WorldWideScience

Sample records for biologically induced mineralization

  1. A review of phosphate mineral nucleation in biology and geobiology.

    Science.gov (United States)

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  2. Biologically controlled minerals as potential indicators of life

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  3. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  4. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  5. Biologically enhanced mineral weathering: what does it look like, can we model it?

    Science.gov (United States)

    Schulz, M. S.; Lawrence, C. R.; Harden, J. W.; White, A. F.

    2011-12-01

    The interaction between plants and minerals in soils is hugely important and poorly understood as it relates to the fate of soil carbon. Plant roots, fungi and bacteria inhabit the mineral soil and work symbiotically to extract nutrients, generally through low molecular weight exudates (organic acids, extracelluar polysachrides (EPS), siderophores, etc.). Up to 60% of photosynthetic carbon is allocated below ground as roots and exudates, both being important carbon sources in soils. Some exudates accelerate mineral weathering. To test whether plant exudates are incorporated into poorly crystalline secondary mineral phases during precipitation, we are investigating the biologic-mineral interface. We sampled 5 marine terraces along a soil chronosequence (60 to 225 ka), near Santa Cruz, CA. The effects of the biologic interactions with mineral surfaces were characterized through the use of Scanning Electron Microscopy (SEM). Morphologically, mycorrhizal fungi were observed fully surrounding minerals, fungal hyphae were shown to tunnel into primary silicate minerals and we have observed direct hyphal attachment to mineral surfaces. Fungal tunneling was seen in all 5 soils by SEM. Additionally, specific surface area (using a nitrogen BET method) of primary minerals was measured to determine if the effects of mineral tunneling are quantifiable in older soils. Results suggest that fungal tunneling is more extensive in the primary minerals of older soils. We have also examined the influence of organic acids on primary mineral weathering during soil development using a geochemical reactive transport model (CrunchFlow). Addition of organic acids in our models of soil development at Santa Cruz result in decreased activity of Fe and Al in soil pore water, which subsequently alters the spatial extent of primary mineral weathering and kaolinite precipitation. Overall, our preliminary modeling results suggest biological processes may be an important but underrepresented aspect of

  6. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Science.gov (United States)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  7. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Directory of Open Access Journals (Sweden)

    S. Augustin-Bauditz

    2016-05-01

    Full Text Available Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs. It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above −20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX with ice active biological material (birch pollen washing water and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS. A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM, Energy Dispersive X-ray analysis (EDX, and a Volatility–Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH

  8. Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Dipple Gregory M

    2007-12-01

    Full Text Available Abstract Background This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg5(CO34(OH2·5H2O, by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg5(CO34(OH2·4H2O playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared. Results Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO3·3H2O on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp. contain platy dypingite (Mg5(CO34(OH2·5H2O and aragonite. Bulk carbonates in the benthic mats (δ13C avg. = 6.7%, δ18O avg. = 17.2% were isotopically distinguishable from abiotically formed nesquehonite (δ13C avg. = 9.3%, δ18O avg. = 24.9%. Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg2+] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated

  9. The immersion freezing behavior of mixtures of mineral dust and biological substances

    Science.gov (United States)

    Augustin, Stefanie; Schneider, Johannes; Schmidt, Susan; Niedermeier, Dennis; Ebert, Martin; Voigtländer, Jens; Rösch, Michael; Stratmann, Frank; Wex, Heike

    2014-05-01

    Biological particles such as bacteria or pollen are known to be efficient ice nuclei. It is also known that ice nucleating active (INA) macromolecules, i.e. protein complexes in the case of bacteria (e.g. Wolber et al., 1986), and most likely polysaccharides in the case of pollen (Pummer et al., 2012) are responsible for the freezing. Very recently it was suggested that these INA macromolecules maintain their nucleating ability even when they are separated from their original carriers (Hartmann et al., 2013; Augustin et al., 2013). This opens the possibility of accumulation of such INA macromolecules in e.g. soils and the resulting particles could be an internal mixture of mineral dust and INA macromolecules. If such biological IN containing soil particles are then dispersed into the atmosphere due to e.g. wind erosion or agricultural processes they could induce ice nucleation at temperatures higher than -20°C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INA macromolecules. Specifically, we mixed pure mineral dust (illite) with INA biological material (SNOMAX and birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the produced aerosol we used single mass spectrometry as well as electron microscopy. We found that internally mixed particles which containing ice active biological material show the same ice nucleation behavior as the purely biological particles. That shows that INA macromolecules which are located on a mineral dust particle dominate the freezing process. Acknowledgement: Part of this work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. Augustin, S., Hartmann, S., Pummer, B., Grothe, H

  10. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  11. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  12. Angiogenic effect induced by mineral fibres

    International Nuclear Information System (INIS)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-01-01

    Highlights: → In this study we described the angiogenetic effect of some mineral fibres. → Wollastonite fibres induce blood vessel formation. → The size and shape of the fibres were important factors for the cell signalling. → Wollastonite induce ROS-NFκB activation and EGFR signalling. → Involvement of wollastonite exposure in the development of pathological conditions. -- Abstract: Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs

  13. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates

    International Nuclear Information System (INIS)

    McMillan, Nancy J.; Harmon, Russell S.; De Lucia, Frank C.; Miziolek, Andrzej M.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca-Mg carbonate dolomite was misidentified as the Ca-Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes

  14. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  15. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    Science.gov (United States)

    Heger, Michal; Mordon, Serge R.; Leroy, Gérard; Fleurisse, Laurence; Creusy, Collette

    2006-03-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational alterations in the proteoglycan and collagen-rich matrix, constitutes the underlying mechanism of LACR. Several reports have suggested that laser-mediated cartilage mineralization may contribute to the permanent shape change of laser-reshaped cartilage. In an effort to validate these results in the context of Er:glass LACR, we performed a preliminary Raman microspectrometric study to characterize the crystal deposits in laser-irradiated chondrocytes and extracellular matrix. For the first time, we identified intracellular calcium sulfate deposits and extracellular calcium phosphate (apatite) crystals in laser-reshaped rabbit auricular cartilage. Calcium carbonate deposits are localized in both irradiated and nonirradiated samples, suggesting that this mineral plays no role in conformational retention. In our discussion, we elaborate on the possible molecular and cellular mechanisms responsible for intra- and extracellular crystallization, and propose a novel hypothesis on the formation of apatite, inasmuch as the biological function of this mineral (providing structure and rigidity in bones and dental enamel) may be extrapolated to the permanent shape change of laser-irradiated cartilage.

  16. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Science.gov (United States)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  17. Neutron induced autoradiography of some minerals from the Allchar mine

    International Nuclear Information System (INIS)

    Lazaru, A.; Ilic, R.; Skvarc, J.; Kristof, E.S.; Stafilov, T.

    1999-01-01

    The mineral lorandite from the Allchar mine (Kavadarci, Macedonia) will be used to estimate the average solar neutrino flux. Here, the amount of 205 Pb isotope induced by the 205 Tl(ν e , e - ) 205 Pb reaction is measured and converted to neutrino flux. To determine the few 205 Pb atoms that are produced by solar neutrinos in the Tl ore it is necessary to know all the interfering reactions and/or impurities producing 205 Pb. The concentration and/or spatial distribution of some impurities such as U in lorandite should be known as accurately as possible. In the present work uranium and boron concentrations in some minerals from the Allchar mine (lorandite, realgar, stibnite, orpiment and dolomite) were measured by neutron induced autoradiography. The tracks of 10 B(n, α) and 235 U(n, f) reaction products were recorded by CR-39 and phosphate glass (PSK-50) etched track detectors, respectively. Results showed that uranium is nonuniformly distributed in some of the minerals (orpiment, realgar and lorandite). Average uranium concentration levels varied from 0.01 to 1 μg g -1 . The highest boron concentration (about 6.7 μg g -1 ) was found in stibnite while its concentration in other minerals was below the detection limit (about 1 μg g -1 ) of the technique

  18. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cen; Kong, Xiangdong [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Sheng-Min [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Lee, In-Seop, E-mail: inseop@yonsei.ac.kr [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Institute of Natural Sciences, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-04-15

    Graphical abstract: - Highlights: • Mineral/OGP nanocomposite layers were synthesized biomimetically on Ti substrates. • Incorporated OGP affected the morphology and ultimate structure of mineral. • Incorporated OGP improved the MSCs adhesion, proliferation, and ALP activity. - Abstract: Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  19. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-01-01

    Graphical abstract: - Highlights: • Mineral/OGP nanocomposite layers were synthesized biomimetically on Ti substrates. • Incorporated OGP affected the morphology and ultimate structure of mineral. • Incorporated OGP improved the MSCs adhesion, proliferation, and ALP activity. - Abstract: Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants

  20. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases ...

  1. Investigation of chromosomal aberrations in human lymphocytes of syrian phosphate miners

    Energy Technology Data Exchange (ETDEWEB)

    Alachkar, W; Othman, M [Radio - Biology and Health Dept. Syrian Atomic Energy Commission, (Syrian Arab Republic)

    1995-10-01

    The aim of thus study is to investigate the risk of exposure to Uranium and its radioactive products in Syrian phosphate miners (Khneefees and Al-sharkia). Chromosomal aberrations have been estimated in peripheral blood lymphocytes of miners using whole blood cultures `in vitro` for 48 hrs. The control group has been the normal population in damascus 180 km far from khneefees and 210 km from Al-sharkia. Our results have shown a significant difference between the miners and our control group; however there was no significant difference between the two miners groups. These results show an accumulative biological effect induced by environmental contamination in the Syrian phosphate mines. 3 figs., 3 tabs.

  2. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    Science.gov (United States)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  3. Mineralogical characteristics of the silica polymorphs in relation to their biological activities

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr. [Los Alamos National Lab., NM (United States); Heaney, P.J. [Princeton Univ., NJ (United States). Dept. of Geological and Geophysical Sciences

    1993-10-01

    Numerous aspects of minerals (including the silica polymorphs) can effect their biological activities. These include periodic structures, compositional variations, dissolution characteristics, surface properties, and particle size/shape. In order to understand mineral-induced pathogenesis in a mechanistic way, the links between these properties and biochemical processes must be elucidated. This paper presents some of the basic properties of the silica polymorphs that may relate to pathogenicity and mineralogical strategies for designing biological assays to evaluate these properties.

  4. The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kim, In-Ryoung; Kim, Seong-Eon; Baek, Hyun-Su; Kim, Bok-Joo; Kim, Chul-Hoon; Chung, In-Kyo; Park, Bong-Soo; Shin, Sang-Hun

    2016-08-31

    Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive. Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear. The present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA). Kaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors

  5. Neutron induced autoradiography of some minerals from the Allchar mine

    CERN Document Server

    Lazaru, A; Skvarc, J; Kristof, E S; Stafilov, T

    1999-01-01

    The mineral lorandite from the Allchar mine (Kavadarci, Macedonia) will be used to estimate the average solar neutrino flux. Here, the amount of sup 2 sup 0 sup 5 Pb isotope induced by the sup 2 sup 0 sup 5 Tl(nu sub e , e sup -) sup 2 sup 0 sup 5 Pb reaction is measured and converted to neutrino flux. To determine the few sup 2 sup 0 sup 5 Pb atoms that are produced by solar neutrinos in the Tl ore it is necessary to know all the interfering reactions and/or impurities producing sup 2 sup 0 sup 5 Pb. The concentration and/or spatial distribution of some impurities such as U in lorandite should be known as accurately as possible. In the present work uranium and boron concentrations in some minerals from the Allchar mine (lorandite, realgar, stibnite, orpiment and dolomite) were measured by neutron induced autoradiography. The tracks of sup 1 sup 0 B(n, alpha) and sup 2 sup 3 sup 5 U(n, f) reaction products were recorded by CR-39 and phosphate glass (PSK-50) etched track detectors, respectively. Results showed...

  6. Modulation of mutagen-induced biological effects by inhibitors of DNA repair

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Mullenders, L.F.H.; Zwanenburg, T.S.B.

    1986-01-01

    When lesions are induced in the DNA by mutagenic agents, they are subjected to cellular repair. Unrepaired and misrepaired lesions lead to biological effects, such as cell killing, point mutations and chromosomal alterations (aberrations and sister chromatid exchanges - SCEs). It is very difficult to directly correlate any particular type of lesion to a specific biological effect. However, in specific cases, this has been done. For example, short wave UV induced biological effects (cell killing, chromosomal alterations) result predominantly from induced cyclobutane dimers and by photoreactivation experiments, one can demonstrate that with the removal of dimers all types biological effects are diminished. In cases where many types of lesions are considered responsible for the observed biological effects other strategies have been employed to identify the possible lesion. The frequencies of induced chromosomal alterations and point mutations increase with the dose of the mutagen employed and an inhibition of DNA repair following treatment with the mutagen. Prevention of the cells from dividing following mutagen treatment allows them to repair premutational damage, thus reducing the biological effects induced. By comprehensive studies involving quantification of primary DNA lesions, their repair and biological effects will enable us to understand to some extent the complex processes involved in the manifestation of specific biological effects that follow the treatment of cells with mutagenic carcinogens

  7. Somatic cell genetics of uranium miners and plutonium workers. A biological dose-response indicator

    International Nuclear Information System (INIS)

    Brandom, W.F.; Bloom, A.D.; Bistline, R.W.; Saccomanno, G.

    1978-01-01

    Two populations of underground uranium miners and plutonium workers work in the state of Colorado, United States of America. We have explored the prevalence of structural chromosome aberrations in peripheral blood lymphocytes as a possible biological indicator of absorbed radiation late-effects in these populations. The uranium miners are divided into four exposure groups expressed in Working Level Months (WLM), the plutonium workers into six groups with estimated 239 Pu burdens expressed in nCi. Comparison of chromosome aberration frequency data between controls, miners, and plutonium workers demonstrate: (1) a cytogenetic response to occupational ionizing radiation at low estimated doses; and (2) an increasing monotonic dose-response in the prevalence of complex (all exchange) or total aberrations in all exposure groups in these populations. We also compared trends in the prevalence of aberrations per exposure unit (WLM and nCi) in each exposure subgroup for each population. In the uranium miners, the effects per WLM seem to decrease monotonically with increasing dose, whereas in the Pu workers the change per nCi appears abrupt, with all exposure groups over 1.3 nCi (minimum detectable level) having essentially similar rates. The calculations of aberrations per respective current maximum permissible dose (120 WLM and 40 nCi) for the two populations yield 4.8 X 10 -2 /100 cells for uranium miners and 90.6 X 10 -2 /100 cells for Pu workers. Factors which may have influenced this apparent 20-fold increase in the effectiveness of plutonium in the production of complex aberrations (9-fold increase in total aberrations) are discussed. (author)

  8. Proton induced luminescence of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H.; Millan, A.; Calderon, T. [Depto. Geologia y Geoquimica, Universidad Autonoma de Madrid, Ctra. Colmenar, km. 15, 28049, Madrid (Spain); Beneitez, P. [Departamento Quimica Fisica Aplicada, Universidad Autonoma de Madrid Cantoblanco, Madrid (Spain); Ruvalcaba S, J.L. [lFUNAM, Circuito de la lnvestigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2008-07-01

    This paper presents a summary of Ionoluminescence (IL) for several minerals commonly found in jewellery pieces and/or artefacts of historical interest. Samples including silicates and non-silicates (native elements, halide, oxide, carbonate and phosphate groups) have been excited with a 1.8 MeV proton beam, and IL spectra in the range of 200- 900 nm have been collected for each one using a fiber optic coupled spectrometer. Light emissions have been related to Cr{sup 3+}, Mn{sup 2+} and Pr{sup 3+} ions, as well as intrinsic defects in these minerals. Results show the potential of IL for impurity characterization with high detection limits, local symmetry studies, and the study of the origin of minerals. (Author)

  9. Electro-induced reactions of biologically important molecules

    International Nuclear Information System (INIS)

    Kocisek, J.

    2010-01-01

    The thesis presents the results of research activities in the field of electron interactions with biologically relevant molecules which was carried out during my PhD studies at the Department of Experimental Physics, Comenius University in Bratislava. Electron induced interactions with biologically relevant molecules were experimentally studied using crossed electron-molecule beams experiment. The obtained results, were presented in four publications in international scientific journals. First study of deals with electron impact ionisation of furanose alcohols [see 1. in list of author publications on page 22]. It has been motivated by most important works in the field of electron induced damages of DNA bases [4]. Studied 3-hydroxytetrahydrofuran and tetrahydrofurfuryl alcohol, are important model molecules for more complex biological systems (e.g. deoxyribose).The influence of hydroxyl group on stabilisation of the positive ions of the molecules, together with the stability of furan ring in ionized form are main themes of the study. The studies of small amides and aminoacids are connected to scientific studies in the field of formation of the aminoacids and other biologically relevant molecules in space and works trying to explain electron induced processes in more complex molecules[12, 13, 24]. The most important results were obtained for aminoacid Serine [see 2. in list of author publications on page 22]. We have showed that additional OH group of Serine considerably lower the reaction enthalpy limit of reactions resulting to formation of neutral water molecules, in comparison to other amino acids. Also the study of (M-H)- reaction channel using the electron beam with FWHM under 100 meV is of high importance in the field. The last part of the thesis is focused on the electron interactions with organosilane compounds. Materials prepared from organosilane molecules in plasmas have wide range of applications in both biology and medicine. We have studied electron

  10. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    adsorption of silica to freshly precipitated iron oxides along a deep iron oxidation front. In conclusion, two different modes of precipitation can be observed in modern sub-seafloor porewater systems. Dolomite precipitation is thermodynamically controlled through microbially induced supersaturation. Quartz formation is controlled through an auxiliary process that helps it to overcome a kinetic barrier. These observations exemplify the importance to distinguish between kinetic and thermodynamic effects on mineral formation under Earth surface conditions. To evaluate geochemical signatures, these modes of precipitation need to be taken into account. Contreras et al. (2013) Proc. Natl. Acad. Sci., doi/10.1073/pnas.1305981110 Meister, et al. (2007) Sedimentology 54, 1007-1032. Meister, et al. (2014) Geochim. Cosmochim. Acta 137, 188-207. Meister, P. (2015) Terra Nova, Focus Article, 00, 1-9.

  11. How biological crusts are stabilizing the soil surface? The devolpment of organo-mineral interactions in the initial phase

    Science.gov (United States)

    Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.

    2009-04-01

    First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR

  12. Potential of the PIGE method in the analysis of biological and mineral materials

    International Nuclear Information System (INIS)

    Havranek, V.

    2006-01-01

    A possible application of the PIGE method for the analysis of the biological and mineral samples has been tested using a 3.5 MeV Van de Graaff accelerator. The limits of detection of 4 mg/kg for fluorine, 10 mg/kg for aluminium and 200 mg/kg for phosphorus were achieved with a 3.15 MeV proton beam (8 mm in diameter, 20 nA current and 1000 s irradiation time). The PIGE method was found to be a suitable method for the determination of fluorine in the samples analyzed. With this technique, total fluorine in the sample can be quantitated without any chemical treatment. In the analysis of the phosphorus in thick biological samples, PIGE can compete with PIXE and is probably less sensitive to matrix effects and spectra fitting, which may bring about a higher accuracy of the results

  13. Inducing mineral precipitation in groundwater by addition of phosphate

    Directory of Open Access Journals (Sweden)

    Hartmann Thomas

    2011-10-01

    Full Text Available Abstract Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1 added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM. Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In

  14. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Science.gov (United States)

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  15. Health effects of mineral dusts, Volume 28: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr. [ed.] [Los Alamos National Lab., NM (United States); Mossman, B.T. [ed.] [Vermont Univ., Burlington, VT (United States). Dept. of Pathology

    1993-12-31

    The processes that lead to the development of disease (or pathogenesis) by minerals very likely occur at or near the mineral-fluid interface. Thus the field of ``mineral-induced pathogenesis`` is a prime candidate for interdisciplinary research, involving mineral scientists, health scientists, petrologists, pathologists, geochemists, biochemists, and surface scientists, to name a few. This review volume and the short course upon which it was based are intended to provide some of the necessary tools for the researcher interested in this area of interdisciplinary research. The chapters present several of the important problems, concepts, and approaches from both the geological and biological ends of the spectrum. These two extremes are partially integrated throughout the book by cross-referencing between chapters. Chapter 1 also presents a general introduction into the ways in which these two areas overlap. The final chapter of this book discusses some of the regulatory aspects of minerals. A glossary is included at the end of this book, because the complexity of scientific terms in the two fields can thwart even the most enthusiastic of individuals. Individual reports have been processed separately for the database.

  16. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution

  17. The Impact of Conventional and Biological Disease Modifying Antirheumatic Drugs on Bone Biology. Rheumatoid Arthritis as a Case Study.

    Science.gov (United States)

    Barreira, Sofia Carvalho; Fonseca, João Eurico

    2016-08-01

    The bone and the immune system have a very tight interaction. Systemic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA), induce bone loss, leading to a twofold increase in osteoporosis and an increase of fragility fracture risk of 1.35-2.13 times. This review focuses on the effects of conventional and biological disease modifying antirheumatic drugs (DMARDs) on bone biology, in the context of systemic inflammation, with a focus on RA. Published evidence supports a decrease in osteoclastic activity induced by DMARDs, which leads to positive effects on bone mineral density (BMD). It is unknown if this effect could be translated into fracture risk reduction. The combination with antiosteoclastic drugs can have an additional benefit.

  18. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Directory of Open Access Journals (Sweden)

    Marita Westhrin

    Full Text Available Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST and dental matrix protein-1 (DMP1, markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  19. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  20. [Bone Cell Biology Assessed by Microscopic Approach. Bone mineralization by ultrastructural imaging].

    Science.gov (United States)

    Hasegawa, Tomoka

    2015-10-01

    Bone mineralization can be divided into two phases ; one is primary mineralization associated with osteoblastic bone formation, and the other is secondary mineralization which gradually increases mineral density of bone matrix after the primary mineralization. Primary mineralization is initiated by matrix vesicles synthesized by mature osteoblasts. Crystalline calcium phosphates are nucleated inside these matrix vesicles, and then, get out of them forming spherical mineralized nodule, which can grow more by being supplied with Ca2+ and PO4(3-) (matrix vesicle mineralization). Thereafter, the mineralized nodules make contacts with surrounding collagen fibrils, extending mineralization along with their longitudinal axis from the contact points (collagen mineralization). In this review, the ultrastructural findings on bone mineralization, specially, primary mineralization will be provided.

  1. Impurity mapping in sulphide minerals using Time-resolved Ion Beam Induced Current imaging

    International Nuclear Information System (INIS)

    Laird, Jamie S.; Johnson, Brett C.; Ganesan, Kumaravelu; Kandasamy, Sasikaran; Davidson, Garry; Borg, Stacey; Ryan, Chris G.

    2010-01-01

    The semiconducting properties and charge transport within natural minerals like pyrite are postulated to drive certain geochemical processes which can lead to precious metal ore genesis. In this paper we outline electrical measurements on mineral samples and present spatio-temporally resolved Ion Beam Induced Charge or Current studies on a Schottky pyrite junction. Au-Schottky contacts were fabricated in regions selected by thermoelectric and 4-point probe resistivity measurements. The complexity in charge transport due to impurity variations results in imaging contrast which is deemed important for fluid electrochemistry. The relevance of understanding charge collection in pyrite in the context of complex geochemical processes is briefly discussed.

  2. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Exercise-induced rib stress fractures: influence of reduced bone mineral density

    DEFF Research Database (Denmark)

    Vinther, Anders; Kanstrup, Inge-Lis; Christiansen, Erik

    2005-01-01

    study investigated BMD in seven Danish national team rowers with previous rib stress fracture (RSF) and 7 controls (C) matched for gender, age, height, weight and training experience. Total body scan and specific scans of the lumbar spine (L2-L4), femoral neck and distal radius were performed using......Exercise-induced rib stress fractures have been reported frequently in elite rowers during the past decade. The etiology of rib stress fractures is unclear, but low bone mineral density (BMD) has been suggested to be a potential risk factor for stress fractures in weight-bearing bones. The present...... density may be a potential risk factor for the development of exercise-induced rib stress fractures in elite rowers....

  4. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  5. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    OpenAIRE

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    Introduction: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimu...

  6. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  7. Influence of nutrition and lifestyle on bone mineral density in children from adoptive and biological families.

    Science.gov (United States)

    Cvijetic, Selma; Baric, Irena Colic; Satalic, Zvonimir; Keser, Irena; Bobic, Jasminka

    2014-01-01

    The precise contributions of hereditary and environmental factors to bone density are not known. We compared lifestyle predictors of bone density among adopted and biological children. The study comprised 18 adopted children (mean [SD] age, 14.0 [4.1] years) with their non-biological parents and 17 children with their biological parents. Bone mineral density (BMD; g/cm(2)) was measured at the lumbar spine, total femur, and distal radius. Nutritional intake was assessed by food frequency questionnaire. Information on smoking and physical activity was obtained by questionnaire. Intakes of all nutrients, corrected for energy intake, and all lifestyle characteristics except sleep duration were similar in biological children and their parents. As compared with their parents, adopted children had significantly different energy, protein, and calcium intakes and physical activity levels. In a regression model, BMD z scores of adopted children and their parents were significantly inversely associated at the spine and total femur, whereas BMD z scores of biological children and their parents were significantly positively associated at all measurement sites. The greatest proportion of total variance in BMD was accounted for by calcium intake among adopted children and by parental BMD among biological children. For some lifestyle characteristics and nutrient intakes, the differences between parents and children were more obvious among adoptive families than among biological families. The most important lifestyle predictor of bone density was calcium intake.

  8. Role of minerals in animal health disorders

    Directory of Open Access Journals (Sweden)

    Sinovec Zlatan J.

    2005-01-01

    Full Text Available All mineral matter, essential or non-essential, can have a significant influence on production results and the health of animals, if large quantities of them are present in a feed ration. A maximally tolerant content depends on the animal specie and category. Many factors, such as physiological status (growth, lactation, etc., nutritive status, content and ratio of nutritive matter in the ration, duration of exposure, and the biological level of utilization of elements, also affect the maximally tolerant content of mineral matter in feed. The content of certain mineral matter in plant feed significantly depends on the soil factor, as well as the content and level of utilization of mineral matter from the soil. Mn, Se and Mo can be present in plant feed in such quantities as to induce toxicosis. Industrial contaminants, Cd, Pb or F, can contaminate plants, in particular their leaves, in quantities which lead to the appearance of clinical signs of conventional toxicosis. Moreover, natural water can contain large quantities of S, F, Na, Mg, or Fe, and certain mineral matter can get into water through industrial waste. In addition to the above, it is possible to cause unwanted effects through the frequent, but primarily unprofessional use of mineral additives, since it is extremely important, besides meeting the mineral requirements of each individual element, to secure a ratio among the mineral matter themselves as well as with other nutritive matter. Mineral matter present in food are in mutual interference, and these relations can be synergistic or antagonistic. The sufficiency of a large number of mineral matter has a negative effect on the utilization of other matter (conditional and/or border deficiency, while certain elements cause the clinical appearance of toxic effects. The accidental intake of large quantities of certain mineral matter is revealed as clinical signs of acute toxicosis, which is very different from chronic effects caused by

  9. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    Science.gov (United States)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  10. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  11. ABSORPTION AND BIOAVAILABILITY OF THE MINERALS IN THE MULTI-MIXTURE FOOD SUPPLEMENT: BIOLOGICAL ASSAY IN RATS

    Directory of Open Access Journals (Sweden)

    E. HELBIG

    2008-12-01

    Full Text Available

    The absorption and bioavailability of the minerals Ca, Fe and Zn in balanced and mineral restricted diets with the addition of the food supplement multi-mixture (MM, was evaluated. A biological assay was carried out for 28 days with recently weaned Wistar rats, using 3 treatments and 8 animals in each group. The diets offered to each group were distributed as follows: CD – Control Diet (AIN-93G; CcD/MM – Control Diet + Supplement 5% MM; DRMIXc/MM – Control Diet with Mineral Restricted + Supplement 5% MM. The animals were monitored for weight; amount of diet consumed and amount of faeces excreted. They were sacrifi ced at the end of the experimental period and the pair of femurs, pancreas and liver removed for the determination of Ca, Fe and Zn. The CcD/MM diet presented absorption of Ca and Fe and bioavailability of Ca, Fe and Zn equal to that of CD, showing no statistical difference between the treatments. However the DRMIXcD/MM diet presented an increase in Ca absorption, equal absorption of Fe and an increase in the bioavailability of Ca, Fe and Zn when compared to CD. It was concluded that when fed on a balanced diet supplemented with 5% MM, there was no increase in the bioavailability of Ca, Fe or Zn, whereas when fed on a mineral defi cient diet, the group of animals that received supplementation with 5% MM, presented greater absorption and bioavailability of these minerals.

  12. Heavy ion induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Vilaithong, T.; Yu, L.D.; Apavatjrut, P.; Phanchaisri, B.; Sangyuenyongpipat, S.; Anuntalabhochai, S.; Brown, I.G.

    2004-01-01

    Low-energy ion beam bombardment of biological materials for genetic modification purposes has experienced rapid growth in the last decade, particularly for the direct DNA transfer into living organisms including both plants and bacteria. Attempts have been made to understand the mechanisms involved in ion-bombardment-induced direct gene transfer into biological cells. Here we summarize the present status of the application of low-energy ions for genetic modification of living sample materials

  13. Exercise-induced changes in blood minerals, associated proteins and hormones in women athletes.

    Science.gov (United States)

    Deuster, P A; Kyle, S B; Singh, A; Moser, P B; Bernier, L L; Yu-Yahiro, J A; Schoomaker, E B

    1991-12-01

    The acute effects of prolonged exercise on the body's distribution of trace minerals in women athletes has not been examined. To this end, plasma concentrations of zinc, copper, and iron; erythrocyte zinc (EZn) and copper (ECu); and the associated proteins, ceruloplasmin and transferrin were measured in 38 highly trained women runners under resting conditions and again after running a competitive 26.2 mile marathon. The hormones, cortisol (C), estradiol (E2), prolactin (Prl), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured because of reported effects of hormones on trace mineral distribution. Menstrual status was assessed by questionnaire: 8 women were in the follicular phase, 13 in mid-cycle, 8 in the luteal phase and 9 were amenorrheic (AM). Significant post-race increases were noted for all plasma minerals, associated proteins, and the hormones C and Prl, whereas EZn decreased. No significant changes in ECu, E2, FSH or LH were noted. Menstrual status in terms of cycle phase or amenorrhea did not appear to modify the response. Exercise-induced changes in minerals may reflect release from other tissues and/or changes in the concentration of associated proteins. Whether these changes serve adaptive and/or specific functions during exercise is unknown.

