WorldWideScience

Sample records for biologically based multistage

  1. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  2. An Inventory-Theory-Based Inexact Multistage Stochastic Programming Model for Water Resources Management

    OpenAIRE

    M. Q. Suo; Li, Y. P.; Huang, G. H.; Fan, Y. R.; Li, Z

    2013-01-01

    An inventory-theory-based inexact multistage stochastic programming (IB-IMSP) method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context....

  3. Sequential maneuvering decisions based on multi-stage influence diagram in air combat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.

  4. Mean squared error properties of the kernel-based multi-stage median predictor for time series

    NARCIS (Netherlands)

    J.G. de Gooijer; A. Gannoun; D. Zerom Godefay

    2002-01-01

    We propose a kernel-based multi-stage conditional median predictor for -mixing time series of Markovian structure. Mean squared error properties of single-stage and multi-stage conditional medians are derived and discussed.

  5. An Inventory-Theory-Based Inexact Multistage Stochastic Programming Model for Water Resources Management

    Directory of Open Access Journals (Sweden)

    M. Q. Suo

    2013-01-01

    Full Text Available An inventory-theory-based inexact multistage stochastic programming (IB-IMSP method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.

  6. Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2015-01-01

    Full Text Available For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive psychological preference behavior, reciprocity motivation will influence the behavior of the decision-makers. Given this situation, Rabin’s reciprocity motivation theory will be applied to the multistage game model of the venture investment, and multistage behavior game model will be established as well, based on the reciprocity motivation. By looking into the theoretical derivations and simulation studies, we find that if venture capitalists and entrepreneurs both have reciprocity preferences, their utility would have been Pareto improvement compared with those under perfect rationality.

  7. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo, José A.; Duadi, H.; Alieva, Tatiana; Zalevsky, Z.

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  8. Forestry inventory based on multistage sampling with probability proportional to size

    Science.gov (United States)

    Lee, D. C. L.; Hernandez, P., Jr.; Shimabukuro, Y. E.

    1983-01-01

    A multistage sampling technique, with probability proportional to size, is developed for a forest volume inventory using remote sensing data. The LANDSAT data, Panchromatic aerial photographs, and field data are collected. Based on age and homogeneity, pine and eucalyptus classes are identified. Selection of tertiary sampling units is made through aerial photographs to minimize field work. The sampling errors for eucalyptus and pine ranged from 8.34 to 21.89 percent and from 7.18 to 8.60 percent, respectively.

  9. Research on Three-Dimensional Unsteady Turbulent Flow in Multistage Centrifugal Pump and Performance Prediction Based on CFD

    OpenAIRE

    Zhi-jian Wang; Jian-she Zheng; Lu-lu Li; Shuai Luo

    2013-01-01

    The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF) and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distribu...

  10. A multi-stage approach for damage detection in structural systems based on flexibility

    Science.gov (United States)

    Grande, E.; Imbimbo, M.

    2016-08-01

    The paper proposes a fusion approach for damage detection in structural applications in the case of multiple damage locations and three-dimensional systems. Based on the Dempster-Shafer evidence theory, a multi-stage approach is proposed with the mode shapes assumed as primary sources and local decisions based on a flexibility method. The proposed approach has been applied to two case studies, a a fixed end beam analyzed in other papers and a three dimensional structures codified in a Benchmark problem. Both the case studies have shown the ability and the efficiency of the proposed approach to detect damage also in the case of multiple damage, limited number of identified parameters and noise measurements.

  11. Multipurpose speech watermarking based on multistage vector quantization of linear prediction coefficients

    Institute of Scientific and Technical Information of China (English)

    CHEN Ning; ZHU Jie

    2007-01-01

    To make speech watermarking achieve both copyright protection and integrity verification, a novel multipurpose speech watermarking algorithm based on the multistage vector quantization (MSVQ) of linear prediction coefficients (LPCs) is presented in this article. The property of natural speech that the vector quantization (VQ) indices of the LPCs amongst neigh- boring frames tend to be very similar is utilized to embed the robust watermark in the indices of the first-stage VQ (VQ1). Then, the semi-fragile watermark is embedded in the indices of the second-stage VQ (VQ2) with index constrained VQ encoding scheme. Both the robust watermark and the semi-fragile water- mark can be extracted without host speech. Simulation results verify the effectiveness of the proposed algorithm in terms of robustness and semi-fragility.

  12. SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-08-01

    Full Text Available The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and cooling units is standardized and is executed by means of multistage monoblock compositions from poly-meric materials. The preliminary analysis of possibilities of the sunny systems in application to the tasks of cooling of environment and air-conditioning systems is carried out.

  13. Multi-Stage Optimization Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans;

    2016-01-01

    This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... cost and the generator reactive power output cost. The problem is formulated in a multi-stage optimal reactive power flow (MORPF) framework, solved by the nonlinear programming techniques via a rolling process. The voltage uncertainty caused by wind power forecasting errors is considered in the optimal...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....

  14. A Multistage Control Mechanism for Group-Based Machine-Type Communications in an LTE System

    Directory of Open Access Journals (Sweden)

    Wen-Chien Hung

    2013-01-01

    Full Text Available When machine-type communication (MTC devices perform the long-term evolution (LTE attach procedure without bit rate limitations, they may produce congestion in the core network. To prevent this congestion, the LTE standard suggests using group-based policing to regulate the maximum bit rate of all traffic generated by a group of MTC devices. However, previous studies on the access point name-aggregate maximum bit rate based on group-based policing are relatively limited. This study proposes a multistage control (MSC mechanism to process the operations of maximum bit rate allocation based on resource-use information. For performance evaluation, this study uses a Markov chain with to analyze MTC application in a 3GPP network. Traffic flow simulations in an LTE system indicate that the MSC mechanism is an effective bandwidth allocation method in an LTE system with MTC devices. Experimental results show that the MSC mechanism achieves a throughput 22.5% higher than that of the LTE standard model using the group-based policing, and it achieves a lower delay time and greater long-term fairness as well.

  15. Multistage Effort and the Equity Structure of Venture Investment Based on Reciprocity Motivation

    OpenAIRE

    Chuan Ding; Jiacheng Chen; Xin Liu; Junjun Zheng

    2015-01-01

    For venture capitals, it is a long process from an entry to its exit. In this paper, the activity of venture investment will be divided into multistages. And, according to the effort level entrepreneurs will choose, the venture capitalists will provide an equity structure at the very beginning. As a benchmark for comparison, we will establish two game models on multistage investment under perfect rationality: a cooperative game model and a noncooperative one. Further, as a cause of pervasive ...

  16. A scenario tree-based decomposition for solving multistage stochastic programs. With application in energy production

    Energy Technology Data Exchange (ETDEWEB)

    Mahlke, Debora

    2011-07-01

    This thesis is concerned with the development and implementation of an optimization method for the solution of multistage stochastic mixed-integer programs arising in energy production. Motivated by the strong increase in electricity produced from wind energy, we investigate the question of how energy storages may contribute to integrate the strongly fluctuating wind power into the electric power network. In order to study the economics of energy storages, we consider a power generation system which consists of conventional power plants, different types of energy storages, and an offshore wind park which supplies a region of certain dimension with electrical energy. On this basis, we aim at optimizing the commitment of the facilities over several days minimizing the overall costs. We formulate the problem as a mixed-integer optimization program concentrating on the combinatorial and stochastic aspects. The nonlinearities arising from partial load efficiencies of the units are approximated by piece-wise linear functions. In order to account for the uncertainty regarding the fluctuations of the available wind power and of the prices for electricity purchased on the spot market, we describe the affected data via a scenario tree. Altogether, we obtain a stochastic multistage mixed-integer problem (SMIP) of high complexity whose solution is algorithmically and computationally challenging. The main focus of this thesis is on the development of a scenario tree-based decomposition approach combined with a branch-and-bound method (SD-BB) for solution of the SMIP described above. This novel method relies on the decomposition of the original formulation into several subproblems based on the splitting of the scenario tree into subtrees. Using a branch-and-bound framework which we extend by Lagrangian relaxation, we can solve the problem to global optimality. In order to support the solution process, we investigate the polyhedral substructure which results from the description

  17. Multi-Stage Feature Selection Based Intelligent Classifier for Classification of Incipient Stage Fire in Building

    Directory of Open Access Journals (Sweden)

    Allan Melvin Andrew

    2016-01-01

    Full Text Available In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or “smellprint” emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA, a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.

  18. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  19. A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization

    OpenAIRE

    Ruiz Perea, Antonio; Perera Velamazán, Ricardo

    2008-01-01

    This study aims to develop a multistage scheme for damage detection for large structures based on experimental modal data and on finite element (FE) model updating methods applied on simple FE models. In the first stage, occurrence and approximate location of damage is performed by using damage functions in order to decrease the number of parameters to be updated. The goal in the second stage is to identify the specific damaged members and damage extent by considering only the members belongi...

  20. Double image encryption based on phase-amplitude mixed encoding and multistage phase encoding in gyrator transform domains

    Science.gov (United States)

    Wang, Qu; Guo, Qing; Lei, Liang

    2013-06-01

    We present a novel method for double image encryption that is based on amplitude-phase mixed encoding and multistage random phase encoding in gyrator transform (GT) domains. In the amplitude-phase mixed encoding operation, a random binary distribution matrix is defined to mixed encode two primitive images to a single complex-valued image, which is then encrypted into a stationary white noise distribution by the multistage phase encoding with GTs. Compared with the earlier methods that uses fully phase encoding, the proposed method reduces the difference between two primitive images in key space and sensitivity to the GT orders. The primitive images can be recovered exactly by applying correct keys with initial conditions of chaotic system, the GT orders and the pixel scrambling operation. Numerical simulations demonstrate that the proposed scheme has considerably high security level and certain robustness against data loss and noise disturbance.

  1. Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP

    Directory of Open Access Journals (Sweden)

    Mostefa RAHLI

    2006-07-01

    Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading

  2. Multi-stage kernel-based conditional quantile prediction in time series

    NARCIS (Netherlands)

    J.G. de Gooijer; A. Gannoun; D. Zerom Godefay

    2001-01-01

    We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level p \\in (0,1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study confir

  3. Improved Quality Prediction Model for Multistage Machining Process Based on Geometric Constraint Equation

    Institute of Scientific and Technical Information of China (English)

    ZHU Limin; HE Gaiyun; SONG Zhanjie

    2016-01-01

    Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.

  4. Optimization of Unbalanced Multi-stage Logistics Systems Based on Prüfer Number and Effective Capacity Coding

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Unbalanced multi-stage logistics systems are optimized using an improved genetic algorithm based on the Prüfer number and the effective capacity coding. The improved decoding procedure uses the node capacity of the logistics system as an important factor, which influences the decoding procedure. As a result, any Prüfer number produced stochastically can be decoded to a feasible logistics pattern, which matchs the node capacities of the logistics system. With effective capacity coding, an unbalanced logistics system can be converted to a set of balanced systems. The effective capacity coding was combined with the Prüfer number to construct the chromosome for the new method to search the whole solution space of the unbalanced multi-stage logistics system. Simulation results show that the new method finds a better solution with less computational time than st-GA. Although using a little more memory, the new method is still an efficient and robust method for optimizing unbalanced multi-stage logistics systems.

  5. A risk-based interactive multi-stage stochastic programming approach for water resources planning under dual uncertainties

    Science.gov (United States)

    Wang, Y. Y.; Huang, G. H.; Wang, S.; Li, W.; Guan, P. B.

    2016-08-01

    In this study, a risk-based interactive multi-stage stochastic programming (RIMSP) approach is proposed through incorporating the fractile criterion method and chance-constrained programming within a multi-stage decision-making framework. RIMSP is able to deal with dual uncertainties expressed as random boundary intervals that exist in the objective function and constraints. Moreover, RIMSP is capable of reflecting dynamics of uncertainties, as well as the trade-off between the total net benefit and the associated risk. A water allocation problem is used to illustrate applicability of the proposed methodology. A set of decision alternatives with different combinations of risk levels applied to the objective function and constraints can be generated for planning the water resources allocation system. The results can help decision makers examine potential interactions between risks related to the stochastic objective function and constraints. Furthermore, a number of solutions can be obtained under different water policy scenarios, which are useful for decision makers to formulate an appropriate policy under uncertainty. The performance of RIMSP is analyzed and compared with an inexact multi-stage stochastic programming (IMSP) method. Results of comparison experiment indicate that RIMSP is able to provide more robust water management alternatives with less system risks in comparison with IMSP.

  6. Pricing convertible bonds based on a multi-stage compound-option model

    Science.gov (United States)

    Gong, Pu; He, Zhiwei; Zhu, Song-Ping

    2006-07-01

    In this paper, we introduce the concept of multi-stage compound options to the valuation of convertible bonds (CBs). Rather than evaluating a nested high-dimensional integral that has arisen from the valuation of multi-stage compound options, we found that adopting the finite difference method (FDM) to solve the Black-Scholes equation for each stage actually resulted in a better numerical efficiency. By comparing our results with those obtained by solving the Black-Scholes equation directly, we can show that the new approach does provide an approximation approach for the valuation of CBs and demonstrate that it offers a great potential for a further extension to CBs with more complex structures such as those with call and/or put provisions.

  7. Mathematical modeling on multi-stage series crushing ratio distribution based on fuzzy physical programming

    Institute of Scientific and Technical Information of China (English)

    Yu-Long QI; Chen-Chen CAI; Ping-Zhen LANG

    2013-01-01

    Double-layer,multi-roller plate crusher is a new device,that uses a multi-stage series crushing style to break particles,with the crushing ratio distribution directly influencing the machine's performance.Three crushing ratios of 2.25,2.15 and 2.0 1,used for fuzzy physical programming,were determined.The comparison of the optimized result between the double-layer multi-roller plate crusher and a high pressure roll grinder showed that the double-layer multi-roller plate crusher had a better performance,reducing crushing force and wear.

  8. Real-time video fusion based on multistage hashing and hybrid transformation with depth adjustment

    Science.gov (United States)

    Zhao, Hongjian; Xia, Shixiong; Yao, Rui; Niu, Qiang; Zhou, Yong

    2015-11-01

    Concatenating multicamera videos with differing centers of projection into a single panoramic video is a critical technology of many important applications. We propose a real-time video fusion approach to create wide field-of-view video. To provide a fast and accurate video registration method, we propose multistage hashing to find matched feature-point pairs from coarse to fine. In the first stage of multistage hashing, a short compact binary code is learned from all feature points, and then we calculate the Hamming distance between each two points to find the candidate-matched points. In the second stage, a long binary code is obtained by remapping the candidate points for fine matching. To tackle the distortion and scene depth variation of multiview frames in videos, we build hybrid transformation with depth adjustment. The depth compensation between two adjacent frames extends into multiple frames in an iterative model for successive video frames. We conduct several experiments with different dynamic scenes and camera numbers to verify the performance of the proposed real-time video fusion approach.

  9. Research on Three-Dimensional Unsteady Turbulent Flow in Multistage Centrifugal Pump and Performance Prediction Based on CFD

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2013-01-01

    Full Text Available The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distributions of relative velocity, absolute velocity, static pressure, and total pressure in guide vanes and impellers under design condition are analyzed. The simulation results show that the flow in impeller is mostly uniform, without eddy, backflow, and separation flow, and jet-wake phenomenon appears only along individual blades. There is secondary flow at blade end and exit of guide vane. Due to the different blade numbers of guide vane and impeller, the total pressure distribution is asymmetric. This paper also simulates the flow under different working conditions to predict the hydraulic performances of centrifugal pump and external characteristics including flow-lift, flow-shaft power, and flow-efficiency are attained. The simulation results are compared with the experimental results, and because of the mechanical losses and volume loss ignored, there is a little difference between them.

  10. Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2014-03-01

    Full Text Available This paper presents a significant method and a basic idea of waste heat recovery from high temperature slags based on Time Temperature Transformation (TTT curves. Three samples with a fixed CaO/SiO2 ratio of 1.05 and different levels of Al2O3 were designed and isothermal experiments were performed using a Single Hot Thermocouple Technique (SHTT. The TTT curves established through SHTT experiments described well the variation of slag properties during isothermal processes. In this study, we propose a multi-stage control method for waste heat recovery from high temperature slags, in which the whole temperature range from 1500 °C to 25 °C was divided into three regions, i.e., Liquid region, Crystallization region and Solid region, based on the TTT curves. Accordingly, we put forward an industrial prototype plant for the purpose of waste heat recovery and the potential of waste heat recovery was then calculated. The multi-stage control method provided not only a significant prototype, but also a basic idea to simultaneously extract high quality waste heat and obtain glassy phases on high temperature slags, which may fill the gap between slag properties and practical waste heat recovery processes.

  11. Validation of multi-stage telephone-based identification of cognitive impairment and dementia

    Directory of Open Access Journals (Sweden)

    Chui Helena

    2005-04-01

    Full Text Available Abstract Background Many types of research on dementia and cognitive impairment require large sample sizes. Detailed in-person assessment using batteries of neuropyschologic testing is expensive. This study evaluates whether a brief telephone cognitive assessment strategy can reliably classify cognitive status when compared to an in-person "gold-standard" clinical assessment. Methods The gold standard assessment of cognitive status was conducted at the University of Southern California Alzheimer Disease Research Center (USC ADRC. It involved an examination of patients with a memory complaint by a neurologist or psychiatrist specializing in cognitive disorders and administration of a battery of neuropsychologic tests. The method being evaluated was a multi-staged assessment using the Telephone Interview of Cognitive Status-modified (TICSm with patients and the Telephone Dementia Questionnaire (TDQ with a proxy. Elderly male and female patients who had received the gold standard in-person assessment were asked to also undergo the telephone assessment. The unweighted kappa statistic was calculated to compare the gold standard and the multistage telephone assessment methods. Sensitivity for classification with dementia and specificity for classification as normal were also calculated. Results Of 50 patients who underwent the gold standard assessment and were referred for telephone assessment, 38 (76% completed the TICS. The mean age was 78.1 years and 26 (68% were female. When comparing the gold standard assessment and the telephone method for classifying subjects as having dementia or no dementia, the sensitivity of the telephone method was 0.83 (95% confidence interval 0.36, 1.00, the specificity was 1.00 (95% confidence interval 0.89,1.00. Kappa was 0.89 (95% confidence interval 0.69, 1.000. Considering a gold-standard assessment of age-associated memory impairment as cognitive impairment, the sensitivity of the telephone approach is 0.38 (95

  12. Multistage vector (MSV) therapeutics.

    Science.gov (United States)

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  13. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  14. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard;

    2012-01-01

    of the heating system in the glass moulding process considering detailed heating mechanisms therefore plays an important part in optimizing the heating system and the subsequent pressing stage in the lens manufacturing process.The current paper deals with three-dimensional transient thermal modelling...... of the multi-stage heating system in a wafer based glass moulding process. In order to investigate the importance of the radiation from the interior and surface of the glass, a simple finite volume code is developed to model one dimensional radiation–conduction heat transfer in the glass wafer for an extreme...... pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...

  15. Verification of KAERI-DySCo for the Dynamic Simulation of VHTR-based SI Hydrogen Production Facilities 2: Hydriodic Aeid Multistage Distillation Column Module

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study focuses on the verification of a simulation module for the hydriodic acid multi-stage distillation column(HI{sub x}MDC) in KAERI-DySCo. To verify the HI{sub x}MDC, a comparison of the results calculated by the HI{sub x}MDC with experimental data obtained from the operation of the 50 NL-H{sub 2}/h scale SI test facility be KIER has been carried out in this work. The VHTR-based sulfur-iodine(SI) process used to produce hydrogen from water requires a multistage distillation column to concentrate a hydriodic acid solution that can be applied to the process, its static and dynamic simulation is essentially demanded. According to this necessity, KAERI has developed a dynamic simulation code(KAERI-DySCo) to analyze the start-up behaviors of the SI process components. On the other hand, a 50 NL-H{sub 2}/h scale SI test facility to be operated under a pressurized environment has been constructed by the scientific research partners of KIER, KIST, and POSCO. In agreement with the steady state clues measured experimentally by KIER, it has been finally confirmed that the HI{sub x}MDC, which is one of the simulation modules in KAERI-DySCo for the dynamic simulation code of VHTR-based SI hydrogen production facilities, is a feasible simulation module able to calculate the start-up dynamic behavior of the multistage hydriodic acid distillation column.

  16. Empirical vs. Expected IRT-Based Reliability Estimation in Computerized Multistage Testing (MST)

    Science.gov (United States)

    Zhang, Yanwei; Breithaupt, Krista; Tessema, Aster; Chuah, David

    2006-01-01

    Two IRT-based procedures to estimate test reliability for a certification exam that used both adaptive (via a MST model) and non-adaptive design were considered in this study. Both procedures rely on calibrated item parameters to estimate error variance. In terms of score variance, one procedure (Method 1) uses the empirical ability distribution…

  17. Health and human rights in Chin State, Western Burma: a population-based assessment using multistaged household cluster sampling.

    Directory of Open Access Journals (Sweden)

    Richard Sollom

    Full Text Available BACKGROUND: The Chin State of Burma (also known as Myanmar is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. METHODS AND FINDINGS: Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%-94.1% reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. CONCLUSIONS: Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary.

  18. Randomly Wired Multistage Networks

    OpenAIRE

    Maggs, Bruce M.

    1993-01-01

    Randomly wired multistage networks have recently been shown to outperform traditional multistage networks in three respects. First, they have fast deterministic packet-switching and circuit-switching algorithms for routing permutations. Second, they are nonblocking, and there are on-line algorithms for establishing new connections in them, even if many requests for connections are made simultaneously. Finally, and perhaps most importantly, they are highly fault tolerant.

  19. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  20. Characterization of kerogen from Timahdit shale (Y-layer) based on multistage alkaline permanganate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Ambles, A.; Halim, M.; Jacquesy, J.-C.; Vitorovic, D.; Ziyad, M. (Universite de Poitiers, Poitiers (France). Lab. de Chimie)

    1994-01-01

    A 15-step alkaline permanganate degradation of kerogen from Moroccan Timahdit Oil Shale (Y-layer) was carried out. Oxidation products were obtained in a good yield (64 wt% based on initial kerogen). Detailed g.c. and g.c.-m.s. analyses of ether- and water-soluble acids and products of further controlled permanganate degradation of precipitated acids served as a basis for the quantitative estimation of the contributions of various types of products and for comparison with other kerogens. Taking into account the dominant aliphatic (44.2%) and aromatic (34.8%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit-Y shale kerogen is postulated. These findings were corroborated by FT-i.r. and [sup 13]C CP-MAS n.m.r. analyses. Saturated hydrocarbons were also found in the oxidation products; they were probably trapped in the kerogen matrix. 34 refs., 7 figs., 4 tabs.

  1. Venture Investment Incentive Mechanisms and Simulation with Venture Entrepreneurs Having Multistage Efforts Based on Fairness Preference Theory

    Directory of Open Access Journals (Sweden)

    Kaihong Wang

    2016-01-01

    Full Text Available When venture capital has been invested into venture companies, venture capitalists and venture entrepreneurs form a principal-agent relationship. Take into account the fact that the venture entrepreneur’s effort is a long process, because the effort is not the same at different stage. Therefore, efforts variables are seen as the multistage dynamic variable, and venture investment principal-agent model with venture entrepreneurs having multistage efforts is constructed on the basis of the classic principal-agent theory in the paper. Further, in the later stage effort of venture entrepreneurs is affected by the size of prestage benefit with venture capitalists and venture entrepreneurs; thus the fairness preference model is improved, and venture investment principal-agent model with venture entrepreneurs having multistage efforts is constructed on the basis of fairness preference theory. Both theoretical derivation and simulation have demonstrated that, under the condition of information asymmetry, if the fairness preference of venture entrepreneurs holds, then (1 venture capitalists provide venture entrepreneurs with level higher than that without fairness preference, (2 in every single stage venture entrepreneurs make efforts higher than those without fairness preference, and (3 in two periods both venture investors and venture entrepreneurs gain total real gains higher than those in two periods without fair preference.

  2. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    Science.gov (United States)

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  3. Modular Adaptive System Based on a Multi-Stage Neural Structure for Recognition of 2D Objects of Discontinuous Production

    Directory of Open Access Journals (Sweden)

    I. Topalova

    2008-11-01

    Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.

  4. Multistage stochastic optimization

    CERN Document Server

    Pflug, Georg Ch

    2014-01-01

    Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization.  It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book

  5. A timer inventory based upon manual and automated analysis of ERTS-1 and supporting aircraft data using multistage probability sampling. [Plumas National Forest, California

    Science.gov (United States)

    Nichols, J. D.; Gialdini, M.; Jaakkola, S.

    1974-01-01

    A quasi-operational study demonstrating that a timber inventory based on manual and automated analysis of ERTS-1, supporting aircraft data and ground data was made using multistage sampling techniques. The inventory proved to be a timely, cost effective alternative to conventional timber inventory techniques. The timber volume on the Quincy Ranger District of the Plumas National Forest was estimated to be 2.44 billion board feet with a sampling error of 8.2 percent. Costs per acre for the inventory procedure at 1.1 cent/acre compared favorably with the costs of a conventional inventory at 25 cents/acre. A point-by-point comparison of CALSCAN-classified ERTS data with human-interpreted low altitude photo plots indicated no significant differences in the overall classification accuracies.

  6. A Multistage Approach for Image Registration.

    Science.gov (United States)

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology. PMID:26292357

  7. Heterogeneity in multistage carcinogenesis and mixture modeling

    Directory of Open Access Journals (Sweden)

    Morgenthaler Stephan

    2008-07-01

    Full Text Available Abstract Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune.

  8. Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems

    International Nuclear Information System (INIS)

    The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization

  9. The Biological Bases of Conformity

    Directory of Open Access Journals (Sweden)

    Thomas Joshau Henry Morgan

    2012-06-01

    Full Text Available Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favour adaptive learning strategies that facilitate effective use of social information in decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behaviour in nonhuman animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history and ontogeny of conformity and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behaviour conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subject’s behaviour is the result of both social and asocial influences, the resultant behaviour may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for

  10. A multi-stage approach to maximizing geocoding success in a large population-based cohort study through automated and interactive processes

    Directory of Open Access Journals (Sweden)

    Jennifer S. Sonderman

    2012-05-01

    Full Text Available To enable spatial analyses within a large, prospective cohort study of nearly 86,000 adults enrolled in a 12-state area in the southeastern United States of America from 2002-2009, a multi-stage geocoding protocol was developed to efficiently maximize the proportion of participants assigned an address level geographic coordinate. Addresses were parsed, cleaned and standardized before applying a combination of automated and interactive geocoding tools. Our full protocol increased the non-Post Office (PO Box match rate from 74.5% to 97.6%. Overall, we geocoded 99.96% of participant addresses, with only 5.2% at the ZIP code centroid level (2.8% PO Box and 2.3% non-PO Box addresses. One key to reducing the need for interactive geocoding was the use of multiple base maps. Still, addresses in areas with population density 920 persons/km2 (odds ratio (OR = 5.24; 95% confidence interval (CI = 4.23, 6.49, as were addresses collected from participants during in-person interviews compared with mailed questionnaires (OR = 1.83; 95% CI = 1.59, 2.11. This study demonstrates that population density and address ascertainment method can influence automated geocoding results and that high success in address level geocoding is achievable for large-scale studies covering wide geographical areas.

