United States)

    Braught, Grant; Thomopoulos, Stelios C.

    1996-10-01

    Natural selection is responsible for the creation of robust and adaptive control systems. Nature's control systems are created only from primitive building blocks. Using insect neurophysiology as a guide, a neural architecture for leg coordination in a hexapod robot has been developed. Reflex chains and sensory feedback mechanisms from various insects and crustacea form the basis of a pattern generator for intra-leg coordination. The pattern generator contains neural oscillators which learn from sensory feedback to produce stepping patterns. Using sensory feedback as the source of learning information allows the pattern generator to adapt to changes in the leg dynamics due to internal or external causes. A coupling between six of the single leg pattern generators is used to produce the inter-leg coordination necessary to establish stable gaits.

  5. Melodic Similarity and Applications Using Biologically-Inspired Techniques

    NARCIS (Netherlands)

    Bountouridis, D.|info:eu-repo/dai/nl/411292412; Brown, Dan; Wiering, F.|info:eu-repo/dai/nl/141928034; Veltkamp, R.C.|info:eu-repo/dai/nl/084742984

    2017-01-01

    Music similarity is a complex concept that manifests itself in areas such as Music Information Retrieval (MIR), musicological analysis and music cognition. Modelling the similarity of two music items is key for a number of music-related applications, such as cover song detection and

  6. Biologically-Inspired Flight for Micro Air Vehicles

    Science.gov (United States)

    2012-09-01

    results  from  our  water  tests.  Our  initial  test  cases  in  water  will  examine  pure  plunging  cases   akin  to...microscopy.  The  ecological  niches  and   diets  of  these  three   bat  species  differ  and  consequently   impact

  7. Biologically-inspired radar and sonar lessons from nature

    CERN Document Server

    Balleri, Alessio; Baker, Chris

    2017-01-01

    This book presents some of the recent work that has been carried out to investigate how sophisticated sensing techniques used in nature can be applied to radar and sonar systems to improve their performance.

  8. Biologically Inspired Radio-Frequency (RF) Direction Finding

    Science.gov (United States)

    2015-12-15

    tte rn (d B ) -62 -60 -58 -56 -54 -52 -50 port1 without scatter...150 without scatter with scatter 2 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -52 -50 -48 -46 -44 -42 port1 without scatter...without scatter with scatter 3 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -52 -50 -48 -46 -44 -42 -40 -38 -36 port1

  9. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  10. Teaching artificial intelligence to read electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Open questions for suprathreshold stochastic resonance in sensory neural models for motion detection using artificial insect vision

    International Nuclear Information System (INIS)

    McDonnell, Mark D.; Abbott, Derek

    2003-01-01

    Stochastic Resonance (SR) occurs when the presence of noise in a nonlinear system can induce an optimal output from that system, and has been observed in a diverse range of physical and biological systems, including neurons. Despite this widespread observation of SR, to date very few engineering applications inspired by SR have been proposed, and one of the goals of our research is to explore possible new practical applications designed to replicate the benefits of SR. In particular, since about 1991, our group has designed and implemented a number of motion detection VLSI chips based on insect vision. We are currently investigating the possibility of replicating the benefits of SR in artificial insect-vision based motion detection systems, in particular a newly described form of SR called Suprathreshold Stochastic Resonance (SSR). The current paper is intended to review and identify the key open questions and avenues for future research relating to SR and SSR in such systems

  12. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  13. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  14. Trends in Artificial Intelligence.

    Science.gov (United States)

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  15. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  16. Product and technology innovation: what can biomimicry inspire?

    Science.gov (United States)

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  18. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  19. Artificial life and Piaget.

    Science.gov (United States)

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  20. artificial neural network (ann)

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...

  1. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  2. Artificial Heliotropism and Nyctinasty Based on Optomechanical Feedback and No Electronics.

    Science.gov (United States)

    Baytekin, Bilge; Cezan, S Doruk; Baytekin, H Tarık; Grzybowski, Bartosz A

    2018-02-01

    Although plants are typically not considered an inspiration for designing motile robots, they do perform a variety of intricate motion patterns, including diurnal cycles of sun tracking (heliotropism) and leaf opening (nyctinasty). In real plants, these motions are controlled by complex, feedback-based biological mechanisms that, to date, have been mimicked only in computer-controlled artificial systems. This work demonstrates both heliotropism and nyctinasty in a system in which few simple, but strategically positioned thermo-responsive springs and lenses form a feedback loop controlling these motions and substantiating a behavioral analogy to "plants." In particular, this feedback allows the "artificial plant" to reach and stabilize at a metastable position in which the solar flux on the "plants" and the solar power "leaves" are maximized. Unlike many soft robotic systems, our "plants" are completely autonomous, in that, they do not require any external controls or power sources. Bioinspired designs such as this could be of interest for soft robotic systems in which materials alone-rather than power-consuming electronic circuitry-control the motions.