  14. Using the extended parallel process model to prevent noise-induced hearing loss among coal miners in Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Johnson, L.; Witte, K.; Patel, D.; Orrego, V.; Zuckerman, C.; Maxfield, A.M.; Thimons, E.D. [Ohio State University, Columbus, OH (US)

    2004-12-15

    Occupational noise-induced hearing loss is the second most self-reported occupational illness or injury in the United States. Among coal miners, more than 90% of the population reports a hearing deficit by age 55. In this formative evaluation, focus groups were conducted with coal miners in Appalachia to ascertain whether miners perceive hearing loss as a major health risk and if so, what would motivate the consistent wearing of hearing protection devices (HPDs). The theoretical framework of the Extended Parallel Process Model was used to identify the miners' knowledge, attitudes, beliefs, and current behaviors regarding hearing protection. Focus group participants had strong perceived severity and varying levels of perceived susceptibility to hearing loss. Various barriers significantly reduced the self-efficacy and the response efficacy of using hearing protection.

  15. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Wan, Xiong; Wang, Peng

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.

  16. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. A survey of chemicals inducing lipid peroxidation in biological systems.

    Science.gov (United States)

    Kappus, H

    1987-01-01

    A great number of drugs and chemicals are reviewed which have been shown to stimulate lipid peroxidation in any biological system. The underlying mechanisms, as far as known, are also dealt with. Lipid peroxidation induced by iron ions, organic hydroperoxides, halogenated hydrocarbons, redox cycling drugs, glutathione depleting chemicals, ethanol, heavy metals, ozone, nitrogen dioxide and a number of miscellaneous compounds, e.g. hydrazines, pesticides, antibiotics, are mentioned. It is shown that lipid peroxidation is stimulated by many of these compounds. However, quantitative estimates cannot be given yet and it is still impossible to judge the biological relevance of chemical-induced lipid peroxidation.

  18. Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

    Science.gov (United States)

    2018-01-01

    Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p LIBS and SEM/EDS analyses (r = 0.84, p LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841

  19. Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels

    DEFF Research Database (Denmark)

    Lišková, Jana; Douglas, Timothy E.L.; Wijnants, Robbe

    2018-01-01

    Hydrogels mineralized with calcium phosphate (CaP) are increasingly popular bone regeneration biomaterials. Mineralization can be achieved by phosphatase enzyme incorporation and incubation in calcium glycerophosphate (CaGP). Gellan gum (GG) hydrogels containing the enzyme phytase and chitosan...... oligomer were mineralized in CaGP solution and characterized with human osteoblast-like MG63 cells and adipose tissue-derived stem cells (ADSC). Phytase induced CaP formation. Chitosan concentration determined mineralization extent and hydrogel mechanical reinforcement. Phytase-induced mineralization...... promoted MG63 adhesion and proliferation, especially in the presence of chitosan, and was non-toxic to MG63 cells (with and without chitosan). ADSC adhesion and proliferation were poor without mineralization. Chitosan did not affect ADSC osteogenic differentiation....

  20. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    Science.gov (United States)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  1. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium.

    Science.gov (United States)

    Vasanthakumar, B; Ravishankar, H; Subramanian, S

    2013-12-01

    The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-à-vis galena are contributory factors for the selective separation of sphalerite from galena. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The use of mineral crystals as bio-markers in the search for life on Mars

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E. S.

    1992-01-01

    It is proposed that minerals resulting from biologically controlled mineralization processes be utilized as biomarkers because of their favorable qualities. Universal signatures of life (biomarkers) are discussed in terms of their terrestrial forms and hypothetical Martian counterparts including organics, suites of specific inorganic and organic compounds, and isotopic ratios. It is emphasized that minerals produced under biologic control have morphological and isotopic compositions that are not found in their abiotic counterparts. Other biomarkers are not necessarily indicative of biological origin and are therefore unreliable resources for scientific study. Mineral crystals are also stable over long geological periods, and the minerals from Martian fluvial features can therefore be employed to search for fossils and biomarkers of early biological activity.

  3. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  4. Trace Mineral Losses in Sweat

    National Research Council Canada - National Science Library

    Chinevere, Troy D; McClung, James P; Cheuvront, Samuel N

    2007-01-01

    Copper, iron and zinc are nutritionally essential trace minerals that confer vital biological roles including the maintenance of cell structure and integrity, regulation of metabolism, immune function...

  5. Physical properties and biological effects of mineral trioxide aggregate mixed with methylcellulose and calcium chloride.

    Science.gov (United States)

    Lee, Bin-Na; Chun, Soo-Ji; Chang, Hoon-Sang; Hwang, Yun-Chan; Hwang, In-Nam; Oh, Won-Mann

    2017-01-01

    Methylcellulose (MC) is a chemical compound derived from cellulose. MTA mixed with MC reduces setting time and increases plasticity. This study assessed the influence of MC as an anti-washout ingredient and CaCl2 as a setting time accelerator on the physical and biological properties of MTA. Test materials were divided into 3 groups; Group 1(control): distilled water; Group 2: 1% MC/CaCl2; Group 3: 2% MC/CaCl2. Compressive strength, pH, flowability and cell viability were tested. The gene expression of bone sialoprotein (BSP) was detected by RT-PCR and real- time PCR. The expression of alkaline phosphatase (ALP) and mineralization behavior were evaluated using an ALP staining and an alizarin red staining. Compressive strength, pH, and cell viability of MTA mixed with MC/CaCl2 were not significantly different compared to the control group. The flowability of MTA with MC/CaCI2 has decreased significantly when compared to the control (pphysical and biological effect of MTA. It suggests that these cements may be useful as a root-end filling material.

  6. Effect of Dietary Induced Metabolic Acidosis on Bone Mineral Acquisition in 2-8 Month Old Lambs

    Directory of Open Access Journals (Sweden)

    E.S. Hackett

    2009-01-01

    Full Text Available Dietary induced metabolic acidosis (MA results in a negative calcium balance in normal animals. In order to maintain acid-base homeostasis the body's primary base buffer source calcium is mobilized from bone. This study examined the impact of dietary induced MA on bone in an adolescent ovine model. We hypothesized that a MA diet would reduce bone mineral density (BMD in growing sheep. Twelve 2 month old lambs of mixed sex were divided into 2 groups. The MA group consumed a ration that was relatively acidogenic compared to the control diet (CD for 6 months. DXA was performed on days 0 and 180. Arterial blood samples were evaluated on days 0, 30, 120, 150 and 180 for pH, pCO 2 , pO 2 , HCT, Na, K, ionized Ca, HCO 3 – , TCO 2 , base excess (BE, and O 2 saturation. Histomorphometry of the femoral diaphysis was performed from samples harvested at 180 days. Statistical analysis consisted of a 2-way ANOVA for sex and diet with repeated measures for bone mineral content (BMC and blood parameters, a 2-way ANOVA for one time measurements at 180 d including BMD of the whole body, radii, femora and lumbar vertebrae, and 1-way ANOVA to compare histomorphometric measurements. Percent increase from baseline for BMD of the whole body was 1.8x greater in the CD group than the MA group. BMC of the whole body and lumbar vertebrae was significantly less in the MA group. Lumbar BMD on day 180 was 30% less in the MA group. Cortical bone was less affected. Radii and femora BMD was 18% and 21% less, respectively, in the MA group than in the CD group. MA treatment significantly decreased pH, HCT, iCa, HCO 3 – , TCO 2 and BE. However, no blood parameters were outside the normal range for this species. Histomorphometry revealed significantly decreased cortical area and thickness and increased mineral apposition rate and endosteal active surface length in the femoral cortex of the MA group compared to the CD group. This study demonstrated a well compensated dietary

  7. Sifat Biologi Tanah Mineral Masam Dystrudepts Di Areal Piringan Kelapa Sawit Yang Diaplikasi Mulsa Organik Mucuna Bracteata Di Lahan Percobaan Fakultas Pertanian, Universitas Riau

    OpenAIRE

    Zahara, Fitri; ', wawan; ', Wardati

    2015-01-01

    The objectives of this research to determine the soil biological properties on the acidic mineral soil Dystrudepts in the area of disc palm oil applied of organic mulch Mucuna bracteata in the experimental garden of Agriculture Faculty, Riau University. Analysis of the soil biological was conducted in the Soil Laboratory of Agriculture Faculty, Riau University, in October 2014 to February 2015. Application of mulch organic M. bracteata used purposive random sampling method which consisting of...

  8. Effect of mineral nitrogen fertilization on growth characteristics of lucerne under induced water deficiency stress

    International Nuclear Information System (INIS)

    Vasileva, V.; Vasilev, E.; Athar, M.

    2011-01-01

    Utility of lucerne crop fertilization with nitrogen fertilizer has been discussed in literature with controversy. In this study experiment was conducted to determine the effect of mineral nitrogen at the doses of 40, 80, 120 and 160 mg N/kg on some characteristics of lucerne under induced water deficiency stress at the stage of budding in a pot trial. It was found that mineral nitrogen at the doses of 120 and 160 mg N/kg soil increased the productivity of dry top mass by 17 and 23% in conditions of optimum moisture, and by 9% in conditions of water deficiency stress at the dose of 80 mg N/kg soil. Application of mineral nitrogen at the dose of 120 and 160 mg N/kg soil increased the quantity of dry root mass by 43 and 38% for the conditions of optimum moisture, and by 54-56% for conditions of water deficiency stress. Mineral nitrogen fertilizing at the dose of 40 mg N/kg soil had the lowest suppressive effect on the nodulation (11%). The dose of 160 mg N/kg soil was found to be toxic to nodulation. The dose of 80 mg N/kg soil, at which the crop had the lowest sensitivity to water deficiency stress, was optimal for lucerne development. (author)

  9. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    International Nuclear Information System (INIS)

    Samet, J.; Gilliland, F.D.

    1998-01-01

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors

  10. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  11. Biological role in the transformation of platinum-group mineral grains

    Science.gov (United States)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  12. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.

    Science.gov (United States)

    He, Yuanzhen; Cheng, Hefa

    2016-05-01

    Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    Science.gov (United States)

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  14. INTERACTION BETWEEN DIETARY MINERAL AND PHYTASE ON BIOLOGICAL PERFORMANCES OF JAPANESE FLOUNDER, Paralichthys olivaceus. PART II. MINERAL DIGESTIBILITY AND VERTEBRAL MINERAL CONTENT

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2015-06-01

    Full Text Available Interactive effects between dietary inorganic phosphorus (IP and phytase (P on mineral digestibility and vertebral mineral content were investigated in a 30 days feeding trial followed by three weeks digestibility trial with Japanese flounder, Paralichthys olivaceus. Eight experimental diets were formulated based on two levels of dietary Ca at 0% and 0.2% combined with either 0% or 0.25% of dietary IP and either with 0 and 2,000 fytase unit (FTU/kg of phytase in diet, respectively. Result indicated that digestibility of total phosphorus significantly increased by three dietary compounds where the highest was observed in fish fed diet contained 0.25% IP and 2,000 FTU phytase/kg and dietary Ca also included in diet. Significant interaction was only detected between dietary IP and P on this parameter. Supplementation of IP and Ca not phytase significantly improved Ca digestibility. Ca digestibility was very poor when dietary IP and Ca were not supplemented in diet even with when phytase supplemented in diet. There was significant interaction between dietary IP and Ca on Ca digestibility. Vertebral total phosphorus, Ca, and Mg content as well as Ca:P ratio were significantly enhanced by dietary IP and phytase. Dietary Ca has significant effect only on vertebral total phosphorus. Interaction between dietary IP and Ca was significantly found on vertebral Ca content and Ca:P ratio. No significant second-order interaction was observed among the three dietary mineral on overall parameters. Based on total phosphorus and Ca digestibility as well vertebral phosphorus content found in this study, dietary IP, Ca, and phytase at rate of 0.25%, 0.2%, and 2,000 FTU phytase/kg diet, respectively are needed to supplement in diet for a better mineral absorption and bone mineralization.

  15. Improving mining technology and organization of labor in the light of medical-biological aspects of physical health of miners

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, P.V.; Nirenburg, K.G.; Davydova, N.N.; Dyatlova, L.A. (Kuzbasskii Politekhnicheskii Institut (USSR))

    1991-12-01

    Transfer to a contract-bonus system in mines of the Severokuzbassugol' and Leninskugol' associations (USSR) increased coal mining productivity by 42.2-54.4%, but, at the same time, problems concerning miners' health were noted. Presents data on the productivity and labor conditions of contract teams working at coal mining and in development faces. The influence of noise and vibration induced stresses on organisms of underground workers is analyzed. Investigations showed that 3 stages of exhaustion are likely to develop and that the most vulnerable are the cardiovascular system and the respiratory tract. The 3 stages of exhaustion and ability to recover were studied on mining machine operators and drivers of heading machines. Data showed that during the 1985-89 period, 972 miners received disability certificates; the rate of disability was 2.6 miners per 1 Mt of coal; 40.5% of miners over 40 years working on labor-intensive jobs had three or more chronic diseases which could cause permanent disability. In the structure of disability, cardio-vascular system cases accounted for 25%, osseous-muscular system cases for 20% and pulmonary diseases for 13%. Stresses the need for every mine to maintain its own medical center equipped with inhalation therapy, psychological relief, acupuncture and physiotherapy facilities.

  16. Lung cancer mortality in the European uranium miners cohorts analyzed with a biologically based model taking into account radon measurement error

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, W.F. [German Research Center for Environmental Health (GmbH), Institute for Radiation Protection, Neuherberg (Germany); Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute for Radiation Biology, Neuherberg (Germany); Tomasek, L. [National Radiation Protection Institute, Prague (Czech Republic); Grosche, B. [BfS Bundesamt fuer Strahlenschutz, Neuherberg (Germany); Leuraud, K.; Laurier, D. [DRPH, SRBE, LEPID, Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2012-08-15

    The biologically based two-stage clonal expansion (TSCE) model is used to analyze lung cancer mortality of European miners from the Czech Republic, France, and Germany. All three cohorts indicate a highly significant action of exposure to radon and its progeny on promotion. The action on initiation is not significant in the French cohort. An action on transformation was tested but not found significant. In a pooled analysis, the results based on the French and German datasets do not differ significantly in any of the used parameters. For the Czech dataset, only lag time and two parameters that determine the clonal expansion without exposure and with low exposure rates (promotion) are consistent with the other studies. For low exposure rates, the resulting relative risks are quite similar. Exposure estimates for each calendar year are used. A model for random errors in each of these yearly exposures is presented. Depending on the used technique of exposure estimate, Berkson and classical errors are used. The consequences for the model parameters are calculated and found to be mostly of minor importance, except that the large difference in the exposure-induced initiation between the studies is decreased substantially. (orig.)

  17. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J

    2018-01-01

    Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.

  18. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  19. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair.

    Science.gov (United States)

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    INTRODUCTION: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models. THE HYPOTHESIS: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth. EVALUATION OF THE HYPOTHESIS: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  20. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  1. Intrinsic mineral labeling of edible plants: methods and uses

    International Nuclear Information System (INIS)

    Weaver, C.M.

    1985-01-01

    The fate of minerals can be conveniently studied through intrinsic labeling techniques. The mineral of interest is biologically incorporated into the food in a form that can be distinguished analytically from the natural form of the element. Radiolabels have traditionally been used to study such problems as the uptake of minerals by plants, the gross and subcellular mineral distribution in plant tissues, the form and associations of the deposited mineral, and the bioavailability of minerals to animals and humans. The use of stable (nonradioactive) isotopes as a label offers the potential of safely studying bioavailability of minerals from individual foods in human population groups of all ages using foods processed in normal food handling and processing facilities. 114 references

  2. Synthesis on Biology and Uranium Mineralization of Rabau Hulu Sector Kalan, Kalimantan Barat

    International Nuclear Information System (INIS)

    Bambang-Soetopo; Retno-Witjahyanti; Yanu-Wusana

    2004-01-01

    The results of previous research on Rabau Hulu sector consist of geology, geophysics and drilling data show that the area prospect for finding U mineralization. Goal of this synthesis is to know geological and U mineralization of Rabau sector in order to develop further followup program. In general geology the area consists of biotite micro quartzite, muscovite micro quartzite, muscovite quartzite, leopard quartzite, horn fels and granite. The directions of stratification is NE-SW of the dipping is NW. Prominent fault is NE-SW sinistral fault, NNE-SSW and NW-SE dextral fault. Uranium mineralization as a uraninite fill in the space between minerals and fractures system ENE-WSW, its associated with pyrite, pyrrhotite, chalcopyrite, molybdenite, sphalerite, magnetite, tourmaline and quartz. With radiometric anomalies values are about 1.000-15.000 c/s. Uranium mineralization process is connected with the granite intrusion as the hydrothermal magnetic process. (author)

  3. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    Science.gov (United States)

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    1990-05-01

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10 -4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10 -4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10 -2 Sv -1 . Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  5. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joshua C., E-mail: joshchang@ucla.edu [Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA and Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210 (United States); Miura, Robert M., E-mail: miura@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  6. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    Science.gov (United States)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Shukla, P.; Kumar, R.; Raib, A. Kumar

    2016-11-01

    The distribution of minerals in different green leafy vegetables, such as spinach, chenopodium, chickpea, mustard, and fenugreek, was calculated using laser induced breakdown spectroscopy (LIBS). LIBS can provide an easy, reliable, efficient, low-cost, and in situ chemical analysis with a reasonable precision. In situ LIBS spectra in the range 200-500 nm were carried out using fresh leaves and leaves in the pellet form. As the spectra suggest, magnesium and calcium are present in each vegetable; however, the amount of them varies. It is observed that the amount of iron is maximal in spinach. The nutrition value of the plants was analyzed, and it was revealed that they are low in calories and fat and high in protein, fiber, iron, calcium, and phytochemicals.

  8. Rearing Technique, Biology and Sterilization of the Coffee Leaf Miner, Leucoptera Coffeella Guer. (Lepidoptera: Lyonetiidae)

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, K. P.; Ferrer, F. [Inter-American Institute of Agricultural Sciences of the OAS Training and Research Center, Turrialba (Costa Rica)

    1968-06-15

    For two years the authors studied the feasibility of controlling the coffee leaf miner Leucoptera coffeella Guer. by the radiation sterilization technique. During this period a technique for raising large numbers of tills insect on potted coffee plants in the laboratory was devised. The optimal range for the development of egg, larval and pupal stages of the coffee leaf miner was between 20 and 30 Degree-Sign C. The pupal stage of female insects was slightly shorter than that of the male. The laying of fertile eggs began during the first night following emergence. During an oviposition period of 16 days the average fecundity was 68 eggs. The maximum oviposition by a single female was 131 eggs over the life span while as many as 34 eggs were laid during a single day of oviposition. To investigate the best stage to induce radiation sterilization, pupal and adult insects were irradiated with {sup 60}CO gamma rays. Seven-day pupae (close to emergence) showed 88% lethality in males when given 60 krad; the survivors retained some fertility. Adult females receiving 70 krad were 100% sterile while males given 90 krad showed 0.02% fertility. Doses as high as 90 krad given to newly emerged adults did not reduce longevity. Studies are continuing to determine if sterilizing doses impair sexual vigour and mating competitiveness of the treated males. (author)

  9. Anaerobic exercise - Induced changes in serum mineral ...

    African Journals Online (AJOL)

    Anaerobic exercise, a non 02 – dependent energy metabolism leads to transient metabolic changes, which are corrected gradually by homestatic mechanism. We investigated in eight male subjects, the effects of anaerobic exercise after a day sedentary activity on serum mineral concentration. There was significant ...

  10. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  11. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  12. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment.

    Science.gov (United States)

    Freidman, Benjamin L; Northcott, Kathy A; Thiel, Peta; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2017-06-01

    Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.

  13. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    Science.gov (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  14. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  15. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    Directory of Open Access Journals (Sweden)

    Hany Mohamed Aly Ahmed

    2017-04-01

    Full Text Available Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA, which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O, compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM, energy dispersive X-ray microanalysis (EDX, and X-ray diffraction (XRD, respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs using methyl-thiazol-diphenyltetrazolium (MTT assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05. HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

  16. Qualitative PIXE analysis of mineral elements in some phytopharmaceutic drugs

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Harangus, Livia; Gugiu, M; Iordan, Andreea; Ciortea, C.

    2002-01-01

    A large number of phytopharmaceutic drugs are being developed, due to positive effects in various diseases and to high tolerance by the organism. While their medicinally active compounds have been identified, little attention has been paid to their mineral micro- and trace elements. The mineral elements in the drug may have therapeutic or toxic effects which should be properly assessed. Nuclear and atomic methods allow sensitive multielement detection and we previously performed nuclear activation analysis of some Romanian drugs made by plants. Despite this method's high sensitivity, its use is limited by the availability of a nuclear reactor. Particle-induced X-ray emission (PIXE) provides an alternative, and here we examined its potential for the analysis of mineral elements in three commercial phytopharmaceutical preparations, namely, Liv52, Mentat, and Geriforte. The PIXE measurements were performed with 3 MeV protons at the 8.5 MV NIPNE-HH tandem accelerator, using a hyper pure Ge detector, normally oriented and connected to a multichannel analyzer and to a computer; the drug pills were fixed at 45 angle with respect to the beam. In all drugs PIXE detected mineral elements with Z > 16 down to trace levels. Major elements included K, Ca, Fe, Cu, and Zn, and minor/trace amounts of S, Cl, Ti, Cr, Mn, Ni, Ga, Br, Rb, Sr, Hg, and As/Pb were detected. Some differences were seen between the three drugs. Although at trace levels Ga, As, Hg and Pb are not toxic, one should consider that their accumulation might be harmful and caution seems recommendable on long-term cure. Most of the other elements are known to exert a positive biological role, and both in major and trace levels they may contribute to the therapeutic action. Thus PIXE analysis of mineral elements in phytopharmaceutic drugs, even qualitative, is useful for evaluating the benefits and risks in the therapy. (authors)

  17. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  18. A novel mineral flotation process using Thiobacillus ferrooxidans.

    Science.gov (United States)

    Nagaoka, T; Ohmura, N; Saiki, H

    1999-08-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.

  19. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method.

    Science.gov (United States)

    Harrington, James M; Young, Daniel J; Essader, Amal S; Sumner, Susan J; Levine, Keith E

    2014-07-01

    Minerals are inorganic compounds that are essential to the support of a variety of biological functions. Understanding the range and variability of the content of these minerals in biological samples can provide insight into the relationships between mineral content and the health of individuals. In particular, abnormal mineral content may serve as an indicator of illness. The development of robust, reliable analytical methods for the determination of the mineral content of biological samples is essential to developing biological models for understanding the relationship between minerals and illnesses. This paper describes a method for the analysis of the mineral content of small volumes of serum and whole blood samples from healthy individuals. Interday and intraday precision for the mineral content of the blood (250 μL) and serum (250 μL) samples was measured for eight essential minerals--sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), zinc (Zn), copper (Cu), and selenium (Se)--by plasma spectrometric methods and ranged from 0.635 to 10.1% relative standard deviation (RSD) for serum and 0.348-5.98% for whole blood. A comparison of the determined ranges for ten serum samples and six whole blood samples provided good agreement with literature reference ranges. The results demonstrate that the digestion and analysis methods can be used to reliably measure the content of these minerals and potentially of other minerals.

  20. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  1. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  2. Comparative assessment of different treatment modalities in miners with vibration- and noise-induced disease

    Energy Technology Data Exchange (ETDEWEB)

    Velskaya, M.L.; Nekhorosheva, M.A.; Konovalova, S.I.; Kukhtina, G.V.; Gonchar, I.G.; Terentyeva, D.P.; Grishchenko, L.A.; Soboleva, N.P.; Kharitonov, S.A.; Priklonskiy, I.V.

    1985-02-01

    A group of 71 miners with vibration sickness and noise-induced pathology were managed either by standard methods, or in combination with acupuncture and/or hyperbaric oxygenation for a comparative assessment of the effectiveness of the different therapeutic approaches. Analysis of subjective factors as well as standard physiological parameters (EKG, rheoencephalography, peripheral rheography, EEG, neuropsychological tests) demonstrate that both acupuncture and hyperbaric oxygenation are effective modalities in the majority of the subjects. Nevertheless, the lack of improvement in certain criteria, or even what could be regarded as adverse sequelae, suggest that the use of hyperbaric oxygenation in the management of such disorders be approached with considerable care.

  3. Contributions of Fe Minerals to Abiotic Dechlorination

    Science.gov (United States)

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  4. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    International Nuclear Information System (INIS)

    Herman, D'souza Sunil; Geraldine, Menezes; T, Venkatesh

    2009-01-01

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  5. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D' souza Sunil, E-mail: hermansdsouza@rediffmail.com [Department of Biotechnology, Manipal Life Sciences Centre, KMC, Manipal University, Manipal (India); Geraldine, Menezes, E-mail: gere1@rediffmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India); T, Venkatesh, E-mail: venky_tv@hotmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India)

    2009-07-30

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  6. Emotions and personality traits in former mercury miners

    Directory of Open Access Journals (Sweden)

    Darja Kobal Grum

    2005-02-01

    Full Text Available The aim of this study is to evaluate the impact of long-term occupational exposure to elemental mercury vapor (Hg° on the personality traits of ex-mercury miners. The study groups included 53 ex-mercury miners previously exposed to Hg° and 53 age-matched controls. Their previous occupational exposure, as well as some biological indices of actual non-occupational exposure, were evaluated. Miners and controls completed the self-reporting Eysenck Personality Questionnaire (EPQ and the Emotional States Questionnaire (ESQ. Group differences were analyzed through the application of ANOVA software. The relationship between the indices of previous occupational exposure and the observed personality traits was evaluated by machine learning methods (regression trees. The mercury miners were intermittently exposed to Hg° in intervals – cycles for a period of 7-31 years at air Hg° concentrations ranging from 0.14 to 0.45 mg/m3. The miners' mean cycle urine mercury (U-Hg level (range 20–120 μg/L and cumulative U-Hg level (range 1286–21390 μg/L were very high. The present non-occupational exposure to mercury was very low in both groups. The low extraversion and lie scores shown by EPQ suggest that miners are more introverted and sincere. The results obtained from ESQ indicate that mercury miners tend to be more depressive, more rigid in expressing their emotions (indifference, and are likely to have more negative self-concepts than the controls. The tendency towards emotional rigidity, negative self-concept, and partly also introversion seems to be associated with some biological indices of occupational Hg° exposure, but not the lower score of lie found in miners. Higher occupational Hg° exposure (cycles U-Hg level > 38.7 mg/L in interaction with moderate alcohol consumption (<26 ml/day seems to have had a decisive influence on the development of miners' depression. Despite the limitations, long-term intermittent, substantial exposure to Hg° in

  7. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  8. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    Science.gov (United States)

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  9. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    International Nuclear Information System (INIS)

    Pořízka, P.; Demidov, A.; Kaiser, J.; Keivanian, J.; Gornushkin, I.; Panne, U.; Riedel, J.

    2014-01-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  11. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    Energy Technology Data Exchange (ETDEWEB)

    Pořízka, P. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Demidov, A. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Keivanian, J. [Institute for Mining, Technical University Clausthal, Erzstraße 18, 38678 Clausthal-Zellerfeld (Germany); Gornushkin, I. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Panne, U. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Univerisät zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany); Riedel, J., E-mail: jens.riedel@bam.de [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany)

    2014-11-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  12. Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Oršolić Nada

    2018-06-01

    Full Text Available Retinoic acid-induced osteoporosis (RBM is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM. After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg or alendronate (40 mg/kg. We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD, markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

  13. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  14. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2012-01-01

    AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046

  15. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity.

    Science.gov (United States)

    Al Jaouni, Soad; Saleh, Ahmed M; Wadaan, Mohammed A M; Hozzein, Wael N; Selim, Samy; AbdElgawad, Hamada

    Many studies have discussed the influence of elevated carbon dioxide (eCO 2 ) on modeling and crop plants. However, much less effort has been dedicated to herbal plants. In this study, a robust monitoring for the levels of 94 primary and secondary metabolites and minerals in two medicinal herbs, basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.), grwon under both ambient (aCO 2 , 360 ppm) and eCO 2 (620 ppm) was performed. We also assessed how the changes in herbal tissue chemistry affected their biological activity. Elevated CO 2 significantly increased herbal biomass, improved the rates of photosynthesis and dark respiration, and altered the tissue chemistry. Principal Component Analysis of the full data set revealed that eCO 2 induced a global change in the metabolomes of the two plants. Moreover, Hierarchical Clustering Analyses showed quantitative differences in the metabolic profiles of the two plants and in their responsiveness to eCO 2 . Out of 94 metabolites, 38 and 31 significantly increased in basil and peppermint, respectively, as affected by eCO 2 . Regardless of the plant species, the levels of non-structural carbohydrates, fumarate, glutamine, glutathione, ascorbate, phylloquinone (vitamin K1), anthocyanins and a majority of flavonoids and minerals were significantly improved by eCO 2 . However, some metabolites tended to show species specificity. Interestingly, eCO 2 caused enhancement in antioxidant, antiprotozoal, anti-bacterial and anticancer (against urinary bladder carcinoma; T24P) activities in both plants, which was consequent with improvement in the levels of antioxidant metabolites such as glutathione, ascorbate and flavonoids. Therefore, this study suggests that the metabolic changes triggered by eCO 2 in the target herbal plants improved their biological activities. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  17. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  18. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, J.M., E-mail: josemaria.monteagudo@uclm.es [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain); Duran, A.; Aguirre, M.; San Martin, I. [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain)

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H{sub 2}O{sub 2}, Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H{sub 2}O{sub 2} and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k{sub TOC}, increased as initial Fe(II) and H{sub 2}O{sub 2} concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. {center_dot}OH and O{sub 2}{center_dot}{sup -} radicals were the main oxidative intermediate species in the process, although singlet oxygen ({sup 1}O{sub 2}) also played a role in the mineralization reaction.

  20. Maxi- and mini-ferritins: minerals and protein nanocages.

    Science.gov (United States)

    Bevers, Loes E; Theil, Elizabeth C

    2011-01-01

    Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.

  1. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Cidália D Pereira

    2014-08-01

    Full Text Available Consuming a high-fructose diet induces metabolic syndrome (MS-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC in 10% fructose-fed Sprague-Dawley rats (FRUCT. Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  2. On Mineral Retrosynthesis of a Complex Biogenic Scaffold

    Directory of Open Access Journals (Sweden)

    Ashit Rao

    2017-03-01

    Full Text Available Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid, poly(aspartic acid and poly(4-styrenesulfonic acid-co-maleic acid as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules.

  3. Detection and evaluation of uranium in different minerals by gamma spectrometry and laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sergani, F.M.; Khedr, M.A.; Harith, M.A.; El Mongy, S.A.