  11. A Multistage Method for Multiobjective Route Selection

    Science.gov (United States)

    Wen, Feng; Gen, Mitsuo

    The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.

  12. Study of Equivalent Thrust and Multistage Hydraulic Cylinders Based on Joint Simulation%基于联合仿真的多级等推力液压缸研究

    Institute of Scientific and Technical Information of China (English)

    李丽; 邹广闻; 毛银; 孙丽

    2013-01-01

    The principle of equivalent thrust and multistage hydraulic cylinder are explained and simulated by using joint simulation based on ADAMS and Matlab/Simulink.The dynamic model is constructed by importing the established virtual prototype to ADAMS.Meanwhile,the mathematical modeling of the chamber of equivalent thrust and multistage hydraulic cylinder is conducted,and the inner hydraulic flow is simulated.Through Matlab/Simulink,the hydraulic model is established based on mathematical model.Through the interface of ADAMS and Matlab/Simulink the joint simulation of equivalent thrust and multistage hydraulic cylinder is carfled out.%对多级等推力液压缸的原理进行说明,并采用基于ADAMS与Matlab/Simulink联合仿真方案对其进行仿真,通过把建好的虚拟样机导入到ADAMS建立动力学模型,同时针对多级等推力液压缸内部容腔进行数学建模,从而模拟出内部的液压流动,并利用Matlab/Simulink根据数学模型建立起液压模型,通过ADAMS与Matlab的接口对多级等推力液压缸进行联合仿真.

  13. Charcoal Production via Multistage Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Adetoyese Olajire Oyedun; Ka Leung Lam; Chi Wai Hui

    2012-01-01

    Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range (hemicellulose: 200-260℃; cellulose: 240-350℃ and lignin: 280-500℃). Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.

  14. Transfer Function of Multi-Stage Active Filters: A Solution Based on Pascal's Triangle and a General Expression

    Science.gov (United States)

    Levesque, Luc

    2012-01-01

    A method is proposed to simplify analytical computations of the transfer function for electrical circuit filters, which are made from repetitive identical stages. A method based on the construction of Pascal's triangle is introduced and then a general solution from two initial conditions is provided for the repetitive identical stage. The present…

  15. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  16. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  17. Interconnected Levels of Multi-Stage Marketing

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...

  18. Multistage Turbomachinery Flows Simulated Numerically

    Science.gov (United States)

    Hathaway, Michael D.; Adamczyk, John J.; Shabbir, Aamir; Wellborn, Steven R.

    1999-01-01

    At the NASA Lewis Research Center, a comprehensive assessment was made of the predictive capability of the average passage flow model as applied to multistage axial-flow compressors. This model, which describes the time-averaged flow field within a typical passage of a blade row embedded in a multistage configuration, is being widely used throughout U.S. aircraft industry as an integral part of their design systems. Rotor flow-angle deviation. In this work, detailed data taken within a four and one-half stage large low-speed compressor were used to assess the weaknesses and strengths of the predictive capabilities of the average passage flow model. The low-speed compressor blading is of modern design and employs stator end-bends. Measurements were made with slow- and high response instrumentation. The high-response measurements revealed the velocity components of both the rotor and stator wakes. From the measured wake profiles, we found that the flow exiting the rotors deviated from the rotor exit metal angle to a lesser degree than was predicted by the average passage flow model. This was found to be due to blade boundary layer transition, which recently has been shown to exist on multistage axial compressor rotor and stator blades, but was not accounted for in the average passage model. Consequently, a model that mimics the effects of blade boundary layer transition, Shih k-epsilon model, was incorporated into the average passage model. Simulations that incorporated this transition model showed a dramatic improvement in agreement with data. The altered model thus improved predictive capability for multistage axial-flow compressors, and this was verified by detailed experimental measurement.

  19. Multi-stage flash degaser

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

  20. Multistage Inventory Control System in Retail-chain Based on MAS%MAS在连锁零售企业多级库存控制中的应用研究

    Institute of Scientific and Technical Information of China (English)

    赵川; 薛红

    2013-01-01

    Efficient logistics management is the precondition of fast development of retail-chain.In an increasingly complex economy environment,the sever problems such as high inventories,high cost of distribution,goodsstopping,disorderly delivery and distribution lag must be solved in retail-chain.An optimization model of inventory in store and distribution center in the periodic replenishment cases is presented.It solves the problem of multi-stage inventory optimization in retail-chain.A multistage inventory control system based on Multi-AgentSystem(MAS) is also established.It solves the widespread problems of distribution disorder and distribution lag in retail-chain multistage inventory.%高效的物流管理模式是连锁零售企业快速发展的基础和保障.在日益复杂的市场经济环境下,连锁零售企业必须解决库存量高,配送成本高,断货,配送无序,配送滞后等问题.针对这些问题,提出了一种在非等周期补货情况下,门店和配送中心库存水平的优化模型,解决了连锁零售业多级库存优化问题;建立了基于Multi-Agent-System的多级库存智能管理系统,解决了在连锁零售企业多级库存中普遍存在的配送无序、配送滞后等问题.

  1. Multistage Magnetic Separator of Cells and Proteins

    Science.gov (United States)

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  2. Improved Heuristics for Multi-Stage Requirements Planning Systems

    OpenAIRE

    Joseph D. Blackburn; Robert A. Millen

    1982-01-01

    Most of the recent studies of heuristic lot-sizing techniques for multi-stage material requirements planning systems have investigated the problem in the context of a single stage. In this paper, the multi-stage problem is first modeled analytically to indicate the potential errors inherent in the commonly proposed single-pass, stage-by-stage approaches (e.g., Wagner-Whitin). Then, based on this analysis, several simple cost modifications are suggested to improve the global optimality of thes...

  3. A multistage gene normalization system integrating multiple effective methods.

    Directory of Open Access Journals (Sweden)

    Lishuang Li

    Full Text Available Gene/protein recognition and normalization is an important preliminary step for many biological text mining tasks. In this paper, we present a multistage gene normalization system which consists of four major subtasks: pre-processing, dictionary matching, ambiguity resolution and filtering. For the first subtask, we apply the gene mention tagger developed in our earlier work, which achieves an F-score of 88.42% on the BioCreative II GM testing set. In the stage of dictionary matching, the exact matching and approximate matching between gene names and the EntrezGene lexicon have been combined. For the ambiguity resolution subtask, we propose a semantic similarity disambiguation method based on Munkres' Assignment Algorithm. At the last step, a filter based on Wikipedia has been built to remove the false positives. Experimental results show that the presented system can achieve an F-score of 90.1%, outperforming most of the state-of-the-art systems.

  4. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    calculi have similarly been used for the study of bio-chemical reactive systems. In this dissertation it is argued that techniques rooted in the theory and practice of programming languages, language based techniques if you will, constitute a strong basis for the investigation of models of biological......Process calculus is the common denominator for a class of compact, idealised, domain-specific formalisms normally associated with the study of reactive concurrent systems within Computer Science. With the rise of the interactioncentred science of Systems Biology a number of bio-inspired process...... systems as formalised in a process calculus. In particular it is argued that Static Program Analysis provides a useful approach to the study of qualitative properties of such models. In support of this claim a number of static program analyses are developed for Regev’s BioAmbients – a bio-inspired variant...

  5. Simulation of Multistage Turbine Flows

    Science.gov (United States)

    Celestina, M. L.; Mulac, R. A.; Adamczyk, J. J.

    1985-01-01

    The numerical simulation of turbine flows serves to enhance the understanding of the flow phenomena within multistage turbomachinery components. The direct benefit of this activity is improved modeling capability, which can be used to improve component efficiency and durability. A hierarchy of equations was formulated to assess the difficulty in analyzing the flow field within multistage turbomachinery components. The Navier-Stokes equations provides the most complete description. The simplest description is given by a set of equations that govern the quasi-one-dimensional flow. The number of unknowns to be solved for increases monotonically above the number of equations. The development of the additional set of equations needed to mathematically close the system of equations forms the closure problem associated with that level of description. For the Navier-Stokes equation there is no closure problem. For the quasi-one-dimensional equation set random flow fluctuations, unsteady fluctuations, nonaxisymmetric flow variations, and hub-to-shroud variations on the quasi-one-dimensional flow must be accounted for.

  6. Multi-stage complex contagions

    Science.gov (United States)

    Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.

  7. Multistage Campaigning in Social Networks

    CERN Document Server

    Farajtabar, Mehrdad; Harati, Sahar; Song, Le; Zha, Hongyuan

    2016-01-01

    We consider the problem of how to optimize multi-stage campaigning over social networks. The dynamic programming framework is employed to balance the high present reward and large penalty on low future outcome in the presence of extensive uncertainties. In particular, we establish theoretical foundations of optimal campaigning over social networks where the user activities are modeled as a multivariate Hawkes process, and we derive a time dependent linear relation between the intensity of exogenous events and several commonly used objective functions of campaigning. We further develop a convex dynamic programming framework for determining the optimal intervention policy that prescribes the required level of external drive at each stage for the desired campaigning result. Experiments on both synthetic data and the real-world MemeTracker dataset show that our algorithm can steer the user activities for optimal campaigning much more accurately than baselines.

  8. Return Vane Installed in Multistage Centrifugal Pump

    OpenAIRE

    Miyano, Masafumi; Kanemoto, Toshiaki; Kawashima, Daisuke; Wada, Akihiro; Hara, Takashi; Sakoda, Kazuyuki

    2008-01-01

    To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane w...

  9. Multi-stage LTL transport systems in supply chain management

    OpenAIRE

    Gonzalez-Feliu, Jesus

    2013-01-01

    This paper aims to unify concepts and to describe the multi-stage transport systems and their integratyion to supply chain management. Multi-stage distribution systems are common logistics management, and often they are assimilated to multi-stage transport strategies. However, transport is often considered as an external operation or a specific stage, even when it is a multi-stage system. First, the paper presents the main concepts of multi-stage transport systems by defining the concept an m...

  10. Recent developments in the multistage modeling of cohort data for carcinogenic risk assessment.

    OpenAIRE

    Mazumdar, S; Redmond, C K; Costantino, J P; Patwardhan, R N; Zhou, S. Y.

    1991-01-01

    The modeling of cohort data based on the Armitage-Doll multistage model of the carcinogenic process has gained popular acceptance as a methodology for quantitative risk assessment for estimating the dose-related relationships between different occupational and environmental carcinogenic exposures and cancer mortality. The multistage model can be used for extrapolation to low doses relevant for setting environmental standards and also provides information regarding whether more than one stage ...

  11. Analysis on Cavitation Performance in Multi-stage Centrifugal Pump Based on Cavitation Model%基于空化模型的多级离心泵汽蚀性能分析

    Institute of Scientific and Technical Information of China (English)

    黄思; 管俊

    2011-01-01

    A cavitation analysis model for centrifugal pump is developed based on the Rayleigh-Plesset bubble equation.The 3D turbulent flow field and gas-liquid phase distribution in a multi-stage centrifugal pump are computed by solving the bubble equation coupled with two-phase turbulent governing equations.The process of bubble vaporization, growing and condensation are simulated and visualized.The cavitation model and simulation are validated by comparing numerical solutions with tested curve of Q-NPSHr for the pump.%应用Rayleigh-Plesset气泡方程建立离心泵空化模型,并与气液两相湍流控制方程耦合求解,得到了多级离心泵内三维湍流场及气液相分布,捕捉到气泡的初生、发展及冷凝过程.计算了不同流量下的离心泵的必需汽蚀余量并与实测结果进行了对比分析.

  12. Nucleic Acid-Based Nanodevices in Biological Imaging.

    Science.gov (United States)

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  13. Experiments for Multi-Stage Processes

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat

    2015-01-01

    Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize...... the required number of experimental runs, we suggest using mirror image pairs of experiments at each stage following the first. As the design criterion, we consider their projectivity and mainly focus on projectivity 3 designs. We provide the methodology for generating these designs for processes with any...

  14. Multistage decomposition algorithm for blind source separation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new algorithm for blind source separation is proposed, which only extracts the single independent component at each stage. The single independent component is acquired by an iterative algorithm for searching for the optimal solution of the defined cost function. Moreover, all the independent components are obtained by systematic multistage decomposition and multistage reconstruction. When there is spatially colored noise, the performance of this algorithm is advantageous over jointly approximated diagonalization of eigen-matrices (JADE). Simulated results show that if the number of source signals is more than 25, its computational complexity is lower than that of JADE.

  15. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  16. Interconnected levels of multi-stage marketing: A triadic approach

    OpenAIRE

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...

  17. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  18. Multi-Stage Programs are Generalized Arrows

    CERN Document Server

    Megacz, Adam

    2010-01-01

    The lambda calculus, subject to typing restrictions, provides a syn- tax for the internal language of cartesian closed categories. This paper establishes a parallel result: staging annotations, subject to named level restrictions, provide a syntax for the internal language of Freyd categories, which are known to be in one-to-one correspondence with Arrows. The connection is made by interpreting multi-stage type systems as indexed functors from polynomial categories to their reindexings (Definitions 15 and 16). This result applies only to multi-stage languages which are (1) homogeneous, (2) allow cross-stage persistence and (3) place no restrictions on the use of structural rules in typing derivations. Removing these restrictions and repeating the construction yields generalized arrows, of which Arrows are a particular case. A translation from well-typed multi-stage programs to single-stage GArrow terms is provided. The translation is defined by induction on the structure of the proof that the multi-stage prog...

  19. Some LCP Decompositions of Multistage Interconnection Networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Some useful layered cross product decompositons are derived both for general bit permutation networks and for(2n-1)-stage multistage interconnection networks. Several issues in related works are clarified and the rearrangeability of some interesting networks are considered. In particular, the rearrangeability of one class of networks is formulated as a new type of combinatorial design problmes.

  20. Analysis on Interior Ballistics of Multi-stage Inductive Coil Gun Based on Coupling of Field and Circuit%基于场路耦合的多级感应线圈炮内弹道分析

    Institute of Scientific and Technical Information of China (English)

    向红军; 李治源; 雷彬

    2012-01-01

    To study the interior ballistic characteristics of multi-stage inductive coil gun such as the acceleration process,force and overload at the armature, the mathematical model was built based on the theory of electromagnetic field, and then the governing equations and calculation method of electromagnetic force on armature were given. The three-stage inductive coil gun was simulated based on the coupling model of field and circuit. The maximum overload obtained by the simulation model is 15 000g. The results show that the armature suffers great overload during launching process, and the direction of the electromagnetic force on armature reverses in motion. The reverse time of electromagnetic force will be brought forward with the increase of armature velocity, and the brake force will increase, and the acceleration force will decrease.%为研究多级感应线圈炮中电枢的受力、加速和过载等内弹道特性,基于电磁场理论,建立了同步感应线圈炮的数学模型,并给出了线圈炮的控制方程和电磁力计算方法.结合场路耦合模型,对3级感应线圈炮进行了有限元仿真.该仿真模型得到的最大过载可达15 000g.仿真分析表明:发射过程中,电枢不仅会受到很大的过载,而且其受到的电磁力在运动中会发生反向;随着电枢速度的提高,电磁力反向时刻不断提前,电磁制动力不断增大,加速力不断减小.

  1. Antibody-based biological toxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Menking, D.E.; Goode, M.T. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-12-01

    Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a direct competition assay, antibodies against Cholera toxin, Staphylococcus Enterotoxin B or ricin were noncovalently immobilized on quartz fibers and probed with fluorescein isothiocyanate (FITC) - labeled toxins. In the indirect competition assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified anti-toxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or anti-toxin IgG in a dose dependent manner and the detection of the toxins was in the nanomolar range.

  2. Multistage spectral polarimeter based on integrated acousto-optical Ti:LiNbO3 TE-TM converters for WDM system monitoring

    Science.gov (United States)

    Noe, Reinhold; Maucher, A.; Ricken, Raimund

    1999-04-01

    A 4-stage spectral polarimeter based on Ti:LiNbO3 acousto- optical TE-TM converters has been realized. It has about 20 dB stopband suppression and can measure polarimetric spectra as well as the time evolution of the state of polarization. A simple optical spectrum analyzer is also proposed.

  3. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    International Nuclear Information System (INIS)

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications

  4. Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanyan; Ran, Xiang; Lin, Youhui [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate School of University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Jinsong, E-mail: jren@ciac.ac.cn [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Qu, Xiaogang [Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-04-22

    Highlights: • A colorimetric and multistage biological network has been developed. • This system was on the basis of the enzyme-regulated changes of pH values. • This enzyme-based system could assemble large biological circuit. • Two signal transducers (DNA/AuNPs and acid–base indicators) were used. • The compositions of samples could be detected through visual output signals. - Abstract: Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid–base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications.

  5. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    OpenAIRE

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-...

  6. From the dilute solution to the pure compound:Extraction strategy based on a multi-stage process of phase separation

    Institute of Scientific and Technical Information of China (English)

    GOUTAUDIER; Christelle; TENU; Richard; COUNIOUX; Jean-Jacques

    2010-01-01

    It is very rare that a one-step process of extraction leads to the pure compound with a high degree of purity specified by an industrial application.The various stages of a synthesis process and possible secondary reactions may lead to the synthesis of more or less complex and highly diluted solutions.In this work,the rationale and strategy for extraction and purification of a high added value compound are discussed.All the thinking is based on the knowledge and the exploitation of phase diagrams and then developed for different unit operations of the process.The most significant research tools are the experimental data and the modelling of phase equilibrium to estimate the yield of each step of extraction.The significant example chosen involves all the basic methods of phase separation,starting with liquid-vapour equilibrium:stripping of high volatility components and then more or less complex distillation are classically employed.The theoretical plateau number can be deduced from the equilibrium equation curves.The second step is based on the study of the liquid-liquid equilibrium and is an intermediate step for enrichment of the solution when distillation is not possible.A final step based on solid-liquid equilibrium consists of the selective crystallization of the pure product at low temperature,in order to satisfy the requirements of purity and safety imposed by industrial use.The conclusion includes all isolation operations in the form of a general extraction and purification scheme.

  7. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    Science.gov (United States)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-06-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  8. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    Science.gov (United States)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  9. Health and human rights in eastern Myanmar after the political transition: a population-based assessment using multistaged household cluster sampling.

    Directory of Open Access Journals (Sweden)

    Parveen Kaur Parmar

    Full Text Available Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV. Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition was 11.3% (8.0-14.7. A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5 and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0. 10.7% of households (95% CI 7.0-14.5 experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2. Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5.This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs.

  10. Multi-stage sampling in genetic epidemiology.

    Science.gov (United States)

    Whittemore, A S; Halpern, J

    When data are expensive to collect, it can be cost-efficient to sample in two or more stages. In the first stage a simple random sample is drawn and then stratified according to some easily measured attribute. In each subsequent stage a random subset of previously selected units is sampled for more detailed observation, with a unit's sampling probability determined by its attributes as observed in the previous stages. These designs are useful in many medical studies; here we use them in genetic epidemiology. Two genetic studies illustrate the strengths and limitations of the approach. The first study evaluates nuclear and mitochondrial DNA in U.S. blacks. The goal is to estimate the relative contributions of white male genes and white female genes to the gene pool of African-Americans. This example shows that the Horvitz-Thompson estimators proposed for multi-stage designs can be inefficient, particularly when used with unnecessary stratification. The second example is a multi-stage study of familial prostate cancer. The goal is to gather pedigrees, blood samples and archived tissue for segregation and linkage analysis of familial prostate cancer data by first obtaining crude family data from prostate cancer cases and cancer-free controls. This second example shows the gains in efficiency from multi-stage sampling when the individual likelihood or quasilikelihood scores vary substantially across strata. PMID:9004389

  11. Semantic Search among Heterogeneous Biological Databases Based on Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    Shun-Liang CAO; Lei QIN; Wei-Zhong HE; Yang ZHONG; Yang-Yong ZHU; Yi-Xue LI

    2004-01-01

    Semantic search is a key issue in integration of heterogeneous biological databases. In thispaper, we present a methodology for implementing semantic search in BioDW, an integrated biological datawarehouse. Two tables are presented: the DB2GO table to correlate Gene Ontology (GO) annotated entriesfrom BioDW data sources with GO, and the semantic similarity table to record similarity scores derived fromany pair of GO terms. Based on the two tables, multifarious ways for semantic search are provided and thecorresponding entries in heterogeneous biological databases in semantic terms can be expediently searched.

  12. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    Science.gov (United States)

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267

  13. Bayesian synthetic evaluation of multistage reliability growth with instant and delayed fix modes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the multistage reliability growth tests with instant and delayed fix modes, the failure data can be assumed to follow Weibull processes with different parameters at different stages. For the Weibull process within a stage, by the proper selection of prior distribution form and the parameters, a concise posterior distribution form is obtained, thus simplifying the Bayesian analysis. In the multistage tests, the improvement factor is used to convert the posterior of one stage to the prior of the subsequent stage. The conversion criterion is carefully analyzed to determine the distribution parameters of the subsequent stage's variable reasonably. Based on the mentioned results, a new synthetic Bayesian evaluation program and algorithm framework is put forward to evaluate the multistage reliability growth tests with instant and delayed fix modes. The example shows the effectiveness and flexibility of this method.

  14. Design of intermediate die shape of multistage profile drawing for linear motion guide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kon; Lee, Jae Eun; Kim, Sung Min; Kim, Byung Min [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    The design of an intermediate die shape is very important in multistage profile drawing. In this study, two design methods for the intermediate die shape of a multistage profile drawing for producing a linear motion guide (LM) guide is proposed. One is the electric field analysis method using the equipotential lines generated by electric field analysis, and the other is the virtual die method using a virtual drawing die constructed from the initial material and the final product shape. In order to design the intermediate die shapes of a multistage profile drawing for producing LM guide, the proposed design methods are applied, and then FE analysis and profile drawing experiment are performed. As a result, based on the measurement of dimensional accuracy, it can be known that the intermediate die shape can be designed effectively

  15. A Quasi-One-Dimensional CFD Model for Multistage Turbomachines

    Institute of Scientific and Technical Information of China (English)

    Olivier Léonard; Olivier Adam

    2008-01-01

    The objective of this paper is to present a fast and reliable CFD model that is able to simulate stationary and transient operations of multistage compressors and turbines. This analysis tool is based on an adapted version of the Euler equations solved by a time-marching, finite-volume method. The Euler equations have been extended by including source terms expressing the blade-flow interactions. These source terms are determined using the velocity triangles and a row-by-row representation of the blading at mid-span. The losses and deviations undergone by the fluid across each blade row are supplied by correlations. The resulting flow solver is a performance prediction tool based only on the machine geometry, offering the possibility of exploring the entire characteristic map of a multistage compressor or turbine. Its efficiency in terms of CPU time makes it possible to couple it to an optimization algorithm or to a gas turbine performance tool. Different test-cases are presented for which the calculated characteristic maps are compared to experimental ones.

  16. Method of Identifying Key Quality Characteristics in Multistage Manufacturing Process Based on PLSR%基于 PLSR 的多级制造过程关键质量特性识别方法

    Institute of Scientific and Technical Information of China (English)

    王宁; 徐济超; 杨剑锋

    2013-01-01

    To solve the multicollinearity problem between quality characteristics in identifying the key quality characteristics of multistage manufacturing process , the partial least squares regression ( PLSR) method is intro-duced to model and analyze the key quality characteristics identifying model .Firstly, the state space model is applied to model the key quality characteristics identifying model multistage manufacturing process .Then using the PLSR method to solve the multicollinearity problem , we make a model analyse and identify the key quality characteristics.Lastly, the cigarette production process is taken as an example to introduce the method applica -tion.The result shows that this method not only could identify the key quality characteristics in multistage manu-facturing process , but also establish the model of output quality effecting of all levels on the final product quality and their quality characteristics relationship , which reflect the structure of the multistage manufacturing process and causal relationship between quality characteristics at all process levels , providing the basis for quality analysis and control in multistage manufacturing process .%为解决多级制造过程关键质量特性识别中多质量特性之间的相关性问题,将偏最小二乘回归方法( Par-tial Least Squares Regression , PLSR)引入模型构建与分析中。首先应用状态空间方法建立多级制造过程关键质量特性识别模型,进而利用PLSR方法解决质量特性间的多重共线性问题并进行模型分析,识别关键质量特性,最后以卷烟生产过程为例介绍了该方法的应用。实例表明,该方法不仅可以有效识别多级制造过程关键质量特性,而且能够建立各级过程的输出质量对最终产品质量的影响及其质量特性之间相互关系的模型,反映多级生产过程的结构特征和各级过程质量特性之间的因果关系,为多级制造过程质量分析与控制提供依据。

  17. 基于malmquist指数的航空公司多级票价效率评价%Efficiency Evaluation Based on Malmquist Index of System of Multistage Ticket Price Implemented by Airlines

    Institute of Scientific and Technical Information of China (English)

    郑燕琴; 夏洪山; 吴梦诗

    2014-01-01

    In order to achieve maximum profits and get more consumer surplus ,many airlines are implementing the system multistage ticket price .Appling the method of data envelopment analysis ,using the malmquist index ,researches are made on efficiency evaluation of system of multistage ticket price to the 20 routes of Shandong Airlines .Trough empirical re-search ,there are 12 routes are DEA invalid in these 20 routes .That is to say ,the system of multistage ticket price to these 12 routes still needs to be adjusted .At the same time ,by decomposing the malmquist index ,factors that affect the efficiency of system of multistage ticket price implemented by airlines can be known according to the visual date .There are 9 routes are the result of the structure of multistage ticket price ,and 7routes are due to price reason .%为实现利润最大化,目前很多航空公司都实行多级票价体系,以获得更多的消费者剩余。引入数据包络分析法,利用malmquist指数,针对山东航空公司20条航线进行了多级票价的效率评价研究,通过实证发现,这20条航线中,有12条尚未达到DEA (date envelopment analysis )有效,即多级票价体系尚需调整。同时,通过分解malmquist指数,可以从数据直观地看出影响航空公司多级票价体系效率的因素,其中9条是由于多级票价结构原因,7条是由于票价价位原因。

  18. Multi-stage Dynamic Coordination and Control model for Mass Crowds' Activities Based on Multi-agent%基于multi-agent的大型人群活动多阶段动态协调控制模型

    Institute of Scientific and Technical Information of China (English)

    李进; 朱道立

    2009-01-01

    With the rapid development of economy, our country will hold more and more mass crowds' ac-tivities, e.g. Olympic Games, World Expo. In order to reduce the phenomena of long time queuing and congestion in mass crowds' activities, avoid the population accidents and improve the visitor's satisfac-tion, multi-stage dynamic coordination and control model based on multi-agent is proposed. And a coordi-nation algorithm PCI is given. By introducing the concept of Pareto Optimality, a method is given to select the next visiting node and the route choice is made using Logit model. This coordination algorithm is com-pared with two other existing algorithms by computer simulation. The results show that the coordination algorithm PCI meets the real-time need; the algorithm C and PCI can effectively reduce queuing time; and the algorithm PCI can promote the best social welfare. Moreover, its advantage is more obvious in mass crowds' activities.%随着经济的快速发展,我国举办的各类大型人群活动越来越多,例如奥运会、世博会等.针对大型人群活动中存在的游客长时间排队与拥挤问题,为了降低人群事故发生的风险,提高游客的满意度,提出了基于multi-a-gent的大型人群活动多阶段动态协调控制模型,并设计出了协调算法PCI,该算法在引入帕累托最优概念的基础上给出参观目标点的选择方法,使用Logit模型进行路线的选择.把该协调算法与现有的其它两种算法进行了计算机仿真对比,仿真结果表明,协调算法PCI可以满足实时性响应的要求,算法C和PCI能够有效的减少排队时间,算法PCI可以得到最优的社会福利,而且随着人群规模的增加这种优势更加明显.