  3. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  4. On the Cultivation of Students' Interests in Biology Teaching

    Science.gov (United States)

    Li, Yan

    2011-01-01

    This paper introduces the importance of middle school students' interests in learning biology. Considering the psychological characteristics of middle school students, this paper suggests several practical ways for inspiring students' interests in learning biology.

  5. Biomimetic and bio-inspired robotics in electric fish research.

    Science.gov (United States)

    Neveln, Izaak D; Bai, Yang; Snyder, James B; Solberg, James R; Curet, Oscar M; Lynch, Kevin M; MacIver, Malcolm A

    2013-07-01

    Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail. Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth sensing with highly responsive multidirectional movement.

  6. Heterogeneous Systems Biocatalysis: The Path to the Fabrication of Self-Sufficient Artificial Metabolic Cells.

    Science.gov (United States)

    López-Gallego, Fernando; Jackson, Erienne; Betancor, Lorena

    2017-12-19

    Industrial biocatalysis is playing a key role in the development of the global bio-economy that must change our current productive model to pair the socio-economical development with the preservation of our already harmed planet. The exploitation of isolated multi-enzyme systems and the discovery of novel biocatalytic activities are leading us to manufacture chemicals that were inaccessible through biological routes in the early past. These endeavors have been grouped under the concept of systems biocatalysis. However, by using isolated biological machineries, fundamental features underlying the protein confinement found inside the living cells are missed. To re-gain these properties, such concepts can be expanded to a new concept; heterogeneous systems biocatalysis. This new concept is based on the fabrication of heterogeneous biocatalysts inspired by the spatial organization and compartmentalization that orchestrate metabolic pathways within cells. By assembling biological machineries (including enzymes and cofactors) into artificial solid chassis, one can fabricate self-sufficient and robust cell-free systems able to catalyze orchestrated chemical processes. Furthermore, the confinement of enzymes and and "artificial cofactor" inside solid materials has also attracted our attention because these self-sufficient systems exert de novo and non-natural functionalities. Here, we intend to go beyond immobilization of multi-enzyme systems, discussing only those enzymatic systems that have been co-immobilized with their cofactor or exogenous partners to enhance their cooperative action. In this article, we review the latest architectures developed to fabricate self-sufficient heterogeneous biocatalysts with application in chemical manufacturing, biosensing or energy production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    Science.gov (United States)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the

  8. Development of OA Abroad and Its Inspirations

    Science.gov (United States)

    Bi, Jing

    2010-01-01

    This study introduces the concept and characteristics of open access (OA), analyses the status quo and development of OA in foreign countries, and discusses its inspiration to its future development in China.

  9. Artificial evolution by viability rather than competition.

    Science.gov (United States)

    Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario

    2014-01-01

    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  10. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  11. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  12. Advanced biologically plausible algorithms for low-level image processing

    Science.gov (United States)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  13. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials

    Directory of Open Access Journals (Sweden)

    Nagendra Kumar Kaushik

    2015-11-01

    Full Text Available The substance secreted by mussels, also known as nature’s glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs, a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

  14. A survey of bio-inspired compliant legged robot designs

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Bi Shusheng

    2012-01-01

    The roles of biological springs in vertebrate animals and their implementations in compliant legged robots offer significant advantages over the rigid legged ones in certain types of scenarios. A large number of robotics institutes have been attempting to work in conjunction with biologists and incorporated these principles into the design of biologically inspired robots. The motivation of this review is to investigate the most published compliant legged robots and categorize them according to the types of compliant elements adopted in their mechanical structures. Based on the typical robots investigated, the trade-off between each category is summarized. In addition, the most significant performances of these robots are compared quantitatively, and multiple available solutions for the future compliant legged robot design are suggested. Finally, the design challenges for compliant legged robots are analysed. This review will provide useful guidance for robotic designers in creating new designs by inheriting the virtues of those successful robots according to the specific tasks. (topical review)

  15. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  16. BioArtificial polymers

    Science.gov (United States)

    Szałata, Kamila; Gumi, Tania

    2017-07-01

    Nowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like "smart materials," biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.

  17. FIRST Quantum-(1980)-Computing DISCOVERY in Siegel-Rosen-Feynman-...A.-I. Neural-Networks: Artificial(ANN)/Biological(BNN) and Siegel FIRST Semantic-Web and Siegel FIRST ``Page''-``Brin'' ``PageRank'' PRE-Google Search-Engines!!!