    2004-01-01

    Analysis, detection and evaluation of source nuclear materials (e.g. uranium) in different minerals by sensitive techniques are a vital objective for uranium exploration, nuclear materials extraction, processing and verification. In this work, uranium in different geological formations was determined using gamma spectrometry and laser induced breakdown spectroscopy (LIBS). The investigated samples were collected from different regions distributed all over Egypt. The samples were then prepared for non-destructive analysis. A hyper pure germanium detector was used to measure the emitted gamma rays of uranium and its daughters in the samples. The concentrations of uranium in ppm (μg/g) in the investigated samples are given and discussed in this work. The highest uranium concentration (4354.9 ppm) was found in uranophane samples of Gattar rocks. In Laser induced breakdown spectroscopy (LIBS) technique, plasma was formed by irradiating the rock surface with focused Q-switched Nd:Yag laser pulses of 7 ns pulse duration at the fundamental wavelength (1064 nm). Atoms and ions originating from the rock surface are excited and ionized in the laser produced hot plasma (∝10 000 K). The plasma emission spectral line is characteristic of the elements present in the plasma and allows identification of the uranium in the uranophane mineral. The strong atomic line at 424.2 nm is used for the qualitative identification of uranium. It can be mentioned that the elevated levels of uranium in some of the investigated uranophane samples are of great economic feasibility to be extracted. (orig.)

  4. Ovariectomy-induced changes in aged beagles: Histomorphometry and mineral content of the rib

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.K.; Bhattacharyya, M.H.; Hurst, D. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology; Miller, S. [Univ. of Utah, Salt Lake City, UT (United States). Radiobiology Div.; Sacco-Gibson, N. [Proctor and Gamble Pharmaceuticals, Cincinnati, OH (United States)

    1997-08-01

    The effects of ovariectomy on the aged beagle skeleton were studied by histomorphometric analysis of the cortical bone in sequential rib biopsies. Biopsies were taken from each ovariectomized (OV) or sham-operated (SO) dog at the time of surgery and at 1, 4, and 8.5 months after surgery. Tetracycline, calcein, and xylenol orange, respectively, were administered by a fluorochrome labeling procedure (2d-10d-2d) just prior to each postoperative biopsy to provide markers of bone formation. Analysis of sequential biopsies provided a means to follow the response to ovariectomy over time and compare each animal against its own baseline. Examination of sequential biopsies indicated that cortical porosity increased by the fourth month after ovariectomy and remained high at 8.5 months. Ovariectomy did not influence histomorphometric indices at one month after surgery, but substantial differences were observed at later times. Ovariectomy stimulated a transient increase in bone formation and was increased six-fold over that of SO dogs at four months. Ribs were also analyzed for mineral content at necropsy. The rib was heterogeneous along its length for calcium content and concentration. In the midrib where biopsies for histomorphometric analysis were taken, ovariectomy induced a decrease in mass and mineral content; total calcium was decreased by approximately 31%. These data demonstrate that the rib cortical bone is a responsive site for the effects of ovariectomy in female dogs.

  5. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  6. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo.

    Science.gov (United States)

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M; Fleming, Braden C; Deng, Jin; Wei, Lei

    2016-03-01

    Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Controlled laboratory study. In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase-13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated

  7. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  8. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    Science.gov (United States)

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  9. Ptychographic X-ray nanotomography quantifies mineral distributions in human dentine

    Science.gov (United States)

    Zanette, I.; Enders, B.; Dierolf, M.; Thibault, P.; Gradl, R.; Diaz, A.; Guizar-Sicairos, M.; Menzel, A.; Pfeiffer, F.; Zaslansky, P.

    2015-03-01

    Bones are bio-composites with biologically tunable mechanical properties, where a polymer matrix of nanofibrillar collagen is reinforced by apatite mineral crystals. Some bones, such as antler, form and change rapidly, while other bone tissues, such as human tooth dentine, develop slowly and maintain constant composition and architecture for entire lifetimes. When studying apatite mineral microarchitecture, mineral distributions or mineralization activity of bone-forming cells, representative samples of tissue are best studied at submicrometre resolution while minimizing sample-preparation damage. Here, we demonstrate the power of ptychographic X-ray tomography to map variations in the mineral content distribution in three dimensions and at the nanometre scale. Using this non-destructive method, we observe nanostructures surrounding hollow tracts that exist in human dentine forming dentinal tubules. We reveal unprecedented quantitative details of the ultrastructure clearly revealing the spatially varying mineralization density. Such information is essential for understanding a variety of natural and therapeutic effects for example in bone tissue healing and ageing.

  10. Rn daughter exposure to U miners

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1982-04-01

    Radon exposures to U.S. uranium miners under present conditions average about 1.3 WLM per year approximately or equal to 60 WLM per full working lifetime. This is intermediate between the lowest exposures for which there have been excess lung cancers reported among U.S. miners (120-240 WLM) and average environmental radon exposures (16 WLM), so models based on these two situations are used to estimate expected effects on present uranium miners. In Model A, the loss of life expectancy is 45 days, the SMR (standardized mortality ratio) for lung cancer is 1.10, and the SMR for all causes between ages 18 and 65 is 1.013. In Model B these are 10 days, 1.03 and 1.002 respectively. It is shown that the radon exposures to miners are similar to those to millions of Americans from environmental exposure, and that miner health risks are comparable to those of other radiation workers. Their lung cancer risk from radon is 7-50 times less than their job-related accident mortality risk, and represents 0.7-4% of their total risk in mining. Miners suffer from many diseases with SMR very much larger than that for radon-induced lung cancer, and there are many other occupations and industries with far higher SMR for lung cancer than that from radon exposure to miners.

  11. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  13. Micro-buckling in the nanocomposite structure of biological materials

    Science.gov (United States)

    Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang

    2012-10-01

    Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables

  14. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  15. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Barnard, Stephen; Bright, Scott; Dalke, Claudia; Jarrin, Miguel; Kunze, Sarah; Tanner, Rick; Dynlacht, Joseph R; Quinlan, Roy A; Graw, Jochen; Kadhim, Munira; Hamada, Nobuyuki

    The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    International Nuclear Information System (INIS)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A.; Trott, K.

    1997-01-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.)

  17. Zeta potentials in the flotation of oxide and silicate minerals.

    Science.gov (United States)

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.

  18. Sulphurous Mineral Waters: New Applications for Health

    Directory of Open Access Journals (Sweden)

    Jose Manuel Carbajo

    2017-01-01

    Full Text Available Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids.

  19. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  20. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  1. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  2. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    Science.gov (United States)

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  3. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  4. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks tha...

  5. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  6. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  7. Helium Ion Microscopy: A Promising Tool for Probing Biota-Mineral Interfaces

    Science.gov (United States)

    Lybrand, R.; Zaharescu, D. G.; Gallery, R. E.

    2017-12-01

    The study of biogeochemical interfaces in soil requires powerful technologies that can enhance our ability to characterize mineral surfaces and interacting organisms at micro- to nanoscale resolutions. We aim to demonstrate potential applications of Helium Ion Microscopy in the earth and ecological sciences using, as an example, samples from a field experiment. We assessed samples deployed for one year along climatic and topographic gradients in two Critical Zone Observatories (CZOs): a desert to mixed conifer forest gradient (Catalina CZO) and a humid hardwood forest (Calhoun CZO). Sterile ground rock (basalt, quartz, and granite; 53-250 µm) was sealed into nylon mesh bags and buried in the surface soils of both CZOs. We employed helium ion and scanning electron microscopies to compare retrieved ground rock samples with sterile unreacted mineral controls in conjunction with the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, USA. Our work showed early colonization of mesh bag materials by fungal and bacterial organisms from the field systems and identified morphological changes in mineral grains following exposure to the soil environment. Biological specimens observed on grain surfaces exhibited contrasting features depending on mineral type and ecosystem location, including fungal hyphae that varied in length, diameter, and surface morphologies. We also present imagery that provides evidence for incipient stages of mineral transformation at the fungal-mineral interface. Our findings demonstrate that helium ion microscopy can be successfully used to characterize grain features and biological agents of weathering in experimental field samples, representing a promising avenue for research in the biogeosciences. Future directions of this work will couple high resolution imaging with measures of aqueous and solid geochemistry, fungal morphological characterization, and microbial profiling to better understand mineral

  8. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Michaud, Daniel; Leclerc, Remi; Proulx, Eric

    2007-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of iron ore concentrates. The objective was to determine the influence of particle size and mineral phase on the LIBS signal. The LIBS spectra of hematite and magnetite ore concentrates were qualitatively indistinguishable from each other but magnetite yielded systematically less than hematite. This behavior could be set into an empirical equation to correct the iron peak intensities according to the level of magnetite in the analyzed sample. Similarly, an increase of the LIBS signal was observed as the particle size of the ore samples decreased. Again, an equation could be written down to correct the intensity of either iron or silicon in response to a variation of the average particle size of the ore concentrate. Using these corrections, proper response of the silicon signal against the concentration of silica in the samples was restored. The observed dependence of the strength of the iron signal upon the mineral phase is attributed to oxidation of magnetite into hematite

  9. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  10. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  11. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  12. A BRIEF NOTE ON MINERAL EVOLUTION AND BIOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    José María Amigó

    2014-12-01

    Full Text Available The natural inorganic materials (minerals and rocks exceed the limits of the Earth.Therefore, the geology, which is the study of the Earth, represents only a small part of thenatural inorganic world. Certain questions about the genesis of the universe are related tothe evolution of our solar system and the evolution of life on our planet. In this paper, recentcontributions from experimental physical natural-sciences to the formation of the universe(about 15 billion BP coupled with the occurrence of minerals (4 million years BP and thebiochemical appearance of life (not more than 3 million years on the Earth are discussed.When Earth was formed, none of the more than 4,400 minerals we know today were existed.Cosmologists estimate that nearly ten billion years after the Big Bang the first elementsproduced by the melting process. The geological history of mineral evolution on the Earthis an interesting tool to study terrestrial and/or extraterrestrial mineralogy in regard toastronomy, biology, chemistry and other experimental natural sciences

  13. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  14. Giemsa as a fluorescent dye for mineralizing bone-like nodules in vitro

    International Nuclear Information System (INIS)

    Querido, W; Farina, M; Balduino, A

    2012-01-01

    Giemsa was first used as a fluorescent dye for mineralized bone and cartilage in tissue sections. The aim of this study was to establish the use of Giemsa as a fluorescent dye for mineralizing bone-like nodules produced in cell cultures. Osteoblasts were grown under mineralizing conditions for 14 days, producing typical bone-like nodules. Upon staining with Giemsa stock solution for 1 min, the mineralizing nodules could be selectively visualized emitting intense green and red fluorescence when observed under blue and green illumination, respectively. The textural details of the nodules were clearly observed under fluorescence microscopy, allowing to identify regions with different degrees of mineralization. The mineralized nature of the nodules was confirmed using von Kossa's method, Alizarin Red S staining and x-ray mapping for Ca and P in a scanning electron microscope, showing a strong correlation between the mineralizing and the fluorescent nodules. The selective fluorescence was related to the mineral phase, being absent in decalcified samples. The use of Giemsa as a fluorescent dye for mineralizing bone-like nodules presents a simple alternative method to quickly analyze biomineralization assays in vitro under fluorescence microscopy, particularly in the biological evaluation of biomaterials. (communication)

  15. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  16. Mineral induced mechanochemical degradation: the imazaquin case.

    Science.gov (United States)

    Nasser, Ahmed; Buchanovsky, Nadia; Gerstl, Zev; Mingelgrin, Uri

    2009-03-01

    The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.

  17. Mineralenconcentraten uit dierlijke mest = Mineral concentrates from animal slurry

    NARCIS (Netherlands)

    Hoeksma, P.; Buisonjé, de F.E.

    2012-01-01

    In 2011 6 pilot production plants of mineral concentrates from animal manure were monitored, with the aim of gathering additional data on the chemical composition of the raw slurry and the end products. Beside that a literature review was executed to reveal the biological degradability of

  18. Mechanisms and biological importance of photon-induced bystander responses. Do they have an impact on low-dose radiation responses

    International Nuclear Information System (INIS)

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced by-stander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. (author)

  19. From bulk soil to intracrystalline investigation of plant-mineral interaction

    Science.gov (United States)

    Lemarchand, D.; Voinot, A.; Chabaux, F.; Turpault, M.

    2011-12-01

    Understanding the controls and feedbacks regulating the flux of matter between bio-geochemical reservoirs in forest ecosystems receives a fast growing interest for the last decades. A complex question is to understand how minerals and vegetation interact in soils to sustain life and, to a broader scope, how forest ecosystems may respond to human activity (acid rain, harvesting,...) and climate perturbations (temperature, precipitation,...). Many mineralogical and biogeochemical approaches have longtime been developed, and occasionally coupled, in order to investigate the mechanisms by which chemical elements either are exchanged between soil particles and solutions, or are transferred to plants or to deeper soil layers and finally leave the system. But the characterization of particular processes like the contribution of minor reactive minerals to plant nutrition and global fluxes or the mechanisms by which biology can modify reaction rates and balance the bioavailability of nutrients in response to environmental perturbation sometimes fails because of the lack of suitable tracers. Recent analytical and conceptual advances have opened new perspectives for the use of light "non traditional" stable isotopes. Showing a wild range of concentrations and isotopic compositions between biogeochemical reservoirs in forest ecosystem, boron has physico-chemical properties particularly relevant to the investigation of water/rock interactions even when evolving biologically-mediated reactions. In this study, we focused on the distribution of boron isotopes from intracrystalline to bulk soil scales. An overview of the boron distribution and annual fluxes in the soil-plant system clearly indicates that the vegetation cycling largely controls the mobility of boron. We also observe that the mineral and biological B pools have drastically different isotopic signature that makes the transfer of B between them very easy to follow. In particular, the podzol soil we analyzed shows a

  20. Biological Rules and Mechanisms Governing the Nanofabrication of Highly Regular Mineralized Microlaminate Composites

    National Research Council Canada - National Science Library

    Morse, Daniel

    2000-01-01

    We purified and characterized the proteins from the microlaminate abalone shell (a natural high performance armor with fracture toughness 3,000-fold greater than that of its mineral component alone...

  1. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  2. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    Science.gov (United States)

    Picard, Aude A.; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  3. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  4. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Science.gov (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  5. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Messersmith, P.B.; Chasan, S.; Mikos, A.G.; Mulder, E.L.W. de; Dickson, G.; Schaubroeck, D.; Balcaen, L.; Vanhaecke, F.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2012-01-01

    Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups,

  6. The use of biologically based cancer risk models in radiation epidemiology

    International Nuclear Information System (INIS)

    Krewski, D.; Zielinski, J.M.; Hazelton, W.D.; Garner, M.J.; Moolgavkar, S.H.

    2003-01-01

    Biologically based risk projection models for radiation carcinogenesis seek to describe the fundamental biological processes involved in neoplastic transformation of somatic cells into malignant cancer cells. A validated biologically based model, whose parameters have a direct biological interpretation, can also be used to extrapolate cancer risks to different exposure conditions with some confidence. In this article, biologically based models for radiation carcinogenesis, including the two-stage clonal expansion (TSCE) model and its extensions, are reviewed. The biological and mathematical bases for such models are described, and the implications of key model parameters for cancer risk assessment examined. Specific applications of versions of the TSCE model to important epidemiologic datasets are discussed, including the Colorado uranium miners' cohort; a cohort of Chinese tin miners; the lifespan cohort of atomic bomb survivors in Hiroshima and Nagasaki; and a cohort of over 200,000 workers included in the National Dose Registry (NDR) of Canada. (author)

  7. Interleukin-1beta-induced release of matrix proteins into culture media causes inhibition of mineralization of nodules formed by periodontal ligament cells in vitro.

    Science.gov (United States)

    Chien, H H; Lin, W L; Cho, M I

    1999-05-01

    The mechanism by which interleukin-1beta (IL-1) inhibits the formation of mineralized tissue nodules by periodontal ligament (PDL) cells in vitro was investigated through the processes of morphological analysis, immunoprecipitation, and Northern blot analysis. PDL cells were obtained from a 2-day-old coagulum in tooth socket and cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bone serum (FBS) and antibiotics. Confluent cells were grown for up to 3 weeks in the presence of ascorbic acid (AA), beta-glycerophosphate (GP), and dexamethasone (Dex), or IL-1. PDL cells cultured in the presence of GP and AA did not differentiate, but those treated with Dex, GP, and AA (Dex group) underwent differentiation, showing four stages (confluent, multilayer, nodule, and mineralization) of disparate morphological characteristics. In contrast, the cells treated with IL-1, Dex, GP, and AA (IL-1 group) did form multilayers but failed to form mineralized nodules. Electron microscopy demonstrated that the Dex-induced mineralized nodules contain multilayers of fibroblastic cells, numerous collagen fibrils, and dense globular as well as fused electron dense patches that are associated with numerous apatite crystals. The nodule-like structures in the IL-1 group were also comprised of multilayered fibroblastic cells, but they contained only a small number of collagen fibrils, and no dense globular or fused patches. Von Kossa staining confirmed the presence of numerous mineralized nodules in the Dex group and their scarceness in the IL-1 group. Northern blot analysis of IL-1-treated cells, however, revealed the presence of mRNAs for type I collagen (Col I), secreted protein, acidic and rich in cysteine (SPARC), osteopontin (OPN), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC), whose expression patterns and levels were comparable to those of the Dex group. Immunoprecipitation analysis of OPN and BSP in the cell/matrix layers and the culture

  8. Mineral water and radioactivity. Technical report n. 15

    International Nuclear Information System (INIS)

    2000-07-01

    This technical report aims at giving to people taking charge of mineral water analysis, information needed to the interpretation of radioactivity monitoring results. It provides bulk notions on the radioactivity (biological and environmental effects), regulations and reference texts of the WHO (World Health Organization). Examples of activities and absorbed doses calculation are also provided. (A.L.B.)

  9. Increased vertebral bone mineral in response to reduced exercise in amenorrheic runners.

    Science.gov (United States)

    Lindberg, J S; Powell, M R; Hunt, M M; Ducey, D E; Wade, C E

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003+/-0.097 to 1.070+/-0.089 grams per cm.(2) Three runners continued to have amenorrhea, with no change in running distance or body weight. Estradiol levels remained abnormally low and there was no significant change in the bone mineral content, although all three took supplemental calcium. We found that early osteopenia associated with exercise-induced menstrual dysfunction improved when runners reduced their running distance, gained weight and became eumenorrheic.

  10. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  11. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    International Nuclear Information System (INIS)

    Saito, Takeshi; Fujii, Noriko

    2014-01-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid–benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10 −3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10 −5 and 5.0×10 −6 M β-carotene, and 5.0×10 −7 and 5.0×10 −8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage. - Highlights: • Gamma radiation dose-dependently increases degradation levels of α-linolenic acid. • Gamma radiation dose-dependently increases peroxidation levels of α-linolenic acid. • An optimum concentration of carotenoids inhibits degradation of α-linolenic acid. • Relatively low concentrations of carotenoids promote degradation of α-linolenic acid. • Carotenoids do not affect the peroxidation level of α-linolenic acid

  12. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  13. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  14. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  15. Nitrogen mineralization from sheep faeces can be predicted from the apparent digestibility of the feed

    DEFF Research Database (Denmark)

    Kyvsgaard, P.; Sørensen, P.; Møller, E.

    2000-01-01

    It is difficult to predict plant availability of N in faeces because most faecal N is bound in organic form. In this study the influence of diet and faeces composition on mineralization of sheep faeces in soil were investigated. Net mineralization of C and N from 16 different samples of sheep...... faeces originating from sheep fed different known diets was studied after incubation in a sandy soil. After 4 weeks net mineralization of N ranged from -41 to 9% of faeces N and after 12 weeks -28 to 43% was net mineralized. Mineralization was related to different feed and faeces characteristics...... of the mineralization of sheep faeces N in soil based on chemical analyses of the feed. However, when using a biological measure of the feed quality (apparent digestibility) a robust prediction of faeces N mineralization was possible....

  16. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    Science.gov (United States)

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  17. Minería de textos: la nueva generación de análisis de literatura científica en biología molecular y genómica Text-mining: the new generation of scientific literature analysis in molecular biology and genomics

    Directory of Open Access Journals (Sweden)

    Carmen Gálvez

    2008-01-01

    Full Text Available Una vez descifrado la secuencia del genoma humano, el paradigma de investigación ha cambiado dando paso a la descripción de las funciones de los genes y a futuros avances en la lucha contra enfermedades. Este nuevo contexto ha despertado el interés de la Bioinformática, que combina métodos de las Ciencias de la Vida con las Ciencias de la Información haciendo posible el acceso a la gran cantidad de información biológica almacenada en las bases de datos, y de la Genómica, dedicada al estudio de las interacciones de los genes y su influencia en el desarrollo de enfermedades. En este contexto, la minería de textos surge como un instrumento emergente para el análisis de la literatura científica. Una tarea habitual de la minería de textos en Biología Molecular y Genómica es el reconocimiento de entidades biológicas, tales como genes, proteínas y enfermedades. El paso siguiente en el proceso de minería lo constituye la dentificación entre entidades biológicas, tales como el tipo de interacción entre gen-gen, gen-enfermedad, gen-proteína, para interpretar funciones biológicas, o formular hipótesis de investigación. El objetivo de este trabajo es examinar el auge y las limitaciones la nueva generación de herramientas de análisis de la información en lenguaje natural, almacenada en bases de datos bibliográficas, como PubMed o MEDLINE.Since human genome sequences were first decoded, the paradigm of investigation has changed leading to the description of the functions of the genes and to future advances in the fight against diseases. This new context has awoke the interest of the Bioinformatics, that combines methods of the Life Science with the Information Sciences, making the access to the great quantity of biological information stored in the databases, and of the Genomics, dedicated to the study of the interactions of the genes and its influence in the development of diseases. In this context, the text mining arises like an

  18. Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium.

    Science.gov (United States)

    Shen, Lan; Wu, Xiao-Qin; Zeng, Qing-Wei; Liu, Hong-Bin

    2016-12-01

    Phytate-mineralizing rhizobacteria (PMR) play an important role in providing phosphorus for the sustainable plant growth. It is important to investigate the ability of PMR to produce phytase under different phosphate levels for its application. The effects of different concentrations of soluble phosphate on the ability of phytate mineralization of Pseudomonas fluorescens JZ-DZ1, a phytate-mineralizing rhizobacterium, were investigated in both solid and liquid media. The results on solid media showed that halo zone width gradually reduced with concentrations of soluble phosphate increasing from 0.05 to 20 mM, indicating the reduction of the ability of phytate mineralization. The results were consistent with the quantitative detection of phytase activity from the overall trend. An 1866-bp β-propeller phytase (BPP) gene (phyPf) was cloned from the strain, and the deduced amino acid sequence of phyPf shared 98 % of identity with a known BPP from Pseudomonas sp. BS10-3 (AJF36073.1). The results of relative real-time quantitative PCR assay showed that the expression of phyPf was induced by a low concentration (0.1 mM) of soluble phosphate, suggesting that BPP secretion was regulated by gene phyPf. The BPP-harboring bacterium P. fluorescens JZ-DZ1 with low phosphate-inducible ability of phytate mineralization could be potentially applied to promote phosphorus uptake for plants in the future.

  19. Exposure of zebra mussels to extracorporeal shock waves demonstrates formation of new mineralized tissue inside and outside the focus zone.

    Science.gov (United States)

    Sternecker, Katharina; Geist, Juergen; Beggel, Sebastian; Dietz-Laursonn, Kristin; de la Fuente, Matias; Frank, Hans-Georg; Furia, John P; Milz, Stefan; Schmitz, Christoph

    2018-04-03

    The success rate of extracorporeal shock wave therapy (ESWT) for fracture nonunions in human medicine (i.e., radiographic union at six months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. We analyzed the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha , after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm 2 (A) or were sham exposed (B). Detection of newly calcified tissue was performed by exposing the mussels to fluorescent markers. Two weeks later, the A-mussels showed a higher mean fluorescence signal intensity within the shell zone than the B-mussels (pmussels was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT. © 2018. Published by The Company of Biologists Ltd.

  20. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  1. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  2. COMBINED BIOLOGICAL-PHOTOCATALYTIC TREATMENT FOR THE MINERALIZATION OF A MIXTURE OF CHLOROPHENOLS IN AN ELECTROLYTE-CONTAINING MODEL WATER AND SPONTANEOUS SEDIMENTATION OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    Dhanus Suryaman

    2010-06-01

    Full Text Available To shorten the biological treating time and to examine the effect of electrolytes in a model water on the photocatalytic treatment, the combined biological-photocatalytic treatment was evaluated for removal of a mixture (total: 100 mg L-1, each: 25 mg L-1 of 2-chlorophenol (2-CP, 2,4-dichlorophenol (2,4-DCP, 2,4,5-trichlorophenol (2,4,5-TCP, and pentachlorophenol (PCP in tap water. The mineralization of the four phenols was performed by a flow (biological treatment-circulative flow (photocatalytic treatment operation under black light and sunlight irradiations. After a large portion of biodegradable 2-CP and 2,4-DCP, and around half amount of slightly biodegradable 2,4,5-TCP were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant PCP, and  biodegradation products were completely removed by the subsequent photocatalytic treatment. The combined treatment significantly shortened the degradation time only the biotreatment. High circulative flow rate (600 mL min-1 enabled for TiO2 particles to completely suspend in a tubular photoreactor and resulted in high removals of chlorophenols and TOC. Sunlight irradiation was successfully used and the saving of the electric energy of black light was possible. Since TiO2 particles in the tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined system can be operated by integrating it with the TiO2 separation.   Keywords: photocatalysis, titanium dioxide, biodegradation, pollutant, wastewater

  3. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    Science.gov (United States)

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  4. Cellular characterization of compression induced-damage in live biological samples

    Science.gov (United States)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  5. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  6. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.

    Science.gov (United States)

    Phillips, Jennifer E; García, Andrés J

    2008-01-01

    Bone tissue engineering has emerged as a promising strategy for the repair of critical-sized skeletal fractures. However, the clinical application of this approach has been limited by the availability of a robust mineralizing cell source. Non-osteogenic cells, such as skin fibroblasts, are an attractive cell-source alternative because they are easy to harvest from autologous donor skin biopsies and display a high capacity for in vitro expansion. We have recently demonstrated that retroviral gene delivery of the osteoblastic transcription factor Runx2/Cbfa1 promotes osteogenic differentiation in primary dermal fibroblasts cultured in monolayer. Notably, sustained expression of Runx2 was not sufficient to promote functional osteogenesis in these cells, and co-treatment with the steroid hormone dexamethasone was required to induce deposition of biologically-equivalent matrix mineralization. On the basis of these results, we then investigated the osteogenic capacity of these genetically engineered fibroblasts when seeded on polymeric scaffolds in vitro and in vivo. These experiments demonstrated that Runx2-expressing fibroblasts seeded on collagen scaffolds produce significant levels of matrix mineralization after 28 days in vivo implantation in a subcutaneous, heterotopic site. Overall, these results offer evidence that transcription factor-based gene therapy may be a powerful strategy for the conversion of a non-osteogenic cellular phenotype into a mineralizing cell source for bone repair applications. This concept may also be applied to control functional differentiation in a broad range of cell types and tissue engineering applications. The chapter below outlines detailed methods for the isolation and ex vivo genetic modification of primary dermal fibroblasts using retroviral-mediated delivery of the Runx2 transgene in both monolayer culture and three-dimensional scaffolds.

  7. Cancrinite-group minerals behavior at non-ambient conditions

    Science.gov (United States)

    Lotti, Paolo; Gatta, G. Diego; Kahlenberg, Volker; Merlini, Marco; Alvaro, Matteo; Cámara, Fernando

    2014-05-01

    Cancrinite-group minerals occur in the late stages of alkaline (SiO2)-undersaturated magmatism and in related effusive or contact rocks. So far only few studies have been devoted to the description of the thermo-elastic behavior, phase-stability and P /T -structure evolution (at the atomic scale) of this mineral group. Cancrinite-group minerals have an open-framework structure characterized by the [CAN]-topology. The [CAN]-framework shows large 12-ring channels, parallel to the c crystallographic axis, bound by columns of cages, the so-called can units. While very limited chemical variation is observed in the framework composition (the composition is almost always [Si6Al6O24]) a remarkable chemical variability is reported for the extraframework components in the cancrinite-group minerals. Two subgroups can be identified according to the extraframework content of the can units: the cancrinite- and the davyne-subgroups, showing Na-H2O and Ca-Cl chains, respectively. The channels are stuffed by cations, anions and molecules. We aimed to model the thermo-elastic behavior and the mechanisms of the (P ,T)-induced structure evolution of cancrinite-group minerals, with special interest on the role played by the extraframework population. The study was restricted to the following (CO3)-rich and (SO4)-rich end-members: cancrinite sensu stricto {[(Na,Ca)6(CO3)1.2-1.7][Na2(H2O)2][Al6Si6O24]}, vishnevite {[(Na,Ca,K)6(SO4)][Na2(H2O)2][Al6Si6O24]}, balliranoite {[(Na,Ca)6(CO3)1.2-1.7][Ca2Cl2][Al6Si6O24]} and davyne {[(Na,Ca,K)6((SO4),Cl)][Ca2Cl2][Al6Si6O24]}. Their high-P and low-T (T single-crystal X-ray diffraction, using diamond-anvil cells and (N2)-cryosystems, respectively. The high-T behavior of cancrinite has also been studied by means of in-situ single-crystal X-ray diffraction with a resistive heater. Cancrinite minerals share a similar volume compressibility and thermal expansivity at ambient conditions (cancrinite has KV 0 = 45(2) GPa and αV,293K = 4.88(8)·10-5 K-1

  8. Early lung cancer detection in uranium miners with abnormal sputum cytology

    International Nuclear Information System (INIS)

    Saccomanno, G.

    1992-08-01

    This work supported by the United States of Energy, continues to add data on the health affects of cigarette smoking and radon exposure on uranium miners. Since the last Technical Progress Report in July or 1991, 537 sputum cytology samples have been collected on the 300 uranium workers in the surveillance study. To date there are 436 lung cancer cases in the Uranium Miner Tumor Registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only. In March of 1991 the Geno Saccomanno Uranium Workers Archive was established at St. Mary's Hospital and Medical Center as a depository for biological specimens and epidemiological data from the 17,700 uranium miners who have been a part or the study

  9. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  10. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  11. Practical applications of trace minerals for dairy cattle.