  19. On optimizing distance-based similarity search for biological databases.

    Science.gov (United States)

    Mao, Rui; Xu, Weijia; Ramakrishnan, Smriti; Nuckolls, Glen; Miranker, Daniel P

    2005-01-01

    Similarity search leveraging distance-based index structures is increasingly being used for both multimedia and biological database applications. We consider distance-based indexing for three important biological data types, protein k-mers with the metric PAM model, DNA k-mers with Hamming distance and peptide fragmentation spectra with a pseudo-metric derived from cosine distance. To date, the primary driver of this research has been multimedia applications, where similarity functions are often Euclidean norms on high dimensional feature vectors. We develop results showing that the character of these biological workloads is different from multimedia workloads. In particular, they are not intrinsically very high dimensional, and deserving different optimization heuristics. Based on MVP-trees, we develop a pivot selection heuristic seeking centers and show it outperforms the most widely used corner seeking heuristic. Similarly, we develop a data partitioning approach sensitive to the actual data distribution in lieu of median splits. PMID:16447992

  20. Multi-stage apodized pupil Lyot coronagraph experimental results

    Science.gov (United States)

    Abe, L.; Venet, M.; Enya, K.; Kataza, H.; Nakagawa, T.; Tamura, M.

    2008-07-01

    Prolate (Pupil) Apodized Lyot Coronagraphs (PPALC) are known to offer optimal performances for a Lyot-type Coronagraph configuration, i.e. with an opaque occulting focal mask. One additional benefit of PPALC is its possible use in a multi-stage configuration. In theory, the coronagraphic performance can be QN, where Q is the energy rejection factor of one stage (the first one), and N the number of stages. Several ground-based telescopes are considering PPALC as an option for their high-contrast instrumentation (e.g. Gemini/GPI, EELT/EPICS, Subaru HiCIAO). Although the PPALC suffers from several limitations, several works are currently focused on fabricating entrance pupil apodizers and trying to find ways to overcome chromatism issues. In this work, we present the first experimental results from Multi-Stage PPALC (MS-PPALC) that was done in the context of the Japanese space telescope SPICA coronagraph project. Our entrance pupil apodizers use small diameter High Energy Beam Sensitive glass (HEBS-glass) from Canyon Materials Inc. The current results show modest coronagraphic performance due to uncompensated phase aberrations inherent to HEBS-glass material. In addition, and due to these uncompensated phase aberrations, the present optical configuration is an altered version of the originally planned set-up. However, we can demonstrate the validity the MS-PPALC concept and compare it to numerical simulations.

  1. Numerical Simulation of Multi-Stage Turbomachinery Flows

    Science.gov (United States)

    Adamczyk, John J.; Hathaway, Michael D.; Shabbir, Aamir; Wellborn, Steven R.

    1999-01-01

    A comprehensive assessment is made of the predictive capability of the average passage flow model as applied to multi-stage axial flow compressors. The average passage flow model describes the time average flow field within a typical passage of a blade row embedded in a multi-stage configuration. In this work data taken within a four and one-half stage large low speed compressor will be used to assess the weakness and strengths of the predictive capabilities of the average passage flow model. The low speed compressor blading is of modern design and employs stators with end-bends. Measurements were made with slow and high response instrumentation. The high response measurements revealed the velocity components of both the rotor and stator wakes. Based on the measured wake profiles it will be argued that blade boundary layer transition is playing an important role in setting compressor performance. A model which mimics the effects of blade boundary layer transition within the frame work of the average passage model will be presented. Simulations which incorporated this model showed a dramatic improvement in agreement with data.

  2. Multivalued and Multiple Reflected Raytracing with Extreme Value Based on the Multistage Modified Shortest-path Method%分区多步最短路径极值法多值多次反射波追踪

    Institute of Scientific and Technical Information of China (English)

    唐小平; 白超英; 刘宽厚

    2011-01-01

    The grid-based raytracing algorithms,such as the finite-difference eikonal equation solver and the shortest-path method,are all based on the Fermat (minimum travel time) principle, which is able to track the first reflected arrivals only. In heterogeneous media involving a relatively larger velocity contrast or complex reflected interface. The seismic wavefronts are self-intersected, as a result, the rays are multi-paths. In order to simulate such multivalued and multiple reflected arrivals, we put forward an algorithm to trace the multivalued and multiple reflected arrivals, it referred as the extreme value algorithm based on the multistage modified shortest-path method, which is capable of tracking the multivalued and multiple reflected arrivals in velocity model included complex reflected interfaces. The principles of the extreme value are that;we firstly conduct down-wind raytracing from both sources and receivers to the sampled reflected interfaces and record the traveltimes and raypaths at each sampled reflected point,and sum up traveltime value at each reflected point, and form a stacked' traveltime-distance' curve (or surface for 3D case);secondly we solve extremum values for this stacked'traveltime-distance'curveCor surface).in which the location of the extreme points are the reflected points; finally we link the raypaths and add traveltimes from the source to the reflected point,and then to the receiver. Thus the multivalued and multiple reflected arrivals are successfully traced. This algorithm has a simple principle, high accuracy, fast CPU time and easy adaptation for complex media-Compared with the fast marching method and error analysis.it is evident that the extreme value of the multistage shortest-path method is a feasible and efficient algorithm for tracking the multivalued and multiple reflected arrivals.%基于网格单元扩展的射线追踪算法,如:较为流行的有限差分解程函方程法和最短路径法均是建立在费马(最小

  3. Sharpening of the multistage modified comb filters

    Directory of Open Access Journals (Sweden)

    Nikolić Marko

    2011-01-01

    Full Text Available This paper describes the application of filter sharpening method to the modified comb filter (MCF in the case of decimation factor, which is product of two or more positive integers. It is shown that in the case of multistage decimation with MCF, filters in each stage are also MCF. Applying the sharpening to the decimation filter in the last stage provides very good results, with savings in the number of operations comparing to the case of sharpening of the complete filter. Direct-form FIR polyphase filter structure is proposed for the filters in each stage.

  4. Manipulating Multistage Interconnection Networks Using Fundamental Arrangements

    Directory of Open Access Journals (Sweden)

    E. Gur

    2010-12-01

    Full Text Available Optimizing interconnection networks is a prime object in switching schemes. In this work the authors present a novel approach for obtaining a required channel arrangement in a multi-stage interconnectionnetwork, using a new concept – a fundamental arrangement. The fundamental arrangement is an initial N-1 stage switch arrangement that allows obtaining any required output channel arrangement given an input arrangement, using N/2 binary switches at each stage. The paper demonstrates how a fundamental arrangement can be achieved and how, once this is done, any required arrangement may be obtained within 2(N-1 steps.

  5. Multi-stage Planning Optimization for Power Distribution Network Based on LCC and Improved PSO%基于LCC和改进粒子群算法的配电网多阶段网架规划优化

    Institute of Scientific and Technical Information of China (English)

    苏海锋; 张建华; 梁志瑞; 牛胜锁

    2013-01-01

    市场环境下,配电网规划方案全寿命周期经济性变得越来越重要.基于设备全寿命周期成本建立了配电网多阶段网架及开关布置规划新模型,模型同时考虑了规划方案初始投资、运行维护成本、停电成本、报废成本;在满足各阶段负荷发展需求的条件下,以规划项目全寿命周期经济性最优为目标函数确定不同支路的建设时间;建立了配电网停电成本计算模型,该模型反映了停电频率、停电持续时间及停电电量对停电成本的综合影响.提出一种将均值聚类与随机粒子群算法相结合的改进离散粒子群算法对上述模型进行求解,该算法克服了基本粒子群算法的“早熟”问题.该规划方法使得规划方案不仅满足全寿命周期经济性最优,而且兼顾一定的可靠性水平.规划实例验证了上述模型和方法的正确性和有效性.%The life cycle economy of the power distribution network planning scheme is becoming more and more important in power markets. The new model of the distribution network multi-stage planning and the configuration of switches based on the life cycle cost (LCC) of equipment was presented. The initial investment, operation and maintenance cost, outage cost and disposal cost of planning scheme were considered. According to the development of the load, the construction time of the distribution feeders can be decided based on the optimal LCC. The function of fault cost was built, and the function reflected the comprehensive effect of the frequency, duration and quantity of outage to the fault cost. The improved algorithm based on the combined mean clustering algorithm and random particle swarm algorithm was presented. The new algorithm's global searching capability was improved. The distribution network planning method based on LCC is not only reliable, but also the most economical. The new model is feasible and practical by a realistic planning project.

  6. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  7. Biological impact of music and software-based auditory training

    OpenAIRE

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based ...

  8. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  9. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  10. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  11. Sleep and multisystem biological risk: a population-based study.

    Directory of Open Access Journals (Sweden)

    Judith E Carroll

    Full Text Available Short sleep and poor sleep quality are associated with risk of cardiovascular disease, diabetes, cancer, and mortality. This study examines the contribution of sleep duration and sleep quality on a multisystem biological risk index that is known to be associated with morbidity and mortality.Analyses include a population-based sample from the Midlife Development in the United States survey recruited to the Biomarker substudy. A total of 1,023 participants aged 54.5 years (SD = 11.8, 56% female and 77.6% white, were included in the analyses. A multisystem biological risk index was derived from 22 biomarkers capturing cardiovascular, immune, lipid-metabolic, glucose-metabolic, sympathetic, parasympathetic, and hypothalamic-pituitary-adrenal systems. Self-reported average sleep duration was categorized as short (5 sleep.Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed. As compared to normal sleepers, multisystem biological risk in both short (B(SE = .38(.15, p<.01 and long sleepers (B(SE = .28(.11, p<.01 were elevated. Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE = .15(.06, p = .01, but was not significant after adjustment for health status. All short sleepers reported poor sleep quality. However in the long sleepers, only those who reported poor sleep quality exhibited elevated multisystem biological risk (B(SE = .93(.3, p = .002.Self-reported poor sleep quality with either short or long sleep duration is associated with dysregulation in physiological set points across regulatory systems, leading to elevated multisystem biological risk. Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

  12. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  13. Exposure Control Using Adaptive Multi-Stage Item Bundles.

    Science.gov (United States)

    Luecht, Richard M.

    This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…

  14. EUD-based biological optimization for carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brüningk, Sarah C., E-mail: sarah.brueningk@icr.ac.uk; Kamp, Florian; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, München 81675, Germany and Physik-Department, Technische Universität München, James-Franck-Str. 1, Garching 85748 (Germany)

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  15. Multi-stage methodology to detect health insurance claim fraud.

    Science.gov (United States)

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data.

  16. Axial flow, multi-stage turbine and compressor models

    International Nuclear Information System (INIS)

    Design models of multi-stage, axial-flow turbine and compressor are developed for high temperature nuclear reactor power plants with Closed Brayton Cycle for energy conversion. The models are based on a mean-line through-flow analysis for free-vortex flow, account for the profile, secondary, end wall, trailing edge and tip clearance losses in the cascades, and calculate the geometrical parameters of the blade cascades. The effects of the mean-stage work coefficient, flow coefficient and stage reaction on the design and performance of helium turbine and compressor are investigated. The results compare favorably with those reported for 6 stages helium turbine and 20 stages helium compressor. Also presented and discussed are the results of parametric analyses of a 530-MW helium turbine, and a 251-MW helium compressor.

  17. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    Science.gov (United States)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  18. Paramagnetic defects in multistage ion-implanted polyamide films

    International Nuclear Information System (INIS)

    multistage ion implantation accompanied with the decreasing in the implantation energy thus permits to create the highly conductive channels between the surface and the buried conducting carbonaceous layer appearing in the interior of the implanted region that opens up the fresh opportunities for fabrication the polymer-based planar functional electronic devices

  19. Thickness distribution of multi-stage incremental forming with different forming stages and angle intervals

    Institute of Scientific and Technical Information of China (English)

    李军超; 杨芬芬; 周志强

    2015-01-01

    Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages (n) and angle interval between the two adjacent stages (Δα) on thickness distribution was investigated. Firstly, a finite element method (FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°. Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.

  20. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination. PMID:23737624

  1. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  2. Biologically-inspired Microfluidic Platforms and Aptamer-based Nanobiosensors

    OpenAIRE

    Cho, Hansang

    2010-01-01

    Recent advances in micro/nano- technologies have shown high potentials in the field of quantitative biology, biomedical science, and analytical chemistry. However, micro/nano fluidics still requires multi-layered structures, complex plumbing/tubing, and external equipments for large-scale applications and nanotechnology-based sensors demand high cost. Interestingly, nature has much simpler and more effective solutions. The goal of this dissertation is to develop novel microfluidic platforms a...

  3. What is infidelity? Perceptions based on biological sex and personality

    OpenAIRE

    Thornton V; Nagurney AJ

    2011-01-01

    Victoria Thornton, Alexander NagurneyTexas State University – San Marcos, San Marcos, Texas, USAAbstract: The study examines perceptions of infidelity, paying particular attention to how these perceptions differ based on biological sex and personality traits, specifically agency and communion and their unmitigated counterparts. The study utilizes a sample of 125 male and 233 female college students. In addition to the personality measures, participants completed a 19-item checklist ...

  4. A Biologically Based Chemo-Sensing UAV for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    Paul F.M.J. Verschure

    2008-11-01

    Full Text Available Antipersonnel mines, weapons of cheap manufacture but lethal effect, have a high impact on the population even decades after the conflicts have finished. Here we investigate the use of a chemo-sensing Unmanned Aerial Vehicle (cUAV for demining tasks. We developed a blimp based UAV that is equipped with a broadly tuned metal-thin oxide chemo-sensor. A number of chemical mapping strategies were investigated including two biologically based localization strategies derived from the moth chemical search that can optimize the efficiency of the detection and localization of explosives and therefore be used in the demining process. Additionally, we developed a control layer that allows for both fully autonomous and manual controlled flight, as well as for the scheduling of a fleet of cUAVs. Our results confirm the feasibility of this technology for demining in real-world scenarios and give further support to a biologically based approach where the understanding of biological systems is used to solve difficult engineering problems.

  5. The numerical simulation of multistage turbomachinery flows

    Science.gov (United States)

    Adamczyk, John J.; Beach, T. A.; Celestina, M. L.; Mulac, R. A.; To, W. M.

    1996-01-01

    The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.

  6. 基于多阶段复合实物期权的风力发电项目投资决策%Investment decision-making based on multi-stage compound real options for wind power generation

    Institute of Scientific and Technical Information of China (English)

    丁乐群; 徐越; 刘琰; 王宇拓; 韩强

    2012-01-01

    在电力市场环境下,建立风力发电项目多阶段、多不确定因素的复合实物期权决策框架.根据风力发电项目投资过程中存在的不确定因素的特征,分别建立发电量、上网电价、低碳收益的随机变化模型;通过使用蒙特卡罗模拟法和二叉树方法,提出求解多阶段、多不确定因素的风力发电项目的投资决策的模型和求解步骤.通过实例对所提方法实现步骤进行了说明,并将所提方法与净现值(NPV)法进行了对比,结果证明了所提方法的优越性.%A multi-stage decision-making framework with compound real options is set for a wind farm project with multiple uncertain factors in the electricity market environment. The random changing models are established for uncertain factors of wind power generation investment:annual power production,electricity price and low-carbon benefits. The investment decision-making model using Monte Carlo simulation and the binomial tree method is proposed for the multi-stage wind farm with multiple uncertain factors. The solving steps of the proposed model are illustrated with an example and results are compared with those by NPV method. Results validate the excellence of the proposed method.

  7. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  8. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  9. Lung cancer from radon and smoking: a multistage model for the WISMUT uranium miners

    International Nuclear Information System (INIS)

    Full text: In the world's third-largest uranium-mining province located in areas of Saxony and Thuringia in the former German Democratic Republic, the WISMUT Company conducted extensive uranium mining starting in 1946. Up to 1990, when mining activities were discontinued, most of the 400,000 employees had been exposed to uranium ore dust and radon and its progeny. It is well established that, besides smoking, such exposures are associated with an increased risk of lung cancer. From about 130,000 known miners a huge cohort of 59,000 miners has been formed and in an epidemiological analysis lung cancer risks have been evaluated (Grosche et al., 2006). We will present an alternative approach using a biologically-based multistage carcinogenesis model quantifying the lung-cancer risk related to both the exposure to radon and smoking habits. This mechanistic technique allows for extrapolation to the low exposures that are important for present-day radiation protection purposes and the transfer of risk across populations. The model is applied to a sub-cohort of about 35,000 persons who were employed at WISMUT after 1955, with known annual exposures estimated from the job-exposure matrix (Lehmann et al., 2004). Unfortunately, detailed information on smoking is missing for most miners. However, this information has been retrieved in two case-control studies, one of which was nested in the cohort while the other was not (Brueske-Hohlfeld et al., 2006). For these studies, the relevant smoking parameters are assembled in so-called smoking spectra that are next projected onto the entire cohort using a Monte-Carlo sampling method. Individual smoking habits that are randomly assigned to the cohort members, together with the information on annual exposure to radon, is used as an input for the multistage model. Model parameters related to radon and tobacco exposure are fitted with a maximum-likelihood technique. We will show results of the observed and expected lung

  10. Model equation for simulating flows in multistage turbomachinery

    Science.gov (United States)

    Adamczyk, J. J.

    1985-01-01

    A steady, three-dimensional average-passage equation system is derived for use in simulating multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. From this system of equations, various reduced forms can be derived for use in simulating the three-dimensional flow field within multistage machinery. It is suggested that a properly scaled form of the averaged-passage equation system would provide an improved mathematical model for simulating the flow in multistage machines at design and, in particular, at off-design conditions.

  11. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  12. Image-based surface matching algorithm oriented to structural biology.

    Science.gov (United States)

    Merelli, Ivan; Cozzi, Paolo; D'Agostino, Daniele; Clematis, Andrea; Milanesi, Luciano

    2011-01-01

    Emerging technologies for structure matching based on surface descriptions have demonstrated their effectiveness in many research fields. In particular, they can be successfully applied to in silico studies of structural biology. Protein activities, in fact, are related to the external characteristics of these macromolecules and the ability to match surfaces can be important to infer information about their possible functions and interactions. In this work, we present a surface-matching algorithm, based on encoding the outer morphology of proteins in images of local description, which allows us to establish point-to-point correlations among macromolecular surfaces using image-processing functions. Discarding methods relying on biological analysis of atomic structures and expensive computational approaches based on energetic studies, this algorithm can successfully be used for macromolecular recognition by employing local surface features. Results demonstrate that the proposed algorithm can be employed both to identify surface similarities in context of macromolecular functional analysis and to screen possible protein interactions to predict pairing capability. PMID:21566253

  13. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  14. MathBench Biology Modules: Web-Based Math for All Biology Undergraduates

    Science.gov (United States)

    Nelson, Karen C.; Marbach-Ad, Gili; Schneider, Katie; Thompson, Katerina V.; Shields, Patricia A.; Fagan, William F.

    2009-01-01

    Historically, biology has not been a heavily quantitative science, but this is changing rapidly (Ewing 2002; Gross 2000; Hastings and palmer 2003; Jungck 2005; Steen 2005). Quantitative approaches now constitute a key tool for modern biologists, yet undergraduate biology courses remain largely qualitative and descriptive. Although biology majors…

  15. PARALLEL MULTI-STAGE & MULTI-STEP METHOD IN ODES

    Institute of Scientific and Technical Information of China (English)

    Xiao-qiu Song

    2000-01-01

    In this paper, the theory of parallel multi-stage & multi-step method is dis cussed, which is a form of combining Runge-Kutta method with linear multi-step method that can be used for parallel computation.

  16. Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries

    CERN Document Server

    Cameron, Alexandre; Dormy, Emmanuel

    2016-01-01

    Efficient transport algorithms are essential to the numerical resolution of incompressible fluid flow problems. Semi-Lagrangian methods are widely used in grid based methods to achieve this aim. The accuracy of the interpolation strategy then determines the properties of the scheme. We introduce a simple multi-stage procedure which can easily be used to increase the order of accuracy of a code based on multi-linear interpolations. This approach is an extension of a corrective algorithm introduced by Dupont \\& Liu (2003, 2007). This multi-stage procedure can be easily implemented in existing parallel codes using a domain decomposition strategy, as the communications pattern is identical to that of the multi-linear scheme. We show how a combination of a forward and backward error correction can provide a third-order accurate scheme, thus significantly reducing diffusive effects while retaining a non-dispersive leading error term.

  17. Genetic Algorithm Enhancement to Solve Multi Source Multi Product Flexible Multistage Logistics Network

    Directory of Open Access Journals (Sweden)

    Seyedyaser Bozorgirad

    2012-05-01

    Full Text Available To be successful in todays active business competition, enterprises need to design and build a productive and flexible logistics network. The flexible multistage logistic network (fMLN problem is NP-hard. The previous papers were considering the problem as a single source logistic network problem while in real world we face a multi source logistic network problem. In this paper, we shall find the minimum cost of fMLN using proposed Route Based Genetic Algorithm (RB-GA with considering a multi source multi product flexible multistage logistics network and the comparison based on numerical result between RB-GA and standard gentic algorithm is presented. We applied the penalty method in GA and new representation of GA to satisfy all existing constraints when. Additionally, we investigate all products amounts shipped from plants to customer. The best every product delivery route for each customer considering the constraints fulfilled will be found.

  18. Design Strategies of Fluorescent Biosensors Based on Biological Macromolecular Receptors

    Directory of Open Access Journals (Sweden)

    Takashi Morii

    2010-02-01

    Full Text Available Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.

  19. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  20. Multi-stage magnetic induction mass accelerator

    International Nuclear Information System (INIS)

    The magnetic induction method of mass acceleration readily lends itself to multi-staging. In the limit of many stages, such an accelerator approaches a distributed energy source system where only closing switches are necessary. We describe the design and performance of a three-stage accelerator, each driven by a separate capacitor bank. This system was modeled using a previously reported computer code. In order to do this the code was modified to calculate projectile acceleration through a succession of driver coils: Thermal conductivity and surface melting models were also added. The former is necessary due to the extended transit time through many stages. The latter is needed in anticipation of the more extreme ohmic heating when the capacitor banks are replaced by explosive-driven, magnetic flux compression generators. The performance goal of this system is to at least double the kinetic energy of a 0.3 kgm copperclad, steel projectile injected at a velocity of 300 m/sec from an explosive-driven gun. We then plan to test the system at the thermal and mechanical limit by using explosive-driven, magnetic flux compression generators as energy sources. We envision a six-stage system driven by three generators

  1. Process-based design of dynamical biological systems

    Science.gov (United States)

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-09-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered.

  2. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events

    OpenAIRE

    Alfieri, L.; Velasco, D.; Thielen, J.

    2011-01-01

    The deadly combination of short to no warning lead times and the vulnerability of urbanized areas makes flash flood events extremely dangerous for the modern society. This paper contributes to flash flood early warning by proposing a multi-stage warning system for heavy precipitation events based on threshold exceedances within a probabilistic framework. It makes use of meteorological products at different resolutions, namely, numerical weather predictions (NWP), radar-NWP b...

  3. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    Science.gov (United States)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  4. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization

    OpenAIRE

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-01-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the r...

  5. A multistage differential transformation method for approximate solution of Hantavirus infection model

    Science.gov (United States)

    Gökdoğan, Ahmet; Merdan, Mehmet; Yildirim, Ahmet

    2012-01-01

    The goal of this study is presented a reliable algorithm based on the standard differential transformation method (DTM), which is called the multi-stage differential transformation method (MsDTM) for solving Hantavirus infection model. The results obtanied by using MsDTM are compared to those obtained by using the Runge-Kutta method (R-K-method). The proposed technique is a hopeful tool to solving for a long time intervals in this kind of systems.

  6. Modelling of losses in multi-stage axial compressors with subsonic conditions / William James Swift

    OpenAIRE

    Swift, William James

    2003-01-01

    The need was identified to develop an analytical performance prediction code for subsonic multistage axial compressors that can be included in network analysis software. It was found that performance calculations based on an elementary one-dimensional meanline prediction method could achieve remarkable accuracy, provided that sound models are used for the losses, deviation and the onset of rotating stall. Consequently, this study focuses on gaining more expertise on the modelli...

  7. Particle swarm optimization of ascent trajectories of multistage launch vehicles

    Science.gov (United States)

    Pontani, Mauro

    2014-02-01

    Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state

  8. Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network

    CERN Document Server

    Bhardwaj, Ved Prakash; Tyagi, Vipin

    2012-01-01

    Multistage Interconnection Networks (MINs) are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N \\times N MIN; having size N. Optical Multistage Interconnection Network (OMIN) represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA). RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffle-exchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.

  9. Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network

    Directory of Open Access Journals (Sweden)

    Ved Prakash Bhardwaj

    2011-07-01

    Full Text Available Multistage Interconnection Networks (MINs are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N andamp;times; N MIN; having size N. Optical Multistage Interconnection Network (OMIN represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA. RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffleexchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.

  10. Coumarin Based Neutral Sensor for Biologically Important Anions

    Institute of Scientific and Technical Information of China (English)

    SHAO Jie

    2011-01-01

    A coumarin Shiff-base derivative,salicylaldehyde-N-(6-phenylazo-coumarin-3-formyl)-hydrazone(1),was obtained by simple organic synthesis from cheap and commercially available starting materials.Sensor 1 exhibits a very weak fluorescence emission,however,in the presence of acetate ions “turn-on” fluorescence is observed,which results from binding-induced conformational restriction of the fluorophore.Importantly,sensor 1 can also be used as colorimetric chemosensor for the anions with strong basicity,which is easily observed from yellow to red by naked eyes.Consequently,compound l can behave as a colorimetric and fluorescence sensor for biologically important F,CH3COO and H2PO4- in the presence of the other anions tested such as Cl-,Br- and I- in dimethyl sulfoxide(DMSO).

  11. RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Science.gov (United States)

    Callahan, Alison; Abeyruwan, Saminda W; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R; Popovich, Phillip G; Shah, Nigam H; Visser, Ubbo; Bixby, John L; Lemmon, Vance P

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org. PMID:27055827

  12. RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Science.gov (United States)

    Callahan, Alison; Abeyruwan, Saminda W; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R; Popovich, Phillip G; Shah, Nigam H; Visser, Ubbo; Bixby, John L; Lemmon, Vance P

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org.