    Science.gov (United States)

    Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration

    2013-03-01

    Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)

  18. Behaviour and fate of artificial redionuclides in the marine environment

    International Nuclear Information System (INIS)

    1979-01-01

    Behaviour of artificial radionuclides in the marine environment, effect of the physico-chemical forms of the radionuclides. Behavior of radionuclides in the physical and biological environments and general evaluation of transfers [fr

  19. Artificial Intelligence in Astronomy

    Science.gov (United States)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  20. Artificial cognition architectures

    CERN Document Server

    Crowder, James A; Friess, Shelli A

    2013-01-01

    The goal of this book is to establish the foundation, principles, theory, and concepts that are the backbone of real, autonomous Artificial Intelligence. Presented here are some basic human intelligence concepts framed for Artificial Intelligence systems. These include concepts like Metacognition and Metamemory, along with architectural constructs for Artificial Intelligence versions of human brain functions like the prefrontal cortex. Also presented are possible hardware and software architectures that lend themselves to learning, reasoning, and self-evolution

  1. Artificial life: The coming evolution

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA)); Belin, A.d' A. (Shute, Mihaly, and Weinberger, Santa Fe, NM (USA))

    1990-01-01

    Within fifty to a hundred years a new class of organisms is likely to emerge. These organisms will be artificial in the sense that they will originally be designed by humans. However, they will reproduce, and will evolve into something other than their initial form; they will be alive'' under any reasonable definition of the word. These organisms will evolve in a fundamentally different manner than contemporary biological organisms, since their reproduction will be under at least partial conscious control, giving it a Lamarckian component. The pace of evolutionary change consequently will be extremely rapid. The advent of artificial life will be the most significant historical event since the emergence of human beings. The impact on humanity and the biosphere could be enormous, larger than the industrial revolution, nuclear weapons, or environmental pollution. We must take steps now to shape the emergence of artificial organisms; they have potential to be either the ugliest terrestrial disaster, or the most beautiful creation of humanity. 22 refs., 3 figs.

  2. An artificial muscle computer

    Science.gov (United States)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  3. Research Update: Programmable tandem repeat proteins inspired by squid ring teeth

    Science.gov (United States)

    Pena-Francesch, Abdon; Domeradzka, Natalia E.; Jung, Huihun; Barbu, Benjamin; Vural, Mert; Kikuchi, Yusuke; Allen, Benjamin D.; Demirel, Melik C.

    2018-01-01

    Cephalopods have evolved many interesting features that can serve as inspiration. Repetitive squid ring teeth (SRT) proteins from cephalopods exhibit properties such as strength, self-healing, and biocompatibility. These proteins have been engineered to design novel adhesives, self-healing textiles, and the assembly of 2d-layered materials. Compared to conventional polymers, repetitive proteins are easy to modify and can assemble in various morphologies and molecular architectures. This research update discusses the molecular biology and materials science of polypeptides inspired by SRT proteins, their properties, and perspectives for future applications.

  4. Design considerations for an underwater soft-robot inspired from marine invertebrates.

    Science.gov (United States)

    Krieg, Michael; Sledge, Isaac; Mohseni, Kamran

    2015-10-29

    This article serves as an overview of the unique challenges and opportunities made possible by a soft, jellyfish inspired, underwater robot. We include a description of internal pressure modeling as it relates to propulsive performance, leading to a desired energy-minimizing volume flux program. Strategies for determining optimal actuator placement derived from biological body motions are presented. In addition a feedback mechanism inspired by the epidermal line sensory system of cephalopods is presented, whereby internal pressure distribution can be used to determine pertinent deformation parameters.

  5. Multilevel hierarchically ordered artificial biomineral.

    Science.gov (United States)

    Liu, Xiaoguo; Lin, Kaili; Wu, Chengtie; Wang, Yueyue; Zou, Zhaoyong; Chang, Jiang

    2014-01-15

    Living organisms are known for creating complex organic-inorganic hybrid materials such as bone, teeth, and shells, which possess outstanding functions as compared to their simple mineral forms. This has inspired many attempts to mimic such structures, but has yielded few practical advances. In this study, a multilevel hierarchically ordered artificial biomineral (a composite of hydroxyapatite and gelatine) with favorable nanomechanical properties is reported. A typical optimized HAp/gelatin hybrid material in the perpendicular direction of the HAp c-axis has a modulus of 25.91 + 1.78 GPa and hardness of 0.90 + 0.10 GPa, which well matches that of human cortical bone (modulus 24.3 + 1.4 GPa, hardness 0.69 + 0.05 GPa). The bottom-up crystal constructions (from nano- to micro- to macroscale) of this material are achieved through a hard template approach by the phase transformation from DCP to HAp. The structural biomimetic material shows another way to mimic the complex hierarchical designs of sclerous tissues which have potential value for application in hard tissue engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    Science.gov (United States)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic

  7. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  8. Artificial life and life artificialization in Tron

    Directory of Open Access Journals (Sweden)

    Carolina Dantas Figueiredo

    2012-12-01

    Full Text Available Cinema constantly shows the struggle between the men and artificial intelligences. Fiction, and more specifically fiction films, lends itself to explore possibilities asking “what if?”. “What if”, in this case, is related to the eventual rebellion of artificial intelligences, theme explored in the movies Tron (1982 and Tron Legacy (2010 trat portray the conflict between programs and users. The present paper examines these films, observing particularly the possibility programs empowering. Finally, is briefly mentioned the concept of cyborg as a possibility of response to human concerns.