    Science.gov (United States)

    Overton, T R; Yasui, T

    2014-02-01

    Trace minerals have critical roles in the key interrelated systems of immune function, oxidative metabolism, and energy metabolism in ruminants. To date, the primary trace elements of interest in diets for dairy cattle have included Zn, Cu, Mn, and Se although data also support potentially important roles of Cr, Co, and Fe in diets. Trace minerals such as Zn, Cu, Mn, and Se are essential with classically defined roles as components of key antioxidant enzymes and proteins. Available evidence indicates that these trace minerals can modulate aspects of oxidative metabolism and immune function in dairy cattle, particularly during the transition period and early lactation. Chromium has been shown to influence both immune function and energy metabolism of cattle; dairy cows fed Cr during the transition period and early lactation have evidence of improved immune function, increased milk production, and decreased cytological endometritis. Factors that complicate trace mineral nutrition at the farm level include the existence of a large number of antagonisms affecting bioavailability of individual trace minerals and uncertainty in terms of requirements under all physiological and management conditions; therefore, determining the optimum level and source of trace minerals under each specific situation continues to be a challenge. Typical factorial approaches to determine requirements for dairy cattle do not account for nuances in biological function observed with supplementation with various forms and amounts of trace minerals. Trace mineral nutrition modulates production, health, and reproduction in cattle although both formal meta-analysis and informal survey of the literature reveal substantial heterogeneity of response in these outcome variables. The industry has largely moved away from oxide-based programs toward sulfate-based programs; however, some evidence favors shifting supplementation strategies further toward more bioavailable forms of inorganic and organic trace

  12. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  13. Removal of Escherichia coli from biological effluents using natural ...

    African Journals Online (AJOL)

    Ability for disinfecting sterile biological effluents inoculated with Escherichia coli ATCC 25922 at concentrations of 105 CFU/m., using a natural mineral aggregate (NMA) and artificial mineral aggregates (AMAfs) consisting of individual oxides as Fe2O3, Cu2O y Ag2O and combined oxides as Fe2O3-Cu2O, Fe2O3-Ag2O, ...

  14. X-ray spectrometry induced by electron and proton bombardment: Two complementary techniques for the micro-characterization of mineral materials

    International Nuclear Information System (INIS)

    Remond, G.; Gilles, C.; Isabelle, D.; Choi, C.G.; Rouer, O.; Cesbron, F.; Yang, C.

    1994-01-01

    Spatially resolved quantitative analysis by means of the Electron Probe Micro Analyser (EPMA) is now well established as a routine analytical method for point chemical analysis of a variety of mineral materials. Modern computer controlled EPMA are most often equipped with wavelength dispersive spectro- meters (WDS). Quantitative analyses are generally carried out according to a standard based approach, i. e, the x-ray intensities measured at the surface of the unknowns are normalized to those measured at the surface of reference specimens. By the use of energy dispersive spectrometry (EDS) a standardless quantitative based method is preferred when the incident beam current is not accurately known as for the case of EDS analysis coupled to Scanning Electron Microscopy (SEM). The accuracy of point analysis by means of electron beam induced x-ray spectrometry is discussed emphasizing the x-ray photon interactions respectively.The continuous x-ray emission is the physical limit of detection. The excitation conditions must be optimised in order to obtain the higher peak to continuous emission intensity ratios for each element within the matrix. Proton Induced X-ray Emission (PIXE) complements this electron induced x-ray emission for the localization of elements present at trace levels. The experimental procedure used for quantitative analysis by means of PIXE is illustrated emphasizing the use of a limited number of reference materials for deriving quantitative data from the raw PIXE spectra. The complementarity of EMPA/SEM and PIXE techniques is illustrated for the case of rare-earth elements (REE) bearing natural and synthetic doped zircon crystals (Si Zr O sub 4). For such compounds x-ray spectra are very complex because of the existence of severe peak overlaps between the L x-ray emission spectra of the REE. It is shown that cathodoluminescence (EPLA:SEM) and ionoluminescence (PIXE) may be an original alternative approach to x-ray spectrometry for studying REE

  15. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  16. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Adam-Guillermin, Christelle; Palluel, Olivier; Porcher, Jean-Marc; Devaux, Alain

    2011-01-01

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  17. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Science.gov (United States)

    Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.

    2008-03-01

    Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  18. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  19. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  20. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  1. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  2. Comparisons of protein, lipid, phenolics, γ-oryzanol, vitamin E, and mineral contents in bran layer of sodium azide-induced red rice mutants.

    Science.gov (United States)

    Jeng, Toong Long; Ho, Pei Tzu; Shih, Yi Ju; Lai, Chia Chi; Wu, Min Tze; Sung, Jih Min

    2011-06-01

    The bran part of red rice grain is concentrated with many phytochemicals, including proanthocyanidins, oryzanol and vitamin E, that exert beneficial effects on human health, but it contains low levels of essential minerals such as Fe and Zn. In the present study, the protein, lipid, phytochemicals and mineral contents in bran samples were compared among red rice SA-586 and its NaN₃-induced mutants. The plant heights of NaN₃-induced mutants were decreased. The contents of protein, lipid, total phenolics, total flavonoids, total anthocyanins, total proanthocyanidins, total γ-oryzanol, total tocopherols and total tocotrienols also varied among the tested mutants. The brans of mutants M-18, M-56 and M-50 contained more proanthocyanidins, γ-oryzanol, vitamin E than that of SA-586, respectively. M-54 accumulated more Fe content (588.7 mg kg⁻¹ bran dry weight) than SA-586 (100.1 mg kg⁻¹ bran dry weight). The brans of M-18, M-50 and M-56 are good sources of proanthocyanidins, vitamin E and γ-oryzanol, respectively, while the bran of M-54 is rich in Fe. Thus these mutants could be used to produce high-value phytochemicals or Fe byproducts from bran during rice grain milling or as genetic resources for rice improvement programs. Copyright © 2011 Society of Chemical Industry.

  3. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    Science.gov (United States)

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  4. The influence of microwave irradiation on thermal properties of main rock-forming minerals

    International Nuclear Information System (INIS)

    Lu, Gao-ming; Li, Yuan-hui; Hassani, Ferri; Zhang, Xiwei

    2017-01-01

    Highlights: • Different rock-forming minerals present very different microwave absorption capacity to microwave energy. • The test results can be used to estimate the heating behaviors of rocks to microwave irradiation. • SEM-EDX technique was used to determine the elemental distribution and mineralogical composition. • Ferrum may influence the interacting mechanisms between rock-forming minerals and microwaves. - Abstract: The sample will burst into fragment when the thermal stress induced by thermal expansion greater than the ultimate strength of the rock after microwave irradiation. Microwave-assisted rock fragmentation has been illustrated to be potentially beneficial for mineral processing, mining and geotechnical engineering. In order to have a comprehensive understanding on the influence of microwave on thermo-mechanical properties of rocks, it is necessary to investigate the interaction effect between microwaves and the main rock-forming minerals. In this work, eleven rock-forming minerals were tested in a multimode cavity at 2.45G Hz with a power of 2 kW, subsequently, the Scanning Electron Microscopy–Energy Dispersive X-ray (SEM-EDX) was used to determine the elemental distribution and mineralogical composition of the tested samples. It was observed that different rock-forming minerals present very different susceptibility induced by microwave treatment. Enstatite presents the strongest microwave absorption capacity by a large margin and most of the rock-forming minerals are weak microwave absorbers. It is significant that the results can be used to predict the heating behaviors of rocks subjected to microwave energy. Furthermore, the SEM-EDX elemental analysis demonstrates that the microwave absorption capacity of rock-forming minerals could link to the contribution of the ferrum, which may influence the interacting mechanisms between microwaves and the rock-forming minerals.

  5. Mineral surface–organic matter interactions: basics and applications

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted–Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  6. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Science.gov (United States)

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  7. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Directory of Open Access Journals (Sweden)

    Balasubramanian Vasanthakumar

    Full Text Available Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  8. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  9. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

    Science.gov (United States)

    Schofield, Robert M S; Niedbala, Jack C; Nesson, Michael H; Tao, Ye; Shokes, Jacob E; Scott, Robert A; Latimer, Matthew J

    2009-06-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.

  10. Biological variation in tPA-induced plasma clot lysis time.

    Science.gov (United States)

    Talens, Simone; Malfliet, Joyce J M C; Rudež, Goran; Spronk, Henri M H; Janssen, Nicole A H; Meijer, Piet; Kluft, Cornelis; de Maat, Moniek P M; Rijken, Dingeman C

    2012-10-01

    Hypofibrinolysis is a risk factor for venous and arterial thrombosis, and can be assessed by using a turbidimetric tPA-induced clot lysis time (CLT) assay. Biological variation in clot lysis time may affect the interpretation and usefulness of CLT as a risk factor for thrombosis. Sufficient information about assay variation and biological variation in CLT is not yet available. Thus, this study aimed to determine the analytical, within-subject and between-subject variation in CLT. We collected blood samples from 40 healthy individuals throughout a period of one year (average 11.8 visits) and determined the CLT of each plasma sample in duplicate. The mean (± SD) CLT was 83.8 (± 11.1) minutes. The coefficients of variation for total variation, analytical variation, within-subject variation and between-subject variation were 13.4%, 2.6%, 8.2% and 10.2%, respectively. One measurement can estimate the CLT that does not deviate more than 20% from its true value. The contribution of analytical variation to the within-subject variation was 5.0%, the index of individuality was 0.84 and the reference change value was 23.8%. The CLT was longer in the morning compared to the afternoon and was slightly longer in older individuals (> 40 years) compared to younger (≤40 years) individuals. There was no seasonal variation in CLT and no association with air pollution. CLT correlated weakly with fibrinogen, C-reactive protein, prothrombin time and thrombin generation. This study provides insight into the biological variation of CLT, which can be used in future studies testing CLT as a potential risk factor for thrombosis.

  11. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    Science.gov (United States)

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  12. Application of Statistical Method of Path Analysis to Describe Soil Biological Indices

    Directory of Open Access Journals (Sweden)

    Y. Kooch

    2016-09-01

    Full Text Available Introduction: Among the collection of natural resources in the world, soil is considered as one of the most important components of the environment. Protect and improve the properties of this precious resource, requires a comprehensive and coordinated action that only through a deep understanding of quantitative (not only recognition of the quality the origin, distribution and functionality in a natural ecosystem is possible. Many researchers believe that due to the quick reactions of soil organisms to environmental changes, soil biological survey to estimate soil quality is more important than the chemical and physical properties. For this reason, in many studies the nitrogen mineralization and microbial respiration indices are regarded. The aim of the present study were to study the direct and indirect effects of soil physicochemical characteristics on the most important biological indicators (nitrogen mineralization and microbial respiration, which has not been carefully considered up to now. This research is the first study to provide evidence to the future planning and management of soil sciences. Materials and Methods: For this, a limitation of 20 ha area of Experimental Forest Station of Tarbiat Modares University was considered. Fifty five soil samples, from the top 15 cm of soil, were taken, from which bulk density, texture, organic C, total N, cation exchange capacity (CEC, nitrogen mineralization and microbial respiration were determined at the laboratory. The data stored in Excel as a database. To determine the relationship between biological indices and soil physicochemical characteristics, correlation analysis and factor analysis using principal component analysis (PCA were employed. To investigate all direct and indirect relationships between biological indices and different soil characteristics, path analysis (path analysis was used. Results and Discussion: Results showed significant positive relations between biological indices

  13. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  14. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    Science.gov (United States)

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2017-11-01

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H 2 O 2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H 2 O 2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H 2 O 2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  15. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  16. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  17. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    Science.gov (United States)

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  18. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review

    International Nuclear Information System (INIS)

    Bonan, Paulo Rogerio Ferreti; Lopes, Marcio Ajudarte; Almeida, Oslei Paes de; Alves, Fabio de Abreu

    2005-01-01

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  19. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  20. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  1. Structural effects of C60+ bombardment on various natural mineral samples-Application to analysis of organic phases in geological samples

    International Nuclear Information System (INIS)

    Siljestroem, S.; Lausmaa, J.; Hode, T.; Sundin, M.; Sjoevall, P.

    2011-01-01

    Organic phases trapped inside natural mineral samples are of considerable interest in astrobiology, geochemistry and geobiology. Examples of such organic phases are microfossils, kerogen and oil. Information about these phases is usually retrieved through bulk crushing of the rock which means both a risk of contamination and that the composition and spatial distribution of the organics to its host mineral is lost. An attractive of way to retrieve information about the organics in the rock is depth profiling using a focused ion beam. Recently, it was shown that it is possible to obtain detailed mass spectrometric information from oil-bearing fluid inclusions, i.e. small amounts of oil trapped inside a mineral matrix, using ToF-SIMS. Using a 10 keV C 60 + sputter beam and a 25 keV Bi 3 + analysis beam, oil-bearing inclusions in different minerals were opened and analysed individually. However, sputtering with a C 60 + beam also induced other changes to the mineral surface, such as formation of topographic features and carbon deposition. In this paper, the cause of these changes is explored and the consequences of the sputter-induced features on the analysis of organic phases in natural mineral samples (quartz, calcite and fluorite) in general and fluid inclusions in particular are discussed. The dominating topographical features that were observed when a several micrometers deep crater is sputtered with 10 keV C 60 + ions on a natural mineral surface are conical-shaped and ridge-like structures that may rise several micrometers, pointing in the direction of the incident C 60 + ion beam, on an otherwise flat crater bottom. The sputter-induced structures were found to appear at places with different chemistry than the host mineral, including other minerals phases and fluid inclusions, while structural defects in the host material, such as polishing marks or scratches, did not necessarily result in sputter-induced structures. The ridge-like structures were often covered

  2. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    Science.gov (United States)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  3. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Herve, L.

    2003-01-01

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  4. Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA regulated genes in mineralizing dental pulp cells at early and late time points

    Directory of Open Access Journals (Sweden)

    Henry F. Duncan

    2015-09-01

    Full Text Available Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]. At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]. Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi application to dental pulp cells (DPCs, which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]. In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE67175.

  5. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  6. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  7. Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon

    Science.gov (United States)

    Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.

    2018-03-01

    The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.

  8. Structural biological composites: An overview

    Science.gov (United States)

    Meyers, Marc A.; Lin, Albert Y. M.; Seki, Yasuaki; Chen, Po-Yu; Kad, Bimal K.; Bodde, Sara

    2006-07-01

    Biological materials are complex composites that are hierarchically structured and multifunctional. Their mechanical properties are often outstanding, considering the weak constituents from which they are assembled. They are for the most part composed of brittle (often, mineral) and ductile (organic) components. These complex structures, which have risen from millions of years of evolution, are inspiring materials scientists in the design of novel materials. This paper discusses the overall design principles in biological structural composites and illustrates them for five examples; sea spicules, the abalone shell, the conch shell, the toucan and hornbill beaks, and the sheep crab exoskeleton.

  9. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Directory of Open Access Journals (Sweden)

    Mushahary D

    2013-08-01

    Full Text Available Dolly Mushahary,1,2 Ragamouni Sravanthi,2 Yuncang Li,2 Mahesh J Kumar,1 Nemani Harishankar,4 Peter D Hodgson,1 Cuie Wen,3 Gopal Pande2 1Institute for Frontier Materials, Deakin University, Geelong, Australia; 2CSIR- Centre for Cellular and Molecular Biology, Hyderabad, India; 3Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia; 4National Institute of Nutrition (ICMR, Tarnaka, Hyderabad, India Abstract: Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. Keywords: osteoblasts, bone mineralization, corrosion, osseointegration, surface energy, peri-implant

  10. An Ocean Biology-induced Negative Feedback on ENSO in the Tropical Pacific Climate System

    Science.gov (United States)

    Zhang, R. H.

    2016-02-01

    Biological conditions in the tropical Pacific Ocean (e.g., phytoplankton biomass) are strongly regulated by physical changes associated with the El Niño-Southern Oscillation (ENSO). The existence and variation of phytoplankton biomass, in turn, act to modulate the vertical penetration of the incoming sunlight in the upper ocean, presenting an ocean biology-induced heating (OBH) effect on the climate system. Previously, a penetration depth of solar radiation in the upper ocean (Hp) is defined to describe the related bio-climate connections. Parameterized in terms of its relationship with the sea surface temperature (SST) in the tropical Pacific, an empirical model for interannual Hp variability has been derived from remotely sensed ocean color data, which is incorporated into a hybrid coupled model (HCM) to represent OBH effects. In this paper, various HCM experiments are performed to demonstrate the bio-feedback onto ENSO, including a climatological Hp run (in which Hp is prescribed as seasonally varying only), interannual Hp runs (with different intensities of interannually varying OBH effects), and a run in which the sign of the OBH effect is artificially reversed. Significant modulating impacts on interannual variability are found in the HCM, characterized by a negative feedback between ocean biology and the climate system in the tropical Pacific: the stronger the OBH feedback, the weaker the interannual variability. Processes involved in the feedback are analyzed; it is illustrated that the SST is modulated indirectly by ocean dynamical processes induced by OBH. The significance and implication of the OBH effects are discussed for their roles in ENSO variability and model biases in the tropical Pacific.

  11. Biological effects induced by K photo-ionisation in and near constituent atoms of DNA

    International Nuclear Information System (INIS)

    Touati, A.; Herve du Penhoot, M.A.; Fayard, B.; Champion, C.; Abel, F.; Gobert, F.; Lamoureux, M.; Politis, M.F.; Martins, L.; Ricoul, M.; Sabatier, L.; Sage, E.; Chetioui, A.

    2002-01-01

    In order to assess the lethal efficiency and other biological effects of inner shell ionisations of constituent atoms of DNA ('K' events), experiments were developed at the LURE synchrotron facility using ultrasoft X rays as a probe of K events. The lethal efficiency of ultrasoft X rays above the carbon K threshold was especially investigated using V79 cells and compared with their efficiency to induce double strand breaks in dry plasmid-DNA. A correlation between the K event efficiencies for these processes is shown. Beams of 340 eV were found to be twice as efficient at killing cells than were beams at 250 eV. In addition, a rough two-fold increase of the relative biological effectiveness for dicentric+ring induction has also been observed between 250 and 340 eV radiations. (author)

  12. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  13. Effects of irradiation on minerals and their consequences in geo-chronology

    International Nuclear Information System (INIS)

    Seydoux-Guillaume, Anne-Magali

    2011-01-01

    In this HDR (accreditation to supervise research studies) report, the author first gives a brief overview of her scientific approach. Then, addressing the irradiation of minerals by a radioactive source, she discusses the effects of irradiation, notably in the case of monazite, reports an experimental approach of external irradiation by ion beams, and comments some side effects like irradiation of host minerals. She also comments how irradiation-induced damages interfere with some processes like diffusion kinetics and dissolution. She addresses the case of mineral irradiation by means of a femto-second laser source: scientific approach, effects on mineral microstructure, notably in the case of monazite and quartz. The last part discusses issues in abeyance and perspectives in the field of irradiation textures, consequences on the geo-chronological response, alteration mechanisms, role of defects, and contribution of experimental irradiation

  14. U-bearing particles in miners' and millers' lungs

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Singh, N.P.; Miller, S.C.; Jones, K.W.; Cholewa, M.; Hanson, A.L.; Saccomanno, G.

    1984-01-01

    The size distribution of uranium-bearing particles in air particulates in occupational areas of active uranium mines and mills is largely uninvestigated. Investigation of the size of residual uranium-bearing particles in uranium miners' and millers' lungs is warranted because significant inhalation of uranium can occur in certain occupational areas. Average uranium concentrations of about 0.3 ppM U in uranium miners' and millers' lungs have been reported. Local uranium concentrations in uranium-bearing particles inhaled and regionally deposited in the lungs of uranium miners and millers are orders of magnitude larger than the average uranium concentrations reported. The feasibility of using microPIXE (particle induced x-ray emission) techniques to search for such uranium-bearing particles embedded in lung tissues has been demonstrated. Proton microbeams 20 μm in diameter, scanning in 5 μm steps, were used to irradiate sections of lung tissues 10 to 40 μm thick. The paper will briefly describe the method, and present and discuss the results obtained in an extensive search for uranium-bearing particles embedded in lung tissues, collected at autopsy, of former uranium miners and millers. 13 references, 1 table

  15. Microbially induced iron precipitation associated with a neutrophilic spring at Borra Caves, Vishakhapatnam, India.

    Science.gov (United States)

    Baskar, Sushmitha; Baskar, Ramanathan; Thorseth, Ingunn H; Ovreås, Lise; Pedersen, Rolf B

    2012-04-01

    The present investigation uncovers various pieces of evidence for the possible biologically induced mineralization in iron mats associated with a pH-neutral spring in the Borra caves, Vishakhapatnam, India. Electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] demonstrated large numbers of (i) hollow tubes (diameter ∼1 μm) resembling sheaths of the iron-oxidizing bacteria Leptothrix, (ii) thin (diameter springs. Understanding biogenic iron oxides in caves has important astrobiological applications as it provides a potential tool for the detection of extraterrestrial life.

  16. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California

    Directory of Open Access Journals (Sweden)

    Emily A. Kraus

    2018-05-01

    Full Text Available Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged topped by amorphous silica (largely emergent. The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated, suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.

  17. A Novel Property of DNA – As a Bioflotation Reagent in Mineral Processing

    Science.gov (United States)

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed. PMID:22768298

  18. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    Energy Technology Data Exchange (ETDEWEB)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  19. Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis

    DEFF Research Database (Denmark)

    Heftdal, Line Dam; Andersen, Thomas; Jæhger, Ditte

    2017-01-01

    expression in SpA patients, and examine the in vitro production of IL-26 by synovial cells and the effects of IL-26 on human osteoblasts. IL-26 was measured by ELISA in plasma and synovial fluid (SF) of 15 SpA patients and in plasma samples from 12 healthy controls. Facet joints from axial SpA patients were...... and the myofibroblast marker α-smooth-muscle-actin (αSMA) and analyzed by flow cytometry. Human osteoblasts were cultured in the presence of IL-26, and the degree of mineralization was quantified. We found that IL-26 levels in SF were increased compared with plasma (P ... in facet joints of axial SpA patients within the bone marrow. IL-26 secretion was primarily found in αSMA(+) myofibroblasts. In contrast, Th17 cells did not produce detectable amounts of IL-26. Human osteoblasts treated with IL-26 showed increased mineralization compared with untreated osteoblasts (P = 0...

  20. Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems

    Science.gov (United States)

    Johnson, A.; Kubo, M. D.; Cardace, D.

    2016-12-01

    Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand

  1. Effects of Montmorillonite on the Mineralization and Cementing Properties of Microbiologically Induced Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-01-01

    Full Text Available Carbonate mineralization microbe is a microorganism capable of decomposing the substrate in the metabolic process to produce the carbonate, which then forms calcium carbonate with calcium ions. By taking advantage of this process, contaminative uranium tailings can transform to solid cement, where calcium carbonate plays the role of a binder. In this paper, we have studied the morphology of mineralized crystals by controlling the mineralization time and adding different concentrations of montmorillonite (MMT. At the same time, we also studied the effect of carbonate mineralized cementation uranium tailings by controlling the amount of MMT. The results showed that MMT can regulate the crystal morphology of calcium carbonate. What is more, MMT can balance the acidity and ions in the uranium tailings; it also can reduce the toxicity of uranium ions on microorganisms. In addition, MMT filling in the gap between the uranium tailings made the cement body more stable. When the amount of MMT is 6%, the maximum strength of the cement body reached 2.18 MPa, which increased by 47.66% compared with that the sample without MMT. Therefore, it is reasonable and feasible to use the MMT to regulate the biocalcium carbonate cemented uranium tailings.

  2. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  3. Combinatorial hexapeptide ligand libraries (ProteoMiner): an innovative fractionation tool for differential quantitative clinical proteomics.

    Science.gov (United States)

    Hartwig, Sonja; Czibere, Akos; Kotzka, Jorg; Passlack, Waltraud; Haas, Rainer; Eckel, Jürgen; Lehr, Stefan

    2009-07-01

    Blood serum samples are the major source for clinical proteomics approaches, which aim to identify diagnostically relevant or treatment-response related proteins. But, the presence of very high-abundance proteins and the enormous dynamic range of protein distribution hinders whole serum analysis. An innovative tool to overcome these limitations, utilizes combinatorial hexapeptide ligand libraries (ProteoMiner). Here, we demonstrate that ProteoMiner can be used for comparative and quantitative analysis of complex proteomes. We spiked serum samples with increasing amounts (3 microg to 300 microg) of whole E. coli lysate, processed it with ProteoMiner and performed quantitative analyses of 2D-gels. We found, that the concentration of the spiked bacteria proteome, reflected by the maintained proportional spot intensities, was not altered by ProteoMiner treatment. Therefore, we conclude that the ProteoMiner technology can be used for quantitative analysis of low abundant proteins in complex biological samples.

  4. Impact of environmental chemistry on mycogenic Mn oxide minerals

    Science.gov (United States)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    concentration of Mn(II) in solution was held constant (0, 0.15, 0.5, 1.0 and 1.5 mM) only in the Mn-supplemented experiment. Mycogenic Mn oxides were analyzed using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). During the experiments, it was observed that each fungal species responded differently to the varying growth media. The addition of Na inhibited growth and oxidation of several species, and the highest concentrations of Mn in solution proved toxic to a few species. Fungi grown with Na produced a highly-disordered phyllomanganate phase similar to birnessite or vernadite. During growth in Ca-rich solutions, however, a more crystalline ranciéite-like phase was formed with 10Å interlayer spacing that collapsed to 7Å upon drying. Although a feitknechtite-like phase was expected in experiments with Mn concentrations greater than 0.5 mM, a birnessite-like phase was formed. This suggests that a more complex solution chemistry is required for transformation to the more crystalline phases, or the presence of the fungal biomass is inhibiting the ripening of the Mn oxides. This information sheds lights on how growth conditions impact the primary (biologically-induced) and secondary (abiotic reactions) mineral products of fungal Mn(II)-oxidation, which ultimately influences the overall impact of these minerals in the environment.

  5. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments

    Directory of Open Access Journals (Sweden)

    F. J. R. Meysman

    2007-08-01

    Full Text Available Insight in the biogeochemistry and ecology of sandy sediments crucially depends on a quantitative description of pore water flow and the associated transport of various solutes and particles. We show that widely different problems can be modelled by the same flow and tracer equations. The principal difference between model applications concerns the geometry of the sediment-water interface and the pressure conditions that are specified along this boundary. We illustrate this commonality with four different case studies. These include biologically and physically induced pore water flows, as well as simplified laboratory set-ups versus more complex field-like conditions: [1] lugworm bio-irrigation in laboratory set-up, [2] interaction of bio-irrigation and groundwater seepage on a tidal flat, [3] pore water flow induced by rotational stirring in benthic chambers, and [4] pore water flow induced by unidirectional flow over a ripple sequence. The same two example simulations are performed in all four cases: (a the time-dependent spreading of an inert tracer in the pore water, and (b the computation of the steady-state distribution of oxygen in the sediment. Overall, our model comparison indicates that model development for sandy sediments is promising, but within an early stage. Clear challenges remain in terms of model development, model validation, and model implementation.

  6. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  7. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  8. The mineralization and mechanism of the endogenetic mineral deposit in China

    International Nuclear Information System (INIS)

    Jiang Yonghong

    2010-01-01

    In the process of mineralization, due to the difference in rank, scale and order of structures orebody, mine colomn or rich ore bag are often produced in the specific structural parts. Obviously, it is controlled by favourite structure. The important and direct control of the structure to metal endogenetic mineralization evolution are representative on the affect of pulse action of structure to the multi-stage of mineralization evolution. According to the formation environment of the mineralization, it can be classified as collision orogeny mineralization, release(extension)mineralization, slide draw-division basin mineralization and shear zone extension mineralization. Throng the discuss of endogenetic deposit in the geological evolution, structure and formation machenism, the metallogenic model was preliminary established,and the criteria for delineating favourable metallogenic area was identified. (authors)

  9. Impact of mineral fertilizers on common winter barley (Hordeum vulgare L. agrophytocenosis development

    Directory of Open Access Journals (Sweden)

    Я. М. Мукан

    2014-04-01

    Full Text Available In 2011 to 2013 a study was completed for the impact of varying rates of fertilizing onto the indices of productivity for barley agrophytocenosis of Helios and Commandor, in particular, such its components as a number of productive stems, number of seeds per ear, potential biological activity of ear and photosynthetic apparatus. It is found that the level of spring barley agrophytocenosis productivity is subject both to varietal peculiarities and the rate of mineral fertilizer application. When applying N 60P 60K 60 і N 90P 90K 90 the highest potential and biological productivity of Helios and Commandor was recorder as compared against the control. Impact of varying application rates for fertilizers onto the components of ear biological productivity has been scrutinized. The qualitative composition of ear is a clear expression of variety phenotype and identifies the level of biological yield for spring barley. Application of N 60 P 60 K 60 і N 90 P 90 K 90 mineral fertilizers fairly increased the average leaf surface, photosynthetic lead capacity of varieties in 2 to 2.5 times, as well as FAR efficiency coefficient in 1.5 to 2.0 times as against control that thus contributed to the development of highest biological yield of Helios variety phytomass at the level of 14.9 to 15.0, grain – 7.8 to 8.0 ton per ha and, respectively, 12.7 and 7.5 tons per ha for Comandor variety.

  10. Bisphophonates in CKD Patients with Low Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Wen-Chih Liu

    2013-01-01

    Full Text Available Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients.

  11. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  12. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pmitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along with the increasing activity of antioxidase system and damages of lipid peroxidation. We also found that the relative expression of genes sdhb and aox1a

  13. Effect of Oxytetracycline on In vitro Mineralization and Demineralization Reactions in the Absence and Presence of Collagen

    Directory of Open Access Journals (Sweden)

    Monica Kakkar

    2017-11-01

    Full Text Available Introduction: Oxytetracycline and its derivatives are routinely used to treat various ailments have also been shown to inhibit embryonic bone formation, mineralization in pregnant female rats and parathyroid hormone induced demineralization of bones. Oxytetracycline has also been routinely used as bone fluorochrome to study bone metabolism. However, despite the above observations, its mechanism of action is not clearly understood. Some studies tend to suggest that it acts by inhibiting collagen biosynthesis while others indicate that it acts without influencing collagen metabolism. Aim: To study the mechanism by which oxytetracycline influences the mineralization and demineralization reactions. Materials and Methods: Homogeneous and heterogeneous systems of in vitro mineralization under physiological conditions of temperature, pH and ionic strength were used to investigate the effect of oxytetracycline not only on initial mineral phase formation but also on its subsequent growth or demineralization. In the Homogenous system, supersaturated conditions with respect to calcium and phosphate ions were employed to study their precipitation as mineral phase resembling hydroxyapatite in nature. However, in the heterogeneous system, collagen isolated from sheep tendons was used to induce identical mineral phases under saturated conditions with respect to calcium and phosphate ions prevailing in the body fluids. Results: The study demonstrated that in the homogeneous reaction system (mineralization in the absence of collagen oxytetracycline inhibited both the initial mineral phase formation and its subsequent growth without influencing its demineralization. However, in the heterogeneous system, oxytetracycline was found to inhibit not only the initial mineralization but also its subsequent growth or demineralization. Conclusion: Oxytetracycline acted like crystal poisons to inhibit the mineralization and demineralization reactions by tightly associating

  14. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992 - May 31, 1993

    International Nuclear Information System (INIS)

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens

  15. [One-time effects of drinking mineral water and tap water enriched with silver nanoparticles on the biochemical markers of liver condition and metabolic parameters in healthy rats].