  13. 基于并网型微电网多级储能系统的设计%A New Type of Multistage Energy Storage System Based on Grid-Connected Micro-grid

    Institute of Scientific and Technical Information of China (English)

    何勇; 彭晓; 曾丽琼; 冯韧

    2015-01-01

    A new type of elastic energy storage system is proposed in this paper, realizing the automatic control of energy storage and the energy release by the co-operation of the related automatic control system. This design, with a large storage and high reuse ratio, adopts the multistage clockworks repeated storage, against the disadvantage of the traditional chemical battery. The concept of a new type of energy storage energy bullets introduced for the first time, in which the energy bullets and matrix can be separated by some relevant braking control system. Such energy bullets can solve the problem of large energy’s storage and transport in a elastic energy storage, laying a foundation for grid-connected stability of the micro-grid.%设计了一种新型的弹性储能系统,联合相关的自动控制系统实现自动控制储能与能量的释放。采用了多级发条重复储能,实现了储能大,重复利用率高,避免了传统化学电池的弊端。首次引进了能量子弹的新型储能概念,并能通过相关的制动控制系统实现了能量子弹与母体间的分离。利用能量子弹解决目前弹性储能系统间不能进行大能量存储以及运输的瓶颈,为微电网并网稳定性问题的解决打下基础。

  14. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design

    Science.gov (United States)

    Adamczyk, John J.

    1999-01-01

    This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.

  15. Application of multi-stage Monte Carlo method for solving machining optimization problems

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2014-08-01

    Full Text Available Enhancing the overall machining performance implies optimization of machining processes, i.e. determination of optimal machining parameters combination. Optimization of machining processes is an active field of research where different optimization methods are being used to determine an optimal combination of different machining parameters. In this paper, multi-stage Monte Carlo (MC method was employed to determine optimal combinations of machining parameters for six machining processes, i.e. drilling, turning, turn-milling, abrasive waterjet machining, electrochemical discharge machining and electrochemical micromachining. Optimization solutions obtained by using multi-stage MC method were compared with the optimization solutions of past researchers obtained by using meta-heuristic optimization methods, e.g. genetic algorithm, simulated annealing algorithm, artificial bee colony algorithm and teaching learning based optimization algorithm. The obtained results prove the applicability and suitability of the multi-stage MC method for solving machining optimization problems with up to four independent variables. Specific features, merits and drawbacks of the MC method were also discussed.

  16. Neural Network Learning for Principal Component Analysis: A Multistage Decomposition Approach

    Institute of Scientific and Technical Information of China (English)

    FENGDazheng; ZHANGXianda; BAOZheng

    2004-01-01

    This paper presents a novel neural network model for finding the principal components of an Ndimensional data stream. This neural network consists of r (≤N) neurons, where the i-th neuron has only N - i+1 weights and an N- i+1 dimensional input vector, while each neuron in most of the relative classical neural networks includes N weights and an N dimensional input vector. All the neurons are trained by the NIC algorithm under the single component case[7] so as to get a series of dimension-reducing principal components in which the dimension number of the i-th principal component is N- i+1. In multistage dimension-reducing processing, the weight vector of i-th neuron is always orthogonal to the subspace constructed from the weight vectors of the first i-1 neurons. By systematic reconstruction technique, wecan recover all the principal components from a series of dimension-reducing ones. Its remarkable advantage is that its computational efficiency of the neural network learning based on the Novel information criterion (NIC) is improved and the weight storage is reduced, by the multistage dimension-reducing processing (multistage decomposition)for the covariance matrix or the input vector sequence. In addition, we study several important properties of the NIC learning algorithm.

  17. Controllability in Multi-Stage Laser Ion Acceleration

    Science.gov (United States)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  18. Multi-stage methodology to detect health insurance claim fraud.

    Science.gov (United States)

    Johnson, Marina Evrim; Nagarur, Nagen

    2016-09-01

    Healthcare costs in the US, as well as in other countries, increase rapidly due to demographic, economic, social, and legal changes. This increase in healthcare costs impacts both government and private health insurance systems. Fraudulent behaviors of healthcare providers and patients have become a serious burden to insurance systems by bringing unnecessary costs. Insurance companies thus develop methods to identify fraud. This paper proposes a new multistage methodology for insurance companies to detect fraud committed by providers and patients. The first three stages aim at detecting abnormalities among providers, services, and claim amounts. Stage four then integrates the information obtained in the previous three stages into an overall risk measure. Subsequently, a decision tree based method in stage five computes risk threshold values. The final decision stating whether the claim is fraudulent is made by comparing the risk value obtained in stage four with the risk threshold value from stage five. The research methodology performs well on real-world insurance data. PMID:25600704

  19. Multistage models of carcinogenesis and their implications for dose-response models and risk projections

    International Nuclear Information System (INIS)

    Multistage models are used to both describe the biological steps in developing a cancer and as a mathematical description of the relationship of exposure to tumor incidence. With the rapid development of molecular biology the stages of tumor development are becoming understood. Specifically, the effect and role of proto-oncogenes and suppressor genes are exciting developments in the field of carcinogenesis. Mathematically the field has moved from the original Armitage-Doll multistage model to the more current cell kinetic models. These latter models attempt to describe both the rate of cell mutation and the birth-death process involved in clonal expansion. This then allows modeling of both initiation and promotion or cellular proliferation. The field of radiation carcinogenesis has a considerable body of data and knowledge. Unfortunately, relatively little work has been done with the cell kinetic models as to estimation of tumor incidence. This may be due to the newness of kinetic models in general. The field holds promise and it is essential if we are to develop better human risk estimates from exposure to ionizing radiation. (author)

  20. STS-based education in non-majors college biology

    Science.gov (United States)

    Henderson, Phyllis Lee

    The study explored the effect of the science-technology-society (STS) and traditional teaching methods in non-majors biology classes at a community college. It investigated the efficacy of the two methods in developing cognitive abilities at Bloom's first three levels of learning. It compared retention rates in classes taught in the two methods. Changes in student attitude relating to anxiety, fear, and interest in biology were explored. The effect of each method on grade attainment among men and women was investigated. The effect of each method on grade attainment among older and younger students was examined. Results of the study indicated that no significant differences, relating to retention or student attitude, existed in classes taught in the two methods. The study found no significant cognitive gains at Bloom's first three levels in classes taught in the traditional format. In the STS classes no significant gains were uncovered at Bloom's first level of cognition. Statistically significant gains were found in the STS classes at Bloom's second and third levels of cognition. In the classes taught in the traditional format no difference was identified in grade attainment between males and females. In the STS-based classes a small correlational difference between males and females was found with males receiving lower grades than expected. No difference in grade attainment was found between older and younger students taught in the traditional format. In the STS-based classes a small statistically significant difference in grade attainment was uncovered between older and younger students with older students receiving more A's and fewer C's than expected. This study found no difference in the grades of older, female students as compared to all other students in the traditionally taught classes. A weak statistically significant difference was discovered between grade attainment of older, female students and all other students in the STS classes with older, female

  1. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  2. Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study

    Directory of Open Access Journals (Sweden)

    Costa Ricardo JS

    2013-01-01

    Full Text Available Abstract Background Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (Tmax range: 32°C to 40°C; simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques. Methods Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, n = 74 and control (CON, n = 12 through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM, hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5. Results Water (overall mean (SD: total daily 7.7 (1.5 L/day, during running 732 (183 ml/h and sodium (total daily 3.9 (1.3 g/day, during running 270 (151 mg/L ingestion did not differ between stages in UER (p vs. CON. Exercise-induced BM loss was 2.4 (1.2% (p p > 0.05 vs. CON pre-stage. Asymptomatic hyponatraemia (n = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (p p  Conclusion Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.

  3. Effect of Crosstalk on Permutation in Optical Multistage Interconnection Networks

    CERN Document Server

    Kaur, Er Sandeep; Aggarwal, Er Deepak

    2010-01-01

    Optical MINs hold great promise and have advantages over their electronic networks.they also hold their own challenges. More research has been done on Electronic Multistage Interconnection Networks, (EMINs) but these days optical communication is a good networking choice to meet the increasing demands of high-performance computing communication applications for high bandwidth applications. The electronic Multistage Interconnection Networks (EMINs) and the Optical Multistage Interconnection Networks (OMINs) have many similarities, but there are some fundamental differences between them such as the optical-loss during switching and the crosstalk problem in the optical switches. To reduce the negative effect of crosstalk, various approaches which apply the concept of dilation in either the space or time domain have been proposed. With the space domain approach, extra SEs are used to ensure that at most one input and one output of every SE will be used at any given time. For an Optical network without crosstalk, ...

  4. A Color-Opponency Based Biological Model for Color Constancy

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2011-05-01

    Full Text Available Color constancy is the ability of the human visual system to adaptively correct color-biased scenes under different illuminants. Most of the existing color constancy models are nonphysiologically plausible. Among the limited biological models, the great majority is Retinex and its variations, and only two or three models directly simulate the feature of color-opponency, but only of the very earliest stages of visual pathway, i.e., the single-opponent mechanisms involved at the levels of retinal ganglion cells and lateral geniculate nucleus (LGN neurons. Considering the extensive physiological evidences supporting that both the single-opponent cells in retina and LGN and the double-opponent neurons in primary visual cortex (V1 are the building blocks for color constancy, in this study we construct a color-opponency based color constancy model by simulating the opponent fashions of both the single-opponent and double-opponent cells in a forward manner. As for the spatial structure of the receptive fields (RF, both the classical RF (CRF center and the nonclassical RF (nCRF surround are taken into account for all the cells. The proposed model was tested on several typical image databases commonly used for performance evaluation of color constancy methods, and exciting results were achieved.

  5. Model equations for simulating flows in multistage turbomachinery

    Science.gov (United States)

    Adamczyk, John J.

    1996-01-01

    A steady, three dimensional average-passage equation system was derived. The purpose was to simulate multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. Moreover, these equations have a closure problem that is similar to that of the Reynolds-average Navier-Stokes equations. A scaled form of the average-passage equation system could provide an improved mathematical model for simulating the flow in the design and in the off-design conditions of a multistage machine.

  6. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  7. Bodypart Recognition Using Multi-stage Deep Learning.

    Science.gov (United States)

    Yan, Zhennan; Zhan, Yiqiang; Peng, Zhigang; Liao, Shu; Shinagawa, Yoshihisa; Metaxas, Dimitris N; Zhou, Xiang Sean

    2015-01-01

    Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN. PMID:26221694

  8. Challenges and Opportunities for Learning Biology in Distance-Based Settings

    Science.gov (United States)

    Hallyburton, Chad L.; Lunsford, Eddie

    2013-01-01

    The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…

  9. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  10. NMR-based Metabolomics Applications in Biological and Environmental Science

    Science.gov (United States)

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used bybiologists to study the dynamic response of biological systems (cells, tissues, or wholeorganisms) under diverse physiological or pathological conditions. Metabolomics deals with the quali...

  11. Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation

    Science.gov (United States)

    Anderson, J. E. (Principal Investigator)

    1979-01-01

    An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.

  12. Biologically based epidemiological studies of electric power and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.G. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-01

    Use of electricity is a hallmark of the industrialization process, but there has been no suspicion that electricity could increase the risk of cancer. Recently, however, a number of epidemiologic studies have suggested that electromagnetic fields (EMF) may do just that. Although few cancer experiments have been done yet, there are a number of biological effects of EMF reported in the literature that might provide bases for designing cancer experiments and epidemiologic studies. These include effects of EMF on: (a) DNA transcription and translation, (b) calcium balance in cells, and (c) pineal production of melatonin. Alterations in DNA transcription and translation could have pleiotropic effects. Disruption of calcium homeostasis has many implications including oncogene activation, promotional activity via protein kinases and ornithine decarboxylase (ODC), and increasing oxidative stress. Reduction of melatonin suggests a possible increased risk of cancers of hormone-dependent tissues such as breast and prostate. The idea that a cancer-causing agent must either be an initiator or a promoter should be discarded; indeed, the phenomenologic meaning of these two terms has become confused with imputed mechanistic necessity in recent years. Agents that affect division of normal cells or of fully transformed cells can play an important role in clinical cancer development quite apart from initiation or promotion. Epidemiologic studies of EMF and cancer should attempt to take account of other products of electric power (e.g., light at night) or factors associated with occupational EMF exposure (e.g., toxic chemicals) that may increase cancer risk and therefore act as cofactors or confounders. Epidemiology and laboratory studies should act synergistically in determining if there is a problem and identifying mitigation strategies if needed. 84 refs., 3 figs., 1 tab.

  13. 76 FR 19747 - Grant of Authority for Subzone Status; Grundfos Pumps Manufacturing Corporation (Multi-Stage...

    Science.gov (United States)

    2011-04-08

    ... (Multi-Stage Centrifugal Pumps); Allentown, PA Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the multi-stage centrifugal pump... status for activity related to the manufacturing of multi-stage centrifugal pumps at the Grundfos...

  14. MULTISTAGED BURNER DESIGN FOR IN-FURNACE NOX CONTROL

    Science.gov (United States)

    The paper gives results of an evaluation of a multistage combustion modification design, combining two advanced NOx control technologies, on a pilot-scale (0.9 MW) package boiler simulator for in-furnace NOx control of high nitrogen fuel combustion applications. A low NOx precomb...

  15. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    Science.gov (United States)

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  16. Information Overload in Multi-Stage Selection Procedures

    NARCIS (Netherlands)

    S.S. Ficco (Stefano); V.A. Karamychev (Vladimir)

    2004-01-01

    textabstractThe paper studies information processing imperfections in a fully rational decision-making network. It is shown that imperfect information transmission and imperfect information acquisition in a multi-stage selection game yield information overload. The paper analyses the mechanisms resp

  17. SYNTHESIS OF SULFONAMIDE BASED SCHIFF’S BASES AND THEIR BIOLOGICAL EVALUATION TOWARDS COLLETOTRICHUM GLOEOSPORIOIDES

    Directory of Open Access Journals (Sweden)

    Siliveru Swamy

    2012-11-01

    Full Text Available The purpose of research was to synthesize the better antifungal compounds, different substituted aromatic aldehydes are chosen as the starting materials for the synthesis of Schiff’s bases with sulfonamides in presence of alcohol and acidic reagent. The structures of synthesized compounds were confirmed by HRMS spectral analysis data. The derivatives were subjected to Colletotrichum gloeosporioides spore germination to evaluate their biological activity.

  18. 基于影响网络与不完全信息多阶段博弈的作战行动序列模型及求解方法%Modeling and solution method of course of action based on influence net and multi-stage games with incomplete information

    Institute of Scientific and Technical Information of China (English)

    杜正军; 陈超; 姜鑫

    2012-01-01

    拟制作战计划的关键是生成作战行动序列.考虑作战行动过程中的不确定性以及激烈对抗性,以影响网络分析作战行动和战场态势之间的相互影响,用不完全信息博弈分析敌对双方之间的对抗,建立了基于影响网络和不完全信息多阶段博弈的作战行动序列模型,并给出了求解方法.通过计算实例说明了模型及其求解方法.结果显示该模型生成的COA更适应于对抗环境.%The development of Course of Action ( COA) is a key step of military planning. In most existing literature on COA development, the previous studies only take unilateral actions of friendly force into account. Considering the antagonism of war, we propose models that contain actions of both friendly and enemy force based on multi-stage games with incomplete information. Influence net is used to analyze the uncertain relationships between actions and battlefield situation. In the end, numerical examples are presented to illustrate the models and solution, showing that the COA developed in the current study ia suitable for the antagonistic situation.

  19. Web Based Learning Support for Experimental Design in Molecular Biology.

    Science.gov (United States)

    Wilmsen, Tinri; Bisseling, Ton; Hartog, Rob

    An important learning goal of a molecular biology curriculum is a certain proficiency level in experimental design. Currently students are confronted with experimental approaches in textbooks, in lectures and in the laboratory. However, most students do not reach a satisfactory level of competence in the design of experimental approaches. This…

  20. Multistage Off-Line Permutation Packet Routing on a Mesh: An Approach with Elementary Mathematics

    Institute of Scientific and Technical Information of China (English)

    Kevin Chiew; Yingjiu Li

    2009-01-01

    Various methods have been proposed for off-line permutation packet routing on a mesh. One of the methods is known as multistage routing, in which the first stage is crucial. For the first stage of routing, the previous study normally converts it to a problem of graph theory and proves the existence of solutions. However, there is a lack of simple algorithms to the first stage of routing. This article presents an explicit and simple approach for the first stage of routing based on elementary mathematics.

  1. A Predictive Model of Multi-Stage Production Planning for Fixed Time Orders

    Directory of Open Access Journals (Sweden)

    Kozłowski Edward

    2014-09-01

    Full Text Available The traditional production planning model based upon a deterministic approach is well described in the literature. Due to the uncertain nature of manufacturing processes, such model can however incorrectly represent actual situations on the shop floor. This study develops a mathematical modeling framework for generating production plans in a multistage manufacturing process. The devised model takes into account the stochastic model for predicting the occurrence of faulty products. The aim of the control model is to determine the number of products which should be manufactured in each planning period to minimize both manufacturing costs and potential financial penalties for failing to fulfill the order completely.

  2. Interconnected levels of Multi-Stage Marketing – A Triadic approach

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...

  3. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool

    OpenAIRE

    Zi, Z.; Klipp, E.

    2006-01-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of...

  4. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  5. Realization of Multistage FIR Filters using Pipelining-Interleaving

    Directory of Open Access Journals (Sweden)

    M. Ciric

    2012-11-01

    Full Text Available Multistage digital filters can be one of the solutions for the realization of filters with a narrow transition zone. If requirements for the width of transition zone are too strict, then they are the only alternative, and the decimation/interpolation must be performed in several steps. Combining decimation/interpolation operations related to the implementation of multi-channel filters in the PI (pipelining/interleaving technique can give an efficient structure of multichannel multistage filter. Using the advantages offered by newer generations of FPGA chips in terms of digital design structure, it is possible to realize such filters with considerable savings of hardware resources and reduce the effect of finite length codeword. This paper proposes such an efficient implementation and presents the results of such a realization with FPGA components.

  6. Fuzzy-like multiple objective multistage decision making

    CERN Document Server

    Xu, Jiuping

    2014-01-01

    Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like un...

  7. Performance of Multi-Channel Multi-Stage Spectrum Sensing

    CERN Document Server

    Gabran, Wesam; Čabrić, Danijela

    2010-01-01

    We present an analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing protocols for Opportunistic Spectrum Access networks. Analyzed performance metrics include the average secondary user throughput and the average collision probability between the primary and secondary users. The analysis framework takes into account buffering of incoming secondary user traffic, parallel and single channel access, as well as prolonged channel observation periods at the first and last stage of sensing. The main results show that when a constraint is given upon the probability of primary user mis-detection, multi-stage sensing is in most cases superior to the single stage sensing counterpart. Further, prolonged channel observation at the first sensing stage decreases the collision probability considerably while keeping the throughput at an acceptable level. Finally, in most network scenarios considered in this work, two stages of sensing are enough to obtain the maximum...

  8. Analysis and Optimization of a Multistage Inventory-Queue System

    OpenAIRE

    Liming Liu; Xiaoming Liu; David D. Yao

    2004-01-01

    An important issue in the management of supply chains and manufacturing systems is to control inventory costs at different locations throughout the system while satisfying an end-customer service-level requirement. The challenge involved is to solve a nonlinear constrained optimization problem that captures the key dynamics of a complex production-inventory system. In this paper, we first develop a multistage inventory-queue model and a job-queue decomposition approach that evaluates the perf...

  9. Process for multi-stage treatment of radioactive waste water

    International Nuclear Information System (INIS)

    For the multi-stage treatment of radioactive waste waters with a decanter the solids contained in the waste waters are dried up to a residual moisture of 10% and are subsequently disposed. Solids remaining in the liquid part are removed with a separator up to the colloidal range, whereas the liquid product of the decanter is filtered up to the molecular range so that it can be used as industrial water. (orig.)

  10. Multi-Stage Transportation Problem With Capacity Limit

    OpenAIRE

    I. Brezina; Z. Čičková; J. Pekár; M. Reiff

    2010-01-01

    The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algor...

  11. Wavelet-based detection of transients in biological signals

    Science.gov (United States)

    Mzaik, Tahsin; Jagadeesh, Jogikal M.

    1994-10-01

    This paper presents two multiresolution algorithms for detection and separation of mixed signals using the wavelet transform. The first algorithm allows one to design a mother wavelet and its associated wavelet grid that guarantees the separation of signal components if information about the expected minimum signal time and frequency separation of the individual components is known. The second algorithm expands this idea to design two mother wavelets which are then combined to achieve the required separation otherwise impossible with a single wavelet. Potential applications include many biological signals such as ECG, EKG, and retinal signals.

  12. Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors

    Institute of Scientific and Technical Information of China (English)

    JunHu; ThomasPeters; 等

    1999-01-01

    In the present paper,a nonlinear multi“actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities,including rotating stall and surge,in high speed multistage axial compressors.The model describes the duct flow fields using two dimensional,compressible and unsteady Euler equations,and accounts for the influences of downstream plenum and throttle in the system as well.It replaces each blade row of multistage compressore with a disk.For numerical calculations,the time marching procedure,using MacCormack two steps scheme,is used.The main pupose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception and the interation between blade rows in high speed multistage compressors.It has been demonstrated that the model has the ability to predict those phenomena,and the results show that some system parameters have a strong effect on the stall features as well.Results for a five stage high speed compressor are analyzed in detail,and comparison with the experimental data demonstrates that the model and calculating results are reliable.

  13. Rethinking biology instruction: The application of DNR-based instruction to the learning and teaching of biology

    Science.gov (United States)

    Maskiewicz, April Lee

    Educational studies report that secondary and college level students have developed only limited understandings of the most basic biological processes and their interrelationships from typical classroom experiences. Furthermore, students have developed undesirable reasoning schemes and beliefs that directly affect how they make sense of and account for biological phenomena. For these reasons, there exists a need to rethink instructional practices in biology. This dissertation discusses how the principles of Harel's (1998, 2001) DNR-based instruction in mathematics could be applied to the teaching and learning of biology. DNR is an acronym for the three foundational principles of the system: Duality, Necessity, and Repeated-reasoning. This study examines the application of these three principles to ecology instruction. Through clinical and teaching interviews, I developed models of students' existing ways of understanding in ecology and inferred their ways of thinking. From these models a hypothetical learning trajectory was developed for 16 college level freshmen enrolled in a 10-week ecology teaching experiment. Through cyclical, interpretive analysis I documented and analyzed the evolution of the participants' progress. The results provide empirical evidence to support the claim that the DNR principles are applicable to ecology instruction. With respect to the Duality Principle, helping students develop specific ways of understanding led to the development of model-based reasoning---a way of thinking and the cognitive objective guiding instruction. Through carefully structured problem solving tasks, the students developed a biological understanding of the relationship between matter cycling, energy flow, and cellular processes such as photosynthesis and respiration, and used this understanding to account for observable phenomena in nature. In the case of intellectual necessity, the results illuminate how problem situations can be developed for biology learners

  14. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

  15. Multistage Carcinogenesis Modelling of Low and Protracted Radiation Exposure for Risk Assessment

    Science.gov (United States)

    Brugmans, M. J. P.; Bijwaard, H.

    Exposure to cosmic radiation in space poses an increased risk for radiation-induced cancer later in life. Modelling is essential to quantify these excess risks from low and protracted exposures to a mixture of radiation types, since they cannot be determined directly in epidemiological studies. Multistage carcinogenesis models provide a mechanistic basis for the extrapolation of epidemiological data to the regime that is relevant for radiation protection. In recent years, we have exploited the well-known two-mutation carcinogenesis model to bridge the gap between radiobiology and epidemiology. We have fitted this model to a number of animal and epidemiological data sets, using dose-response relationships for the mutational steps that are well established in cellular radiobiology. The methodology and implications for radiation risks are illustrated with analyses of two radiation-induced tumours: bone cancer from internal (high-LET and low-LET) emitters and lung cancer after radon exposure. For the risks of bone-seeking radionuclides (Ra-226, Sr-90, Pu-239), model fits to beagle data show that the dose-effect relationship for bone cancer at low intakes is linear-quadratic. This is due to a combination of equally strong linear dose-effects in the two subsequent mutational steps in the model. This supra-linear dose-effect relationship is also found in a model analysis of bone cancer in radium dial painters. This implies that at low intakes the risks from bone seekers are significantly lower than estimated from a linear extrapolation from high doses. Model analyses of radon-exposed rats and uranium miners show that lung-cancer induction is dominated by a linear radiation effect in the first mutational step. For two miner cohorts with significantly different lung cancer baselines a uniform description of the effect of radon is obtained in a joint analysis. This demonstrates the possibility to model risk transfer across populations. In addition to biologically based risk

  16. Dynamic-programming approaches to single-and multi-stage stochastic knapsack problems for portfolio optimization

    OpenAIRE

    Khoo, Wai Gea

    1999-01-01

    This thesis proposes new methods, based on dynamic programming, for solving certain single-stage and multi-stage integer stochastic knapsack problems. These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type. Given an initial wealth, the objective is to select a portfolio that maximizes the probability of achieving or exceeding a specified final return th...

  17. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    OpenAIRE

    Chuan Wang; Weidong Shi; Ling Zhou; Weigang Lu

    2013-01-01

    In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD) are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function...

  18. 基于技术成熟度理论的智能输电网多阶段投资决策模型%A Decision-Making Model of Multi-Stage Investment for Smart Transmission Grid Based on Technology Readiness

    Institute of Scientific and Technical Information of China (English)

    熊浩清; 张晓华; 孟远景; 汤涌; 孙华东; 易俊; 熊传平

    2011-01-01

    在智能电网建设背景下,输电网投资面临各种潜在的市场风险,对投资决策的灵活性提出了较高的要求.应用技术成熟度理论分析智能输电网投资决策问题,根据技术成熟度等级划分智能输电网的有效投资阶段,建立基于技术成熟度的智能输电网多阶段投资决策模型,以确定最优投资方案及各阶段的投资资金数量.以IEEE-24节点系统为例分析考虑输电线路、晶闸管控制串联电容器补偿方案的3阶段智能输电网投资决策问题,验证了上述模型的正确性和有效性.%The investment of transmission grid is faced with various potential market risks during the construction of smart transmission grid, and this condition makes higher demand on the flexibility of investment decision-making. By means of analyzing investment decision-making of smart transmission grid by technology readiness and marking off effective investment stages for smart transmission grid based on technology readiness level, a technology readiness based multi-stage investment decision-making model is built to determine optimal investment project and the amount of investment in different stages. Taking IEEE 24-bus system for example, a three-stage investment decision-making for smart transmission grid, in which the transmission lines, thyristor controlled series compensator (TCSC) are considered, is analyzed to verify the correctness and effectiveness of the built model.

  19. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    Science.gov (United States)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  20. Competency-Based Reforms of the Undergraduate Biology Curriculum: Integrating the Physical and Biological Sciences

    OpenAIRE

    Thompson, Katerina V.; Chmielewski, Jean; Gaines, Michael S.; Hrycyna, Christine A.; Lacourse, William R.

    2013-01-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units ...