  9. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    Science.gov (United States)

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-04-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.

  10. A bio-inspired approach for the reduction of left ventricular workload.

    Directory of Open Access Journals (Sweden)

    Niema M Pahlevan

    Full Text Available Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.

  11. On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations

    Directory of Open Access Journals (Sweden)

    Seif-Eddeen K. Fateen

    2014-01-01

    Full Text Available The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS, intelligent firefly (IFA, bat (BA, artificial bee colony (ABC, MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES, magnetic charged system search (MCSS, and bare bones particle swarm optimization (BBPSO. The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  12. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  13. On the effectiveness of nature-inspired metaheuristic algorithms for performing phase equilibrium thermodynamic calculations.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  14. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  15. Aspectos biológicos de Argyrotaenia sphaleropa (Meyrick 1909 (Lepidoptera: Tortricidae em dietas artificiais com diferentes fontes proteicas Biological aspects of Argyrotaenia sphaleropa (Meyrick, 1909 (Lepidoptera: Tortricidae in artificial diets with different protein sources

    Directory of Open Access Journals (Sweden)

    Silvana Manfredi-Coimbra

    2005-04-01

    Full Text Available Estudaram-se aspectos da biologia de Argyrotaenia sphaleropa Meyrick em dietas artificiais com diferentes fontes proteicas: D1-feijão branco, germe de trigo, proteína de soja e caseína; D2-feijão carioca e levedura de cerveja e D3-feijão carioca, levedura de cerveja e germe de trigo, avaliando-se a duração e viabilidade e todas as fases de desenvolvimento desse inseto (ovo, lagarta, pré-pupa e pupa e do ciclo total (ovo-adulto, razão sexual, peso de pupas, fecundidade, longevidade e tabela de vida de fertilidade. Os experimentos foram conduzidos em laboratório a 25±1°C, 65±10% UR e fotofase de 14 horas. A duração da fase de ovo foi de 6,6 dias nas três dietas. A maior duração das fases lagarta e pré-pupa foi em D1 e de pupa em D2, resultando em maior duração do ciclo total nestas duas dietas (30,9 e 30,8 dias. A viabilidade total foi superior a 62% em todas as dietas, independente da fonte proteica. O número de ínstares foi de quatro a cinco nas três dietas. A menor fecundidade foi observada em D1. Através da tabela de vida de fertilidade, a dieta D3 foi a mais adequada para criação de A. sphaleropa por ter proporcionado menor duração de desenvolvimento (T, maior razão finita de aumento (l e viabilidade total superior a 75%.Biology aspects of Argyrotaenia sphaleropa Meyrick fed on artificial diets with different protein sources were studied: D1-white bean, wheat germ, soybean protein and casein; D2-common bean and yeast and D3-common bean, yeast and wheat germ, evaluating the duration and viability of all developmental stages (egg, larval, prepupa and pupa and of the total cycle (egg-adult, sex ratio, pupa weight, fecundity, longevity and life table of fertility. Tests were conducted in the laboratory at 25±1°C, 65±10% RH and 14h of photophase. Duration of the egg stage was 6.6 days on all diets. The longest duration of larval and prepupal stages on D1 and pupal stages on D2, resulting in a longer duration of the

  16. Artificial insemination in poultry

    Science.gov (United States)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  17. Quantum-inspired resonance for associative memory

    International Nuclear Information System (INIS)

    Zak, Michail

    2009-01-01

    A new kind of dynamics for simulations based upon quantum-classical hybrid is discussed. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen potentials. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for quantum-inspired information processing. In this paper, the retrieval of stored items from an exponentially large unsorted database is performed by quantum-inspired resonance using polynomial resources due to quantum-like superposition effect.

  18. The Past, Present, and Future of Artificial Life

    Directory of Open Access Journals (Sweden)

    Wendy eAguilar

    2014-10-01

    Full Text Available For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into fourteen themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning, ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields.

  19. Metatheases: artificial metalloproteins for olefin metathesis.

    Science.gov (United States)

    Sauer, D F; Gotzen, S; Okuda, J

    2016-10-21

    The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.

  20. Innovation Inspired by Nature: Capabilities, Potentials and Challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2012-01-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.