    Science.gov (United States)

    Efimenko, N V; Frolkov, V K; Kozlova, V V; Kaisinova, A S; Chalaya, E N

    2017-12-05

     The objective of the present research was to study the influence of tap water enriched with silver nanoparticles (NP) as well as that of «Krasnoarmeysky» and «Essentuki №17» mineral waters after their single administration through the oral gavage to the rats on the metabolism of carbohydrates and lipids, the biochemical markers of the liver condition, and the endocrine profile in the healthy animals.  The laboratory animals (130 male Wistar rats) were allocated to thirteen groups comprised of 10 rats each as follows: 1st group (n=10) intact animals, 2nd group (5 minutes after the administration of silver NP (n=10), 3rd group (15 minutes after the of silver NP), 4th group (60 minutes after the administration of silver NP), 5th group (n=10) (5 minutes after the introduction of the «Krasnoarmeysky» mineral water), 6th group (n=10) (15 min after the introduction of the «Krasnoarmeysky» mineral water), 7th group (n=10), (60 minutes after the introduction of the «Krasnoarmeysky» mineral water) 8th group (n=10) (5 minutes after the introduction of the «Essentuki № 17» mineral water), 9th group (n=10) (15 min after the introduction of the «Essentuki № 7» mineral water) , 10th group (n=10) (60 minutes after the introduction of the «Essentuki №17» mineral water), 11th group (n=10) (5 minutes after administration of tap water (control),12th group (n=10) (15 minutes after administration of tap water (control), and 13th (n=10) group 60 minutes after administration of tap water (control).  The study has demonstrated that the tap water enriched with silver nanoparticles similar to the mineral waters caused stress reactions that are inferior to those induced by «Essentuki №17» mineral water in terms of the magnitude; however, the effect provoked by the tap water was of longer duration. Moreover, the tap water enriched with silver nanoparticles stimulates prooxidant reactions, and inhibit the activity of antioxidant protection. Silver nanoparticles

  16. Radiation-induced secretory protein, clusterin. Its inductive mechanism and biological significance

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2007-01-01

    This paper describes biochemistry of secretory clusterin (C), its radiation-inductive mechanism and biological significance. C is a glycoprotein found to be secreted from cells given various stresses like radiation and ultraviolet (UV)-ray, and participates to red cell clustering. Human C gene locates on the chromosome 8p21-p12, C has MW of 60 kDa, its precursor undergoes the degrading processing to α- and β-chains to form their heterodimer before glycosylation, and the C is finally secreted. So many other names have been given to C due to its numerous functions which have been discovered in other fields, such as apolipoprotein J. C is abundant in plasma, milk, urine, cerebrospinal fluid, semen, etc. Within 24 hr after X-ray irradiation, extracellular insulin-like growth factor-1 (IGF-1) level is elevated, and through its binding to the receptor, Src/MAPK signaling participates to C expression. Nuclear C, also induced by radiation, is a splicing variant of C and not secreted from cells. C is induced by radiation with as low dose as 2 cGy, which is different from induction of nuclear C. Secreted C is incorporated in cells by endocytosis and promotes the intracellular survival reaction through IGF-1 receptor/MAPK/Egr-1 pathway, whereas nuclear C induces cell apoptosis via unknown mechanism. Further studies are required for elucidation of the roles of secretory and nuclear C in cellular radiation responses. (R.T.)

  17. Miners' welfare

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C

    1984-06-13

    The Miners' Welfare Committee (MWC) was formed in Britain in 1921 and initiated building programmes to provide welfare amenities for miners and families, using architecture to improve the quality of a miner's working and leisure time. The article reviews the MWC's work, and assesses the design and architecture at the Selby Coalfield. (7 refs.)

  18. Mining and sustainable development: Considerations for minerals supply

    International Nuclear Information System (INIS)

    Lambert, Ian B.

    2001-01-01

    Sustainable development involves meeting the needs of human societies while maintaining viable biological and physical Earth systems. The needs include minerals: metals, fuels, industrial and construction materials. There will continue to be considerable demand for virgin mineral resources, even if levels of recycling and efficiency of use are optimal, and rates of population growth and globalisation decrease significantly. This article aims to stimulate debate on strategic issues for minerals supply. While the world has considerable stocks of mineral resources overall, international considerations of the environmental and social aspects of sustainable development are beginning to result in limitations on where mining will be conducted and what types of deposits will be mined. Current and emerging trends favour large mines in parts of the world where mining can be conducted within acceptable limits of environmental and social impact. Finding new deposits that meet such criteria will be all the more challenging given a disturbing global decline in the rate of discovery of major economic resources over the last decade, and the decreasing land area available for exploration and mining. To attract responsible exploration and mining, governments and mining nations will need to provide: regional-scale geo-scientific datasets as required to attract and guide future generations of exploration; resource access through multiple and sequential land use regimes, and frameworks for dealing with indigenous peoples' issues; and arrangements for consideration of mining proposals and regulation of mines that ensure responsible management of environmental and social issues. The minerals industry will need to continue to pursue advances in technologies for exploration, mining, processing, waste management and rehabilitation, and in public reporting of environmental and social performance. (author)

  19. Characterization of human exposure to mineral sands dust in a brazilian village

    International Nuclear Information System (INIS)

    Cunha, K. Dias da; Santos, M.S.; Medeiros, G.; Dalia, K.C.; Lima, C.; Leite, Barros C. V.

    2008-01-01

    The aim of this study was to characterize human exposure to mineral dust particles using PIXE (Particle Induced X rays Emission) and 252 Cf-PDMS (Plasma Desorption Mass Spectrometry) techniques. The dust particles were generated during the separation process of mineral sands to obtain rutile, ilmenite, zircon and monazite concentrates. The aerosol samples were collected at the village and during the process to concentrate ilmenite. A cascade impactor with six stages was used to collect mineral dust particles with aerodynamic diameter in the range of 0.64 to 19.4 μm. The particles impacted on each stage of the cascade impactor were analyzed by PIXE (Particle Induced X ray Emission) and the elemental mass concentration and the MMAD (Mass Median Aerodynamic Diameter) were determined. Employing the 252 Cf-PDMS technique the chemical compound present in aerosols particles and in urine samples were identified. The mass spectra ( 252 Cf-PDMS technique) of dust samples showed the presence of the thorium silicate, thorite and zircon in the fine fraction of aerosol. The 252 Cf-PDMS technique was, also, used to characterize urine sample from a inhabitant of the village. The results show that Buena village inhabitants inhale mineral sands dust particles. Based on the results from the lichen samples it could be concluded that at least during the last 15 years the inhabitants of the village have been exposed to monazite particles. Results suggest that the there is natural source of aerosol particles containing 226 Ra and 210 Pb (probably the swamp) besides the mineral sands dust. (author)

  20. Enhancement of lung cancer by cigarette smoking in uranium and other miners

    International Nuclear Information System (INIS)

    Archer, V.E.

    1985-01-01

    There are substantial animal and epidemiological data related to cigarette smoking and lung cancer among miners exposed to elevated levels of radon daughters that appears to be in disagreement. An hypothesis is advanced that explains most of this disagreement as being derived from temporal differences of cancer expression. The hypothesis is that a given radiation exposure induced a finite number of lung cancers, which have shorter latent periods due to the cancer promotion activity of smoke among cigarette smokers. According to this hypothesis, the life-shortening effect is greater among smoking miners than nonsmoking miners, and the ultimate number of lung cancers among smoking miners will be only a little larger than among nonsmokers. The greater number will derive from the additive effect of radiation and smoking, plus the greater force of competing causes of death among elderly nonsmokers

  1. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    Science.gov (United States)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  2. Combination of Mineral Trioxide Aggregate and Platelet-rich Fibrin Promotes the Odontoblastic Differentiation and Mineralization of Human Dental Pulp Cells via BMP/Smad Signaling Pathway.

    Science.gov (United States)

    Woo, Su-Mi; Kim, Won-Jae; Lim, Hae-Soon; Choi, Nam-Ki; Kim, Sun-Hun; Kim, Seon-Mi; Jung, Ji-Yeon

    2016-01-01

    Recent reports have shown that the combined use of platelet-rich fibrin (PRF), an autologous fibrin matrix, and mineral trioxide aggregate (MTA) as root filling material is beneficial for the endodontic management of an open apex. However, the potential of the combination of MTA and PRF as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro has not yet been studied. The purpose of this study was to evaluate the effect of the combination of MTA and PRF on odontoblastic maturation in HDPCs. HDPCs extracted from third molars were directly cultured with MTA and PRF extract (PRFe). Odontoblastic differentiation of HDPCs was evaluated by measuring the alkaline phosphatase (ALP) activity, and the expression of odontogenesis-related genes was detected using reverse-transcription polymerase chain reaction or Western blot. Mineralization formation was assessed by alizarin red staining. HDPCs treated with MTA and PRFe significantly up-regulated the expression of dentin sialoprotein and dentin matrix protein-1 and enhanced ALP activity and mineralization compared with those with MTA or PRFe treatment alone. In addition, the combination of MTA and PRFe induced the activation of bone morphogenic proteins (BMP)/Smad, whereas LDN193189, the bone morphogenic protein inhibitor, attenuated dentin sialophosphoprotein and dentin matrix protein-1 expression, ALP activity, and mineralization enhanced by MTA and PRFe treatment. This study shows that the combination of MTA and PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs via the modulation of the BMP/Smad signaling pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  4. Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India.

    Science.gov (United States)

    Ramasamy, V; Sundarrajan, M; Suresh, G; Paramasivam, K; Meenakshisundaram, V

    2014-02-01

    Natural radionuclides ((238)U, (232)Th and (40)K) concentrations and eight different radiological parameters have been analyzed for the beach sediments of Kerala with an aim of evaluating the radiation hazards. Activity concentrations ((238)U and (232)Th) and all the radiological parameters in most of the sites have higher values than recommended values. The Kerala beach sediments pose significant radiological threat to the people living in the area and tourists going to the beaches for recreation or to the sailors and fishermen involved in their activities in the study area. In order to know the light mineral characterization of the present sediments, mineralogical analysis has been carried out using Fourier transform infrared (FTIR) spectroscopic technique. The eight different minerals are identified and they are characterized. Among the various observed minerals, the minerals such as quartz, microcline feldspar, kaolinite and calcite are major minerals. The relative distribution of major minerals is determined by calculating extinction co-efficient and the values show that the amount of quartz is higher than calcite and much higher than microcline feldspar. Crystallinity index is calculated to know the crystalline nature of quartz present in the sediments. Heavy mineral separation analysis has been carried out to know the total heavy mineral (THM) percentage. This analysis revealed the presence of nine heavy minerals. The minerals such as monazite, zircon, magnetite and illmenite are predominant. Due to the rapid and extreme changes occur in highly dynamic environments of sandy beaches, quantities of major light and heavy minerals are widely varied from site to site. Granulometric analysis shows that the sand is major content. Multivariate statistical (Pearson correlation, cluster and factor) analysis has been carried out to know the effect of mineralogy on radionuclide concentrations. The present study concluded that heavy minerals induce the (238)U and (232)Th

  5. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Directory of Open Access Journals (Sweden)

    N. Dijkstra

    2018-02-01

    Full Text Available Phosphorus (P concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish–marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS and synchrotron-based X-ray absorption spectroscopy (XAS, we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish–marine sediments (at 11.5 to 12 m sediment depth. In this depth interval, phosphate that diffuses down from the organic-rich, brackish–marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II phosphate. Results from a reactive transport model suggest that the peak in iron(II phosphate originally occurred at the lake–marine transition (9 to 10 m and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake–marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II phosphates such as vivianite has

  6. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Science.gov (United States)

    Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-02-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly

  7. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  8. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  9. Biological parameters for lung cancer in mathematical models of carcinogenesis

    International Nuclear Information System (INIS)

    Jacob, P.; Jacob, V.

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)

  10. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  11. A preliminary strategic environmental impact assessment of mineral and hydrocarbon activities on the Nuussuaq peninsula, West Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Boertmann, D.; Asmund, G.; Glahder, C.; Tamstorf, M.

    2008-01-15

    There is an increasing interest for mineral and hydrocarbon exploration in Greenland and in both regards the Nuussuaq peninsula is in focus. This preliminary strategic environmental impact assessment describes the status of the biological knowledge from the area and designates potential conflicts between activities and the biological environment. Furthermore biological knowledge gaps are identified. These should be filled before specific environmental impacts assessments can be carried out and relevant studies to fill these data gaps are proposed. (au)

  12. Increased Vertebral Bone Mineral in Response to Reduced Exercise in Amenorrheic Runners

    OpenAIRE

    Lindberg, Jill S.; Hunt, Marjorie M.; Wade, Charles E.; Powell, Malcolm R.; Ducey, Diane E.

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003±0.097 to 1.070±0.089 grams per cm.2 Three runners continued to have amenorrhea, with no change in running distance or ...

  13. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  14. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  15. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  16. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  17. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  18. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.

    Science.gov (United States)

    Park, Jin Hee; Kim, Bong-Soo; Chon, Chul-Min

    2018-01-01

    Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe 1-x , Mn x )OOH) were found in the different environmental conditions. The Fe and Mn minerals were enriched with toxic metal(loid)s including As, Cd, Ni and Zn, indicating they can act as scavengers of toxic metal(loid)s in mine streams. Under acidic conditions, Acidobacteria was dominant phylum and Gallionella (Fe oxidizing bacteria) was the predominant genus in these Fe rich environments. Manganese oxidizing bacteria, Hyphomicrobium, was found in birnessite forming environments. Leptolyngbya within Cyanobacteria was found in Fe and Mn oxidizing environments, and might contribute to Fe and Mn oxidation through the production of molecular oxygen. The potential interaction of microbial community with minerals in mine sites can be traced by analysis of microbial community in different Fe and Mn mineral forming environments. Iron and Mn minerals contribute to the removal of toxic metal(loid)s from mine water. Therefore, the understanding characteristics of mine precipitates and their associated microbes helps to develop strategies for the management of contaminated mine water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    Science.gov (United States)

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  20. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    Science.gov (United States)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  1. Mortality analysis in the French cohort of uranium miners

    International Nuclear Information System (INIS)

    Vacquier, B.

    2008-10-01

    The objective of this thesis is to contribute to the estimation of radiation-induced risks at low dose rates. This work is based on the cohort of uranium miners French presenting multiple exposures, contamination by internal (radon and uranium dust) and external exposure (gamma radiation). An analysis of the risk of death and the relationship risk exposure was carried out within the cohort of uranium miners after extension of the monitoring until 1999, for cancers diseases and non-cancers. In addition, an analysis taking into account multiple exposures to ionizing radiation was carried out within the framework of this thesis. This analysis has improved knowledge on the risk of mortality associated with low levels of exposure to radon. (author)

  2. Calibration curves for biological dosimetry by drug-induced prematurely condensed chromosomes in human lymphocytes

    International Nuclear Information System (INIS)

    Kang, C. M.; Chung, H. C.; Cho, C. K.

    2002-01-01

    To develop the cytogenetic tool to detect chromosome damages after high dose exposure with 60 Coγ- rays, dose-response curves were measured for induction of prematurely condensed chromosomes (PCC) in peripheral lymphocytes. Blood was obtained from 10 different healthy donors, and given okadaic acid (OA) 500nM in cultured lymphocytes 1h after radiation exposure. Cells were analyzed by the frequencies of OA-induced PCC rings because it is difficult to obtain mitotic chromosomes using a conventional chromosome aberration (CA). PCC-rings were scored in cells exposed in the dose range of 0.2-16Gy. The frequency of the cells with PCC and the dose-response relationship for the yield of PCC rings were examined in the irradiated lymphocytes. The yield of PCC-rings increased with dose dependent-manner up to 16Gy. The observed dose-effect relationship for the percentage of cells with PCC-rings was calculated by linear-quadratic model. This technique can be applied to biological dosimetry of radiation exposures involving whole body irradiation to allow damaged chromosomes to be detected with great sensitivity. Detection of okadaic acid-induced PCC rings is a useful method up to 16Gy or more doses in estimating the absorbed doses of victims after high dose exposure. Calibration curves described in this paper will be used in our laboratory for biological dosimetry by PCC-ring after a high dose exposure

  3. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Science.gov (United States)

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  4. Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response.

    Science.gov (United States)

    Terova, Genciana; Rimoldi, Simona; Izquierdo, Marisol; Pirrone, Cristina; Ghrab, Wafa; Bernardini, Giovanni

    2018-06-17

    Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and

  5. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.

    1999-01-01

    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  6. Influence of oil and mineral characteristics on oil-mineral interaction

    International Nuclear Information System (INIS)

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.

    1998-01-01

    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  7. Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Michael Balazy

    2007-09-01

    Full Text Available Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized. We continue to study these mechanisms to be able to propose preventive strategies in large populations. The objective of the present study was to determine comparatively biological responses of mesothelial Met-5A and monocyte-macrophage J774 cells following exposure to two types of fluoro-edenite fibers having low and high iron content (labeled 19 and 27, respectively obtained from Biancavilla (Sicily, Italy. The reference fiber was a non-iron fibrous tremolite from Val di Susa (Piemonte, Italy. The cells were treated with 5, 50, and 100 μg of fibrous matter per 1 ml for 72 hr. We identified several key mechanisms by which cells responded and counteracted the injury induced by these fibers. The fibers caused induction of the heat shock protein 70 (Hsp70, stimulated formation of reactive oxygen species (detected by using DCFH-DA as a fluorescent probe and NO• (measured as nitrite. Exposure of cells to the fibers induced lactate dehydrogenase activity and decreased viability. The fluoro-endenite type 27 was the most potent fiber tested, which indicated that iron and possibly manganese contribute significantly to this fiber toxicity. The J774 cells were more sensitive to fluoro-edenite than Met-5A cells suggesting that the primary site of the fiberinduced inflammatory response could be the macrophage rather than the pulmonary epithelium. Fluoro-edenite produces more biological alterations with respect to non-iron tremolite. Hsp70 and free radicals could be important factors in the context of mineral fiber-induced acute lung injury

  8. Biological and physical induced oxygen dynamics in melting sea ice of the Fram Strait

    DEFF Research Database (Denmark)

    Glud, Ronnie; Rysgaard, Søren; Turner, Gavin

    2014-01-01

    correlation (EC) measurements on the underside of the ice revealed a light-dependent O2 exchange rate. However, the integrated signal resolved a net O2 uptake of 7.70 mmol m−2 d−1. The net O2 exchange was therefore dominated by the production of O2-depleted meltwater rather than biological activity. The EC......We investigated the production, consumption, and exchange of O2 in melting sea ice to assess the biological- and physical-induced O2 turnover. The underside of the ice was covered with 5–20 cm3 large, buoyant algal aggregates. Their gross primary production amounted to 0.49 mmol C m−2 d−1, which...... was 4.5 times higher than the primary production of sea ice–encrusted microalgae (0.11 mmol C m−2 d−1). The phototrophic biomass of the aggregates (2.94 mg chlorophyll a m−2) was six times higher than that encountered in the sea ice itself. Taxono-specific investigations strongly suggest...

  9. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  10. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Directory of Open Access Journals (Sweden)

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  11. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  12. Microbial mineralization of organic nitrogen forms in poultry litters.

    Science.gov (United States)

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.

  13. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  14. Chemical changes of minerals trapped in the lichen Trapelia involuta. Implication for lichen effect on mobility of uranium and toxic metals

    International Nuclear Information System (INIS)

    Kasama, Takeshi; Murakami, Takashi; Ohnuki, Toshihiko

    2002-01-01

    To elucidate development of minerals trapped in a lichen, we examined the lichen Trapelia involuta growing directly on secondary uranyl minerals and U-enriched Fe oxide and hydroxide minerals. Sericite and other minerals in the underlying rock are trapped in the lichen T. involuta during its biological growth and chemically changed by lichen activities. The presence of chemically changed sericite accompanied by an Fe-bearing mineral in the lichen suggests that dissolution of sericite is promoted mainly by polysaccharides excreted by the lichen. Oxalic acid or lichen acids absent in the medulla may not play an important role in the dissolution. Our results suggest that lichens on metal-rich surface affect the mobility of uranium and other toxic metals through dissolution followed by trap of minerals from the underlying rock. (author)

  15. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  16. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, H.B.; Johnson, William I.

    1999-04-27

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  17. Mineral in skeletal elements of the terrestrial crustacean Porcellio scaber: SR mu CT of function related distribution and changes during the moult cycle

    Czech Academy of Sciences Publication Activity Database

    Ziegler, A.; Neues, F.; Janáček, Jiří; Beckmann, F.; Epple, M.

    2017-01-01

    Roč. 46, č. 1 (2017), s. 63-76 ISSN 1467-8039 Institutional support: RVO:67985823 Keywords : crustacea * isopoda * mineral * moult * oniscidea * synchrotron-radiation microtomography Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 1.546, year: 2016

  18. In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, Dhanaraj, E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Karthika, Arumugam; Nithiya, Subramani [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Kavitha, Louis [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India)

    2014-03-01

    The present study deals with the optimization of minerals (Sr, Mg and Zn) substituted hydroxyapatite coatings (M-HAP) at different pulse on and off time (1 s, 2 s, 3 s and 4 s) by pulsed electrodeposition method. The formation of M-HAP coating was investigated using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction studies (XRD). The morphological features and the content of Sr, Mg and Zn ions in M-HAP coated Ti–6Al–4V were investigated by high resolution scanning electron microscopy (HRSEM) and energy dispersive X-ray analysis (EDAX). The electrochemical studies were performed for M-HAP coated Ti–6Al–4V in simulated body fluid which exhibited better corrosion resistance at the prolonged pulse off time. The in vitro cell adhesion test revealed that the M-HAP coating is found appropriate for the formation of new cell growth which proves the enhanced biocompatible nature of the coating. Thus the M-HAP coating will serve as a potential candidate in orthopedic applications. - Highlights: • We successfully achieved minerals substituted HAP coatings on Ti alloy by PED method. • The M-HAP coated Ti alloy exhibited better bioresistivity in SBF. • The as-coated sample showed antimicrobial activity and better cell viability. • The in vitro test displayed the formation of new cell growth. • The M-HAP coating can serve as a better candidate in orthopedic applications.

  19. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  20. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-01-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing 137 Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite >> vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. - Graphical abstract: Autoradiography analysis showed that presence of larger amounts of mineral of vermiculite collected in South Africa induced less accumulation of radioactive Cs in yeast cells from the medium. - Highlights: • Effect of minerals on the accumulation of radioactive Cs by yeast was studied. • Presence of minerals reduced accumulation of radioactive Cs by yeast. • The order of reduction is mica>smectite, illite>>vermiculite, phlogopite

  1. A facile in vitro model to study rapid mineralization in bone tissues.

    Science.gov (United States)

    Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying

    2014-09-16

    Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate

  2. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  3. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  4. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  5. Grouping Minerals by Their Formulas

    Science.gov (United States)

    Mulvey, Bridget

    2018-01-01

    Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…

  6. Methods of mineral potential assessment of uranium deposits: A mineral systems approach

    International Nuclear Information System (INIS)

    Jaireth, S.

    2014-01-01

    Mineral potential represents the likelihood (probability) that an economic mineral deposit could have formed in an area. Mineral potential assessment and prospectivity analysis use a probabilistic concepts to mineral deposits, where the probability of an event (formation of a mineral deposit) is conditional on two factors : i) geological processes occurring in the area, and ii) the presence of geological features indicative of those process. For instance, one of the geological processes critical for the formation of sandstone-hosted uranium deposits in an area is transport of uranium in groundwaters. Geological features indicative of this process in an area comprise, i) presence of leachable source rocks of uranium; ii) presence of highly permeable sandstone; and iii) suitable hydrogeological gradient driving flow groundwaters. Mineral deposits can also be conceptualised as mineral systems with more emphasis on mineralising processes. This concept has some clear parallels with the petroleum systems approach which has proven to be a useful in oil and gas exploration. Mineral systems are defined as ‘all geological factors that control the generation and preservation of mineral deposits’. Seven important geological factors are outlined to define the characteristics of a hydrothermal mineral system. These factors include: i) source of the mineralising fluids and transporting legends; ii) source of metals and other ore components; iii) migration pathways which may include inflow as well as outflow zones; iv) thermal gradients; v) source of energy to mobilised fluids; vi) mechanical and structural focusing mechanism at the trap site; and vii) chemical and/or physical cause for precipitation of ore minerals at the trap site. This approach, commonly known as the ‘source’, ‘transport’ and ‘trap’ paradigm has been redefined to introduce five questions as a basis to understand spatial and temporal evolution of a mineral system at all scales (regional to

  7. Efficient algorithms for extracting biological key pathways with global constraints

    DEFF Research Database (Denmark)

    Baumbach, Jan; Friedrich, T.; Kötzing, T.

    2012-01-01

    The integrated analysis of data of different types and with various interdependencies is one of the major challenges in computational biology. Recently, we developed KeyPathwayMiner, a method that combines biological networks modeled as graphs with disease-specific genetic expression data gained....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...... this strategy GLONE (global node exceptions); the previous problem we call INES (individual node exceptions). Since finding GLONE-components is computationally hard, we developed an Ant Colony Optimization algorithm and implemented it with the KeyPathwayMiner Cytoscape framework as an alternative to the INES...

  8. KANDUNGAN BAHAN ORGANIK DAN AKUMULASI MINERAL TANAH PADA BANGUNAN SARANG RAYAP TANAH Macrotermes gilvus Hagen (BLATTODEA: TERMITIDAE

    Directory of Open Access Journals (Sweden)

    Niken Subekti

    2012-03-01

    Full Text Available Rayap Macrotermes gilvus Hagen mempunyai peranan ekologis rayap tanah M. gilvus sebagai degradator primer di dalam hutan, eksplorasi perananannya sebagai agen biologis dalam perbaikan vegetasi dan perbaikan kualitas tanah. Rayap dapat memodifikasi sifat fisik dan kimia tanah. Penelitian tentang kandungan bahan organik telah dilakukan dengan analisis proksimat (metode Weende, sementara akumulasi mineral tanah menggunakan metode X-Ray berdasarkan Analysis Program Cristallynity. Rayap M. gilvus Hagen merupakan komponen penting dalam memodifikasi beragam mineral dari tanah disekitarnya. Hasil penelitian menunjukkan bahwa terdapat perbedaan nyata antara komposisi mineral tanah dalam sarang rayap M. gilvus Hagen dengan mineral tanah disekitar sarang. Hasil penelitian menunjukkan kandungan bahan organik dalam bangunan sarang menghasilkan sebesar 98.33% dan padatannya 1.67%. Padatan ini terdiri dari karbohidrat sebesar 3.16%, abu 4.19%, lemak 23.95%, protein sebesar 39.52%, dan sisanya 29.18% berupa mineral-mineral. Bangunan sarang rayap yaitu SiO2 dan Despujolsite yang dibawa dari lingkungan sekitar kedalan bangunan sarang. Unsur-unsur yang lain diperoleh dari sebagian material yang berasal dari saliva, humus dan tanah sekitar sarang. The termite Macrotermes gilvus Hagen plays an ecological role. Subterranean termites M. gilvus is considered as the primary degradator in the forest, and therefore the exploration of its role as the biological agent to recover the vegetation and soil quality might be useful. Termites could modify the physical and chemical nature of soil. M. gilvus Hagen was an important component in modifying various minerals of the surrounding soil.  Research on the content of the organic materials had been proximat analysis (Weende methode, and the accumulation of soil mineral structure in the mound with X-Ray Methode (Analysis Program Cristallynity 2006. The result of the research indicated that there was significant difference

  9. Fissure minerals, literature review

    International Nuclear Information System (INIS)

    Larsson, S.Aa.

    1980-01-01

    This paper is a review of methods used for direct and indirect dating of tectonic events. Isotope geochemistry including stable isotopes as well as fission track- dating, fluid inclusion and thermoluminescens techniques have been considered. It has been concluded that an investigation of tectonic (and thermal) events should start with a detailed study of the mineral phases grown in seald fissures as well as minerals from fissure walls. This study should include phase identification, textures as well as mineral chemistry. The information from this study is fundamental for the decision of further investigations. Mineral chemistry including isotopes and fluid inclusion studies will give an essential knowledge about crystallization conditions for fissure minerals concerned. Direct dating using fission tracks as well as radioactive isotopes could be useful for some minerals. Application of thermoluminescens dating on fissure minerals is doubtful. (Auth.)

  10. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells.

    LENUS (Irish Health Repository)

    Duncan, Henry F

    2012-03-01

    Histone deacetylase inhibitors (HDACis) alter the homeostatic balance between 2 groups of cellular enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs), increasing transcription and influencing cell behavior. This study investigated the potential of 2 HDACis, valproic acid (VPA) and trichostatin A (TSA), to promote reparative processes in pulp cells as assayed by viability, cell cycle, and mineralization analyses.