  1. Biologically based strategies to augment rotator cuff tears

    Directory of Open Access Journals (Sweden)

    M Schaer

    2012-01-01

    Full Text Available Lesions of the rotator cuff (RC are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords "tendon," "rotator cuff," "augmentation," "growth factor," "platelet-rich fibrin," and "platelet-rich plasma" for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.

  2. A multistage model of hospital bed requirements.

    OpenAIRE

    Pendergast, J F; Vogel, W B

    1988-01-01

    This article presents a model for projecting future hospital bed requirements, based on clinical judgment and basic probability theory. Clinical judgment is used to define various categories of care, including a category for patients who are inappropriately hospitalized, for a large teaching hospital with a heavy indigent and psychiatric workload. Survey results and discharge abstract data are then used to calculate expected discharges and patient days for each clinical category. These expect...

  3. Multistage heat treatment for super alloys

    International Nuclear Information System (INIS)

    Nickel base alloys of the type γ/γ' are dealt with containing localized regions of low-melting components. The Ni based complex superalloys developed for high demands (temperature, mechanical stressing) are subject to increasing segregation following casting when solidifying. The method compared to previous known processes improves the homogenization of the cast pieces by a special thermal treatment. It is based on diffusion to change the composition of the segregated regions in order to raise their melting point. This can be normally up to 1700C below the melting point of the alloy mixture. Sofar known methods are based on the removal of these segregated regions. The present method does not essentially influence the actual amount (part volume) of these regions, but changes its composition by thermal treatment of 2 to 20 h. in a temperature region of maximum 550C (preferably 300C) below the melting temperature of the entectic. The melting point of the entectic thus rises to a temperature of at least 100C above the γ'solubility curve. A second heat treatment is performed in order to dissolve the γ'-particles occuring in the cast having a particle size of 2-5μm. It takes place at a temperature above that of the γ' solubility curve but below that of the raised temperature of melt start. About 1-10 h are sufficient for practically complete dissolving of the γ'-material. Cooling down to room temperature is carried out at such a rate as to prevent the formation of coarse γ'-particles. Following the invented heat treatment, the particle size of the γ'-phase is of the order of less than 1μm. (IHOE)

  4. Cost effectiveness of a multi-stage return to work program for workers on sick leave due to low back pain, design of a population based controlled trial [ISRCTN60233560

    NARCIS (Netherlands)

    Steenstra, I.A.; Anema, J.R.; Bongers, P.M.; Vet, H.C.W. de; Mechelen, W. van

    2003-01-01

    Background: To describe the design of a population based randomized controlled trial (RCT), including a cost-effectiveness analysis, comparing participative ergonomics interventions between 2-8 weeks of sick leave and Graded Activity after 8 weeks of sick leave with usual care, in occupational back

  5. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  6. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Brown, Nathan; Ertl, Peter; Jenkins, Jeremy L; Selzer, Paul; Hamon, Jacques

    2007-01-01

    Classification methods for data sets of molecules according to their chemical structure were evaluated for their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling experiments were classified according to their chemical structures, and the results were compared in a Pareto analysis with the number of classes and their average spread in the profile space as two concurrent objectives which were to be minimized. It has been found that no classification method is overall superior to all other studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated. On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are required, and some loss of homogeneity in biological activity can be accepted.

  7. FABRICATION OF MESSAGE DIGEST TO AUTHENTICATE AUDIO SIGNALS WITH ALTERNATION OF COEFFICIENTS OF HARMONICS IN MULTI-STAGES (MDAC

    Directory of Open Access Journals (Sweden)

    Uttam Kr. Mondal

    2011-11-01

    Full Text Available Providing security to audio songs for maintaining its intellectual property right (IPR is one of chanllenging fields in commercial world especially in creative industry. In this paper, an effective approach has been incorporated to fabricate authentication of audio song through application of message digest method with alternation of coefficients of harmonics in multi-stages of higher frequency domain without affecting its audible quality. Decomposing constituent frequency components of song signal using Fourier transform with generating secret code via applying message digest followed by alternating coefficients of specific harmonics in multi-stages generates a secret code and this unique code is utilized to detect the originality of the song. A comparative study has been made with similar existing techniques and experimental results are also supported with mathematical formula based on Microsoft WAVE (".wav" stereo sound file.

  8. Fabrication of Message Digest to Authenticate Audio Signals with Alternation of Coefficients of Harmonics in Multi-Stages (MDAC)

    CERN Document Server

    Mondal, Uttam Kr

    2012-01-01

    Providing security to audio songs for maintaining its intellectual property right (IPR) is one of chanllenging fields in commercial world especially in creative industry. In this paper, an effective approach has been incorporated to fabricate authentication of audio song through application of message digest method with alternation of coefficients of harmonics in multi-stages of higher frequency domain without affecting its audible quality. Decomposing constituent frequency components of song signal using Fourier transform with generating secret code via applying message digest followed by alternating coefficients of specific harmonics in multi-stages generates a secret code and this unique code is utilized to detect the originality of the song. A comparative study has been made with similar existing techniques and experimental results are also supported with mathematical formula based on Microsoft WAVE (".wav") stereo sound file.

  9. Fabrication of Message Digest to Authenticate Audio Signals with Alternation of Coefficients of Harmonics in Multi-Stages (MDAC

    Directory of Open Access Journals (Sweden)

    Uttam Kr. Mondal

    2011-12-01

    Full Text Available Providing security to audio songs for maintaining its intellectual property right (IPR is one ofchanllenging fields in commercial world especially in creative industry. In this paper, an effectiveapproach has been incorporated to fabricate authentication of audio song through application of messagedigest method with alternation of coefficients of harmonics in multi-stages of higher frequency domainwithout affecting its audible quality. Decomposing constituent frequency components of song signal usingFourier transform with generating secret code via applying message digest followed by alternatingcoefficients of specific harmonics in multi-stages generates a secret code and this unique code is utilized todetect the originality of the song. A comparative study has been made with similar existing techniques andexperimental results are also supported with mathematical formula based on Microsoft WAVE (".wav"stereo sound file.

  10. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond. PMID:18316808

  11. 一种对基于耗尽关机多级固体火箭概念设计的改进方法%An Improved Method for Conceptual Design of Multi-stage Solid Rockets Based on Depleted Shutdown

    Institute of Scientific and Technical Information of China (English)

    何麟书; Murad.Y

    2005-01-01

    Solid propellant rocket motors are preferred for most ballistic missiles because they need simple maintenance and can be launched quickly.But the conventional thrust termination devices limit the depletion of every stage's grain and increase some extra-weight.An improved method for designing a multi-stage solid rocket based depleted shutdown was provided.In order to solve the problem of lack of thrust termination devices,a device to adjust the burnout angle will match the final burnout velocity and satisfy the desired range.The method can also limit the detection from anti-ballistic missile system.%由于维护简单和发射快速,弹道导弹多用固体火箭发动机,但繁杂的推力终止装置使各级装药不能耗尽并让结构增重.提出了一种对基于耗尽关机多级固体火箭概念设计的改进方法,此方法满足导弹系统主要的战技要求.为解决无推力终止装置的末速不准问题,可在末级发动机采用姿态调整装置,对射角进行调整,配合末速以满足射程要求.本方法还可抑制敌方反导探测.

  12. Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas

    KAUST Repository

    Choi, Seung Hak

    2013-06-01

    In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.

  13. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  14. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    Science.gov (United States)

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of 50 kD, which seemed to be rather acid-inert. With complexation times of 10 kD) has been found.

  15. Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes

    Science.gov (United States)

    Rokujo, H.; Aoki, S.; Takahashi, S.; Kamada, K.; Mizutani, S.; Nakagawa, R.; Ozaki, K.

    2013-02-01

    To observe gamma-ray sources precisely, a balloon-borne experiment with a new type of detector, the emulsion gamma-ray telescope, is planned. A multi-stage shifter mechanism based on the concept of an analog clock serves as a time stamper with subsecond time resolution and uses multiple moving stages mounted on the emulsion chambers. This new technique was employed in a test experiment using a small-scale model in a short-duration balloon flight. Tracks recorded in nuclear emulsion were read by a fully automated scanning system, were reconstructed, and time information were assigned by analysis of their position displacements in the shifter layers. The estimated time resolution was 0.06-0.15 s. The number of tracks passing through the detector was counted every second, and hadron jets were detected as significant excesses observed in the counting rate. In future, the multi-stage shifter is greatly contributing to ongoing efforts to increase the effective area of emulsion gamma-ray telescopes.

  16. Simulation and analysis of multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine enantiomers☆

    Institute of Scientific and Technical Information of China (English)

    Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang

    2015-01-01

    Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.

  17. Modelling and Control of the Multi-stage Cable Pulley-driven Flexible-joint Robot

    Directory of Open Access Journals (Sweden)

    Phongsaen Pitakwatchara

    2014-07-01

    Full Text Available This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, the major loss throughout the system elements, and the typical inertial dynamics of the robot. Next, a task space impedance controller based on limited information about the angle and the current of the motors is designed. The motor current is used to infer the transmitted torque, by which the motor inertia may be modulated. The motor angle is employed to estimate the stationary distal robot link angle and the robot joint velocity. They are used in the controller to generate the desired damping force and to shape the potential energy of the flexible joint robot system to the desired configuration. Simulation and experimental results of the controlled system signify the competency of the proposed control law.

  18. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  19. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  20. Distribution characteristics of holdups in a multi-stage bubble column using electrical resistance tomography

    Institute of Scientific and Technical Information of China (English)

    Haibo Jin; Yicheng Lian; Yujian Qin; Suohe Yang; Guangxiang He

    2013-01-01

    Based on the principle of chemical reaction engineering,the addition of perforated plates can improve the performance of conventional bubble column and decrease the backmixing behaviors.The distribution characteristics of gas holdup in a multi-stage bubble column embedded with five types of sieve plates and three types of tongue plates were studied using electrical resistance tomography (ERT).The effects of superficial gas velocity and the geometric design of perforated plates on the gas holdup and its radial distribution above and below the plates of the bubble column were discussed.Experimental results show ERT is suitable as an online monitoring tool to provide useful information on the hydrodynamic parameters of multi-stage bubble columns.With increasing superficial gas velocity,local gas holdup increases,and gas holdup below the plate increases with decrease of free area (%FA),hole diameters or angle of tongue plates.ERT technique facilitates noninvasive and nonintrusive visualization of cross-sectional distribution of gas holdup in a bubble column.

  1. Multistage Development of Müller-Achenbach model for Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Simin A. Oshkovr

    2008-01-01

    Full Text Available This research focused on the conceptual development of constitutive Müller-Achenbach model and proceeds to construct a model based on phase transition under changing temperature and load for variants of martensite in shape memory alloy CuAlNi (Copper-aluminum-nickel. Problem statement: Motivation of this research is rare information of a variant of martensite phase (M++ and prediction of the shape recovery of shape memory alloy in this stage of transformation. Approach: The mathematical equations proposed a prediction of stability of Austenite phases and extend it to multistage martensitic phase transformation. These phase transformations occurred by loading on the material. Equations described free energy landscape in CuAlNi shape memory alloys at low (260K and high temperature (440K. The model evaluated the free energy due to the phase transformation between the austenite and multistage martensitic structures. Results: Results for M++ phase showed decrease in temperature from 440K to 260K presented decrease in stress approximately from 1 kN to 0.4kN and free energy from 5 kJ/kg to 0.1 kJ/kg. Equations have been solved and plotted by software programmed in MATLAB. Conclusions/Recommendations: The model which has derived focused on homogeneous shape memory alloys, but future performance requirements will most likely be met with heterogeneous materials. Therefore, simulation models for heterogeneous materials must be developed.

  2. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    Science.gov (United States)

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making.

  3. Multistage chemical carcinogenesis in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.

    1979-01-01

    Skin tumors in mice can be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a noncarcinogenic tumor promoter. The initiation phase requires only a single application of either a direct acting carcinogen or a procarcinogen which has to be metabolized before being active and is essentially an irreversible step which probably involves a somatic cell mutation. There is a good correlation between the skin tumor initiating activites of several polycyclic aromatic hydrocarbons (PAH) and their ability to bind covalently to epidermal DNA. Laboratory results suggest that bay region diol-epoxides are the ultimate carcinogenic form of PAH carcinogens. Potent inhibitors and stimulators of PAH tumor initiation appear to affect the level of the PAH diol-epoxide reacting with specific DNA bases. Reecent data suggests that the tumor promotion stage involves at least three important steps: (1) the induction of embryonic looking cells (dark cells) in adult epidermis; (2) an increased production of epidermal prostaglandins and polyamines; (3) sustained proliferation of dark cells. Retinoic acid specifically inhibits step two whereas the anti-inflammatory steriod fluocinolone acetonide is a potent inhibitor of steps one and three. The mechanism and the importance of a specific sequence for each step in chemical carcinogenesis in mouse skin are detailed.

  4. Cost effectiveness of a multi-stage return to work program for workers on sick leave due to low back pain, design of a population based controlled trial [ISRCTN60233560

    Directory of Open Access Journals (Sweden)

    Anema Johannes R

    2003-11-01

    Full Text Available Abstract Background To describe the design of a population based randomized controlled trial (RCT, including a cost-effectiveness analysis, comparing participative ergonomics interventions between 2–8 weeks of sick leave and Graded Activity after 8 weeks of sick leave with usual care, in occupational back pain management. Methods Design An RCT and cost-effectiveness evaluation in employees sick-listed for a period of 2 to 6 weeks due to low back pain. Interventions used are 1. Communication between general practitioner and occupational physician plus Participative Ergonomics protocol performed by an ergonomist. 2. Graded Activity based on cognitive behavioural principles by a physiotherapist. 3. Usual care, provided by an occupational physician according to the Dutch guidelines for the occupational health management of workers with low back pain. The primary outcome measure is return to work. Secondary outcome measures are pain intensity, functional status and general improvement. Intermediate variables are kinesiophobia and pain coping. The cost-effectiveness analysis includes the direct and indirect costs due to low back pain. The outcome measures are assessed before randomization (after 2–6 weeks on sick leave and 12 weeks, 26 weeks and 52 weeks after first day of sick leave. Discussion The combination of these interventions has been subject of earlier research in Canada. The results of the current RCT will: 1. crossvalidate the Canadian findings in an different sociocultural environment; 2. add to the cost-effectiveness on treatment options for workers in the sub acute phase of low back pain. Results might lead to alterations of existing (international guidelines.

  5. Synthesis, Characterization, and Biological Evaluation of Gelatin-based Scaffolds

    CERN Document Server

    Tronci, G

    2011-01-01

    This thesis presents the development of entropy-elastic gelatin based networks in the form of films or scaffolds. The materials have good prospects for biomedical applications, especially in the context of bone regeneration. Entropy-elastic gelatin based hydrogel films with varying crosslinking densities were prepared with tailored mechanical properties. Gelatin was covalently crosslinked in water above its sol gel transition, which suppressed the gelatin chain helicity. Amorphous films were prepared with tailorable degrees of swelling and wet state Young's modulus. The knowledge gained with this bulk material was transferred to the integrated process of foaming and crosslinking to obtain porous gelatin-based scaffolds. A gelatin solution was foamed in the presence of saponin and the resulting foam was fixed by chemical crosslinking with a diisocyanate. The scaffolds were analyzed in the dry state by micro computed tomography (\\mu CT, porosity: 65\\pm 11-73\\pm 14 vol.-%), and scanning electron microscopy (SEM,...

  6. Paper-based chemical and biological sensors: Engineering aspects.

    Science.gov (United States)

    Ahmed, Snober; Bui, Minh-Phuong Ngoc; Abbas, Abdennour

    2016-03-15

    Remarkable efforts have been dedicated to paper-based chemosensors and biosensors over the last few years, mainly driven by the promise of reaching the best trade-off between performance, affordability and simplicity. Because of the low-cost and rapid prototyping of these sensors, recent research has been focused on providing affordable diagnostic devices to the developing world. The recent progress in sensitivity, multi-functionality and integration of microfluidic paper-based analytical devices (µPADs), increasingly suggests that this technology is not only attractive in resource-limited environments but it also represents a serious challenger to silicon, glass and polymer-based biosensors. This review discusses the design, chemistry and engineering aspects of these developments, with a focus on the past few years.

  7. Inquiry-based Science Instruction in High School Biology Courses: A Multiple Case Study

    Science.gov (United States)

    Aso, Eze

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's model of increasing levels of complexity for inquiry-based instruction. A multiple case study research design was conducted of biology programs at 3 high schools in an urban school district in the northeastern region of the United States. Participants included 2 biology teachers from each of the 3 high schools. Data were collected from individual interviews with biology teachers, observations of lessons in biology, and documents related to state standards, assessments, and professional development. The first level of data analysis involved coding and categorizing the interview and observation data. A content analysis was used for the documents. The second level of data analysis involved examining data across all sources and all cases for themes and discrepancies. According to study findings, biology teachers used confirmation, structure, and guided inquiry to improve student learning. However, they found open inquiry challenging and frustrating to implement because professional development about scaffolding of instruction over time was needed, and students' reading and writing skills needed to improve. This study contributes to positive social change by providing educators and researchers with a deeper understanding about how to scaffold levels of inquiry-based science instruction in order to help students become scientifically literate citizens.

  8. Research on Efficiency of R&D Activity of Gansu Based on the Multi-stage VRS Model of DEA Method%甘肃省R&D活动效率研究

    Institute of Scientific and Technical Information of China (English)

    张爱宁; 玄兆辉; 马巧丽

    2012-01-01

    Based on VRS model of data envelopment analysis and the data of the second investigation of R&D Resources, the paper puts forward the measuring method for efficiency of R&D activity to calculate the efficiency of R&D activity of Cansu provinces in 2009. Meanwhile, the paper analyzes the DEA validity, pure technical efficiency and scale efficiency of various regions. In order to reach a better efficiency, it makes a further study on the reasons of low-efficiency of R&D activity and how to adjust the combination between inputs and outputs correctly in some areas.%本文基于数据包络分析的VRS模型原理提出了R&D活动效率的测算方法,运用第二次R&D资源清查资料对甘肃省2009年各市州的R&D活动效率进行了测算,分析了各地区R&D活动的DEA有效性、纯技术效率、规模效益情况,并就部分地区R&D活动效率低的原因及如何调整其投入产出项的组合,从而达到较高的效率进行了深入研究.

  9. Team-Based Learning Enhances Performance in Introductory Biology

    Science.gov (United States)

    Carmichael, Jeffrey

    2009-01-01

    Given the problems associated with the traditional lecture method, the constraints associated with large classes, and the effectiveness of active learning, continued development and testing of efficient student-centered learning approaches are needed. This study explores the effectiveness of team-based learning (TBL) in a large-enrollment…

  10. Promoting Conceptual Coherence Within Context-Based Biology Education

    NARCIS (Netherlands)

    Ummels, Micha H J; Kamp, Marcel J A; De Kroon, Hans; Boersma, Kerst Th

    2015-01-01

    In secondary science education, the learning and teaching of coherent conceptual understanding are often problematic. Context-based education has been proposed as a partial solution to this problem. This study aims to gain insight into the development of conceptual coherence and how context-embedded

  11. A Taxonomy of Causality-Based Biological Properties

    CERN Document Server

    Bodei, Chiara; Chiarugi, Davide; Gori, Roberta; 10.4204/EPTCS.19.8

    2010-01-01

    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this fr...

  12. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  13. Regional-scale electric power system planning under uncertainty-A multistage interval-stochastic integer linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.F. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China); Huang, G.H., E-mail: gordon.huang@uregina.c [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Li, Y.P. [College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Y.; Chen, W.T. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China)

    2010-01-15

    In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security.

  14. Regional-scale electric power system planning under uncertainty. A multistage interval-stochastic integer linear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.F.; Xu, Y.; Chen, W.T. [Energy and Environmental Research Center, North China Electric Power University, Beijing 102206 (China); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada); College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Li, Y.P. [College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2010-01-15

    In this study, a multistage interval-stochastic regional-scale energy model (MIS-REM) is developed for supporting electric power system (EPS) planning under uncertainty that is based on a multistage interval-stochastic integer linear programming method. The developed MIS-REM can deal with uncertainties expressed as both probability distributions and interval values existing in energy system planning problems. Moreover, it can reflect dynamic decisions for electricity generation schemes and capacity expansions through transactions at discrete points of a multiple representative scenario set over a multistage context. It can also analyze various energy-policy scenarios that are associated with economic penalties when the regulated targets are violated. A case study is provided for demonstrating the applicability of the developed model, where renewable and non-renewable energy resources, economic concerns, and environmental requirements are integrated into a systematic optimization process. The results obtained are helpful for supporting (a) adjustment or justification of allocation patterns of regional energy resources and services, (b) formulation of local policies regarding energy consumption, economic development, and energy structure, and (c) analysis of interactions among economic cost, environmental requirement, and energy-supply security. (author)

  15. Dynamics of multi-stage infections on networks

    CERN Document Server

    Sherborne, N; Kiss, I Z

    2015-01-01

    This paper investigates the dynamics of infectious diseases with a non-exponentially distributed infectious period. This is achieved by considering a multi-stage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks. Stochastic simulations of dynamics on networks are performed and compared to the results of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. The agreement between the pairwise and simulation methods is excellent in the cases we consider.

  16. An integral equation solution for multistage turbomachinery design calculations

    Science.gov (United States)

    Mcfarland, Eric R.

    1993-01-01

    A method was developed to calculate flows in multistage turbomachinery. The method is an extension of quasi-three-dimensional blade-to-blade solution methods. Governing equations for steady compressible inviscid flow are linearized by introducing approximations. The linearized flow equations are solved using integral equation techniques. The flows through both stationary and rotating blade rows are determined in a single calculation. Multiple bodies can be modelled for each blade row, so that arbitrary blade counts can be analyzed. The method's benefits are its speed and versatility.

  17. Wetness measurements in a model multistage low pressure steam turbine

    International Nuclear Information System (INIS)

    Comprehensive measurement of wetness losses, exhaust fog droplet diameters, wetness and coarse water content have been taken in a model multistage LP steam turbine over a wide range of flow conditions. It was found that for conventional condensing turbine exhaust wetness fractions of approximately 0.10, the measured wetness loss factor was in reasonable agreement with the Baumann value. Comparison of exhaust wetness fractions derived from dynamometer power and five-hole probe radial traverse measurements, with those found independently from the Central Electricity Research Laboratories optical probe traverses, generally showed agreement to within approximately ±0.01. (author)

  18. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  19. Improved Multistage Wiener Filters in Nonhomogeneous Clutter Environments

    Institute of Scientific and Technical Information of China (English)

    Bin Tang; Xue-Gang Wang; Ke-Song Chen

    2008-01-01

    A new method combining space-time preprocessing with multistage Wiener filters (STPMWF) is proposed to improve the performance of space-time adaptive processing (STAP) in nonhomogeneous clutter scenario. The new scheme only requires the data from the primary range bin, thus it can suppress discrete interferers efficiently, without calculating the inverse of covariance matrix. Comparing to the original MWF approach, the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data. The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence. The numeric results by using simulated data exhibit a good agreement with the proposed theory.

  20. Enhancing Higher Order Thinking Skills In A Marine Biology Class Through Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Richard M. Magsino

    2014-10-01

    Full Text Available The purpose of this research was to examine students' perspectives of their learning in marine biology in the collaborative group context of Problem-based Learning (PBL. Students’ higher order thinking skills (HOTS using PBL involves the development of their logical thinking and reasoning abilities which stimulates their curiosity and associative thinking. This study aimed to investigate how critical thinking skills, particularly analysis, synthesis and evaluation were enhanced in a marine biology class through PBL. Qualitative research approach was used to examine student responses in a questionnaire involving 10 open-ended questions that target students’ HOTS on a problem presented in a marine biology class for BS Biology students. Using axial coding as a qualitative data analysis technique by which grounded theory can be performed, the study was able to determine how students manifest their higher reasoning abilities when confronted with a marine biology situation. Results show student responses yielding affirmative remarks on the 10 questions intended to know their level of analysis (e.g., analyzing, classifying, inferring, discriminating and relating or connecting, synthesis (e.g., synthesizing and collaborating, and evaluation (e.g., comparing, criticizing, and convincing of information from the presented marine biology problem. Consequently, students were able to effectively design experiments to address the presented issue through problem-based learning. Results of the study show that PBL is an efficient instructional strategy embedded within a conventional curriculum used to develop or enhance critical thinking in marine biology.

  1. Laser-based printing and patterning for biological applications

    OpenAIRE

    Sones, C. L.; Katis, I.N.; He, P.; Mills, B.; A. Mosayyebi; Butement, J.; Feinäugle, M.; Eason, R. W.

    2014-01-01

    We present the use of pulsed lasers as patterning and printing tools for the end applications of micro-contact printing and paper-based fluidics. A fs-laser was used with a digital multi-mirror device (DMD) to structure a mould via ablation or photo-polymerisation. The patterns in this mould were then cast into polydimethlysiloxane (PDMS)-mould which was used for micro-contact printing. With the end-goal of producing a microfluidic diagnostic sensor on paper, a ns-laser was used for laser-ind...

  2. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    OpenAIRE

    PingAn Hu; Jia Zhang; Le Li; Zhenlong Wang; William O’Neill; Pedro Estrela

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structu...

  3. Miniaturized droplets-based microarray of chemical and biological high-throughput tests

    OpenAIRE

    Neto, Ana I.; Correia, Clara R.; Custódio, Catarina A.; Mano, J.F

    2013-01-01

    Publicado em "Journal of Tissue Engineering and Regenerative Medicine, vol. 7, supp. 1 (2013) The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable in many areas of chemistry, engineering and biology. We propose a simple, versatile high-efficient and new superhydrophobic platform, which permits to arrange of quasi-spherical aqueous-based droplets with the capability to support and monitor a series of chemical/biolog...

  4. Multi-Stage Admission Control for Load Balancing in Next Generation Systems

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Anggorojati, Bayu; Luo, Jijun;

    2008-01-01

    This paper describes a load-dependent multi-stage admission control suitable for next generation systems. The concept uses decision polling in entities located at different levels of the architecture hierarchy and based on the load to activate a sequence of actions related to the admission...... of a user to the network, i.e., the ranking of the intermediate decisions is dynamic. The decision is controlled by passing a token between the base station (BS) and the gateway (GW), thereby considering the load status of the BS and the backhaul network. A token is assigned to the entity with the highest...... load. Each admission request will issue a flag whose colour will reflect the load level in this entity and will determine the correct sequence of the required admission control actions....