  11. Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: Effects of reagent

    Energy Technology Data Exchange (ETDEWEB)

    Alkhuraiji, Turki S., E-mail: khuraiji@kacst.edu.sa [King Abdulaziz City for Science and Technology—KACST, Nuclear Science Research Institute, National Center for Irradiation Technology, P. O. BOX 6086, Riyadh 11442 (Saudi Arabia); Boukari, Sahidou O.B. [Université de Poitiers (France); Alfadhl, Fadhl S. [King Abdulaziz City for Science and Technology—KACST, Nuclear Science Research Institute, National Center for Irradiation Technology, P. O. BOX 6086, Riyadh 11442 (Saudi Arabia)

    2017-04-15

    Highlights: • Ionizing radiation effectively mineralizes phenol in aqueous solution. • Radiolytic system improves when O{sub 3}, H{sub 2}O{sub 2}, N{sub 2}O, O{sub 2}, or S{sub 2}O{sub 8}{sup 2−} is combined with γ-rays. • Radiation chemical yield, dose constant, and dose for 90% degradation are discussed. • Removal/mineralization yields increase with initial concentration of H{sub 2}O{sub 2} or S{sub 2}O{sub 8}{sup 2−}. • Initial pH and inorganic salts have an impact on phenol degradation. - Abstract: This study aims to gain new insight into phenol degradation and mineralization in aqueous solution using ionizing radiation to control its radiolytic elimination under various experimental conditions and to present the different radical reactions involved in water radiolysis. The most obvious finding of this study is that the combination of a reagent, i.e., O{sub 3}, H{sub 2}O{sub 2}, N{sub 2}O, O{sub 2,} or S{sub 2}O{sub 8}{sup 2−}, with γ-rays effectively enhances the radiolytic system for phenol degradation or mineralization. Radiolytic yield is higher with H{sub 2}O{sub 2} than with S{sub 2}O{sub 8}{sup 2−}. For the γ-ray/free O{sub 2}, γ-ray/H{sub 2}O{sub 2}, γ-ray/S{sub 2}O{sub 8}{sup 2−}, γ-ray/N{sub 2}O, and γ-ray/N{sub 2} systems, the absorbed doses for 90% phenol elimination are 1.7, 0.85, 1.65, 1.2, and 6.4 kGy, respectively; in contrast, phenol can be decomposed totally and directly via reaction with molecular ozone. The lowest dose constant for phenol removal is determined for γ-ray/HCO{sub 3}{sup −}. 89% of mineralization is reached for an absorbed dose of 10 kGy with a γ-ray/S{sub 2}O{sub 8}{sup 2−} combination.

  12. New thermoluminescence techniques for mineral exploration

    International Nuclear Information System (INIS)

    Levy, P.W.; Holmes, R.J.; Ypma, P.J.; Chen, C.C.; Swiderski, H.S.

    1977-01-01

    The thermoluminescence of carbonate host rock in the vicinity of known lead-zinc and lead-zinc-fluorite mineralization was reexamined for possible development as an exploration technique. The measurements were made with equipment for determining the thermoluminescence spectrum at closely spaced temperature intervals. Radiation-induced thermoluminescence was also measured. Samples were studied from five localities in Mexico, Southwest Africa, and the United States. Four thermoluminescence properties were found to vary with ''distance-from-ore'' in a systematic manner. These include the glow peak intensity and temperature and the emission spectrum peak energy and full width at half-maximum. For example, in both limestone and dolomite, the high-temperature glow peak intensities are low or negligible within the ore and as the distance from the contact increases the intensity rises rapidly to a maximum, or maxima, and then decreases irregularly to constant value slightly above that in the ore. Depending on the thickness of the ore, the thermoluminescence characteristics associated with the mineralization extended from ten to a hundred or so meters from the ore host rock contact. 5 figures

  13. Fundamentals of converging mining technologies in integrated development of mineral resources of lithosphere

    Science.gov (United States)

    Trubetskoy, KN; Galchenko, YuP; Eremenko, VA

    2018-03-01

    The paper sets forth a theoretical framework for the strategy of the radically new stage in development of geotechnologies under conditions of rapidly aggravating environmental crisis of the contemporary technocratic civilization that utilizes the substance extracted from the lithosphere as the source of energy and materials. The authors of the paper see the opportunity to overcome the conflict between the techno- and bio-spheres in the area of mineral raw materials by means of changing the technological paradigm of integrated mineral development by implementing nature-like technologies oriented to the ideas and methods of converging resources of natural biota as the object of the environmental protection and geotechnologies as the major source of ecological hazards induced in the course of development of mineral resources of lithosphere.

  14. X-ray induced alterations in the differentiation and mineralization potential of murine preosteoblastic cells

    Science.gov (United States)

    Hu, Yueyuan; Lau, Patrick; Baumstark-Khan, Christa; Hellweg, Christine E.; Reitz, Günther

    2012-05-01

    To evaluate the effects of ionizing radiation (IR) on murine preosteoblastic cell differentiation, we directed OCT-1 cells to the osteoblastic lineage by treatment with a combination of β-glycerophosphate (β-GP), ascorbic acid (AA), and dexamethasone (Dex). In vitro mineralization was evaluated based on histochemical staining and quantification of the hydroxyapatite content of the extracellular bone matrix. Expression of mRNA encoding Runx2, transforming growth factor β1 (TGF-β1), osteocalcin (OCN), and p21CDKN1A was analyzed. Exposure to IR reduced the growth rate and diminished cell survival of OCT-1 cells under standard conditions. Notably, calcium content analysis revealed that deposition of mineralized matrix increased significantly under osteogenic conditions after X-ray exposure in a time-dependent manner. In this study, higher radiation doses exert significant overall effects on TGF-β1, OCN, and p21CDKN1A gene expression, suggesting that gene expression following X-ray treatment is affected in a dose-dependent manner. Additionally, we verified that Runx2 was suppressed within 24 h after irradiation at 2 and 4 Gy. Although further studies are required to verify the molecular mechanism, our observations strongly suggest that treatment with IR markedly alters the differentiation and mineralization process of preosteoblastic cells.

  15. Bone mineral as an electrical energy reservoir.

    Science.gov (United States)

    Nakamura, Miho; Hiratai, Rumi; Yamashita, Kimihiro

    2012-05-01

    Mechanical stress in bone induces an electrical potential generated by piezoelectricity arising from displacement of collagen fibrils. Where and for how long the potential is stored in bone; however, are still poorly understood. We investigated the electrical properties of collagen fibrils and apatite minerals and found that bone, when polarized electrically by applying an external voltage, depolarizes by two mechanisms. Plots of thermally stimulated depolarization current show two significant peaks: one at 100°C, attributed to collagen fibrils because decalcified bone exhibits depolarization peak at 100°C, and the other at 500°C, attributed to apatite minerals because calcined bone exhibits depolarization peak at 500°C and has activation energy similar to that for synthesized apatite. The crystallographic c-axis orientation of calcined bone depends on the direction in which the bone is cut, either transverse or longitudinal, and strongly affects the polarization efficacy. Copyright © 2012 Wiley Periodicals, Inc.

  16. Bone mineral density and fractures after surgical menopause : systematic review and meta-analysis

    NARCIS (Netherlands)

    Fakkert, I. E.; Teixeira, N.; Abma, E. M.; Slart, R. H. J. A.; Mourits, M. J. E.; de Bock, G. H.

    Background Oophorectomy is recommended for women at increased risk for ovarian cancer. When performed at premenopausal age oophorectomy induces acute surgical menopause, with unwanted consequences. Objective To investigate bone mineral density (BMD) and fracture prevalence after surgical menopause.

  17. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase

    NARCIS (Netherlands)

    Douglas, T.E.L.; Skwarczynska, A.; Modrzejewska, Z.; Balcaen, L.; Schaubroeck, D.; Lycke, S.; Vanhaecke, F.; Vandenabeele, P.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2013-01-01

    Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (beta-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to

  18. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    Science.gov (United States)

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.

  19. Computer simulation of induced electric currents and fields in biological bodies by 60 Hz magnetic fields

    International Nuclear Information System (INIS)

    Xi Weiguo; Stuchly, M.A.; Gandhi, O.P.

    1993-01-01

    Possible health effects of human exposure to 60 Hz magnetic fields are a subject of increasing concern. An understanding of the coupling of electromagnetic fields to human body tissues is essential for assessment of their biological effects. A method is presented for the computerized simulation of induced electric currents and fields in bodies of men and rodents from power-line frequency magnetic fields. In the impedance method, the body is represented by a 3 dimensional impedance network. The computational model consists of several tens of thousands of cubic numerical cells and thus represented a realistic shape. The modelling for humans is performed with two models, a heterogeneous model based on cross-section anatomy and a homogeneous one using an average tissue conductivity. A summary of computed results of induced electric currents and fields is presented. It is confirmed that induced currents are lower than endangerous current levels for most environmental exposures. However, the induced current density varies greatly, with the maximum being at least 10 times larger than the average. This difference is likely to be greater when more detailed anatomy and morphology are considered. 15 refs., 2 figs., 1 tab

  20. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zongguang [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Qu, Shuxin, E-mail: qushuxin@swjtu.edu.cn [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zheng, Xiaotong; Xiong, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Fu, Rong; Tang, Kuangyun; Zhong, Zhendong [Department of Plastic Surgery, Academy of Medical Sciences and Sichuan Provincial People' s Hospital, Chengdu 610041 (China); Weng, Jie [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-11-01

    Inspired by the excellent adhesive property of mussel adhesive protein, we added polydopamine (PDA) to calcium phosphate cement (PDA–CPC) to enhance its compressive strength previously. The mineralization and mechanism on PDA–CPC were investigated by soaking it in simulated body fluid in this study. The results indicated that PDA promoted the conversion of dicalcium phosphate dihydrate and α-tricalcium phosphate to hydroxyapatite (HA) in the early stage but inhibited this conversion subsequently. PDA promoted the rapid mineralization on PDA–CPC to form a layer of nanoscale calcium phosphate (CaP) whereas there was no CaP formation on the control-CPC after 1 d of soaking. This layer of nanoscale CaP was similar to that of natural bone, which was always observed during soaking. X-ray photoelectron spectroscopy showed that the peak of C=O of PDA existed in the newly formed CaP on PDA–CPC, indicating the co-precipitation of CaP with PDA. Furthermore, the newly formed CaP on PDA–CPC was HA confirmed by transmission electron microscopy, which the newly formed HA was in association with PDA. Therefore, PDA increased the capacity of mineralization of CPC and induced the formation of nanoscale bone-like apatite on PDA–CPC. Thus, this provides the feasible route for surface modification on CPC. - Highlights: • Effect of polydopamine (PDA) on the in vitro mineralization of PDA-CPC was studied. • PDA promoted the rapid mineralization on PDA-CPC to form a nanoscale HA layer. • The precipitation of the nanoscale HA layer on PDA-CPC accompanied with PDA. • Polydopamine induced mineralization is feasible for surface modification of CaP.

  1. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    Science.gov (United States)

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  2. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  3. Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a

    Directory of Open Access Journals (Sweden)

    Min-Ching Wang

    2018-04-01

    Full Text Available Background/Purpose: Bioaggregates such as Portland cement (PC can be an economical alternative for mineral trioxide aggregate (MTA with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL cells in microRNAs level. Methods: PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM. Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. Results: PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP, bone morphogenic protein (BMP, and dentin matrix protein 1 (DMP1 expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1 expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. Conclusion: This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed. Keywords: Portland cement, Bioaggregate, miR-146a, Osteogenic differentiation, Periodontal ligament (PDL

  4. Arsenic mobilization and attenuation by mineral-water interactions: implications for managed aquifer recharge.

    Science.gov (United States)

    Neil, Chelsea W; Yang, Y Jeffrey; Jun, Young-Shin

    2012-07-01

    Managed aquifer recharge (MAR) has potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows, among many other beneficial environmental applications. However, field MAR sites have experienced arsenic mobilization from aquifer formation minerals due to induced changes in groundwater chemistry. To address this environmental concern, it is crucial to understand the potential sources and sinks impacting arsenic mobilization. This paper outlines important mineral-water interactions that can occur at MAR sites. Detailed information on minerals of concern, physiochemical processes for arsenic mobilization or attenuation, and the potential impact of microbial activity and hydrology on these processes is provided. Based on these mineral-water interactions, guidelines for predicting arsenic mobility are presented, and recommendations are made concerning MAR site monitoring. The review emphasizes important aspects in correlating interfacial reactions to reactive transport modeling and elucidating future challenges, a first step toward developing safer and more sustainable MAR operations.

  5. A systematic study of multiple minerals precipitation modelling in wastewater treatment.

    Science.gov (United States)

    Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J

    2015-11-15

    Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other

  6. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  7. Expression and Dynamics of Podoplanin in Cultured Osteoblasts with Mechanostress and Mineralization Stimulus.

    Science.gov (United States)

    Takenawa, Tomohiro; Kanai, Takenori; Kitamura, Tetsuya; Yoshimura, Yoshitaka; Sawa, Yoshihiko; Iida, Junichiro

    2018-02-27

    This study investigates the significance of the expression and dynamics of podoplanin in mechanostress and mineralization in cultured murine osteoblasts. Podoplanin increased in osteoblasts subjected to straining in non-mineralization medium, suggesting that the mechanostress alone is a podoplanin induction factor. In osteoblasts subjected to vertical elongation straining in the mineralization medium, the mRNA amounts of podoplanin, osteopontin, and osteocalcin were significantly larger than those in cells not subjected to straining, suggesting that mechanostress is the cause of a synergistic effect in the expression of these proteins. In osteoblasts in the mineralization medium, significant increases in osteocalcin mRNA occurred earlier in cells subjected to straining than in the cells not subjected to straining, suggesting that the mechanostress is a critical factor to enhance the expression of osteocalcin. Western blot and ELISA analysis showed increased podoplanin production in osteoblasts with longer durations of straining. There was significantly less mineralization product in osteoblasts with antibodies for podoplanin, osteopontin, and osteocalcin. There was also less osteopontin and osteocalcin produced in osteoblasts with anti-podoplanin. These findings suggest that mechanostress induces the production of podoplanin in osteoblasts and that podoplanin may play a role in mineralization in cooperation with bone-associated proteins.

  8. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez L, Y. [CSIC, Instituto de Estructura de la Materia, Calle Serrano 121, 28006 Madrid (Spain); Correcher, V. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Garcia G, J. [CSIC, Museo Nacional de Ciencias Naturales, Calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Cruz Z, E., E-mail: y.r.l@csic.es [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-10-15

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  9. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    International Nuclear Information System (INIS)

    Rodriguez L, Y.; Correcher, V.; Garcia G, J.; Cruz Z, E.

    2011-10-01

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  10. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  11. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  12. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  13. Biological response of Tradescantia stamen-hairs in Brazilian radioactive waste deposits

    International Nuclear Information System (INIS)

    Gomes, Heliana A.; Macacini, Jose Flavio

    2005-01-01

    The objective of the present study was to apply a highly sensitive botanical test of mutagenicity (the Tradescantia stamen-hair mutation bioassay), to assess in situ the biological responses induced by occurring radiation in Brazilian radioactive waste deposits (waste deposits from the Mineral Treatment Unit/Brazilian Nuclear Industries (UTM/INB), from the Centro de Desenvolvimento de Tecnologia Nuclear (CDTN) and from the Instituto de Pesquisas Energeticas e Nucleares (IPEN). The mutagenesis was evaluated in environments presenting gamma radiation exposure rates ranging from 1.6 μR.min -1 up to 3300.0 μR.min -1 . It was detected a significant increase in the mutation rate for pink Tradescantia stamen-hair only for the local presenting the highest exposition rate within UTM/INB which had a radiation exposition rate of 750 μR.min -1 . The Tradescantia plants exposed to the radioactive waste deposits from CDTN and IPEN presented an insufficient number of flowers for the statistical evaluation of mutagenicity. (author)

  14. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    Science.gov (United States)

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  15. Of minerals and men. [Discovery of new mineral species

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.W. (Council for Mineral Technology, Randburg (South Africa))

    1983-01-01

    The rate of discovery of new mineral species appears to be on the increase in Southern Africa and classification and nomenclature, once haphazard, are now subject to international scientific screening and rules. Earlier names entrenched in the literature provide a fascinating background to the minerals scene.

  16. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2018-05-01

    Full Text Available Types of organic matter and mineral associations and microstructures of shales can reflect the depositional mechanism and sedimentary environment. Therefore, analysis of organic matter and mineral associations is a prerequisite for research on fine-grained sedimentary rocks. Shales from the Eocene Shahejie Formation in the Dongying Sag of China were selected to classify their lithofacies and to investigate the characteristics of their organic matter and mineral associations. This analysis identified six lithofacies (e.g., laminated shales and massive mudstones; in all the lithofacies, clay minerals exhibit a positive correlation with detrital minerals, thus indicating that they were derived from the same source. The comprehensive analysis of mineral and organic matter associations reveals that detrital minerals were deposited with low-hydrogen index (HI OM. The deposition of detrital minerals was mainly a physical process. Clay minerals can undergo deposition in one of two ways due to their surface charge: they can either aggregate with high-HI OM via chemical deposition, thus forming organic-rich laminae, or they can be deposited together with low-HI OM via physical deposition, thus forming clay-rich laminae or a massive matrix. Carbonate minerals, which often coexist with high-HI OM, are biological sediments. The analysis of the sedimentary characteristics of these organic matter and mineral associations indicates that the sedimentary processes differ between various lithofacies: e.g., the discontinuous laminated shale represents the product of biophysical processes. Differences in depositional mechanisms are also present in each sub-member. Therefore, it is important to analyze the properties of minerals and organic matter, as well as their associations, to more deeply understand the classification of lithofacies and the depositional processes of shales and mudstones.

  17. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  18. Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Nathan A. Palmer

    2014-01-01

    Full Text Available Switchgrass (Panicum virgatum L is perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season. Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter classes in the tetraploid switchgrass genome. Expression patterns were determined for many of these genes using publically available transcriptomic datasets obtained from both greenhouse and field grown plants. Certain transporters showed strong temporal patterns of expression in distinct developmental stages of the plant. Gene-expression was verified for selected transporters using qRT-PCR. By and large these analyses confirmed the developmental stage-specific expression of these genes. Mineral analyses indicated that K, Fe, Mg, Co and As had a similar pattern of accumulation with apparent limited remobilization at the end of the growing season. These initial analyses will serve as a foundation for more detailed examination of the nutrient biology of switchgrass.

  19. Understanding Contaminants Associated with Mineral Deposits

    Science.gov (United States)

    Verplanck, Philip L.

    2008-01-01

    sources, (2) the pathways that facilitate transport from those sources, and (3) the processes that control the fate of the elements once released from the sources. Experts in the fields of economic geology, structural geology, mineralogy, geophysics, geochemistry, hydrology, ground-water modeling, microbiology, and toxicology came together for a series of studies that address these relationships on scales ranging from the microscopic to the watershed. This Circular presents results and highlights from the detailed, interdisciplinary studies that include investigations in both mining-affected areas and mineralized but unmined areas. The first section of the Circular describes laboratory and site-scale field investigations that primarily focus on mineralogic and biologic controls on the source and release of metals and acidity from mine-waste rock and hydrothermally altered areas. The second section describes a set of basin- to watershed-scale studies that not only investigate the source and release of metals and acidity but also the transport of these constituents away from the source areas. The third section is a summary of results from postremediation ecosystem monitoring. For more information on these and other project-related studies, please visit the project Web site at http://minerals.cr.usgs.gov/projects/contaminants/index.html. The Web site includes a complete bibliography and detailed descriptions of each interdisciplinary study.

  20. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  1. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  2. Recovering byproduct heavy minerals from sand and gravel, placer gold, and industrial mineral operations

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.M.; Martinez, G.M.; Wong, M.M.

    1979-01-01

    The Bureau of Mines, as part of an effort to maximize minerals and metals recovery from domestic resources, has investigated the feasibility of recovering heavy minerals as byproducts from sand and gravel, placer gold, and industrial mineral operations in northern California. Sand samples from about 50 locations were treated by gravity separation to yield heavy-mineral cocentrates (black sands). Mineral compositions of the concentrates were determined by chemical analysis and mineralogical examination. Individual zircon, ilmenite, magnetite, platinum-group metals, thoria, and silica products were prepared from heavy-mineral concentrates by selective separation using low- and high-intensity magnetic, high-tension, and flotation equipment.

  3. The potential biological mechanisms of arsenic-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2004-01-01

    Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and α-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and β cell dysfunction. Recent studies have shown that, in subjects with chronic

  4. Radioactive mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    1948-01-01

    This publication was designed as a guide for uranium and thorium prospectors in Australia. Physical properties, such as color, streak, luster, hardness, fracture, and specific gravity of the uranium and thorium-bearing minerals are summarized and the various methods suitable for detecting radioactivity in minerals are described. Two colored plates show samples of pitchblende (uraninite), autunite, carnotite, monazite, and others of the most important minerals sources of uranium and thorium.

  5. The biology of gall-inducing arthropods.

    Science.gov (United States)

    Gyuri Csoka; William J. Mattson; Graham N. Stone; Peter W. Price

    1998-01-01

    This proceedings explores many facets of the ever intriguing and enigmatic relationships between plants and their gall-forming herbivores. The research reported herein ranges from studies on classical biology and systematics of galling to molecular phylogeny, population genetics, and ecological and evolutionary theory. Human kind has much to learn and gain from...

  6. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  7. Main biological characters of series of mutant waxy rices developed from irradiation-induced mutation

    International Nuclear Information System (INIS)

    Huang Ronghua; Zhang Shubiao; Zhang Qingqi; Yang Rencui; Lin Jinhu

    2008-01-01

    The main biological characters of the waxy male sterile lines, maintainer lines, restorer lines and waxy hybrids which had been developed by radiation-induced mutation were studied, and the grain quality of the waxy hybrids were analyzed as well. Sesults indicated that the mutant waxy rice had the same growth duration, similar agronomic characters, panicle and spikelet traits as parent. The waxy male-sterile line had the same pollen sterility characteristic as its parent male-sterile line. The waxy hybrid rice retained the yield potential as original hybrid rice, and the grain quality of the waxy hybrids was similar to the conventional waxy rice Ejinnuo 6. (authors)

  8. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  9. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  10. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  11. Aggregate and Mineral Resources - Minerals

    Data.gov (United States)

    NSGIC State | GIS Inventory — This point occurrence data set represents the current mineral and selected energy resources of Utah. The data set coordinates were derived from USGS topographic maps...

  12. Construction Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes construction minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  13. Agricultural Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes agricultural minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  14. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    El Sebai, T. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Lagacherie, B. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Soulas, G. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Martin-Laurent, F. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France)]. E-mail: fmartin@dijon.inra.fr

    2007-02-15

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass.

  15. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    International Nuclear Information System (INIS)

    El Sebai, T.; Lagacherie, B.; Soulas, G.; Martin-Laurent, F.

    2007-01-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass

  16. Mineral commodity summaries 2015

    Science.gov (United States)

    ,

    2015-01-01

    Each chapter of the 2015 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2014 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses.

  17. Leaching of artificial radionuclide out of minerals

    International Nuclear Information System (INIS)

    Bogdanov, R.V.; Osipova, I.V.; Sergeev, A.S.

    1992-01-01

    Leaching of radionuclides induced by neutron bombardment in natural silicates and silicophosphate of rare earth elements and calcium, is studied using gamma-spectrometry. It is shown that solution of minerals under the effect of artificial subsoil water at 75 deg C is incongruent character: difference in leaching of cobalt and actinides reaches value equal to two magnitudes. Behaviour of lanthanides as analogs of transplutonium elements is of special interest. Essential role of specimen microphase composition is pointed out. The suggested methodological approach is efficient at selection of matricies for fixaton of radioactive wastes

  18. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  19. SWIM: a computational tool to unveiling crucial nodes in complex biological networks.

    Science.gov (United States)

    Paci, Paola; Colombo, Teresa; Fiscon, Giulia; Gurtner, Aymone; Pavesi, Giulio; Farina, Lorenzo

    2017-03-20

    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer.

  20. Exploiting the MDM2-CK1α Protein-Protein Interface to Develop Novel Biologics That Induce UBL-Kinase-Modification and Inhibit Cell Growth

    Science.gov (United States)

    Huart, Anne-Sophie; MacLaine, Nicola J.; Narayan, Vikram; Hupp, Ted R.

    2012-01-01

    Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between

  1. Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Huart

    Full Text Available Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2 oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i ELISA with recombinant MDM2; (ii cell lysate pull-down towards endogenous MDM2; (iii MDM2-CK1α complex-based competition ELISA; and (iv MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii be used as a tool to study NEDDylation of CK1α, and (iii reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross

  2. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface....... Preliminarily, we detected a strong relation between the amount of DNA and mineral coating mass. We hypothesized that the accumulated mineral coatings have a positive effect on amount of bacterial biomass, its spatial distribution and substrate removal rates. In this study, we combined molecular, microscopic...

  3. Biological anti-TNF drugs

    DEFF Research Database (Denmark)

    Prado, Mônica Simon; Bendtzen, Klaus; Andrade, Luis Eduardo Coelho

    2017-01-01

    practice shows a significant percentage of individuals who do not exhibit the desired response. Loss of therapeutic benefit after initial successful response is designated secondary failure. Immune-biological agents are not self-antigens and are therefore potentially immunogenic. Secondary failure...... is frequently caused by antibodies against immune-biologicals, known as anti-drug antibodies (ADA). ADA that neutralize circulating immune-biologicals and/or promote their clearance can reduce treatment efficacy. Furthermore, ADA can induce adverse events by diverse immunological mechanisms. This review...... provides a comprehensive overview of ADA in rheumatoid arthritis patients treated with anti-TNF immune-biologicals, and explores the concept of therapeutic drug monitoring (TDM) as an effective strategy to improve therapeutic management. Expert opinion: Monitoring circulating ADA and therapeutic immune-biological...

  4. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine

    Science.gov (United States)

    Schwalfenberg, Gerry K.; Genuis, Stephen J.

    2015-01-01

    In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061

  5. Correction methods of medicinal properties of mineral waters in Pyatigorsk resort

    Science.gov (United States)

    Reps, Valentina; Potapov, Evgeniy; Abramtsova, Anna; Kotova, Margarita

    2016-04-01

    Mineral Water (MW) of Pyatigorsk deposit (PD) is united in five genetic groups (operational stocks of 2809,8 m3/day): carbonic and hydrosulphuric, carbonic, carbonic chloride-hydrocarbonate sodium (salt and alkaline), radonic low carbonate, nitrogen-carbonic terms. A variety of MW types is explained by peculiarities of geological structure and hydrogeological conditions of PD. Here on the sites of the development of deep semi-ring splits there are overflows and a mixture of various complexes. Unloading of deep water strikes happens not only on the earth surface in the form of springs but also at the depth in its edging crumbling rocks of Palaeocene and quarternary deposits. As a result of mixture processes of water and its subsequent metamorphization, various types of mineral water of this deposit are formed. Pyatigorsk resort is in a special protected ecologo-resort region which mode allows to keep stability of structure and ecological purity of MW. Nevertheless, MW variability, compositional differences and MW mineralization determining the level of its biological effect demand studying of action mechanisms of both natural MW, and possibility of its modification for range expansion of rehabilitation action. There have been examined biological effects of the course drinking reception In experiment on 80 rats males of the Wistar line biological effects of the course drinking reception of two MW types: "Krasnoarmeyskaya new" (MW1) of sulphate-hydrocarbonate-chloride calcium-sodium structure with the raised contents of iron (3-5 mg/dm3), mineralization of 5,0-5,2 g/dm3, CO2 of 1,3-2,2 g/dm3, daily flow of 10-86 m3/day, temperature from 14 to 370C on the mouth of the well and spring №2 (MW2) low sulphate, low carbonate sulphate-hydrocarbonate-chloride calcium-sodium, mineralization of 5,0 g/l, CO2 of 0,7 g/dm3, H2 of S 0,01 g/dm3. There has been shown an ability of the drinking course MW1 to influence on endocrine and metabolic continium - cortisol level increased

  6. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  7. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  8. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.

    Science.gov (United States)

    Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri

    2012-11-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, pcreep behavior of the OVX group (pcreep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Fumarolic minerals

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Garavelli, Anna; Jakobsson, Sveinn Peter

    2016-01-01

    The fumarolic mineralogy of the Icelandic active volcanoes, the Tyrrhenian volcanic belt (Italy) and the Aegean active arc (Greece) is investigated, and literature data surveyed in order to define the characteristics of the European fumarolic systems. They show broad diversity of mineral...... associations, with Vesuvius and Vulcano being also among the world localities richest in mineral species. Volcanic systems, which show recession over a longer period, show fumarolic development from the hightemperature alkaline halide/sulphate, calcic sulphate or sulphidic parageneses, synchronous...... with or immediately following the eruptions, through mediumtemperature ammonium minerals, metal chlorides, or fluoride associations to the late low-temperature paragenesis dominated by sulphur, gypsum, alunogen, and other hydrous sulphates. The situation can be different in the systems that are not recessing but show...

  10. The parasitoids of the asparagus miner (Diptera: Agromyzidae): field parasitism and the influence of food resources on life history.

    Science.gov (United States)

    Morrison, William R; Gibson, Gary A P; Szendrei, Zsofia

    2014-12-01

    The goals of this study were to identify pupal parasitoids of the asparagus miner, Ophiomyia simplex Loew (Diptera: Agromyzidae), and examine the effect of different diets and floral resources on the lifespan of adult asparagus miners and their parasitoids. We also measured the effect of parasitism on stem damage caused by the asparagus miner. The identity and abundance of the parasitoids of the asparagus miner were determined in asparagus fields in Michigan from weekly asparagus miner pupal collections during the 2010-2013 seasons. Twelve species of hymenopterous parasitoids were reared from asparagus miner pupae, including Chorebus rondanii (Giard) (Ichneumonoidea: Braconidae), 10 species in three families of Chalcidoidea, and one species of Bethylidae (Chrysidoidea), that represent new host records for the asparagus miner. C. rondanii and Thinodytes cephalon (Walker) (Pteromalidae) were the most common parasitoids. The effects of different diets and flowers on the lifespan of the pest and parasitoid adults were also evaluated. Buckwheat resulted in the shortest life span for the asparagus miner, whereas Riddell's goldenrod significantly increased its lifespan relative to the control. Parasitoid lifespan was doubled when individuals were fed sugar-rich diets. In the field, parasitoids preferred stems that contained more pupae and damage. The two most commonly reared parasitoids should be considered as targets for future conservation biological control efforts of the asparagus miner.

  11. Mode of distribution of uranium mineralization and sequence of the formation of minerals in albitites

    International Nuclear Information System (INIS)

    Grechishnikov, N.P.; Kramar, O.A.; Rapovich, F.I.

    1985-01-01

    On the basis of analysis and generalization of factural material data on the distribution nature of accessory uranium mineralization in albitites permitting to judge of the role and textural-structural peculiarities of enclosing rocks in mineralization localization are given. It is shown that the uranium mineral formation is closely related with the albitite formation and proceeded during two stages. A main mass of primary uranium minerals (brannerites and uraninites) in the form of impregnated mineralization was formed during the first uraninite-brannerite-albitite stage. Uranium oxides, silicates and titanates in the shape of veines formed. During the second coffinite-pitchblende-chloritic stage the formation of uranium oxides, silicates and titanates occured. Uranium mineralization in albitites developes in zones of cataclasm, small jointing, mylonitization localizing in fine-grained aggregates. A main mass of primary uranium minerals in albitites (brannerite, uraninite relates to neogenic during metasomatosis dark-coloured minerals (riebenite, aegirine, chlorite)

  12. Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance.

    Science.gov (United States)

    Yan, Xiaodan; Shi, Lin; Cai, Rumeng

    2018-01-01

    A mineral soil conditioner (MSC) composed of activated potash feldspar, gypsum, and calcium carbonate and containing an amount of available mineral nutrients, is shown to be effective for plant growth and acidic soil amelioration. In this study, a field test was conducted over four rice seasons by examining treatment with control check (CK), MSC, biological active carbon, and lime to investigate the nitrogen-use efficiency and mechanism of soil characteristic variations due to the desilicification and allitization of soil as well as the unrestrained use of nitrogen (N) fertilizer in recent years. Influences of MSC on the xylem sap intensity and mean rice yields were evaluated, and the soil type was also analyzed using the FactSage 6.1 Reaction, phase diagram, and Equilib modules. The results of the field trial showed that MSC application increased the xylem sap intensity and nitrogen export intensity by 37.33-39.85% and 31.40-51.20%, respectively. A significant increase (5.63-15.48%) in mean grain yields was achieved with MSC application over that with biological active carbon and lime application. The effects of MSC had a tendency to increase with time in the field experiment results, and grain yields increased after the initial application. The new formation of clay minerals exhibits a significant influence on [Formula: see text] fixation, especially for 2:1 phyllosilicates with illite, owing to the interlayers of the clay minerals. Our preliminary results showed that kaolinite, the main 1:1 phyllosilicate clay mineral in ferralsol, transformed to illite at room temperature as a consequence of the presence of H 4 SiO 4 and available K + supplied by MSC. This indicated that improving the soil quality combined with reducing N losses from soils is an efficient way to control non-point source pollution from agriculture without the risk of decreased in grain yield.

  13. Mineral statistics yearbook 1994

    International Nuclear Information System (INIS)

    1994-01-01

    A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs

  14. Taxation of unmined minerals

    International Nuclear Information System (INIS)

    Bremberg, B.P.

    1989-01-01

    This paper reports on the Kentucky Revenue Cabinet which began implementing its controversial unmined minerals tax program. The Revenue Cabinet should complete its first annual assessment under this program in December, 1989. The Revenue Cabinet's initial efforts to collect basic data concerning the Commonwealth's coal bearing lands has yielded data coverage for 5 million of Kentucky's 10 million acres of coal lands. Approximately 1000 detailed information returns have been filed. The returns will be used to help create an undeveloped mineral reserves inventory, determine mineral ownership, and value mineral reserves. This new program is run by the Revenue Cabinet's Mineral Valuation Section, under the Division of Technical Support, Department of Property Taxation. It has been in business since September of 1988

  15. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2013-01-01

    Full Text Available Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

  16. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics.

    Science.gov (United States)

    Bouleftour, Wafa; Juignet, Laura; Bouet, Guenaelle; Granito, Renata Neves; Vanden-Bossche, Arnaud; Laroche, Norbert; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2016-01-01

    Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  17. Investigation of microbial-mineral interactions by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brown, D.A.

    1998-01-01

    Moessbauer spectroscopy was used to investigate the reactions of microbes with iron minerals in aqueous solutions and as components of rocks in banded iron formations and granite. A microbial biofilm that formed on a wall of an excavated granite vault in a deep underground laboratory initiated this research. At the aerobic face of the biofilm, iron was found in a form of ferrihydrite; in the anaerobic face against the rock, iron was found as very small siderite particles. Laboratory incubations of the biofilm microbial consortium showed different mineral species could be formed. When the microbial consortium from the biofilm was incubated with magnetite grains, up to about 10% of the iron was altered in three weeks to hematite. The ability of the consortium to precipitate iron both as Fe 2+ and Fe 3+ in close proximity may have a bearing on the deposition of banded iron formations. These reactions could also be important in microbially induced corrosion

  18. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  19. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  20. Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress.

    Science.gov (United States)

    Pereira, Cidália D; Passos, Emanuel; Severo, Milton; Vitó, Isabel; Wen, Xiaogang; Carneiro, Fátima; Gomes, Pedro; Monteiro, Rosário; Martins, Maria J

    2016-05-01

    High-fructose and/or low-mineral diets are relevant in metabolic syndrome (MS) development. Insulin resistance (IR) represents a central mechanism in MS development. Glucocorticoid signalling dysfunction and endoplasmic reticulum (ER) and oxidative stresses strongly contribute to IR and associate with MS. We have described that natural mineral-rich water ingestion delays fructose-induced MS development, modulates fructose effects on the redox state and glucocorticoid signalling and increases sirtuin 1 expression. Here, we investigated mineral-rich water ingestion effects on insulin signalling and ER homeostasis of fructose-fed rats. Adult male Sprague-Dawley rats had free access to standard-chow diet and different drinking solutions (8 weeks): tap water (CONT), 10%-fructose/tap water (FRUCT) or 10%-fructose/mineral-rich water (FRUCTMIN). Hepatic and adipose (visceral, VAT) insulin signalling and hepatic ER homeostasis (Western blot or PCR) as well as hepatic lipid accumulation were evaluated. Hepatic p-IRS1Ser307/IRS1 (tendency), p-IRS1Ser307, total JNK and (activated IRE1α)/(activated JNK) decreased with fructose ingestion, while p-JNK tended to increase; mineral-rich water ingestion, totally or partially, reverted all these effects. Total PERK, p-eIF2α (tendency) and total IRS1 (tendency) decreased in both fructose-fed groups. p-ERK/ERK and total IRE1α increasing tendencies in FRUCT became significant in FRUCTMIN (similar pattern for lipid area). Additionally, unspliced-XBP1 increased with mineral-rich water. In VAT, total ERK fructose-induced increase was partially prevented in FRUCTMIN. Mineral-rich water modulation of fructose-induced effects on insulin signalling and ER homeostasis matches the better metabolic profile previously reported. Increased p-ERK/ERK, adding to decreased IRE1α activation, and increased unspliced-XBP1 and lipid area may protect against oxidative stress and IR development in FRUCTMIN.

  1. Synthesis of magnetite nanoparticles from mineral waste

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Sakthivel, R., E-mail: velsak_r@yahoo.com [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Behura, Reshma; Mishra, B.K. [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Das, D. [UGC-DAE Consortium, Kolkata (India)

    2015-10-05

    Highlights: • Mineral waste becomes a valuable source for the synthesis of magnetite. • Milling helps uniform mixing of reductant with iron ore tailings. • Magnetite nanoparticles exhibit saturation magnetization of 60 emu/g. • Ag coating induces antibacterial activity of magnetite. - Abstract: Magnetite nanoparticles were synthesized from iron ore tailings – a mineral waste collected from the iron ore processing plant. Mechanical milling followed by chemical route is employed to obtain the magnetite nanoparticles from the waste. The magnetite nanoparticles were characterized by X-ray diffractometer, Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrometer and Vibrating Sample Magnetometer. X-ray diffraction pattern confirms the existence of a magnetite phase. Field Emission Scanning Electron Microscopic (FE-SEM) pictures reveal that the particle size is below 100 nm. Fourier Transform Infrared (FTIR) spectrum shows a band at 570 cm{sup −1} for the Fe–O bond vibration. Vibrating Sample Magnetometric (VSM) study shows high saturation magnetization value of 60 emu/g at low applied magnetic field. Silver coated magnetite nanoparticles exhibits antibacterial property whereas bare magnetite does not.

  2. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu isotope fractionation

    International Nuclear Information System (INIS)

    Mathur, R.; Munk, L.A.; Townley, B.; Gou, K.Y.; Gómez Miguélez, N.; Titley, S.; Chen, G.G.; Song, S.; Reich, M.; Tornos, F.; Ruiz, J.

    2014-01-01

    Highlights: • Cu isotope fractionation of ores and waters identifies copper sulfide weathering. • Redox reactions cause isotopic shift measured in areas of sulfide weathering. • Consistent isotope signature in different deposit, climate, or concentration. - Abstract: Copper isotope signatures in waters emanating from mineralized watersheds provide evidence for the source aqueous copper in solution. Low-temperature aqueous oxidation of Cu sulfide minerals produces significant copper isotopic fractionation between solutions and residues. Abiotic experimental data of fractionation (defined as Δ liquid–solid ‰ = δ 65 Cu liquid − δ 65 Cu solid ) are on the order of 1–3‰ and are unique for copper rich-sulfide minerals. Data presented here from ores and waters within defined boundaries of porphyry copper, massive sulfide, skarn, and epithermal ore deposits mimic abiotic experiments. Thus, the oxidation of sulfide minerals appears to cause the signatures in the waters although significant biological, temperature, and pH variations exist in the fluids. Regardless of the deposit type, water type, concentration of Cu in solution, or location, the data provide a means to trace sources of metals in solutions. This relationship allows for tracking sources and degree of metal migration in low temperature aqueous systems and has direct application to exploration geology and environmental geochemistry

  3. CD44 is involved in mineralization of dental pulp cells.

    Science.gov (United States)

    Chen, Kuan-Liang; Huang, Yu-Yuan; Lung, Jrhau; Yeh, Ying-Yi; Yuan, Kuo

    2013-03-01

    CD44 is a transmembrane glycoprotein with various biological functions. Histologic studies have shown that CD44 is strongly expressed in odontoblasts at the appositional stage of tooth development. We investigated whether CD44 is involved in the mineralization of dental pulp cells. Ten human third molars with incomplete root formation were collected and processed for immunohistochemistry of CD44. Dental pulp cells isolated from another 5 human third molars were assayed for their viability, alkaline phosphatase activity, and alizarin red staining in vitro after silencing stably their expression of CD44 by using the short hairpin RNA technique. The CD44 knockdown cells were cultured on a collagen sponge and transplanted subcutaneously into the dorsal surfaces of immunocompromised mice. After 6 weeks, the subcutaneous tissues were processed for alizarin red staining and immunohistochemistry of human specific antigen. The dental pulp cells transduced with control short hairpin RNA were used as the control in all assays. CD44 is expressed in odontogenic cells with active mineral deposition during tooth development. Odontoblasts in the root ends of immature teeth express a stronger CD44 signal compared with those in the crown portion. When CD44 expression was stably suppressed in dental pulp cells, their mineralization activities were substantially decreased in both in vitro and in vivo assays. CD44 may play a crucial role in the initial mineralization of tooth-associated structures. However, further studies are required to clarify the underlying mechanisms. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Mineral supplementation for grazing ruminants

    International Nuclear Information System (INIS)

    McDowell, L.R.; Conrad, J.H.; Ellis, G.L.

    1986-01-01

    Grazing ruminants to which concentrate feeds cannot be economically fed must rely on self-feeding of mineral supplements. A number of factors affect mineral consumption of free-choice mixtures. Livestock exhibit little nutritional wisdom and will select palatable mixtures in preference to mixtures designed to meet their requirements. Palatability and appetite stimulators are often used to achieve a more uniform herd-wide consumption. It is best to formulate free-choice mixtures on the basis of analyses or other available data. However, when no information on mineral status is known, a free-choice complete mineral supplement is warranted. A 'complete' mineral mixture usually includes salt, a low fluoride P source, Ca, Co, Cu, I, Mn and Zn. Selenium, Mg, K, S, Fe or additional elements can be incorporated into a mineral supplement as new information suggests a need. The detriment to ruminant production caused by providing Ca, Se and Cu in excess can be greater than any benefit derived by providing a mineral supplement. In regions where high forage Mo predominates, three to five times the Cu content in mineral mixtures is needed to counteract Mo toxicity. Supplemental minerals are most critical during the wet season, when cattle are gaining weight rapidly and energy and protein supplies are adequate. Economic return on mineral supplementation is high. (author)

  5. The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action.

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2010-01-01

    Full Text Available The nonsteroidal anti-inflammatory drug (NSAID, indomethacin (Indo, has a large number of divergent biological effects, the molecular mechanism(s for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC and cholesterol that mimics biomembranes.Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes.Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

  6. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  7. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  9. Minerals Policy Statement 2: controlling and mitigating the environmental effects of minerals extraction in England

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    Minerals Policy Statement 2 (MPS2) sets out the policies and considerations that the UK Government expects Mineral Planning Authorities to follow when preparing development plans and in considering application for minerals development. This supercedes Minerals Policy Guidance 11 (MPG 11). Annex 1: Dust to MPS2 sets out the policy considerations in relation to dust from mineral workings and associated operations, and how they should be dealt with in local development plans and in considering individual applications. Annex 2: Noise to MPS2 addresses policy in relation to noise from mineral workings. These have been abstracted separately for the Coal Abstracts database. 58 refs., 2 apps.

  10. PIXE studies of changes in host mineral compositions of plants due to Phytophthora Cinnamomi

    International Nuclear Information System (INIS)

    Papper, C.S.; Chaudhri, M.A.

    1978-01-01

    In order to study the effect of the disease due to Phytophthora Cinnamomi on the vegetation in Wilson's Promontory, the mineral compositions of tolerant and susceptible plants in both healthy and diseased areas have been compared, using proton-induced x-ray emission analysis

  11. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest

    International Nuclear Information System (INIS)

    Lo, Hsin-Lung; Nakajima, Satoshi; Ma, Lisa; Walter, Barbara; Yasui, Akira; Ethell, Douglas W; Owen, Laurie B

    2005-01-01

    UV-induced damage can induce apoptosis or trigger DNA repair mechanisms. Minor DNA damage is thought to halt the cell cycle to allow effective repair, while more severe damage can induce an apoptotic program. Of the two major types of UV-induced DNA lesions, it has been reported that repair of CPD, but not 6-4PP, abrogates mutation. To address whether the two major forms of UV-induced DNA damage, can induce differential biological effects, NER-deficient cells containing either CPD photolyase or 6-4 PP photolyase were exposed to UV and examined for alterations in cell cycle and apoptosis. In addition, pTpT, a molecular mimic of CPD was tested in vitro and in vivo for the ability to induce cell death and cell cycle alterations. NER-deficient XPA cells were stably transfected with CPD-photolyase or 6-4PP photolyase to specifically repair only CPD or only 6-4PP. After 300 J/m 2 UVB exposure photoreactivation light (PR, UVA 60 kJ/m 2 ) was provided for photolyase activation and DNA repair. Apoptosis was monitored 24 hours later by flow cytometric analysis of DNA content, using sub-G1 staining to indicate apoptotic cells. To confirm the effects observed with CPD lesions, the molecular mimic of CPD, pTpT, was also tested in vitro and in vivo for its effect on cell cycle and apoptosis. The specific repair of 6-4PP lesions after UVB exposure resulted in a dramatic reduction in apoptosis. These findings suggested that 6-4PP lesions may be the primary inducer of UVB-induced apoptosis. Repair of CPD lesions (despite their relative abundance in the UV-damaged cell) had little effect on the induction of apoptosis. Supporting these findings, the molecular mimic of CPD, (dinucleotide pTpT) could mimic the effects of UVB on cell cycle arrest, but were ineffective to induce apoptosis. The primary response of the cell to UV-induced 6-4PP lesions is to trigger an apoptotic program whereas the response of the cell to CPD lesions appears to principally involve cell cycle arrest. These

  12. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Proliferation and mineralization ability of dental pulp cells derived from primary and permanent teeth

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2011-04-01

    Full Text Available The aims of this study were to compare the proliferation and mineralization ability of CFU-F selected dental pulp cellsderived from primary and permanent teeth. Those cells were isolated by enzyme digestion and analyzed for their colonyformingcapacity. The cell proliferation was measured by the MTT assay on day 1, day 7, and day14. Alizarin Red S stainingwas used to detect mineralized nodule formation of the cells on day 7, 14, 21, and 28. Proliferation of CFU-F selected pulpcells from primary teeth was significantly higher than that of CFU-F selected pulp cells from permanent teeth in all periods ofthe experiment. Upon cultured cells in mineralization inducing media, the mineralized nodules appeared as early as day 14 inCFU-F selected pulp cells from primary teeth and MG-63, whereas those of CFU-F selected pulp cells from permanent teethcan be found at day 21. On day 21 and day 28, the mineralized nodules of the CFU-F selected pulp cells from the primaryteeth group were more than those in the CFU-F selected pulp cells from the permanent teeth group. Mineralized noduleformation in the CFU-F selected pulp cells from the permanent teeth group appeared later and were less than those ofCFU-F selected pulp cells from primary teeth. However, mineralized nodules in CFU-F selected pulp cells from the permanentteeth group increased very fast after their appearance. Those results suggest that CFU-F selected pulp cells from primaryteeth had a higher proliferation rate and mineralization rate when compared to CFU-F selected pulp cells from permanentteeth.

  14. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  15. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Science.gov (United States)

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  16. Minerals industry survey, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This is the seventh edition of the statistical survey commissioned by the Australian Mining Industry Council. It represents the most comprehensive review of the financial position of the Australian minerals industry and provides timely financial data on the minerals industry. The tables of this survey have been prepared for AMIC by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies. For the purpose of the survey, the minerals industry has been defined as including exploration for, and extraction and primary processing of, minerals in Australia. The oil and gas industry is not included.

  17. Ionizing radiation induced biological response and its public health implication

    International Nuclear Information System (INIS)

    Koeteles, Gy.

    1994-01-01

    Several sources of ionizing radiation exist in natural and artificial environment of humanity. An overview of their biological effects and the biological response of man is present. Emphasize is given to the differences caused by high and low doses. The interrelation of radiology, radiation hygiene and public health is pointed out. Especially, the physical and biological effects of radiation on cells and their responses are discussed in more detail. (R.P.)

  18. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.

    Science.gov (United States)

    Hamdous, Yasmina; Chebbi, Imène; Mandawala, Chalani; Le Fèvre, Raphael; Guyot, François; Seksek, Olivier; Alphandéry, Edouard

    2017-10-17

    Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm 2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/g Fe . Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.

  19. Mineral industry in Australia

    International Nuclear Information System (INIS)

    Parbo, S.A.

    1982-01-01

    The paper reviews the history and growth of the mineral industry in Australia and its significance to the nation's economic growth and overseas trade, particularly over the last twenty years during which time production of coal, iron ore, manganese and mineral sands has increased greatly and new discoveries of petroleum, bauxite and nickel have given rise to major new industries. Australia ranks fourteenths in the value of world trade and is among the world's largest exporters of alumina, iron ore, mineral sands, coal, lead, zinc and nickel. Some details of production, processing and exports of the major minerals are given. Comment is made on the policies and roles of the six State Governments and the Federal Government in respect of ownership and control of the mining, processing and exporting of both energy and non-energy minerals. (orig.) [de

  20. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  1. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  2. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  3. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    Science.gov (United States)

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  4. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  5. Effect of strontium ranelate on bone mineral: Analysis of nanoscale compositional changes.

    Science.gov (United States)

    Rossi, André L; Moldovan, Simona; Querido, William; Rossi, Alexandre; Werckmann, Jacques; Ersen, Ovidiu; Farina, Marcos

    2014-01-01

    Strontium ranelate has been used to prevent bone loss and stimulate bone regeneration. Although strontium may integrate into the bone crystal lattice, the chemical and structural modifications of the bone when strontium interacts with the mineral phase are not completely understood. The objective of this study was to evaluate apatite from the mandibles of rats treated with strontium ranelate in the drinking water and compare its characteristics with those from untreated rats and synthetic apatites with and without strontium. Electron energy loss near edge structures from phosphorus, carbon, calcium and strontium were obtained by electron energy loss spectroscopy in a transmission electron microscope. The strontium signal was detected in the biological and synthetic samples containing strontium. The relative quantification of carbon by analyzing the CK edge at an energy loss of ΔE = 284 eV showed an increase in the number of carbonate groups in the bone mineral of treated rats. A synthetic strontium-containing sample used as control did not exhibit a carbon signal. This study showed physicochemical modifications in the bone mineral at the nanoscale caused by the systemic administration of strontium ranelate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Radioisotopes in plant mineral nutrition

    International Nuclear Information System (INIS)

    Singh, Bhupinder

    2016-01-01

    Extensive investigations on mineral composition of different plant species growing on various soils, helped in realizing that neither the presence nor the concentration of a mineral element in a plant can be regarded as a criterion for essentially. Plants have a limited capability for selective uptake of those mineral elements which are essential for their growth. They also take up mineral element which are not necessary for growth and may even be toxic. The mineral composition of plants growing in soils cannot, therefore, be used to establish essentially of a mineral element. Once this fact was appreciated, both water and sand culture experiments were carried out in which particular mineral elements were omitted. Von Sach and Knop are credited with reintroduction of the solution culture method using which they demonstrated the absolute requirement of ten macronutrients. As evident, these techniques made possible a more precise characterization of essentially of mineral elements and led to a better understanding of their role in plant metabolism. By the beginning of 20"t"h century importance of micronutrients like B, Mn, Cu, Mo and CI was also established

  7. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    Science.gov (United States)

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  8. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  9. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    Energy Technology Data Exchange (ETDEWEB)

    Moysey, Stephen [Clemson University; Dean, Delphine [Clemson University; Dimitrios, Ntarlagiannis [Rutgers University

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  10. Outlook 96: Minerals and Energy

    International Nuclear Information System (INIS)

    1996-01-01

    Papers discussing the future of Australia's minerals and energy are presented under the following headings: Australia in the global minerals and energy markets; minerals exploration; steelmaking raw materials; aluminium and alumina; gold; nickel; base metals; titanium minerals; energy for a sustainable future; electricity; electricity in Asia; crude oil; coal trade; natural gas in Australia and uranium. Relevant papers are individually indexed/abstracted. Tabs., figs., refs

  11. Mineral commodity summaries 2013

    Science.gov (United States)

    ,

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  12. Mineral commodity summaries 2014

    Science.gov (United States)

    ,

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  13. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    Science.gov (United States)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  14. Definitions of Health Terms: Minerals

    Science.gov (United States)

    ... gov/definitions/mineralsdefinitions.html Definitions of Health Terms : Minerals To use the sharing features on this page, ... National Institutes of Health, Office of Dietary Supplements Minerals Minerals are those elements on the earth and ...

  15. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts

    Science.gov (United States)

    Rodriguez, Douglas E.; Thula-Mata, Taili; Toro, Edgardo J.; Yeh, Ya-Wen; Holt, Carl; Holliday, L. Shannon; Gower, Laurie B.

    2013-01-01

    Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates. PMID:24140612

  16. Minerals yearbook: The mineral industry of Brazil. 1988 international review

    International Nuclear Information System (INIS)

    Ensminger, H.R.

    1988-01-01

    Brazil's gross domestic product (GDP) grew only slightly in 1988 to $277 billion at current prices. The growth rate was the smallest registered since 1983, when the rate was minus 2.8%. The economy's performance was strongly influenced by a 2% to 3% decrease in industrial production and civil construction. The mineral industry, however, countered the downward trend in the industrial sector and grew a modest 1.4%. Topics discussed in the report include the following: Government policies and programs; Production; Trade; Commodity review--Metals (Aluminum, Aluminia, and Bauxite, Columbium, Copper, Gold, Iron and Steel, Manganese, Tin, Titanium); Industrial Minerals (Gem stones, Phosphate rock, Quartz); Mineral fuels (Coal, Natural gas, Petroleum, Nuclear power); Nonmineral energy sources (Alcohol, Hydroelectric)

  17. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  18. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians.

    Science.gov (United States)

    Cunningham, John A; Thomas, Ceri-Wyn; Bengtson, Stefan; Kearns, Stuart L; Xiao, Shuhai; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C J

    2012-06-22

    The Ediacaran Doushantuo biota has yielded fossils that include the oldest widely accepted record of the animal evolutionary lineage, as well as specimens with alleged bilaterian affinity. However, these systematic interpretations are contingent on the presence of key biological structures that have been reinterpreted by some workers as artefacts of diagenetic mineralization. On the basis of chemistry and crystallographic fabric, we characterize and discriminate phases of mineralization that reflect: (i) replication of original biological structure, and (ii) void-filling diagenetic mineralization. The results indicate that all fossils from the Doushantuo assemblage preserve a complex mélange of mineral phases, even where subcellular anatomy appears to be preserved. The findings allow these phases to be distinguished in more controversial fossils, facilitating a critical re-evaluation of the Doushantuo fossil assemblage and its implications as an archive of Ediacaran animal diversity. We find that putative subcellular structures exhibit fabrics consistent with preservation of original morphology. Cells in later developmental stages are not in original configuration and are therefore uninformative concerning gastrulation. Key structures used to identify Doushantuo bilaterians can be dismissed as late diagenetic artefacts. Therefore, when diagenetic mineralization is considered, there is no convincing evidence for bilaterians in the Doushantuo assemblage.

  19. The effect of metyrosine/prednisolone combination to oophorectomy-induced osteoporosis.

    Science.gov (United States)

    Salman, Suleyman; Kumbasar, Serkan; Hacimuftuoglu, Ahmet; Ozturk, Berna; Seven, Bedri; Polat, Beyzagul; Gundogdu, Cemal; Demirci, Elif; Yildirim, Kadir; Akcay, Fatih; Uslu, Turan; Tuncel Daloglu, Ferrah; Suleyman, Halis

    2012-07-01

    Osteoporosis is a chronic disease characterized by a decrease in bone mineral density (BMD) and corruption of the microarchitectural structure of bone tissue. It was investigated whether methylprednisolone had a favorable effect on osteoporotic bone tissue in Oophorectomy induced osteoporotic rats whose endogenous adrenaline levels are suppressed with metyrosine. Bone Mineral Density, number of osteoblast-osteoclast, bone osteocalcin levels and alkaline phosphatase (ALP) measurements were performed. Obtained results were compared with that of alendronate. Oophorectomy induced osteoporosis was exacerbated by methylprednisolone. Alentronate prevented ovariectomised induced osteoporosis, but it couldn't prevent methylprednisolone +ovariectomised induced osteoporosis in rats. Combined treatment with methylprednisolon and metyrosine was the best treatment for preventing osteoporosis but metyrosine alone couldn't prevent osteoporosis in ovariectomised rats.

  20. A shallow marine storm-induced heavy-mineral deposit in the Witteberg group near Willomore, Cape Province

    International Nuclear Information System (INIS)

    Cole, D.I.; Labuschagne, L.S.

    1982-01-01

    Two heavy-mineral-bearing sandstone beds were discovered within the Weltevrede Formation of the Witteberg Group during a routine investigation of an aerial radiometric survey. Maximum concentrations of 142 ppm U and 434 ppm Th were determined by x-ray fluorescence analysis. The sandstone beds that were investigated closely resemble amalgamated storm deposits, each unit representing the product of an individual storm. A radiometric survey indicated that the highest concentration of heavy-minerals are limited to the upper 20 cm of the main bed and the indicated resources are as follows: rutile - 2700 tons, zircon - 850 tons, ilmenite - 650 tons, magnetite - 550 tons, monozite - 200 tons, and uranium - 5 tons

  1. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  3. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    Science.gov (United States)

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  4. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  5. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Giraldo-Aguirre, Ana L. [Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: ricardo.torres@udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L{sup −1}). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe{sup 2+}) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe{sup 2+}, sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX.

  6. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system

    International Nuclear Information System (INIS)

    Serna-Galvis, Efraím A.; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L.; Torres-Palma, Ricardo A.

    2015-01-01

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20–60 W), dissolved gas (air, Ar and He), pH (3–11) and initial concentration of fluoxetine (2.9–162.0 μmol L −1 ). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe 2+ ) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment. - Highlights: • The pharmaceutical fluoxetine was effectively eliminated upon ultrasonic action. • Ultrasonic power, dissolved gas, pH and concentration of fluoxetine were evaluated. • Fe 2+ , sodium nitrate or nitric acid had a positive effect on the FLX degradation. • More hydrophobic or volatile compounds than fluoxetine diminished the efficiency. • A sonochemical-biological combined process led to the total mineralization of FLX

  7. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  8. Taxonomic history and invasion biology of two Phyllonorycter leaf miners (Lepidoptera: Gracillariidae) with links to taxonomic and molecular datasets.

    Science.gov (United States)

    De Prins, Jurate; De Prins, Willy; De Coninck, Eliane; Kawahara, Akito Y; Milton, Megan A; Hebert, Paul D N

    2013-01-01

    This paper deals with two European species, Phyllonorycter mespilella (Hübner, 1805) and P. trifasciella (Haworth, 1828), that have colonized the subtropical Canary Islands. The Rosaceae leaf miner, P. mespilella, is recorded for the first time from Lanzarote and La Palma, while the Caprifoliaceae leaf miner, P. trifasciella, is recorded from Tenerife. We present the diagnoses of these species based on morphology, a preliminary DNA barcode (COI) library of congeneric and con-familial species, and discuss the taxonomic position of the colonizers within the blancardella and trifasciella species groups. The recent intensification of anthropogenic disturbance likely accounts for their range expansion, an event that may impact the relict flora present on the Canary Islands.

  9. Diseases of uranium miners and other underground miners exposed to radon

    International Nuclear Information System (INIS)

    Samet, J.M.

    1991-01-01

    Excess lung cancer has been demonstrated in many groups of underground miners exposed to radon, including uranium miners and those mining other substances in radon-contaminated mines. In the United States, most underground uranium mines had shut down by the late 1980s, but occupational exposure to radon progeny remains a concern for many other types of underground miners and other underground workers. Worldwide, uranium mining continues, with documented production in Canada, South Africa and other African countries, and Australia. Thus, radon in underground mines remains a significant occupational hazard as the end of the twentieth century approaches.39 references

  10. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  11. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  12. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo.

    Science.gov (United States)

    Dreger, Luonothar Antunes Schmitt; Felippe, Wilson Tadeu; Reyes-Carmona, Jessie Fabiola; Felippe, Gabriela Santos; Bortoluzzi, Eduardo Antunes; Felippe, Mara Cristina Santos

    2012-03-01

    Mineral trioxide aggregate (MTA) and Portland cement have been shown to be bioactive because of their ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin in vivo. Seventy-two human dentin tubes were filled with MTA Branco, MTA BIO, and white Portland cement + 20% bismuth oxide (PC1) or PC1 + 10% of calcium chloride (PC2) and implanted subcutaneously in 18 rats at 4 sites from the dorsal area. Empty dentin tubes, implanted in rats of a pilot study, were used as control. After 30, 60, and 90 days, the animals were killed, and the dentin tubes were retrieved for scanning electron microscope analysis. In the periods of 30 and 60 days, the mineral deposition in the material-dentin interface (interfacial layer) and in the interior of dentinal tubules was detected in more tubes filled with MTA Branco and MTA BIO than in tubes filled with PC1 and PC2. After 90 days, the interfacial layer and intratubular mineralization were detected in all tubes except for 3 and 1 of the tubes filled with PC2, respectively. It was concluded that all the cements tested were bioactive. The cements released some of their components in the tissue capable of stimulating mineral deposition in the cement-dentin interface and in the interior of the dentinal tubules. MTA BIO and MTA Branco were more effective in promoting the biomineralization process than Portland cements, mainly after 30 and 60 days. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Minerals From the Marine Environment

    Science.gov (United States)

    Cruickshank, Michael J.