  5. A multi-stage random forest classifier for phase contrast cell segmentation.

    Science.gov (United States)

    Essa, Ehab; Xie, Xianghua; Errington, Rachel J; White, Nick

    2015-01-01

    We present a machine learning based approach to automatically detect and segment cells in phase contrast images. The proposed method consists of a multi-stage classification scheme based on random forest (RF) classifier. Both low level and mid level image features are used to determine meaningful cell regions. Pixel-wise RF classification is first carried out to categorize pixels into 4 classes (dark cell, bright cell, halo artifact, and background) and generate a probability map for cell regions. K-means clustering is then applied on the probability map to group similar pixels into candidate cell regions. Finally, cell validation is performed by another RF to verify the candidate cell regions. The proposed method has been tested on U2-OS human osteosarcoma phase contrast images. The experimental results show better performance of the proposed method with precision 92.96% and recall 96.63% compared to a state-of-the-art segmentation technique. PMID:26737137

  6. Concept of Powerful Multistage Coaxial Cyclotron for Pulsed and Continuous Beam Production

    CERN Document Server

    Tumanyan, A R; Guiragossian, Z G T; Akopov, N Z

    1999-01-01

    The concept of large-radius multistage coaxial cyclotrons having separated orbits is described, to generate proton beams of 120-2000 MeV energy at tens of GW pulsed and hundreds of MW in continuous beam power operation. Accelerated beam losses must be less than 0.1 W/m for the intercepted average beam power linear density. The concept is inherently configured to actively compensate the longitudinal and transverse space charge expansion in beam bunches. These are based on (1) actively varying the bunch acceleration equilibrium phase while maintaining isochronism, independently for each cyclotron turns; (2) independently changing the acceleration voltage for each turn together with orbit corrections that preserve isochronism; (3) independently changing the transverse betatron oscillation tune shift, to assure non-resonant operation. Also, (4) sextupole lenses are included to compensate for chromaticity effects. Moreover, the concept is based on optimum uses of practical successful results so far achieved in bea...

  7. Aqueous biological graphene based formulations for ink-jet printing

    Directory of Open Access Journals (Sweden)

    Dybowska-Sarapuk Łucja

    2016-06-01

    Full Text Available The aim of the study was to produce heterophasic graphene nanoplatelets based formulation designed for ink-jet printing and biomedical applications. The compositions should meet two conditions: should be cytocompatible and have the rheological properties that allow to apply it with ink-jet printing technique. In view of the above conditions, the selection of suspensions components, such as binder, solvent and surfactants was performed. In the first stage of the research the homogeneity of the dispersion of nanoplatelets and their sedimentation behaviour in diverse solutions were tested. Subsequently, the cytotoxicity of each ink on human mesenchymal stem cells was examined using the Alamar Blue Test. At the same time the rheology of the resulting suspensions was tested. As a result of these tests the best ink composition was elaborated: water, polyethylene glycol, graphene nanoplatelets and the surfactant from DuPont company.

  8. Cyanoacetamide based Barbiturates, Thiobarbiturates and their Biological Studies

    International Nuclear Information System (INIS)

    Various cyanoacetamide based Knoevenagel adducts were coupled with barbituric acid / thiobarbituric acid and triethylorthoformate via a one pot three component reaction in 2-butanol availing the desired compound in excellent yields. All the synthesized compounds (2-15) were extensively characterized by 1H-NMR, 13C-NMR, Mass spectrometry and elemental analysis and were screened for antibacterial, antiurease, antioxidant, cytotoxicity and chymotrypsin inhibition studies. In case of antibacterial studies 2 was found appreciably active against the six selected strains whereas the rest of the compounds were moderately active. The urease inhibition studies revealed compound 5 and 12 as potent whereas the rest were found inactive where thiourea was used as control. Antioxidant activity results exhibited with 2 as the most active and rest of compounds showed good activity. In case of chymotrypsin inhibition studies all the synthesized compounds were found inactive with the exception of 6 which was moderately active. (author)

  9. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  10. A graph based system for multi-stage attacks recognition

    Institute of Scientific and Technical Information of China (English)

    Safaa O. Al-Mamory; Zhai Jianhong; Zhang Hongli

    2008-01-01

    Building attack scenario is one of the most important aspects in network security. This paper proposed a system which collects intrusion alerts, clusters them as sub-attacks using alerts abstraction, aggregates the similar sub-attacks, and then correlates and generates correlation graphs. The scenarios were represented by alert classes instead of alerts themselves so as to reduce the required rules and have the ability of detecting new variations of attacks. The proposed system is capable of passing some of the missed attacks. To evaluate system effectiveness, it was tested with different datasets which contain multi-step attacks. Compressed and easily understandable correlation graphs which reflect attack scenarios were generated. The proposed system can correlate related alerts, uncover the attack strategies, and detect new variations of attacks.

  11. Quantum Dot- and Aptamer-Based Nanostructures for Biological Applications

    Science.gov (United States)

    Meshik, Xenia

    Quantum dots are semiconductor nanoparticles that have gained popularity in optical and electronic applications in recent years. Aptamers are short man-made oligonucleotides with high binding affinity for a specific target. One part of this work presents an optical FRET-based sensor for K+ and Pb2+ consisting of a fluorescent quantum dot, an aptamer, and a gold nanoparticle quencher. Additionally, an electrochemical sensor for K+ and Pb2+ is also presented, which consists of an aptamer with an electron donor bound to graphene. Both sensors are shown to detect K+ and Pb2+ at concentrations critical for human health. The emission spectrum of the optical sensor is also shown to shift in response to strong electric fields. UV-excited TiO 2 quantum dots are also investigated for their ability to influence the dynamics of voltage gated ion channels in cells. It was found that the activation voltage is shifted in the presence of UV-excited TiO2 quantum dots. Electrostatic force measurements and theoretical calculations confirm that electric fields in TiO2 can in fact be optically induced. ZnO quantum dots are also synthesized and their optical and electrical properties are similarly investigated. Additionally, Raman and surface-enhanced Raman spectroscopy is used in this work to find previously-unknown spectra of the aptamer Apt-alphavbeta3 and the peptide thymosin-beta4.

  12. Multi-stage circulating fluidized bed syngas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  13. Discontinuous transition of a multistage independent cascade model on networks

    International Nuclear Information System (INIS)

    We propose a multistage version of the independent cascade model, which we call a multistage independent cascade (MIC) model, on networks. This model is parameterized by two probabilities: the probability T1 that a node adopting a fad increases the awareness of a neighboring susceptible node and the probability T2 that an adopter directly causes a susceptible node to adopt the fad. We formulate a tree approximation for the MIC model on an uncorrelated network with an arbitrary degree distribution pk. Applied on a random regular network with degree k = 6, this model exhibits a rich phase diagram, including continuous and discontinuous transition lines for fad percolation and a continuous transition line for the percolation of susceptible nodes. In particular, the percolation transition of fads is discontinuous (continuous) when T1 is larger (smaller) than a certain value. A similar discontinuous transition is observed in random graphs and scale-free networks. Furthermore, assigning a finite fraction of initial adopters dramatically changes the phase boundaries. (paper)

  14. Energy efficiency of multi-stage adsorption drying for low-temperature drying

    NARCIS (Netherlands)

    Djaeni, M.; Straten, van G.; Bartels, P.V.; Sanders, J.P.M.; Boxtel, van A.J.B.

    2009-01-01

    This work discusses the evaluation of multi-stage adsorption dryers with air dehumidification by zeolite and alumina pillared clay. In a multi-stage dryer, product is dried in succeeding stages while air leaving a stage is fed to the next stage after dehumidification by an adsorbent. Energy efficien

  15. Biologically plausible and evidence-based risk intervals in immunization safety research.

    Science.gov (United States)

    Rowhani-Rahbar, Ali; Klein, Nicola P; Dekker, Cornelia L; Edwards, Kathryn M; Marchant, Colin D; Vellozzi, Claudia; Fireman, Bruce; Sejvar, James J; Halsey, Neal A; Baxter, Roger

    2012-12-17

    In immunization safety research, individuals are considered at risk for the development of certain adverse events following immunization (AEFI) within a specific period of time referred to as the risk interval. These intervals should ideally be determined based on biologic plausibility considering features of the AEFI, presumed or known pathologic mechanism, and the vaccine. Misspecification of the length and timing of these intervals may result in introducing bias in epidemiologic and clinical studies of immunization safety. To date, little work has been done to formally assess and determine biologically plausible and evidence-based risk intervals in immunization safety research. In this report, we present a systematic process to define biologically plausible and evidence-based risk interval estimates for two specific AEFIs, febrile seizures and acute disseminated encephalomyelitis. In addition, we review methodologic issues related to the determination of risk intervals for consideration in future studies of immunization safety.

  16. Agent-based Models in Synthetic Biology: Tools for Simulation and Prospects

    Directory of Open Access Journals (Sweden)

    E.V.Krishnamurthy

    2012-03-01

    Full Text Available We describe a multiset of agents based modeling and simulation paradigm for synthetic biology. The multiset of agents –based programming paradigm, can be interpreted as the outcome arising out of deterministic, nondeterministic or stochastic interaction among elements in a multiset object space, that includes the environment. These interactions are like chemical reactions and the evolution of the multiset can emulate the system biological functions. Since the reaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward equilibrium or emergent state. Practical realization of this paradigm for system biological simulation is achieved through the concept of transactional style programming with agents, as well as soft computing (neural- network principles. Also we briefly describe currently available tools for agent-based-modeling, simulation and animation.

  17. Evolutionary game based control for biological systems with applications in drug delivery.

    Science.gov (United States)

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-01

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures.

  18. YeastMed: an XML-Based System for Biological Data Integration of Yeast

    CERN Document Server

    Briache, Abdelaali; Kerzazi, Amine; Navas-Delgado, Ismael; Montes, Jose F Aldana; Hassani, Badr D Rossi; Lairini, Khalid

    2010-01-01

    A key goal of bioinformatics is to create database systems and software platforms capable of storing and analysing large sets of biological data. Hundreds of biological databases are now available and provide access to huge amount of biological data. SGD, Yeastract, CYGD-MIPS, BioGrid and PhosphoGrid are five of the most visited databases by the yeast community. These sources provide complementary data on biological entities. Biologists are brought systematically to query these data sources in order to analyse the results of their experiments. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned result is a complex and laborious task. To provide transparent and simultaneous access to these sources, we have developed a mediator-based system called YeastMed. In this paper, we present YeastMed focusing on its architecture.

  19. Multiparametric imaging of biological systems by force-distance curve-based AFM.

    Science.gov (United States)

    Dufrêne, Yves F; Martínez-Martín, David; Medalsy, Izhar; Alsteens, David; Müller, Daniel J

    2013-09-01

    A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve-based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions. PMID:23985731

  20. Optimal design of multistage chemostats in series using different microbial growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Petroleum Engineering Technology, Abu Dhabi Polytechnic (United Arab Emirates)

    2013-07-01

    In this paper, the optimum design of multistage chemostats (CSTRs) was investigated. The optimal design was based on the minimum overall reactor volume using different volume for each chemostat. The paper investigates three different microbial growth kinetics; Monod kinetics, Contois kinetics and the Logistic equation. The total dimensionless residence time (theta Total) was set as the optimization objective function that was minimized by varying the intermediate dimensionless substrate concentration (alfa i). The effect of inlet substrate concentration (S0) to the first reactor on the optimized total dimensionless residence time was investigated at a constant conversion of 0.90. In addition, the effect of conversion on the optimized total dimensionless residence time was also investigated at constant inlet substrate concentration (S0). For each case, optimization was done using up to five chemostats in series.

  1. A multistage, semi-automated procedure for analyzing the morphology of nanoparticles

    KAUST Repository

    Park, Chiwoo

    2012-07-01

    This article presents a multistage, semi-automated procedure that can expedite the morphology analysis of nanoparticles. Material scientists have long conjectured that the morphology of nanoparticles has a profound impact on the properties of the hosting material, but a bottleneck is the lack of a reliable and automated morphology analysis of the particles based on their image measurements. This article attempts to fill in this critical void. One particular challenge in nanomorphology analysis is how to analyze the overlapped nanoparticles, a problem not well addressed by the existing methods but effectively tackled by the method proposed in this article. This method entails multiple stages of operations, executed sequentially, and is considered semi-automated due to the inclusion of a semi-supervised clustering step. The proposed method is applied to several images of nanoparticles, producing the needed statistical characterization of their morphology. © 2012 "IIE".

  2. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  3. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Ju-Won

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  4. Application of Multistage Homotopy Perturbation Method to the Chaotic Genesio System

    Directory of Open Access Journals (Sweden)

    M. S. H. Chowdhury

    2012-01-01

    Full Text Available Finding accurate solution of chaotic system by using efficient existing numerical methods is very hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation method (MHPM is applied to the Chaotic Genesio system. The MHPM is a simple reliable modification based on an adaptation of the standard homotopy-perturbation method (HPM. The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the Chaotic Genesio system. Numerical comparisons between the MHPM and the classical fourth-order Runge-Kutta (RK4 solutions are made. The results reveal that the new technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.

  5. Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Ismail, Hammad; Mirza, Bushra; McKee, Vickie; Bolte, Michael

    2016-07-01

    Four novel ON donor Schiff bases (E)-2-((4-phenoxyphenylimino)methyl)phenol (HL1), (E)-2-((4-(4-biphenyloxy)phenylimino)methyl)phenol(HL2), (E)-2-((4-(naphthalen-1-yloxy) phenylimino)methyl)phenol(HL3)and(E)-2-((4-(2-naphthoxy)phenylimino)methyl)phenol (HL4)have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. Single crystal X-ray diffraction analysis of Schiff base (HL3) revealed that phenol and anthracene rings are inclined at 30.25(9)° and 89.64(4)° to the central phenyl ring, respectively. Intra and inter molecular interactions are observed in single crystal analysis of HL3 Intramolecular interactions are hydrogen bonding but most of the intermolecular interactions are of the C-H … π type. There is a bit of π … π stacking between the anthracene groups. Only compounds (HL1) and (HL3) have been investigated for the biological activities due to slight solubility of (HL2) and (HL4) in DMSO. The results of brine shrimp cytotoxicity assay indicated LD50 values hydroxyl free radicals in concentration dependent manner. Voltammetric results indicated that one electron irreversible oxidation product is formed due to hydroxyl moiety and the process is diffusion controlled. On exposing to DNA environment the electrooxidised product developed electrostatic linkage and groove binding intercalation while consuming the DNA concentration substantially. The binding strength was quantitative in terms of drug-DNA binding of the order of 104 M-1.

  6. Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Ismail, Hammad; Mirza, Bushra; McKee, Vickie; Bolte, Michael

    2016-07-01

    Four novel ON donor Schiff bases (E)-2-((4-phenoxyphenylimino)methyl)phenol (HL1), (E)-2-((4-(4-biphenyloxy)phenylimino)methyl)phenol(HL2), (E)-2-((4-(naphthalen-1-yloxy) phenylimino)methyl)phenol(HL3)and(E)-2-((4-(2-naphthoxy)phenylimino)methyl)phenol (HL4)have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. Single crystal X-ray diffraction analysis of Schiff base (HL3) revealed that phenol and anthracene rings are inclined at 30.25(9)° and 89.64(4)° to the central phenyl ring, respectively. Intra and inter molecular interactions are observed in single crystal analysis of HL3 Intramolecular interactions are hydrogen bonding but most of the intermolecular interactions are of the C-H … π type. There is a bit of π … π stacking between the anthracene groups. Only compounds (HL1) and (HL3) have been investigated for the biological activities due to slight solubility of (HL2) and (HL4) in DMSO. The results of brine shrimp cytotoxicity assay indicated LD50 values <1 μg/ml showing significant antitumor activity with IC50 values 14.20 and 4.54 μg/ml respectively. The compounds were highly active in protecting DNA against hydroxyl free radicals in concentration dependent manner. Voltammetric results indicated that one electron irreversible oxidation product is formed due to hydroxyl moiety and the process is diffusion controlled. On exposing to DNA environment the electrooxidised product developed electrostatic linkage and groove binding intercalation while consuming the DNA concentration substantially. The binding strength was quantitative in terms of drug-DNA binding of the order of 104 M-1.

  7. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aster, B. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Burba, P. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Broekaert, J.A.C. [University of Dortmund, D-44227 Dortmund (Germany)

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the ``DFG-Versuchsfeld Bocholt``, VM 5 from ``Venner Moor``, Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III)) to higher values (> 10 kD) has been found. (orig.). With 9 figs., 2 tabs.

  8. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    Science.gov (United States)

    Golari, Mehdi

    considering the integration of renewable energy resources into production planning of energy-intensive manufacturing industries. Recently, a growing number of manufacturing companies are considering renewable energies to meet their energy requirements to move towards green manufacturing as well as decreasing their energy costs. However, the intermittent nature of renewable energies imposes several difficulties in long term planning of how to efficiently exploit renewables. In this study, we propose a scheme for manufacturing companies to use onsite and grid renewable energies provided by their own investments and energy utilities as well as conventional grid energy to satisfy their energy requirements. We propose a multistage stochastic programming model and study an efficient solution method to solve this problem. We examine the proposed framework on a test case simulated based on a real-world semiconductor company. Moreover, we evaluate long-term profitability of such scheme via so called value of multistage stochastic programming.

  9. Rethinking biology instruction : the application of DNR-based instruction to the learning and teaching of biology

    OpenAIRE

    Maskiewicz, April Lee

    2006-01-01

    Educational studies report that secondary and college level students have developed only limited understandings of the most basic biological processes and their interrelationships from typical classroom experiences. Furthermore, students have developed undesirable reasoning schemes and beliefs that directly affect how they make sense of and account for biological phenomena. For these reasons, there exists a need to rethink instructional practices in biology. This dissertation discusses how th...

  10. Teaching Statistics in Biology: Using Inquiry-based Learning to Strengthen Understanding of Statistical Analysis in Biology Laboratory Courses

    OpenAIRE

    Metz, Anneke M.

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts ...

  11. Network-based drug discovery by integrating systems biology and computational technologies.

    Science.gov (United States)

    Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang

    2013-07-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.

  12. BOWiki: an ontology-based wiki for annotation of data and integration of knowledge in biology

    Directory of Open Access Journals (Sweden)

    Gregorio Sergio E

    2009-05-01

    Full Text Available Abstract Motivation Ontology development and the annotation of biological data using ontologies are time-consuming exercises that currently require input from expert curators. Open, collaborative platforms for biological data annotation enable the wider scientific community to become involved in developing and maintaining such resources. However, this openness raises concerns regarding the quality and correctness of the information added to these knowledge bases. The combination of a collaborative web-based platform with logic-based approaches and Semantic Web technology can be used to address some of these challenges and concerns. Results We have developed the BOWiki, a web-based system that includes a biological core ontology. The core ontology provides background knowledge about biological types and relations. Against this background, an automated reasoner assesses the consistency of new information added to the knowledge base. The system provides a platform for research communities to integrate information and annotate data collaboratively. Availability The BOWiki and supplementary material is available at http://www.bowiki.net/. The source code is available under the GNU GPL from http://onto.eva.mpg.de/trac/BoWiki.

  13. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections.

    Science.gov (United States)

    Sause, William E; Buckley, Peter T; Strohl, William R; Lynch, A Simon; Torres, Victor J

    2016-03-01

    The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections. PMID:26719219

  14. 'Bootstrap' Configuration for Multistage Pulse-Tube Coolers

    Science.gov (United States)

    Nguyen, Bich; Nguyen, Lauren

    2008-01-01

    A bootstrap configuration has been proposed for multistage pulse-tube coolers that, for instance, provide final-stage cooling to temperatures as low as 20 K. The bootstrap configuration supplants the conventional configuration, in which customarily the warm heat exchangers of all stages reject heat at ambient temperature. In the bootstrap configuration, the warm heat exchanger, the inertance tube, and the reservoir of each stage would be thermally anchored to the cold heat exchanger of the next warmer stage. The bootstrapped configuration is superior to the conventional setup, in some cases increasing the 20 K cooler's coefficient of performance two-fold over that of an otherwise equivalent conventional layout. The increased efficiency could translate into less power consumption, less cooler mass, and/or lower cost for a given amount of cooling.

  15. A Cost-Effective Architecture For Optical Multistage Interconnection Network

    Directory of Open Access Journals (Sweden)

    Mehrnaz Moudi

    2013-02-01

    Full Text Available In this paper a new architecture for Optical Multistage Interconnection Networks (OMINs has been proposed to avoid crosstalk problem. At the same time, the probablity of losing pass through an optical long connection path is reduced in this architecture. The new architecture is inherent form the standard OMIN by converting two switches of the network to one switch in each row. By reducing the number of switches in new architecture, the reduction in the execution time is considered. The modifying in the number of passes via the same low stage transformation is negligible. The ability of the new architecture to decrease cost and avoid crosstalk has been validated through simulations that show improvement in the network performance in terms of approximately 30% reduction in the execution time.

  16. A Hybrid Structured Multistage Wiener Filter for GPS Interference Suppression

    Directory of Open Access Journals (Sweden)

    Qing-Dong Huang

    2013-11-01

    Full Text Available To suppress the influence of impulsive noise spikes (outliers from the direction of arrival of the desired GPS signals, a combination of the Householder multistage Wiener filter (HMSWF and the recently introduced Minimum Module Cascaded Canceller (MMCC is employed to compose a hybrid structured HMSWF (HS-HMSWF method. The enhanced algorithm is employed by space-time anti-jamming processing in GPS receiver, with the ability of natural protection against the impulsive noise spikes influence of weights calculation. In space signal processing, it can avoid the zero pitch formed at the direction of target signal, and prevent the desired signal be diminished. Simulation results demonstrated the favorable anti-jamming performance of the proposed algorithm.  

  17. Multistage Hybrid Arabic/Indian Numeral OCR System

    CERN Document Server

    Alginaih, Yasser M

    2010-01-01

    The use of OCR in postal services is not yet universal and there are still many countries that process mail sorting manually. Automated Arabic/Indian numeral Optical Character Recognition (OCR) systems for Postal services are being used in some countries, but still there are errors during the mail sorting process, thus causing a reduction in efficiency. The need to investigate fast and efficient recognition algorithms/systems is important so as to correctly read the postal codes from mail addresses and to eliminate any errors during the mail sorting stage. The objective of this study is to recognize printed numerical postal codes from mail addresses. The proposed system is a multistage hybrid system which consists of three different feature extraction methods, i.e., binary, zoning, and fuzzy features, and three different classifiers, i.e., Hamming Nets, Euclidean Distance, and Fuzzy Neural Network Classifiers. The proposed system, systematically compares the performance of each of these methods, and ensures t...

  18. A Challenge for Routing Algorithms in Optical Multistage Interconnection Networks

    Directory of Open Access Journals (Sweden)

    Mehrnaz Moudi

    2011-01-01

    Full Text Available Problem statement: A class of dynamic interconnection networks is Multistage Interconnection Networks (MINs that connects input devices to output devices through a number of switch stages. MINs have assumed importance in recent years; because of their cost-effectiveness. Optical MINs are one type of MINs that have large transmission capacity in the communication networks. There is a major problem in Optical MIN that is crosstalk, which is caused by coupling two signals within a switching element. Approach: To avoid crosstalk in Optical MINs many algorithms have been proposed by many researchers that we review applying five routing algorithms and scheduling them in the Optical MINs. Results: The comparative results of routing algorithms show affective of avoiding crosstalk in number of passes and execution time for different algorithm. Conclusion: The challenge between these routing algorithms is thoroughly investigated, by applying them on Optical MIN and showing which algorithm has better performance to avoid crosstalk.

  19. Multistage CSR microbunching gain development in transport or recirculation arcs

    CERN Document Server

    Tsai, Cheng-Ying; Li, Rui; Tennant, Chris

    2015-01-01

    Coherent synchrotron radiation (CSR) induced microbunching instability has been one of the most challenging issues in the design of modern accelerators. A linear Vlasov solver has been developed [1] and applied to investigate the physical processes of microbunching gain amplification for several example lattices [2]. In this paper, by further extending the concept of stage gain as proposed by Huang and Kim [3], we develop a method to characterize the microbunching development in terms of stage orders that allow the quantitative comparison of optics impacts on microbunching gain for different lattices. We find that the microbunching instability in our demonstrated arcs has a distinguishing feature of multistage amplification (e.g, up to 6th stage amplification for our example transport arcs, in contrast to two-stage amplification for a typical 4-dipole bunch compressor chicane). We also try to connect lattice optics pattern with the obtained stage gain functions by a physical interpretation. This Vlasov analys...

  20. Numerical modelling of a multi-stage solar still

    Energy Technology Data Exchange (ETDEWEB)

    Jubran, B.A.; Ahmed, M.I.; Ismail, A.F.; Abakar, Y.A. [International Islamic University of Malaysia, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2000-07-01

    This paper reports the development of a mathematical model to predict the productivity and the thermal characteristics of a multistage solar still with an expansion nozzle and heat recovery in each stage of the still. Furthermore, this model is used to conduct a parametric investigation of the proposed solar still. A cost analysis is performed to shed some light on the potential of utilizing the proposed still for production of drinking water. It was found that making use of an expansion nozzle and heat recovery techniques in the proposed solar still tend to enhance the productivity of the still and the distillation efficiency. The daily solar still productivity can be up to 9 kg/m{sup 2}, and the distillation efficiency is 87%. The unit cost for distilled water of this still is 25.6 US dollars/1000 gallons. (author)

  1. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    Science.gov (United States)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible

  2. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  3. Merging Science and Society: An Issues-Based Approach to Nonmajors Biology

    Science.gov (United States)

    Stover, Shawn; Mabry, Michelle

    2005-01-01

    The effectiveness of an issues-based approach to nonmajors biology was investigated. The integration of online critical-thinking exercises and in-class discussions of science-related issues did not improve exam scores. However, students did indicate that the discussions enhanced their appreciation of science and stimulated them to think more…

  4. Flush of CO2 as a biologically based tool to predict nitrogen mineralization from soil

    Science.gov (United States)

    A biologically based tool to improve nitrogen (N) management in cereal crops is currently lacking from soil testing programs, but very much needed to optimize N fertilizer inputs to be able apply enough N fertilizer to achieve high production and avoid excess application that is damaging to the envi...

  5. Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving

    Science.gov (United States)

    Kim, H. S.; Prevost, L.; Lemons, P. P.

    2015-01-01

    The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…

  6. Extended Problem-Based Learning Improves Scientific Communication in Senior Biology Students

    Science.gov (United States)

    Kolber, Benedict J.

    2011-01-01

    This article describes a model of extended problem-based learning that instructed upper-level undergraduate students to focus on a single biological problem while improving their critical thinking, presentation, and scientific-writing skills. This course was developed in response to students' requests for formal training in oral presentation…

  7. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    Science.gov (United States)

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  8. Designing and Implementing a Hands-On, Inquiry-Based Molecular Biology Course

    Science.gov (United States)

    Regassa, Laura B.; Morrison-Shetlar, Alison I.

    2007-01-01

    Inquiry-based learning was used to enhance an undergraduate molecular biology course at Georgia Southern University, a primarily undergraduate institution in rural southeast Georgia. The goal was to use a long-term, in-class project to accelerate higher-order thinking, thereby enabling students to problem solve and apply their knowledge to novel…

  9. Effects of Conceptual Change Text Based Instruction on Ecology, Attitudes toward Biology and Environment

    Science.gov (United States)

    Çetin, Gülcan; Ertepinar, Hamide; Geban, Ömer

    2015-01-01

    The purpose of this study is to investigate the effects of the conceptual change text based instruction on ninth grade students' understanding of ecological concepts, and attitudes toward biology and environment. Participants were 82 ninth grade students in a public high school in the Northwestern Turkey. A treatment was employed over a…

  10. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor

    NARCIS (Netherlands)

    Blanken, W.M.; Janssen, M.G.J.; Cuaresma, M.; Libor, Z.; Bhaiji, T.; Wijffels, R.H.

    2014-01-01

    Microalgae biofilms could be used as a production platform for microalgae biomass. In this study, a photobioreactor design based on a rotating biological contactor (RBC) was used as a production platform for microalgae biomass cultivated in biofilm. In the photobioreactor, referred to as Algadisk, m

  11. Capacity for DNA-barcode based taxonomy in support of Great Lakes biological monitoring

    Science.gov (United States)

    Enumerating organisms collected via nets and sediment grabs is a mainstay of aquatic ecology. Since morphological taxonomy can require considerable resources and expertise, DNA barcode-based identification of mixed-organism samples offers a valuable tool in support of biological...

  12. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    Science.gov (United States)

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  13. Nonlinear resonances in a multi-stage free-electron laser amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S. [Graduate Univ. for Advanced Studies, Ibaraki-ken (Japan); Takayama, K. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)

    1995-12-31

    A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.

  14. STUDY OF PHYSIO-CHEMICAL CHARACTERISTICS AND BIOLOGICAL TREATMENT OF MOLASSES-BASED DISTILLERY EFFLUENT

    OpenAIRE

    Anupama Chaudhary* AK Sharma and Birbal Singh

    2013-01-01

    Molasses based distilleries are recognized as of major polluting industries with a large amount of annual effluent production. Modi Distillery, located at Modi Nagar in western Uttar Pradesh, is a molasses-based distillery with a capacity of 26 KLPD. Being an alcohol-processing unit, we estimated capacity and efficiency of Modi distillery that discharges highly polluted effluent to small drainage with a very high biological oxygen demand (BOD) (42,000-51,000mg/ltr) and chemical oxygen demand ...

  15. Best Practices for Promoting Functional Biology Education: Activity-Based, Laboratory-Oriented Instruction

    Directory of Open Access Journals (Sweden)

    Abigail Mgboyibo Osuafor

    2016-08-01

    Full Text Available A major goal of science education is fostering students’ intellectual competencies. This goal can only be achieved when students are actively involved in the teaching-learning process. This study therefore, investigated the extent to which the biology teachers employ pupil-centered activities such as laboratory/practical instructional methods in order to improve the learning outcome of their students. The descriptive survey involved 73 Biology teachers randomly selected from all the six education zones of Anambra state, Nigeria. Four research questions and two hypotheses guided the conduct of the study. A 32-item structured questionnaire which has reliability co-efficient of 0.82 was used to collect data. Data were analyzed using mean, standard deviation and t-test. Results show that Biology teachers adopt practical-oriented strategies in teaching biology, conduct practical activities to a high extent, and perceive practical exercises as essential to effective teaching and learning of the subject. Provision of adequate number of laboratory materials, employment of adequate number of biology teachers, making provision for well designed laboratory activities in the curriculum and training of teachers on how to effectively combine theory with practical are some of the strategies that will encourage biology teachers to conduct practical lessons. There was no significant difference between male and female biology teachers in their responses to the different aspects investigated. Based on these findings, some recommendations were made which include that curriculum designers should incorporate guides for practical activities that go with each topic in the curriculum so as to encourage the teachers to teach theory with practical.

  16. Multi-stage and multi-orifice throttling analysis for thermal power generating sets

    Institute of Scientific and Technical Information of China (English)

    郭茂林; 王刚; 张瑞

    2002-01-01

    Multi-stage and multi-orifice throttling analysis for bypass valves in thermal power generating sets is important for normal operation of power generating equipment. It is improper to exclude the factor of flow resistance from the expansion coefficient for the flow formula used for analysing the multi-stage and multi-orifice flow of compressible fluid, which means expansion of gas has nothing to do with resistance. The authors put forward an expanded energy equation and related formula to overcome the drawback, and use them for multi-stage and multi-orifice throttling analysis of compressible fluid for thermal power generating sets.

  17. Automated multi-objective calibration of biological agent-based simulations.

    Science.gov (United States)

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  18. Automated multi-objective calibration of biological agent-based simulations.

    Science.gov (United States)

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  19. Identification of triacylglycerol using automated annotation of high resolution multistage mass spectral trees.

    Science.gov (United States)

    Wang, Xiupin; Peng, Qingzhi; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen; Zhang, Liangxiao

    2016-10-12

    High complexity of identification for non-target triacylglycerols (TAGs) is a major challenge in lipidomics analysis. To identify non-target TAGs, a powerful tool named accurate MS(n) spectrometry generating so-called ion trees is used. In this paper, we presented a technique for efficient structural elucidation of TAGs on MS(n) spectral trees produced by LTQ Orbitrap MS(n), which was implemented as an open source software package, or TIT. The TIT software was used to support automatic annotation of non-target TAGs on MS(n) ion trees from a self-built fragment ion database. This database includes 19108 simulate TAG molecules from a random combination of fatty acids and corresponding 500582 self-built multistage fragment ions (MS ≤ 3). Our software can identify TAGs using a "stage-by-stage elimination" strategy. By utilizing the MS(1) accurate mass and referenced RKMD, the TIT software can discriminate unique elemental composition candidates. The regiospecific isomers of fatty acyl chains will be distinguished using MS(2) and MS(3) fragment spectra. We applied the algorithm to the selection of 45 TAG standards and demonstrated that the molecular ions could be 100% correctly assigned. Therefore, the TIT software could be applied to TAG identification in complex biological samples such as mouse plasma extracts. PMID:27662762

  20. Biological science learning model based on Turgo's local wisdom on managing biodiversity

    Science.gov (United States)

    Anwari, Nahdi, Maizer Said; Sulistyowati, Eka

    2016-02-01

    Local wisdom as product of local knowledge has been giving a local context in science development. Local wisdom is important to connect scientific theories and local conditions; hence science could be accessed by common people. Using local wisdom as a model for learning science enables students to build contextual learning, hence learning science becomes more meaningful and becomes more accessible for students in a local community. Based on this consideration, therefore, this research developed a model for learning biology based on Turgo's local wisdom on managing biodiversity. For this purpose, Turgo's biodiversity was mapped, and any local values that are co-existing with the biodiversity were recorded. All of these informations were, then, used as a hypohetical model for developing materials for teaching biology in a senior high school adjacent to Turgo. This research employed a qualitative method. We combined questionnaries, interviews and observation to gather the data. We found that Turgo community has been practicing local wisdom on using traditional plants for many uses, including land management and practicing rituals and traditional ceremonies. There were local values that they embrace which enable them to manage the nature wisely. After being cross-referenced with literature regarding educational philoshophy, educational theories and teachings, and biology curriculum for Indonesia's senior high school, we concluded that Turgo's local wisdom on managing biodiversity can be recommended to be used as learning materials and sources for biological learning in schools.

  1. C-GRAAL: common-neighbors-based global GRAph ALignment of biological networks.

    Science.gov (United States)

    Memišević, Vesna; Pržulj, Nataša

    2012-07-01

    Networks are an invaluable framework for modeling biological systems. Analyzing protein-protein interaction (PPI) networks can provide insight into underlying cellular processes. It is expected that comparison and alignment of biological networks will have a similar impact on our understanding of evolution, biological function, and disease as did sequence comparison and alignment. Here, we introduce a novel pairwise global alignment algorithm called Common-neighbors based GRAph ALigner (C-GRAAL) that uses heuristics for maximizing the number of aligned edges between two networks and is based solely on network topology. As such, it can be applied to any type of network, such as social, transportation, or electrical networks. We apply C-GRAAL to align PPI networks of eukaryotic and prokaryotic species, as well as inter-species PPI networks, and we demonstrate that the resulting alignments expose large connected and functionally topologically aligned regions. We use the resulting alignments to transfer biological knowledge across species, successfully validating many of the predictions. Moreover, we show that C-GRAAL can be used to align human-pathogen inter-species PPI networks and that it can identify patterns of pathogen interactions with host proteins solely from network topology.

  2. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    Science.gov (United States)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  3. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine.

  4. Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Shatat, M.I.M.; Mahkamov, K. [School of Engineering, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2010-01-15

    The paper describes the experimental investigations of the performance of a multi-stage water desalination still connected to a heat pipe evacuated tube solar collector with aperture area of 1.7 m{sup 2}. The multi-stage solar still water desalination system was designed to recover latent heat from evaporation and condensation processes in four stages. The variation in the solar radiation during a typical mid-summer day in the Middle East region was simulated on the test rig using an array of 110 halogen floodlights covering the area of the collector. The results of tests demonstrate that the system produces about 9 kg of fresh water per day and has a solar collector efficiency of about 68%. However, the overall efficiency of the laboratory test rig at this stage of the investigations was found to be at the level of 33% due to excessive heat losses in the system. The analysis of the distilled water showed that its quality was within the World Health Organization guidelines. The still's operation was numerically simulated by employing a mathematical model based on a system of ordinary energy and mass conservation differential equations written for each stage of the still. A computer program was developed for transient simulations of the evaporation and condensation processes inside the multi-stage still. Experimental results obtained and theoretical predictions were found to be in good agreement. The results on the determination of rational design dimensions and number of stages of the still for a given aperture of the solar collector are also presented in this work. (author)

  5. 4 Kelvin Cooling with Innovative Final Stage of Multistage Cryocooler Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed for development is a proof-of-concept prototype for the final stage of a multistage cryocooler. This final stage comprises a high frequency pulse tube cold...

  6. DYNAMIC RESPONSE OF METALS TO SINGLE AND MULTISTAGE, CONSTANT STRAIN RATE COMPRESSION

    OpenAIRE

    Lenard, J

    1985-01-01

    Single and multistage, uniaxial compression tests are conducted on Al-Mg-Si and 0.02% Nb HSLA steel alloys. Rate sensitivity, activation energy and the effect of interruption on the flow strength of the metals are determined.

  7. A multistage mechanism for managing aggressive flows in the next generation internet

    OpenAIRE

    D. Lanzi

    2001-01-01

    In this note, we provide a multistage game form which may be used for managing aggressive flows which may cause network congestion or monopolisation. The mechanism here presented attains economic efficiency, technical efficiency and other desirable properties.

  8. RegenBase: a knowledge base of spinal cord injury biology for translational research

    OpenAIRE

    Callahan, Alison; Abeyruwan, Saminda W.; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R.; Popovich, Phillip G.; Shah, Nigam H.; Visser, Ubbo; John L Bixby; Lemmon, Vance P.

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment...

  9. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    Science.gov (United States)

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  10. Aber-OWL: a framework for ontology-based data access in biology

    KAUST Repository

    Hoehndorf, Robert

    2015-01-28

    Background: Many ontologies have been developed in biology and these ontologies increasingly contain large volumes of formalized knowledge commonly expressed in the Web Ontology Language (OWL). Computational access to the knowledge contained within these ontologies relies on the use of automated reasoning. Results: We have developed the Aber-OWL infrastructure that provides reasoning services for bio-ontologies. Aber-OWL consists of an ontology repository, a set of web services and web interfaces that enable ontology-based semantic access to biological data and literature. Aber-OWL is freely available at http://aber-owl.net. Conclusions: Aber-OWL provides a framework for automatically accessing information that is annotated with ontologies or contains terms used to label classes in ontologies. When using Aber-OWL, access to ontologies and data annotated with them is not merely based on class names or identifiers but rather on the knowledge the ontologies contain and the inferences that can be drawn from it.

  11. Peptide-Based, Two-Fluorophore, Ratiometric Probe for Quantifying Mobile Zinc in Biological Solutions

    OpenAIRE

    Zhang, Daniel Y.; Azrad, Maria; Demark-Wahnefried, Wendy; Frederickson, Christopher J.; Lippard, Stephen J.; Radford, Robert J.

    2014-01-01

    Small-molecule fluorescent sensors are versatile agents for detecting mobile zinc in biology. Capitalizing on the abundance of validated mobile zinc probes, we devised a strategy for repurposing existing intensity-based sensors for quantitative applications. Using solid-phase peptide synthesis, we conjugated a zinc-sensitive Zinpyr-1 derivative and a zinc-insensitive 7-hydroxycoumarin derivative onto opposite ends of a rigid P9K peptide scaffold to create HcZ9, a ratiometric fluorescent probe...

  12. 07131 Abstracts Collection -- Similarity-based Clustering and its Application to Medicine and Biology

    OpenAIRE

    Biehl, Michael; Hammer, Barbara; Verleysen, Michel; Villmann, Thomas

    2007-01-01

    From 25.03. to 30.03.2007, the Dagstuhl Seminar 07131 ``Similarity-based Clustering and its Application to Medicine and Biology'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. T...

  13. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    OpenAIRE

    Abou Neel, E. A.; W. Chrzanowski; Knowles, J. C.

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS c...

  14. Biological Significance of Gene Expression Data using Similarity based Biclustering Algorithm

    OpenAIRE

    Bagyamani J; Thangavel; Rathipriya R

    2011-01-01

    Unlocking the complexity of a living organism’s biological processes, functionsand genetic network is vital in learning how to improve the health of humankind.Genetic analysis, especially biclustering, is a significant step in this process.Though many biclustering methods exist, only few provide a query basedapproach for biologists to search the biclusters which contain a certain gene ofinterest. This proposed query based biclustering algorithm SIMBIC+ firstidentifies a functionally rich quer...

  15. COMPARISON OF TWO BIOLOGICAL METHODS FOR ASSESSMENT OF RIVER WATER QUALITY BASED ON MACROZOOBENTHOS

    OpenAIRE

    Mladen Kerovec; Zlatko Mihaljević

    2010-01-01

    In the present paper, the results of two macrozoobenthos analysis based indices (Saprobic Index and Extended Biotic Index) are used as biological indicators in the assessment of river water quality. The objective of the paper is to establish the extent to which the results of these methods are comparable. The results indicate that both indices are suitable for assessing the quality of river water in the Croatian hydrographic network. Major deviations were only detected in xenosaprobic waters,...

  16. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  17. Do biological-based strategies hold promise to biofouling control in MBRs?

    Science.gov (United States)

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S; Ayoub, George M; Saikaly, Pascal E

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  18. On use of the multistage dose-response model for assessing laboratory animal carcinogenicity

    OpenAIRE

    Nitcheva, Daniella; Piegorsch, Walter W.; West, R. Webster

    2007-01-01

    We explore how well a statistical multistage model describes dose-response patterns in laboratory animal carcinogenicity experiments from a large database of quantal response data. The data are collected from the U.S. EPA’s publicly available IRIS data warehouse and examined statistically to determine how often higher-order values in the multistage predictor yield significant improvements in explanatory power over lower-order values. Our results suggest that the addition of a second-order par...

  19. Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms

    OpenAIRE

    Gabran, Wesam; Pawełczak, Przemysław; Čabrić, Danijela

    2010-01-01

    Multi-stage sensing is a novel concept that refers to a general class of spectrum sensing algorithms that divide the sensing process into a number of sequential stages. The number of sensing stages and the sensing technique per stage can be used to optimize performance with respect to secondary user throughput and the collision probability between primary and secondary users. So far, the impact of multi-stage sensing on network throughput and collision probability for a realistic network mode...

  20. Application of Evidence-based Medicine and Systems Biology Mediated by Translational Medicine in TCM Study

    Institute of Scientific and Technical Information of China (English)

    Gong Xiangwen; Zhang Jinwen; Yang Qinhe; Yan Haizhen; Zhang Yupei; Liu Yizhen; Xu Yongjian; Wang Hong; Lin Chunmei

    2013-01-01

    The core of translational medicine means that the effective relationship between science researchers of basic medicine and clinical doctors makes basic medicine research transform into diagnosis, prevention and treatment of diseases to compensate for the wide gap between basic and clinical application. Translational medicine was introduced into traditional Chinese medicine (TCM) study, and evidence-based medicine capable of improving the accuracy and reliability of TCM clinical research transforming into basic research and systems biology capable of enhancing the systematicness and integrality of basic research to make it transform into clinical application better were as major technical support, hence, the application of evidence-based medicine and systems biology mediated by translational medicine in TCM will have far-reaching signiifcance for the development of TCM modernization. In this article, the application of evidence-based medicine and systems biology mediated by translational medicine in TCM study is illustrated in terms of TCM in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD) and its clinical and basic bidirectional transformation, literature mining, translational medicine platform and team building.

  1. Participation in introductory biology laboratories: An integrated assessment based on surveys, behavioral observations, and qualitative interviews

    Science.gov (United States)

    Russell, Connie Adelle

    Scope and method of study. The purpose of this study was to evaluate the effect of gender, major, and prior knowledge of and attitude toward biology on participation in introductory biology laboratories. Subjects for this study were 3,527 students enrolled in college-level introductory biology courses. During the study, three introductory courses were replaced with one mixed-majors course. The new course adopted a different pedagological approach from the previous courses in that an inquiry-based approach was used in lectures and laboratories. All subjects completed a survey that measured content knowledge using the NABT/NSTA High School Biology Examination Version 1990 and attitude using Russell and Hollander's Biology Attitude Scale. I used and discuss the merits of using ethological methods and data collection software, EthoScribeTM (Tima Scientific) to collect behavioral data from 145 students. I also evaluated participation using qualitative interviews of 30 students. I analyzed content knowledge and attitude data using ANOVA and Pearson correlation, and behavioral data using Contingency Table Analysis. I analyzed interviews following methods outlined by Rubin and Rubin. Findings. Course style and gender were the most useful variables in distinguishing differences among groups of students with regard to attitude, content knowledge, and participation in laboratories. Attitude toward biology and achievement measured by the surveys were found to be positively correlated; however, gender, major, class standing, course style and interactions between these variables also had effects on these variables. I found a positive association among attitude, achievement and participation in hands-on activities in laboratories. Differences in participation also were associated group type. In a traditional introductory biology course, females in single-gender groups, gender-equal, or groups in which females were the majority spent more time performing hands-on science

  2. Synthetic Multiple-Imputation Procedure for Multistage Complex Samples

    Directory of Open Access Journals (Sweden)

    Zhou Hanzhi

    2016-03-01

    Full Text Available Multiple imputation (MI is commonly used when item-level missing data are present. However, MI requires that survey design information be built into the imputation models. For multistage stratified clustered designs, this requires dummy variables to represent strata as well as primary sampling units (PSUs nested within each stratum in the imputation model. Such a modeling strategy is not only operationally burdensome but also inferentially inefficient when there are many strata in the sample design. Complexity only increases when sampling weights need to be modeled. This article develops a generalpurpose analytic strategy for population inference from complex sample designs with item-level missingness. In a simulation study, the proposed procedures demonstrate efficient estimation and good coverage properties. We also consider an application to accommodate missing body mass index (BMI data in the analysis of BMI percentiles using National Health and Nutrition Examination Survey (NHANES III data. We argue that the proposed methods offer an easy-to-implement solution to problems that are not well-handled by current MI techniques. Note that, while the proposed method borrows from the MI framework to develop its inferential methods, it is not designed as an alternative strategy to release multiply imputed datasets for complex sample design data, but rather as an analytic strategy in and of itself.

  3. Extracting multistage screening rules from online dating activity data.

    Science.gov (United States)

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-09-20

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items. PMID:27578870

  4. A cascaded three-phase symmetrical multistage voltage multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Shahid [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Singh, G K [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Besar, R [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia); Muhammad, G [Faculty of Information Science and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2006-10-15

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.

  5. Multi-stage FE simulation of hot ring rolling

    Science.gov (United States)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  6. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  7. Multi-stage Stochastic Programming Models in Production Planning

    Directory of Open Access Journals (Sweden)

    Abas Esmaeili

    2013-10-01

    Full Text Available Production planing is a key area of operations management. An important methodology for production planing is mathematical programming. Traditonal mathematical programming models for production planing are deterministic, and canot provide robust production plans in the presence of uncertainty. As such, deterministic planing models may yield unsatisfactory decisions. Stochastic programming, an active branch of mathematical programming dealing with optimization problems involving uncertain data, has sen several sucesful aplications in production planing. Unlike alternative aproaches to decision making under uncertainty, such as Markov decision proceses, stochastic programming requires few asumptions on the underlying stochastic proceses and alows for modeling of complicated decision structures. On the other hand, stochastic programming asumes finite number of stages and exogenous uncertainties. With recent increase in computational power and algorithmic developments, the limitations of stochastic programming arising from computational dificulties have ben relieved to a large extent. Nowadays, god production planing is a considered as one of the reason for improvement in production and many studies have ben conducted in order to identify the models of production planing. The main purpose of this research is to study multi-stage stochastic programming models in production planing.

  8. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Peters, Kevin C.; Comi, Troy J.; Perry, Richard H.

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM n -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM n -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment.

  9. Probability-based model of protein-protein interactions on biological timescales

    Directory of Open Access Journals (Sweden)

    Bates Paul A

    2006-12-01

    Full Text Available Abstract Background Simulation methods can assist in describing and understanding complex networks of interacting proteins, providing fresh insights into the function and regulation of biological systems. Recent studies have investigated such processes by explicitly modelling the diffusion and interactions of individual molecules. In these approaches, two entities are considered to have interacted if they come within a set cutoff distance of each other. Results In this study, a new model of bimolecular interactions is presented that uses a simple, probability-based description of the reaction process. This description is well-suited to simulations on timescales relevant to biological systems (from seconds to hours, and provides an alternative to the previous description given by Smoluchowski. In the present approach (TFB the diffusion process is explicitly taken into account in generating the probability that two freely diffusing chemical entities will interact within a given time interval. It is compared to the Smoluchowski method, as modified by Andrews and Bray (AB. Conclusion When implemented, the AB & TFB methods give equivalent results in a variety of situations relevant to biology. Overall, the Smoluchowski method as modified by Andrews and Bray emerges as the most simple, robust and efficient method for simulating biological diffusion-reaction processes currently available.

  10. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  11. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Casper Nyamukondiwa

    2012-11-01

    Full Text Available The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  12. Emergence of biological markers of musicianship with school-based music instruction.

    Science.gov (United States)

    Kraus, Nina; Strait, Dana L

    2015-03-01

    Musician children and adults demonstrate biological distinctions in auditory processing relative to nonmusicians. For example, musician children and adults have more robust neural encoding of speech harmonics, more adaptive sound processing, and more precise neural encoding of acoustically similar sounds; these enhancements may contribute to musicians' linguistic advantages, such as for hearing speech in noise and reading. Such findings have inspired proposals that the auditory and cognitive stimulation induced by musical practice renders musicians enhanced according to biological metrics germane to communication. Cross-sectional methodologies comparing musicians with nonmusicians, however, are limited by the inability to disentangle training-related effects from demographic and innate qualities that may predistinguish musicians. Over the past several years, our laboratory has addressed this problem by examining the emergence of neural markers of musicianship in children and adolescents using longitudinal approaches to track the development of biological indices of speech processing. This work was conducted in partnership with successful community-based music programs, thus avoiding reliance on a synthetic program for the purposes of laboratory study. Outcomes indicate that many of musicians' auditory-related biological enhancements emerge with training and may promote the acquisition of language skills, including in at-risk populations. PMID:25773631

  13. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.

    Science.gov (United States)

    Zhu, Yilin; Kang, Guozheng; Yu, Chao; Poh, Leong Hien

    2016-08-01

    Based on the logarithmic rate and piecewise linearization theory, a thermodynamically consistent elasto-viscoplastic constitutive model is developed in the framework of finite deformations to describe the nonlinear time-dependent biomechanical performances of soft biological tissues, such as nonlinear anisotropic monotonic stress-strain responses, stress relaxation, creep and ratchetting. In the proposed model, the soft biological tissue is assumed as a typical composites consisting of an isotropic matrix and anisotropic fiber aggregation. Accordingly, the free energy function and stress tensor are divided into two parts related to the matrix and fiber aggregation, respectively. The nonlinear biomechanical responses of the tissues are described by the piecewise linearization theory with hypo-elastic relations of fiber aggregation. The evolution equations of viscoplasticity are formulated from the dissipation inequalities by the co-directionality hypotheses. The anisotropy is considered in the hypo-elastic relations and viscoplastic flow rules by introducing some material parameters dependent on the loading direction. Then the capability of the proposed model to describe the nonlinear time-dependent deformation of soft biological tissues is verified by comparing the predictions with the corresponding experimental results of three tissues. It is seen that the predicted monotonic stress-strain responses, stress relaxation, creep and ratchetting of soft biological tissues are in good agreement with the corresponding experimental ones. PMID:27108349

  14. Emergence of biological markers of musicianship with school-based music instruction.

    Science.gov (United States)

    Kraus, Nina; Strait, Dana L

    2015-03-01

    Musician children and adults demonstrate biological distinctions in auditory processing relative to nonmusicians. For example, musician children and adults have more robust neural encoding of speech harmonics, more adaptive sound processing, and more precise neural encoding of acoustically similar sounds; these enhancements may contribute to musicians' linguistic advantages, such as for hearing speech in noise and reading. Such findings have inspired proposals that the auditory and cognitive stimulation induced by musical practice renders musicians enhanced according to biological metrics germane to communication. Cross-sectional methodologies comparing musicians with nonmusicians, however, are limited by the inability to disentangle training-related effects from demographic and innate qualities that may predistinguish musicians. Over the past several years, our laboratory has addressed this problem by examining the emergence of neural markers of musicianship in children and adolescents using longitudinal approaches to track the development of biological indices of speech processing. This work was conducted in partnership with successful community-based music programs, thus avoiding reliance on a synthetic program for the purposes of laboratory study. Outcomes indicate that many of musicians' auditory-related biological enhancements emerge with training and may promote the acquisition of language skills, including in at-risk populations.

  15. Reduced models of multi-stage cyclic structures using cyclic symmetry reduction and component mode synthesis

    Science.gov (United States)

    Tran, Duc-Minh

    2014-10-01

    Reduced models of multi-stage cyclic structures such as bladed-disk assemblies are developed by using the multi-stage cyclic symmetry reduction and/or component mode synthesis methods. The multi-stage cyclic symmetry reduction consists in writing the equations of the bladed disks, the inter-disk structures, the inter-disk constraints and the whole multi-stage coupled system in terms of the traveling wave coordinates for all the phase indexes of the reference sectors and for all the bladed disks. Several reduced coupled systems are then solved by selecting at each time only one or a few phase indexes for each bladed disk and by applying the cyclic symmetry boundary conditions. On the other hand, component mode synthesis methods are used either independently or in combination with the multi-stage cyclic symmetry reduction to obtain reduced models of the multi-stage structure. Two of them are particularly efficient, that are firstly component mode synthesis methods with interface modes applied on the bladed disks and secondly component mode synthesis methods with traveling wave coordinates applied on the reference sectors.