    The current interest in minerals centering on, among other things, potential shortages, long-term needs, and deep seabed nodules, accentuates the usefulness and timeliness of this little book authored by a former chairman of the British National Environmental Research Council.In less than 100 pages, the author puts into perspective the potential for producing minerals from offshore areas of the world. After introducing the reader to the ocean environment and the extraordinary variety of the nature of the seabed, the author describes in some detail the variety of minerals found there. This is done in seven separate chapters entitled ‘Bulk and Non-Metallic Minerals From the Seas’ ‘Metals From the Shallow Seas’ ‘Metals From the Deep Oceans’ ‘Minerals From Solution’ ‘Oil and Gas from the Shallow Seas’ ‘Oil and Gas From Deep Waters’ and ‘Coal Beneath the Sea.’ The remaining chapters give a brief regional review of marine minerals distribution for eight areas of significant socioeconomic structure, and a short recapitulation of special problems of mineral recovery in the marine environment including such matters as the effect of water motion on mineral processing and of international law on investments. Glossaries of geological periods and technical terms, a short list of references, and an index complete the work.

  14. Foliar spray of sodium antagonistic essential mineral elements- a technique to induce salt tolerance in plants growing under saline environment (abstract)

    International Nuclear Information System (INIS)

    Ahmad, R.; Jabeen, R.

    2005-01-01

    Plants growing at saline substrate practice deficiencies in absorption of some essential mineral elements through roots due to presence of excessive sodium in rhizosphere. Sodium being antagonistic to other cations does not let them enter in roots and hence apart from its own toxicity in metabolism, the plants suffer with deficiencies of some mineral elements, which are necessary for growth. Potassium being essential mineral element is much effected due to this antagonistic behavior of sodium ion. Lagenaria siceraria (var. Loki) being a broad leaf vegetable was selected for these experiments. Plant growing at saline substrate was sprayed with specially prepared spray materials containing different dilutions of potassium nitrate. The anatomy of leaf with special reference to that of stomata was also studied to ensure absorption of required minerals. Growth of plants in terms of leaf area is being monitored at present. Some preliminary experiments show betterment in production of fruits in plants undergoing foliar spray. This hypothesis has opened a new chapter demanding series of experiments dealing with recipe of spray materials, mechanism of minerals uptake through stomata, participation of absorbed minerals in metabolic activities around palisade tissue probably by activating potassium dependent enzyme system which otherwise is blocked by replaced sodium, translocation of these minerals from leaves through petiole in rest of plants and overall effect of such spray on vegetative as well as reproductive growth in plants under saline environment. Some of this work is in progress. (author)

  15. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  16. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

    International Nuclear Information System (INIS)

    Köhler, Peter; Abrams, Jesse F; Völker, Christoph; Hauck, Judith; Wolf-Gladrow, Dieter A

    2013-01-01

    Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO 2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%. (letter)

  17. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Biodegradation of CuTETA, an effluent by-product in mineral processing.

    Science.gov (United States)

    Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A

    2018-04-13

    Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

  19. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A [Norman White Associates, London (UK)

    1979-06-01

    Whereas the ultimate world supply of energy minerals - defined as fossil fuels and fissile minerals - is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. A brief comparison is also made between energy and non-energy minerals.

  20. Responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME)

    Science.gov (United States)

    Gu, L.

    2017-12-01

    In this study, we examine responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME). FAME was developed to automatically and continuously measure chlorophyll fluorescence (F) of a leaf, plant or canopy in both laboratory and field environments, excited by either artificial light source or sunlight. FAME is controlled by a datalogger and allows simultaneous measurements of environmental variables complementary to the F signals. A built-in communication system allows FAME to be remotely monitored and data-downloaded. Radiance and irradiance calibrations can be done online. FAME has been applied in a variety of environments, allowing an investigation of biological and environmental controls on F emission.

  1. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  2. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  3. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  4. Miscellaneous Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team...

  5. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  6. Recent developments in fast spectroscopy for plant mineral analysis

    Directory of Open Access Journals (Sweden)

    Marie evan Maarschalkerweerd

    2015-03-01

    Full Text Available Ideal fertilizer management to optimize plant productivity and quality is more relevant than ever, as global food demands increase along with the rapidly growing world population. At the same time, sub-optimal or excessive use of fertilizers leads to severe environmental damage in areas of intensive crop production. The approaches of soil and plant mineral analysis are briefly compared and discussed here, and the new techniques using fast spectroscopy that offer cheap, rapid and easy-to-use analysis of plant nutritional status are reviewed. The majority of these methods use vibrational spectroscopy, such as Visual-Near Infrared (Vis-NIR and to a lesser extent Ultraviolet (UV and Mid-Infrared (MIR spectroscopy. Advantages of and problems with application of these techniques are thoroughly discussed. Spectroscopic techniques considered having major potential for plant mineral analysis, such as chlorophyll a fluorescence, X-ray fluorescence (XRF and Laser-Induced Breakdown Spectroscopy (LIBS are also described.

  7. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  8. Functional grading of mineral and collagen in the attachment of tendon to bone.

    Science.gov (United States)

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  9. New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties.

    Science.gov (United States)

    Pawlik, Justyna; Widziołek, Magdalena; Cholewa-Kowalska, Katarzyna; Łączka, Maria; Osyczka, Anna Maria

    2014-07-01

    We developed TiO2 matrix composites modified by sol-gel bioactive glasses (SBG) of either high CaO content (A2) or high SiO2 content (S2). The latter were mixed with titanium dioxide (TiO2) at 75:25, 50:50, and 25:75 weight ratios and sintered at 1250°C for 2 h. We examined the effects of various types (A2 or S2) and compositional TiO2 :SBG ratios on the mechanical properties of resulting composites, their bioactivity and human bone marrow mesenchymal stem cells (MSC) response. The chemistry of SBGs influenced the phase composition, mechanical and biological properties of the composites. Rutile and titanite prevailed in A2-TiO2 composites, and rutile and crystobalite in S2-TiO2 composites. Compressive strength increased significantly for 25A2-TiO2 composites (140 MPa) compared to matrix TiO2 (58 MPa). Composites containing 50-75 wt % of either SBG displayed bioactive properties as determined by simulated body fluid test. Compared to TiO2, human bone marrow stromal cell (BMSC) viability was enhanced on the composites containing 25 wt % of either SBG, whereas the composites modified by 25 wt % of S2 enhanced alkaline phosphatase activity and mineralization in cultures treated with osteogenic inducers-dexamethasone (Dex) or bone morphogenetic protein. Increasing amounts of A2 in TiO2 matrix decreased cell viability but increased collagen deposition and mineralized matrix production by BMSC. Considering the physico-chemical and biological properties of the presented composites, the modification of TiO2 with SBG may prove useful strategy in several bone tissue related regeneration strategies. © 2013 Wiley Periodicals, Inc.

  10. Mineral oil industry

    NARCIS (Netherlands)

    Brasser, L.J.; Suess, M.J.; Grefen, K.; Reinisch, D.W.

    1985-01-01

    In this chapter a general picture is presented of the air pollution aspects in the mineral oil industry. The complete field is covered, starting from drilling operations and the well head up to the delivery of the products to the consumer. A large field of activities as is given by the mineral oil

  11. Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?

    Science.gov (United States)

    Campbell, Jay M.; Zhang, Nianli; Hickey, William J.

    2012-01-01

    Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560

  12. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  13. Biological stress responses induced by alpha radiation exposure in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, A.; Horemans, N.; Van Hees, M.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Knapen, D.; Blust, R. [University of Antwerp (Belgium)

    2014-07-01

    experiments Steinberg medium was selected for further dose-response experiments to analyse additional end-points like DNA-damage and enzymes involved in detoxification of reactive oxygen species. Finally, these results enable comparison of alpha radiation-induced effects at different levels of biological complexity from metabolic pathways to morphological growth effects. This research was supported by the Fund for Scientific Research (FWO-Vlaanderen, G.A040.11N) Document available in abstract form only. (authors)

  14. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  15. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  16. Big endothelin changes the cellular miRNA environment in TMOb osteoblasts and increases mineralization.

    Science.gov (United States)

    Johnson, Michael G; Kristianto, Jasmin; Yuan, Baozhi; Konicke, Kathryn; Blank, Robert

    2014-08-01

    Endothelin (ET1) promotes the growth of osteoblastic breast and prostate cancer metastases. Conversion of big ET1 to mature ET1, catalyzed primarily by endothelin converting enzyme 1 (ECE1), is necessary for ET1's biological activity. We previously identified the Ece1, locus as a positional candidate gene for a pleiotropic quantitative trait locus affecting femoral size, shape, mineralization, and biomechanical performance. We exposed TMOb osteoblasts continuously to 25 ng/ml big ET1. Cells were grown for 6 days in growth medium and then switched to mineralization medium for an additional 15 days with or without big ET1, by which time the TMOb cells form mineralized nodules. We quantified mineralization by alizarin red staining and analyzed levels of miRNAs known to affect osteogenesis. Micro RNA 126-3p was identified by search as a potential regulator of sclerostin (SOST) translation. TMOb cells exposed to big ET1 showed greater mineralization than control cells. Big ET1 repressed miRNAs targeting transcripts of osteogenic proteins. Big ET1 increased expression of miRNAs that target transcripts of proteins that inhibit osteogenesis. Big ET1 increased expression of 126-3p 121-fold versus control. To begin to assess the effect of big ET1 on SOST production we analyzed both SOST transcription and protein production with and without the presence of big ET1 demonstrating that transcription and translation were uncoupled. Our data show that big ET1 signaling promotes mineralization. Moreover, the results suggest that big ET1's osteogenic effects are potentially mediated through changes in miRNA expression, a previously unrecognized big ET1 osteogenic mechanism.

  17. 30 CFR 281.8 - Rights to minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Rights to minerals. 281.8 Section 281.8 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF General § 281.8 Rights to minerals. (a) Unless...

  18. Chemico-biological treatment of polluted soils by polychorinated biphenyls; Tratamiento integrado quimico-biologico de suelos contaminados por bifenilos policlorados

    Energy Technology Data Exchange (ETDEWEB)

    Manzano Quinones, M. A.

    2001-07-01

    In this work a study of biological and chemical treatment of polychlorinated biphenyls (PCBs) in soil has been done. The experiments have been carried out in pilot scale reactors and the results obtained showed 98% elimination and a high mineralization of PCBs employing a Integrated Chemical-Biological Treatment. (Author) 12 refs.

  19. Radio nuclides in mineral rocks and beach sand minerals in south east coast, Odisha

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Sahoo, S.K.; Essakki, Chinna; Tripathy, S.K.; Ravi, P.M.; Tripathi, R.M.; Mohanty, D.

    2014-01-01

    The primordial and metamorphic mineral rocks of the Eastern Ghats host minerals such as rutile, ilmenite, Silmenite, zircon, garnet and monazite in quartz matrix. The weathered material is transported down to the sea by run-off through Rivers and deposited back in coastal beach as heavy mineral concentrates. The minerals are mined by M/S Indian Rare Earths Ltd at the Chatrapur plant in Odisha coast to separate the individual minerals. Some of these minerals have low level radioactivity and may pose external and internal radiation hazard. The present paper deals with natural Thorium and Uranium in the source rocks with those observed in the coastal deposits. The study correlates the nuclide activity ratios in environmental samples in an attempt to understand the ecology of the natural radio nuclides of 238 U, 232 Th, 40 K and 226 Ra in environmental context. Further work is in progress to understand the geological process associated with the migration and reconcentration of natural radio-nuclides in the natural high background radiation areas

  20. Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data

    Science.gov (United States)

    Carpenter, R. H. (Principal Investigator); Trexler, D. W.

    1976-01-01

    The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.

  1. Study of vitamin D serum level in patients with epilepsy treated with enzyme-inducing and non enzyme-inducing medications

    Directory of Open Access Journals (Sweden)

    sima Hashemipour

    2014-01-01

    Full Text Available Background : Changes of serum minerals and vitamin D have been reported in anticonvulsant drugs user patients. The present study aimed at comparing the changes of serum minerals and vitamin D among two groups of enzyme-inducing and non enzyme-inducing anticonvulsant drug users. Methods: In this study 22 patients treated with enzyme-inducing drugs (carbamazepin, phenytoin, phenobarbital were compared to 25 patients of matched sex, age, and BMI treated with non enzyme-inducing drugs (sodium evaporate, lamotrigine. Serum calcium, phosphate, parathormone, and 25-hydroxy vitamin D were calculated in both groups. Calcium was measured by Calorimetery method. Parathormone and vitamin D were measured using ELISA method. Results: The mean serum vitamin D level was lower in enzyme-inducing than non enzyme-inducing drugs users (15.9±8.3 and 24.2±14.8, P=0.02. Frequency of vitamin D deficiency was higher in enzyme-inducing compared to non enzyme-inducing drugs users, 84% and 48% , respectively (P=0.016. The mean serum calcium level was significantly lower in enzyme-inducing drugs users. (8.7±0.2 vs. 9.0± 0.7, p= 0.05. Four percent in enzyme-inducing group compared to twenty four percent of non enzyme-inducing group had secondary hyperparathyroidism (P=0.016. Conclusion: While vitamin D deficiency is more frequent in enzyme-inducing drug users, secondary hyperparathyroidism is less frequent.

  2. Destructive textures around radioactive minerals

    International Nuclear Information System (INIS)

    Montel, J.M.; Seydoux-Guillaume, A.M.

    2009-01-01

    In most of the rocks, natural uranium and thorium are concentrated in some minerals which provide favourable crystallographic sites. These minerals are thus submitted to an intense auto-irradiation which may transform them. Using conventional investigation methods (petrographic or scanning electronic microscopy, electronic micro-probe) and less conventional ones (transmission electronic microscopy), the authors studied the interfaces between radioactive minerals and their host minerals. They comment the possible mechanical and structural aspects of this interaction by irradiation, and the influence of geological events

  3. 76 FR 6110 - Conflict Minerals

    Science.gov (United States)

    2011-02-03

    ...-10] RIN 3235-AK84 Conflict Minerals AGENCY: Securities and Exchange Commission. ACTION: Proposed rule...'') and would require any such issuer for which conflict minerals are necessary to the functionality or... body of its annual report whether its conflict minerals originated in the Democratic Republic of the...

  4. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  5. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  6. Biologic Rhythms Derived from Siberian Mammoths Hairs

    Energy Technology Data Exchange (ETDEWEB)

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  7. Biologic rhythms derived from Siberian mammoths' hairs.

    Directory of Open Access Journals (Sweden)

    Mike Spilde

    Full Text Available Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios, which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  8. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  9. Flotation of sulphide minerals 1990

    Energy Technology Data Exchange (ETDEWEB)

    Forssberg, K S.E. [ed.; Luleaa University of Technology, Luleaa (Sweden). Division of Mineral Processing

    1991-01-01

    A total of 27 papers presented at the workshop on flotation of sulphide minerals, reprinted from the International Journal of Mineral Processing, vol. 33, nos. 1-4, are included in this book. They cover various aspects of flotation of such minerals as chalcopyrite, pyrrhotite, galena, malachite and pyrite.

  10. 36 CFR 331.17 - Minerals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Minerals. 331.17 Section 331..., KENTUCKY AND INDIANA § 331.17 Minerals. All activities in connection with prospecting, exploration, development, mining or other removal or the processing of mineral resources and all uses reasonably incident...

  11. Mineral Carbonation Employing Ultramafic Mine Waste

    Science.gov (United States)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural

  12. Activation measurements for thermal neutrons. Part G. Natural 36Cl production in mineral samples

    International Nuclear Information System (INIS)

    Nolte, Eckehart; Huber, Thomas; Lazarev, Vitali; Ruehm, Werner; Kato, Kazuo; Schultz, Ludolf

    2005-01-01

    In the present paper, a method was developed to calculate the contribution of natural in situ production of 36 Cl in mineral samples to the 36 Cl signal induced by the neutrons from the Hiroshima bomb. Parameters used in the calculations include local erosion rates, lithospheric depth, and elemental composition for each investigated sample. It has been shown that the calculations agree within their uncertainties with 36 Cl values measured by means of accelerator mass spectrometry, in granite samples from quarries with known locations. Both calculations and measurements suggest typical 36 Cl/Cl ratios of about 10 -13 in mineral samples. (J.P.N.)

  13. Mineral phases identification inside an abandoned Zn/Pb mine

    International Nuclear Information System (INIS)

    Goienaga, N.; Carrero, J.A.; Olivares, M.; Castro, K.; Fernandez, L.A.; Madariaga, J.M.

    2009-01-01

    Complete text of publication follows. The aim of the work is the identification of the sulphurated phase's outbreak on an aragonite, dolomite and calcite-based original rock inside an abandoned mine. The studied Blende/Galena (ZnS/PbS) Mine, located in Lanestosa (Bizkaia, North of Spain) was operative until 1950. After decades, the area has only supported wild life and thus nowadays it could be considered as a polluted site which has become naturalized. The main alteration factors inside the mine are percolated water, gases come from the outside (CO 2 , O 2 ) and biological activities. Mining activities generates loads of ore minerals and unwanted materials that with the time impact the surrounding environment. The waste includes granular, broken rock and soils ranging in size from the fine sand to large boulders, with the content of fine material largely dependent on the nature of the formation and extraction methods employed during mining. Waste materials geochemistry varies widely from mine to mine and may vary significantly at individual mines over time as different lithologic strata are exposed and geochemical processes alter characteristics of the waste. In order to determine the finest mineral composition in the galleries, several samples were collected. Once dried in a fume hood and sieved, the portions below 250 μm were subjected to non-destructive Raman spectroscopic analysis. The measurements reflected the ore precursors (primary phases: Blende, and Galena), several primary carbonates (dolomite, calcite and aragonite) with secondary minerals in trace levels (Brookite, Libethenite, Fluorapatita, Anatasa, Quartz, Apatite, Augite, Diopside, Anthracite, Hematite, Cosalite, Epidote, Rutile) and transformation products, probably of recent formation (Smithsonite, Massicot, Plattnerite, Gypsum, Siderite, Mendiphite, Escorodite, Gauberite, Goethite or Mascagnite). The origin of the secondary mineral may be related to percolated rain and snow water. This

  14. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    Science.gov (United States)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  15. Minerals Yearbook, volume II, Area Reports—Domestic

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  16. Minerals Yearbook, volume III, Area Reports—International

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  17. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  18. Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization.

    Science.gov (United States)

    Minamikawa, Hajime; Yamada, Masahiro; Iwasa, Fuminori; Ueno, Takeshi; Deyama, Yoshiaki; Suzuki, Kuniaki; Yawaka, Yasutaka; Ogawa, Takahiro

    2010-10-01

    Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

  19. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  20. Natural radioactivity in bottled mineral water available in Australia

    International Nuclear Information System (INIS)

    Cooper, M.B.; Ralph, B.J.; Wilks, M.J.

    1981-08-01

    The levels of naturally-occurring radioactive elements in bottled mineral water, commercially available in Australia, have been assessed. The survey concentrated upon 226 Ra, 228 Ra and 210 Pb, radionuclides which have a high toxicity in drinking water. Detectable levels of 226 Ra were found to range from 0.02Bq/1 to 0.32Bq/1 in locally-bottled water and from 0.02Bq/1 to 0.44Bq/1 in imported brands. 210 Pb levels were found to be generally very low ( 228 Ra content of bottled water will have a similar distribution to that of 226 Ra. Concentrations of 228 Ra in excess of 0.7Bq/1 were measured in a number of samples. The radiological health implications of the consumption of bottled mineral water are discussed with reference to existing drinking water standards and also in terms of radiation exposure and the increased risk to health. It was concluded that, although some brands of water contain radioactivity in excess of the drinking-water limits recommended by Australian and overseas authorities, the annual radiation dose to an individual will be below the dose-equivalent limits recommended by the International Commission on Radiological Protection for life-long exposure. The increased risk of radiation-induced fatal disease due to the consumption of bottled mineral water is estimated to be less than 10 -5 and is therefore negligible

  1. Inhibition of Mineralization of Urinary Stone Forming Minerals by Medicinal Plants

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2009-01-01

    Full Text Available The inhibition of mineralization of urinary stone forming minerals by medicinal plants i.e. Achyranthes aspera Linn, Passiflora leschenaultii DC, Solena amplexicaulis (Lam. Gandhi, Scoparia dulcis Linn and Aerva lanata (Linn. been investigated. The inhibition efficiency was studied. Increased intake of fruits juice and seed extract of our plants would be helpful in urinary stone prophylaxis.

  2. Preliminary Mineral Resource Assessment of Selected Mineral Deposit Types in Afghanistan

    Science.gov (United States)

    Ludington, Steve; Orris, Greta J.; Bolm, Karen S.; Peters, Stephen G.; ,

    2007-01-01

    INTRODUCTION Wise decision-making and management of natural resources depend upon credible and reliable scientific information about the occurrence, distribution, quantity and quality of a country's resource base. Economic development decisions by governments require such information to be part of a Mineral Resource Assessment. Such Mineral Assessments are also useful to private citizens and international investors, consultants, and companies prior to entry and investment in a country. Assessments can also be used to help evaluate the economic risks and impact on the natural environment associated with development of resources. In February 2002, at the request of the Department of State and the then U.S. Ambassador to Afghanistan (Robert P. Finn), the U.S. Geological Survey (USGS) prepared a detailed proposal addressing natural resources issues critical to the reconstruction of Afghanistan. The proposal was refined and updated in December 2003 and was presented as a 5-year work plan to USAID-Kabul in February 2004. USAID-Kabul currently funds this plan and this report presents a part of the preliminary results obligated for fiscal year 2006. A final Preliminary Assessment of the Non Fuel Mineral Resource of Afghanistan will be completed and delivered at the end of fiscal year 2007. Afghanistan has abundant metallic and non-metallic resources, but the potential resources have never been systematically assessed using modern methods. Much of the existing mineral information for Afghanistan was gathered during the 1950s and continued in the late 1980s until the departure of the geologic advisors from the Soviet Union. During this period, there were many mineral-related activities centered on systematic geologic mapping of the country, collection of geochemical and rock samples, implementation of airborne geophysical surveys, and exploration focused on the discovery of large mineral deposits. Many reports, maps, charts, and tables were produced at that time. Some of

  3. Biological Motion Cues Trigger Reflexive Attentional Orienting

    Science.gov (United States)

    Shi, Jinfu; Weng, Xuchu; He, Sheng; Jiang, Yi

    2010-01-01

    The human visual system is extremely sensitive to biological signals around us. In the current study, we demonstrate that biological motion walking direction can induce robust reflexive attentional orienting. Following a brief presentation of a central point-light walker walking towards either the left or right direction, observers' performance…

  4. Acceleration of biomimetic mineralization to apply in bone regeneration

    International Nuclear Information System (INIS)

    Jayasuriya, A Champa; Shah, Chiragkumar; Ebraheim, Nabil A; Jayatissa, Ahalapitiya H

    2008-01-01

    The delivery of growth factors and therapeutic drugs into bone defects is a major clinical challenge. Biomimetically prepared bone-like mineral (BLM) containing a carbonated apatite layer can be used to deliver growth factors and drugs in a controlled manner. In the conventional biomimetic process, BLM can be deposited on the biodegradable polymer surfaces by soaking them in simulated body fluid (SBF) for 16 days or more. The aim of this study was to accelerate the biomimetic process of depositing BML in the polymer surfaces. We accelerated the deposition of mineral on 3D poly(lactic-co-glycolic acid) (PLGA) porous scaffolds to 36-48 h by modifying the biomimetic process parameters and applying surface treatments to PLGA scaffolds. The BLM was coated on scaffolds after surface treatments followed by incubation at 37 0 C in 15 ml of 5x SBF. We characterized the BLM created using the accelerated biomineralization process with wide angle x-ray diffraction (XRD), Fourier transform infrared (FTIR) microscopy, and scanning electron microscopy (SEM). The FTIR and XRD analyses of mineralized scaffolds show similarities between biomimetically prepared BLM, and bone bioapatite and carbonated apatite. We also found that the BLM layer on the surface of scaffolds was stable even after 21 days immersed in Tris buffered saline and cell culture media. This study suggests that BLM was stable for at least 3 weeks in both media, and therefore, BLM has a potential for use as a carrier for biological molecules for localized release applications as well as bone tissue engineering applications

  5. 30 CFR 48.26 - Experienced miner training.

    Science.gov (United States)

    2010-07-01

    ... the physical and health hazards of chemicals in the miner's work area, the protective measures a miner... occurred during the miner's absence and that could adversely affect the miner's health or safety. (1) A... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING...

  6. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  7. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  8. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control

    Directory of Open Access Journals (Sweden)

    Shinnosuke Murakami

    2015-01-01

    Full Text Available Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW has been reported to prevent or improve type 2 diabetes (T2D in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition.

  9. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    Alvarez, R.; Evans, L.A.

    2000-01-01

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  11. 21 CFR 573.680 - Mineral oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the definition...

  12. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  13. The radioactivity of bottled mineral waters

    International Nuclear Information System (INIS)

    Vrakova, M.; Babarikova, F.; Belanova, A.

    2005-01-01

    Mineral waters with increased contents of minerals (total mineralization ranging from 1000 to 4000 mg.dm -3 ) can also contain increased concentrations of natural radionuclides. For this reason it is necessary to monitor radioactivity of mineral and thermal springs. Hundreds of springs which are used for drinking purposes are spread in many regions all over Slovakia. In our laboratory we determined these radionuclides in mineral waters: total alpha, total beta, volume activity 222 Rn, concentration of U nat , volume 226 Ra, 228 Ra and 210 Po. From values of determined volume activities of radionuclides we calculated total effective dose from reception mineral waters. By calculation of effective dose we supposed consumption of mineral water 150 dm 3 .year -1 (0.4 dm 3 .day -1 ) for adults (according to UNSCEAR). Conversion factors are initiated in the regulation of Ministry of Health of Slovak Republic (MZ SR No.12/2001). (authors)

  14. Lung Cancer in uranium miners

    International Nuclear Information System (INIS)

    Zhou Chundi; Fan Jixiong; Wang Liuhu; Huang Yiehan; Nie Guanghua

    1987-01-01

    This paper analyese the clinical data of 39 uranium miners with lung cancer and of 20 patients with lung cancer who have not been exposed to uranium as control. The age of uranium miners with lung cancer was 36∼61 with an average of 48.8, nine years earlier than that of the control group (57.3). In the uranium miner patients the right lung was more susceptible to cancer than the left, the ratio being 2.5:1. However, in the control group the right lung had an equal incidence of cancer as the left lung. The relative frequency of small cell anaplastic carcinoma in uranium miner was higher than that in the control group. In the miner patients the mean occupation history was 11.1 ± 5.2 years; the exposure dose to radon and its daughters in 50% patients was 0.504J(120 WLM). The etiologic factor of lung cancer in uranium miners is strongly attributed, in addition to smoking, to the exposure to radon and its daughters in uranium mines

  15. Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time

    Science.gov (United States)

    McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.

    2010-12-01

    Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.

  16. Nature, Origin and Transfers of SPM (Mineral, Organic, and Biological) in Hydrosystems : a New Methodological Approach by Morphogranulometry

    Science.gov (United States)

    Viennet, D.; Fournier, M.; Copard, Y.; Dupont, J. P.

    2017-12-01

    Source to sink is one of the main concepts in Earth Sciences for a better knowledge of hydrosystems dynamics. Regarding this issue, the present day challenge consists in the characterization by in-situ measurements of the nature and the origin of suspended particles matters (SPM). Few methods can fully cover such requirements and among them, the methodology using the form of particles deserves to be developed. Indeed, morphometry of particles is widely used in sedimentology to identify different sedimentary stocks, source-to-sink transport and sedimentation mechanisms. Currently, morphometry analyses are carried out by scanning electron microscope coupled to image analysis to measure various size and shape descriptors on particles like flatness, elongation, circularity, sphericity, bluntness, fractal dimension. However, complexity and time of analysis are the main limitations of this technique for a long-term monitoring of SPM transfers. Here we present an experimental morphometric approach using a morphogranulometer (a CCD camera coupled to a peristaltic pump). The camera takes pictures while the sample is circulating through a flow cell, leading to the analysis of numerous particles in a short time. The image analysis provides size and shape information discriminating various particles stocks according to their nature and origin by statistical analyses. Measurements were carried out on standard samples of particles commonly found in natural waters. The size and morphological distributions of the different mineral fractions (clay, sand, oxides etc), biologic (microalgae, pollen, etc) and organic (peat, coal, soil organic matter, etc) samples are statistically independent and can be discriminated on a 4D graph. Next step will be on field in situ measurements in a sink-spring network to understand the transfers of the particles stocks inside this simple karstic network. Such a development would be promising for the characterisation of natural hydrosystems.

  17. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  18. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  19. Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Isahq

    2015-11-01

    Full Text Available Objective: To investigate the proximate composition, minerals analysis, phytochemical screening, gas chromatography-mass spectrometry (GC-MS studies of active cannabinoids and antimicrobial activities of Cannabis indica (C. indica leaves, stems, and seeds. Methods: Standard qualitative protocols of phytochemical screening were accomplished for the identification of biologically active phytochemicals. Minerals in plant samples were analyzed by using atomic absorption spectrophotometer. The resins of C. indica were analyzed for medicinally active cannabinoid compounds by GC-MS. The sample for GC-MS study was mixed with small quantity of n-hexane and 30 mL of acetonitrile solution for the identification of cannabinoids. Agar well diffusion method was used for antibacterial activity. For antifungal activity, the tested fungal strains were sub-cultured on Sabouraud’s dextrose agar at 28 °C. Results: Mineral analysis revealed the presence of sodium, potassium, magnesium and some other minerals in all parts of C. indica. Phytochemical investigation showed the presence of alkaloids, saponins, tannins, flavonoids, sterols and terpenoids. C. indica divulged wide spectrum of antibacterial activities against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, and Proteus mirabilis. The extracts of plant leaves, seeds and stems showed significant antifungal activities against Aspergillus niger, Aspergillus parasiticus, and Aspergillus oryzae. The biologically active cannabinoids of delta-9-tetrahydrocannabinol (25.040% and cannabidiol (resorcinol, 2-p-mentha-1,8-dien-4-yl-5-pentyl (50.077% were found in Cannabis resin in high percentage. Conclusions: The findings of the study suggested that the existence of biologically active remedial cannabinoids in elevated concentrations and antimicrobial bioassays of C. indica make it a treasured source to be used in herbal preparation for various ailments.

  20. Mineral resource of the month: vermiculite

    Science.gov (United States)

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.