  16. Synthesis and Biological Activity Evaluation of Schiff Bases of 5-Acyl-1,2,4-Triazine

    International Nuclear Information System (INIS)

    A simple and general method has been developed for the synthesis of various Schiff bases (oximes, hydrazones, semicarbazones and thiosemicarbazones) derived from 5-acyl-1,2,4-triazines. Some of the new synthesized Schiff bases were tested for biological activity but only oximes 2a-c shown poor antiviral activity. The oxime derivatives of 5-acyl-3-methylsulfanyl-1,2,4-triazine were tested with pea-seedling diamine oxidase as the enzyme is known to be inhibited by oxime compounds. However, only weak non-competitive inhibitory effects were observed (Ki of 10 /sup -2/ M). (author)

  17. Biological diversity, dietary diversity, and eye health in developing country populations: establishing the evidence-base.

    Science.gov (United States)

    Bélanger, Julie; Johns, Timothy

    2008-09-01

    Human and ecosystem health converge around biological diversity issues. Cultivated and wild plants as food and medicine make essential contributions to human health, which in turn provides rationales for conservation. While wild and cultivated plant diversity reasonably facilitates dietary diversity and positive health outcomes, the challenges of demonstrating this relationship limit its impact in concept, policy, and practice. We present a rationale for testing the dietary contribution of biological diversity to improved eye health as a case study based on existing phytochemical, pharmacological, and clinical knowledge. We consider the empirical evidence needed to substantiate, interpret, and apply this relationship at a population and ecosystem level within a unified research framework. Epidemiological data strongly support the prevention of childhood vitamin A deficiency blindness, cataract, and age-related macular degeneration by fruit and vegetable consumption. Phytonutrients, including the carotenoids lutein and zeaxanthin, protect the eye from oxidative stress and harmful light exposure. Laboratory, community, and population level research should prioritize food composition of dietary plants from both agriculture and the wild. Intervention studies, focus groups, and transmission of knowledge of local species and varieties within communities will further interpretation of epidemiological data. Population-based studies combining clinical data and measures of access and consumption of biological diversity are key to demonstrating the important relationships among biodiversity, dietary diversity, and health outcomes.

  18. Machine perception and intelligent control architecture for multirobot coordination based on biological principles

    Science.gov (United States)

    Thomopoulos, Stelios C.; Braught, Grant

    1996-10-01

    Intelligent control, inspired by biological and AI (artificial intelligence) principles, has increased the understanding of controlling complex processes without precise mathematical model of the controlled process. Through customized applications, intelligent control has demonstrated that it is a step in the right direction. However, intelligent control has yet to provide a complete solution to the problem of integrated manufacturing systems via intelligent reconfiguration of the robotics systems. The aim of this paper is to present an intelligent control architecture and design methodology based on biological principles that govern self-organization of autonomous agents. Two key structural elements of the proposed control architecture have been tested individually on key pilot applications and shown promising results. The proposed intelligent control design is inspired by observed individual and collective biological behavior in colonies of living organisms that are capable of self-organization into groups of specialized individuals capable of collectively achieving a set of prescribed or emerging objectives. The nervous and brain system in the proposed control architecture is based on reinforcement learning principles and conditioning and modeled using adaptive neurocontrollers. Mathematical control theory (e.g. optimal control, adaptive control, and neurocontrol) is used to coordinate the interactions of multiple robotics agents.

  19. Schiff base triphenylphosphine palladium (II) complexes: Synthesis, structural elucidation, electrochemical and biological evaluation

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Shafiq, Maryam; Mirza, Bushra; McKee, Vickie; Munawar, Khurram Shahzad; Ashraf, Ahmad Raza

    2016-08-01

    The complexes N-(2-oxidophenyl)salicylideneiminatotriphenylphosphine palladium(II) (1) and N-(2-sulfidophenyl)salicylideneiminato triphenylphosphine palladium(II) (2) of tridentate Schiff bases derived from salicylaldehyde and an amino- or thiophenol, have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. X-ray single crystal analysis of complex 1 has revealed its square planar geometry. The thermal analysis has shown the absence of coordinated water and final degradation product is PdO. The alkaline phosphatase studies have indicated that enzymatic activity is concentration dependent which is inversely proportional to the concentration of the compounds. The biological assays (brine shrimp cytotoxicity, DPPH) have reflected their biologically active and mild antioxidant nature. However, results of DNA protection assay have shown that they possess moderate protective activity against hydroxyl free radicals (rad OH). The voltammetric studies ascertain two-electron reduction of the compounds through purely diffusion controlled process and reveal intercalative mode of drug DNA interactions.

  20. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    Science.gov (United States)

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  1. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Itaguai, RJ (Brazil). Dept. de Quimica; Nascimento, Maria da Graca; Geronimo, Vanilde [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Quimica; Miller, Joseph [Paraiba Univ., Joao Pessoa, PB (Brazil); Giesbrecht, Astrea [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas

    1999-07-01

    A series of eleven Schiff Bases have been synthesized. They were obtained by condensation of piperonal (3,4-methylenedioxybenzaldehyde) with the corresponding aromatic primary amines. Their {sup 1}H and {sup 13}C-NMR spectra have been obtained and the Hammett correlations including chemical shifts and the substituent constants ({sigma}{sub p}, {sigma}R e {sigma}I) were studied. Linear and bilinear significant correlations were observed for iminic carbon (C-{alpha}) and C-1{sup '}, showing a more significant resonance effect on chemical shifts. The chemical shifts for C-4{sup '} were highly affected by substituent effects, especially for halogens in the expected direction. Their biological activity against microorganisms has also been measured and significant activity was showed against Epidermophyton floccosum. The biological activity did not give a reasonable relationship with electronic effects. (author)

  2. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal

    International Nuclear Information System (INIS)

    A series of eleven Schiff Bases have been synthesized. They were obtained by condensation of piperonal (3,4-methylenedioxybenzaldehyde) with the corresponding aromatic primary amines. Their 1H and 13C-NMR spectra have been obtained and the Hammett correlations including chemical shifts and the substituent constants (σp, σR e σI) were studied. Linear and bilinear significant correlations were observed for iminic carbon (C-α) and C-1', showing a more significant resonance effect on chemical shifts. The chemical shifts for C-4' were highly affected by substituent effects, especially for halogens in the expected direction. Their biological activity against microorganisms has also been measured and significant activity was showed against Epidermophyton floccosum. The biological activity did not give a reasonable relationship with electronic effects. (author)

  3. A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry.

    Science.gov (United States)

    Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2015-04-01

    Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems.

  4. A model for estimating body shape biological age based on clinical parameters associated with body composition

    Directory of Open Access Journals (Sweden)

    Bae CY

    2012-12-01

    Full Text Available Chul-Young Bae,1 Young Gon Kang,2 Young-Sung Suh,3 Jee Hye Han,4 Sung-Soo Kim,5 Kyung Won Shim61MediAge Research Center, Seoul, Korea; 2Chaum Power Aging Center, College of Medicine, CHA University, Seoul, Korea; 3Health Promotion Center, Keimyung University Dongsam Medical Center, Daegu, Korea; 4Department of Family Medicine, College of Medicine, Eulji University, Seoul, Korea; 5Department of Family Medicine, College of Medicine, Chungnam National University, Daejeon, Korea; 6Department of Family Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul, KoreaBackground: To date, no studies have attempted to estimate body shape biological age using clinical parameters associated with body composition for the purposes of examining a person's body shape based on their age.Objective: We examined the relations between clinical parameters associated with body composition and chronological age, and proposed a model for estimating the body shape biological age.Methods: The study was conducted in 243,778 subjects aged between 20 and 90 years who received a general medical checkup at health promotion centers at university and community hospitals in Korea from 2004 to 2011.Results: In men, the clinical parameters with the highest correlation to age included the waist-to-hip ratio (r = 0.786, P < 0.001, hip circumference (r = −0.448, P < 0.001, and height (r = −0.377, P < 0.001. In women, the clinical parameters with the highest correlation to age include the waist-to-hip ratio (r = 0.859, P < 0.001, waist circumference (r = 0.580, P < 0.001, and hip circumference (r = 0.520, P < 0.001. To estimate the optimal body shape biological age based on clinical parameters associated with body composition, we performed a multiple regression analysis. In a model estimating the body shape biological age, the coefficient of determination (R2 was 0.71 in men and 0.76 in women.Conclusion: Our model for estimating body shape biological age

  5. A Biologically-Based Alternative Water Processor for Long Duration Space Missions

    Science.gov (United States)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pensinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2015-01-01

    A wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multifiltration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP was operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to maximum based on available carbon. The FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater.

  6. A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species.

    Science.gov (United States)

    Wang, Rong-Lin; Bencic, David; Villeneuve, Daniel L; Ankley, Gerald T; Lazorchak, Jim; Edwards, Stephen

    2010-07-01

    This study sought to construct a transcriptomics-based framework of signal transduction pathways, transcriptional regulatory networks, and the hypothalamic-pituitary gonadal (HPG) axis in zebrafish (Danio rerio) to facilitate formulation of specific, testable hypotheses regarding the mechanisms of endocrine disruption in fish. For the analyses involved, we used data from a total of more than 300 microarrays representing 58 conditions, which encompassed 4 tissue types from zebrafish of both genders exposed for 1 of 3 durations to 10 different test chemicals (17alpha-ethynyl estradiol, fadrozole, 17beta-trenbolone, fipronil, prochloraz, flutamide, muscimol, ketoconazole, trilostane, and vinclozolin). Differentially expressed genes were identified by one class t-tests for each condition, and those with false discovery rates of less than 40% and treatment/control ratios > or =1.3-fold were mapped to orthologous human, mouse, and rat pathways by Ingenuity Pathway Analysis to look for overrepresentation of known biological pathways. To complement the analysis of known biological pathways, the genes regulated by approximately 1800 transcription factors were inferred using the ARACNE mutual information-based algorithm. The resulting gene sets for all transcriptional factors, along with a group of compiled HPG-axis genes and approximately 130 publicly available biological pathways, were analyzed for their responses to the 58 treatment conditions by Gene Set Enrichment Analysis (GSEA) and its variant, Extended-GSEA. The biological pathways and transcription factors associated with multiple distinct treatments showed substantial interactions among the HPG-axis, TGF-beta, p53, and several of their cross-talking partners. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell cycle, and apoptosis.

  7. Biological Significance of Gene Expression Data using Similarity based Biclustering Algorithm

    Directory of Open Access Journals (Sweden)

    Bagyamani J

    2011-02-01

    Full Text Available Unlocking the complexity of a living organism’s biological processes, functionsand genetic network is vital in learning how to improve the health of humankind.Genetic analysis, especially biclustering, is a significant step in this process.Though many biclustering methods exist, only few provide a query basedapproach for biologists to search the biclusters which contain a certain gene ofinterest. This proposed query based biclustering algorithm SIMBIC+ firstidentifies a functionally rich query gene. After identifying the query gene, sets ofgenes including query gene that show coherent expression patterns acrosssubsets of experimental conditions is identified. It performs simultaneousclustering on both row and column dimension to extract biclusters using Topdown approach. Since it uses novel ‘ratio’ based similarity measure, biclusterswith more coherence and with more biological meaning are identified. SIMBIC+uses score based approach with an aim of maximizing the similarity of thebicluster. Contribution entropy based condition selection and multiple row /column deletion methods are used to reduce the complexity of the algorithm toidentify biclusters with maximum similarity value. Experiments are conducted onYeast Saccharomyces dataset and the biclusters obtained are compared withbiclusters of popular MSB (Maximum Similarity Bicluster algorithm. Thebiological significance of the biclusters obtained by the proposed algorithm andMSB are compared and the comparison proves that SIMBIC+ identifies biclusterswith more significant GO (Gene Ontology.

  8. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Peters, Kevin C; Comi, Troy J; Perry, Richard H

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM (n) -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM (n) -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM (1) -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment. PMID:26091888

  9. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. PMID:27521934

  10. MULTI-STAGES CO-OPERATIVE/NONCOOPERATIVE SCHEMES OF SPECTRUM SENSING FOR COGNITIVE RADIO SYSTEMS

    Directory of Open Access Journals (Sweden)

    Anwar Mousa

    2016-08-01

    Full Text Available Searching for spectrum holes in practical wireless channels where primary users experience multipath fading and shadowing, with noise uncertainty, limits the detection performance significantly. Moreover, the detection challenge will be tougher when different band types have to be sensed, with different signal and spectral characteristics, and probably overlapping spectra. Besides, primary user waveforms can be known (completely or partially or unknown to allow or forbid cognitive radios to use specific kinds of detection schemes! Hidden primary user’s problem, and doubly selective channel oblige the use of cooperative sensing to exploit the spatial diversity in the observations of spatially located cognitive radio users. Incorporated all the aforementioned practical challenges as a whole, this paper developed a new multistage detection scheme that intelligently decides the detection algorithm based on power, noise, bandwidth and knowledge of the signal of interest. The proposed scheme switches between individual and cooperative sensing and among featured based sensing techniques (cyclo-stationary detection and matched filter and sub-band energy detection according to the characteristics of signal and band of interest.Compared to the existing schemes, performance evaluations show reliable results in terms of probabilities of detection and mean sensing times under the aforementioned conditions.

  11. Ramping up to the Biology Workbench: A Multi-Stage Approach to Bioinformatics Education

    Science.gov (United States)

    Greene, Kathleen; Donovan, Sam

    2005-01-01

    In the process of designing and field-testing bioinformatics curriculum materials, we have adopted a three-stage, progressive model that emphasizes collaborative scientific inquiry. The elements of the model include: (1) context setting, (2) introduction to concepts, processes, and tools, and (3) development of competent use of technologically…

  12. Optomechatronic prototype based on digital holographic interferometry aimed to the study of biological tissues

    Science.gov (United States)

    Alcaráz Gutiérrez, Alejandro; Del Socorro Hernández-Montes, María; Mendoza Santoyo, Fernando; Muñoz, Silvino

    2011-08-01

    This paper presents the preliminary stages of the development of a compact optomechatronic prototype for the characterization and study of biological tissues in full field of view. The system is based on the optical non invasive technique known as digital holographic interferometry (DHI), which allows displacement measurements in the micrometer range, a key feature for the study of biological tissues. An ad-hoc optomechanical design contemplates a sturdy system yet compact that renders high quality images able to generate new data about the biological tissues under study. These data contain quantitative and qualitative information of tissue mechanical parameters. The DHI results are presented as fringe phase maps related to tissue surface displacements, showing that the proposed prototype provides non invasive information pertaining to the mechanical characteristics of the tissue which can be used later to diagnose certain tissue pathologies. The use of this prototype in the biomedical area may be thought of as a new and complementary tool for the study and research in full field of view that may even be used in conditions outside the laboratory.

  13. Chemical and biological sensors based on optically confined birefringent chalcopyrite heterostructures

    International Nuclear Information System (INIS)

    This paper introduces and discusses the design and application(s) of a new and unique integrated solid-state molecular sensor (SSMS) system. The SSMS is based on optically confined birefringent heterostructure technology, which has the capability of recognizing target chemicals and biological molecules in an ambient environment. The SSMS technology is applicable for miniaturized sensor devices that can be used for quick, remote screening and recognition of chemical hazards in the environment. For example, trace impurities related to air/water pollution can be continuously monitored. Just as important, however, the SSMS technology will have a worldwide impact--economically as well as technologically--when used in the detection of chemical and biological agents, as well as for a variety of medical sensing applications, such as to identify and monitor complex biological structures, test for allergic reactions and screen for common diseases. Moreover, it could hasten the time of development and introduction into the marketplace of critically needed new drugs by the monitoring of biochemical and molecular cellular responses to the candidate drugs. Materials selection criteria, growth parameters and device architecture requirements are given and discussed. In addition, the results of a recent phase matching calculation, substantiating the feasibility of the SSMS, are given and discussed

  14. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    Science.gov (United States)

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  15. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization.

    Science.gov (United States)

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-05-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.

  16. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization.

    Science.gov (United States)

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-05-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor. PMID:24891759

  17. Research and Development for Multi-stage and Integrated Approach for Seafloor Massive Sulfides (SMSs) Exploration.

    Science.gov (United States)

    Asakawa, Eiichi; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami; Lee, Sangkyun; Murakami, Fumitoshi; Tsukahara, Hitoshi; Koizumi, Akira; Koizumi, Yukiko; Ikeda, Makoto; Higashi, Michio

    2016-04-01

    The Cabinet Office, Government Japan started the Cross-ministerial Strategic Innovation Promotion Program (SIP) in 2014. "Next-generation Ocean Resource Exploration Techniques" is scheduled under SIP from 2014 to 2018. J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey) participates this program and aims "Multi-stage and integrated approach for SMSs exploration" through the development of highly efficient and cost-effective geophysical exploration methods mainly on seismic and electric-magnetic methods, and combination of the known exploration tools and systems. J-MARES proposed Vertical Cable Seismic (VCS) technique as seismic survey. It is one of reflection seismic methods that uses hydrophone arrays vertically moored from the seafloor. It is useful to delineate detailed structures in a spatially-limited area efficiently. JGI, a member of J-MARES, has developed autonomous VCS systems and carried out several VCS surveys in hydrothermal fields in Okinawa Trough. By the VCS survey, the detailed subsurface structure is revealed and velocity is estimated up to 100m. Then we could recognize the buried sulfide deposit beneath the sediments. As for EM survey, the system has been originally developed by Waseda University. The system is towed closely to seafloor using ROV. It is one of Time Domain EM (TDEM) survey systems that consists of a loop coil and a 3 component high-sensitive magnetometer. By analyzing the decay curve of the transient magnetic field induced by the loop coil, the subsurface resistivity structure is estimated. The exploration depth depends on the measurement time and it is designed up to 100m enough for SMS exploration. We carried out the EM surveys around the north mound along VCS survey lines in Izena Hole, Okinawa-trough. The EM survey detects the highly conductive zone around the north mound. The efficiency is 3 times faster than the conventional TDEM measurement on the ocean bottom. Based on

  18. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  19. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    Science.gov (United States)

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  20. Reclaimation of petroleum-based wastewater by noval ozone immobilized biological activated carbon process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Wastewater reclamation in the petroleum industries in Northern China is important because of the shortage of water resource. Conventional treatment technology used in treating petroleum-based wastewater,namely the 3-phase biological process, typically removes COD, BOD, grease, volatile hydrobenzenes, cyanides, sulfides and suspended solids. However, the process is often ineffective in ammonia-nitrogen removal,and thus the treated effluent quantity can't meet the required standards for reuse. This paper investigated a novel ozone immobilized biological activated carbon (O3-IBAC) process for ammonia nitrogen removal from petroleum-based wastewater. Operated at a HRT (Hydraulic Retention Time) of 15 minutes in IBAC1 and 27 minutes in IBAC2, the O3-IBAC process achieved ammonia nitrogen removal efficiency of 91%. In addition, the removal efficiencies of COD, volatile hydrobenzenes, suspended solids, turbidity and petroleum-based micropollutants were all above 90%. Competition between the autotrophs and heterotrophs was observed, which was indicated by an increase of ammonia nitrogen removal with a decrease of COD removal, and vise versa. Nitrite accumulation in IBAC1 followed by erobic shortcut denitrification in IBAC2 led to 28% of the Total Nitrogen removal efficiency. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption and biodegradation on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time.

  1. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  2. Theoretical study of the molecular bases that control photochemical processes with biological and nanotechnological interest

    OpenAIRE

    Saurí Peris, Vicenta

    2013-01-01

    El trabajo desarrollado en la tesis doctoral que lleva por título "Theoretical study of the molecular bases that control photochemical processes with biological and nanotechnological interest" se enmarca en las líneas de investigación del grupo QCEXVAL (Quantum Chemistry of the Excited State University of Valencia), que nació en el seno del departamento de Química Física de la Universitat de València en 1993. Se han abordado temas de interés metodológico, biológico y nanotecnológico. La prime...

  3. Flexible Design and Operation of Multi-Stage Flash (MSF Desalination Process Subject to Variable Fouling and Variable Freshwater Demand

    Directory of Open Access Journals (Sweden)

    Said Alforjani Said

    2013-10-01

    Full Text Available This work describes how the design and operation parameters of the Multi-Stage Flash (MSF desalination process are optimised when the process is subject to variation in seawater temperature, fouling and freshwater demand throughout the day. A simple polynomial based dynamic seawater temperature and variable freshwater demand correlations are developed based on actual data which are incorporated in the MSF mathematical model using gPROMS models builder 3.0.3. In addition, a fouling model based on stage temperature is considered. The fouling and the effect of noncondensable gases are incorporated into the calculation of overall heat transfer co-efficient for condensers. Finally, an optimisation problem is developed where the total daily operating cost of the MSF process is minimised by optimising the design (no of stages and the operating (seawater rejected flowrate and brine recycle flowrate parameters.

  4. Age Effects and Temporal Trends in HPV-Related and HPV-Unrelated Oral Cancer in the United States: A Multistage Carcinogenesis Modeling Analysis.

    Directory of Open Access Journals (Sweden)

    Andrew F Brouwer

    Full Text Available Differences in prognosis in HPV-positive and HPV-negative oral (oropharyngeal and oral cavity squamous cell carcinomas (OSCCs and increasing incidence of HPV-related cancers have spurred interest in demographic and temporal trends in OSCC incidence. We leverage multistage clonal expansion (MSCE models coupled with age-period-cohort (APC epidemiological models to analyze OSCC data in the SEER cancer registry (1973-2012. MSCE models are based on the initiation-promotion-malignant conversion paradigm in carcinogenesis and allow for interpretation of trends in terms of biological mechanisms. APC models seek to differentiate between the temporal effects of age, period, and birth cohort on cancer risk. Previous studies have looked at the effect of period and cohort on tumor initiation, and we extend this to compare model fits of period and cohort effects on each of tumor initiation, promotion, and malignant conversion rates. HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue sites are best described by placing period and cohort effects on the initiation rate. HPV-related and non-oral-tongue HPV-unrelated cancers have similar promotion rates, suggesting similar tumorigenesis dynamics once initiated. Estimates of promotion rates at oral tongue sites are lower, corresponding to a longer sojourn time; this finding is consistent with the hypothesis of an etiology distinct from HPV or alcohol and tobacco use. Finally, for the three subsite groups, men have higher initiation rates than women of the same race, and black people have higher promotion than white people of the same sex. These differences explain part of the racial and sex differences in OSCC incidence.

  5. Age Effects and Temporal Trends in HPV-Related and HPV-Unrelated Oral Cancer in the United States: A Multistage Carcinogenesis Modeling Analysis.

    Science.gov (United States)

    Brouwer, Andrew F; Eisenberg, Marisa C; Meza, Rafael

    2016-01-01

    Differences in prognosis in HPV-positive and HPV-negative oral (oropharyngeal and oral cavity) squamous cell carcinomas (OSCCs) and increasing incidence of HPV-related cancers have spurred interest in demographic and temporal trends in OSCC incidence. We leverage multistage clonal expansion (MSCE) models coupled with age-period-cohort (APC) epidemiological models to analyze OSCC data in the SEER cancer registry (1973-2012). MSCE models are based on the initiation-promotion-malignant conversion paradigm in carcinogenesis and allow for interpretation of trends in terms of biological mechanisms. APC models seek to differentiate between the temporal effects of age, period, and birth cohort on cancer risk. Previous studies have looked at the effect of period and cohort on tumor initiation, and we extend this to compare model fits of period and cohort effects on each of tumor initiation, promotion, and malignant conversion rates. HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue sites are best described by placing period and cohort effects on the initiation rate. HPV-related and non-oral-tongue HPV-unrelated cancers have similar promotion rates, suggesting similar tumorigenesis dynamics once initiated. Estimates of promotion rates at oral tongue sites are lower, corresponding to a longer sojourn time; this finding is consistent with the hypothesis of an etiology distinct from HPV or alcohol and tobacco use. Finally, for the three subsite groups, men have higher initiation rates than women of the same race, and black people have higher promotion than white people of the same sex. These differences explain part of the racial and sex differences in OSCC incidence.

  6. Experimental studies on the multistage constant modulus array for the estimation of directions-of-arrival

    Institute of Scientific and Technical Information of China (English)

    ZHUO Jie; SUN Chao

    2004-01-01

    The performance of the multistage Constant Modulus (CM) array, one of the most striking blind beamforming algorithms, for the source Directions-of-Arrival (DOA) estimation was analyzed via computer simulations and water tank experiments, and was compared to that of other DOA estimation algorithms including the ‘non-blind' and the ‘blind'. Firstly, a nominal array model and an array model with gain and phase perturbations were established,respectively. Secondly, the multistage CM array algorithm was described and computer simulations were conducted. Simulation results showed that the multistage CM array could correctly estimate the DOA at the same time when the sources were blindly recovered, and the angle separating ability of the algorithm was beyond the Rayleigh resolution limit. By changing the variance of the array model errors, it was also verified that the multistage CM array was more robust to the errors than some other algorithms mentioned in this paper. Finally, water tank experiments and data processing results were provided. Situations with different array sizes and source angular separations were considered. It was shown that the results were in good agreement with computer simulations. Results of computer simulations and water tank experiments verified that the DOAs of the multiple independent sources could be blindly and robustly estimated with the multistage CM array.

  7. 3D segmentation of medical images using a fast multistage hybrid algorithm

    International Nuclear Information System (INIS)

    In this paper, we propose a fast multistage hybrid algorithm for 3D segmentation of medical images. We first employ a morphological recursive erosion operation to reduce the connectivity between the object to be segmented and its neighborhood; then the fast marching method is used to greatly accelerate the initial propagation of a surface front from the user defined seed structure to a surface close to the desired boundary; a morphological reconstruction method then operates on this surface to achieve an initial segmentation result; and finally morphological recursive dilation is employed to recover any structure lost in the first stage of the algorithm. This approach is tested on 60 CT or MRI images of the brain, heart and urinary system, to demonstrate the robustness of this technique across a variety of imaging modalities and organ systems. The algorithm is also validated against datasets for which ''truth'' is known. These measurements revealed that the algorithm achieved a mean ''similarity index'' of 0.966 across the three organ systems. The execution time for this algorithm, when run on a 550 MHz Dual PIII-based PC runningWindows NT, and extracting the cortex from brain MRIs, the cardiac surface from dynamic CT, and the kidneys from 3D CT, was 38, 46 and 23 s, respectively. (orig.)

  8. Variation transmission model for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

    Science.gov (United States)

    Montes, Richard O

    2012-03-01

    Pharmaceutical manufacturing processes consist of a series of stages (e.g., reaction, workup, isolation) to generate the active pharmaceutical ingredient (API). Outputs at intermediate stages (in-process control) and API need to be controlled within acceptance criteria to assure final drug product quality. In this paper, two methods based on tolerance interval to derive such acceptance criteria will be evaluated. The first method is serial worst case (SWC), an industry risk minimization strategy, wherein input materials and process parameters of a stage are fixed at their worst-case settings to calculate the maximum level expected from the stage. This maximum output then becomes input to the next stage wherein process parameters are again fixed at worst-case setting. The procedure is serially repeated throughout the process until the final stage. The calculated limits using SWC can be artificially high and may not reflect the actual process performance. The second method is the variation transmission (VT) using autoregressive model, wherein variation transmitted up to a stage is estimated by accounting for the recursive structure of the errors at each stage. Computer simulations at varying extent of variation transmission and process stage variability are performed. For the scenarios tested, VT method is demonstrated to better maintain the simulated confidence level and more precisely estimate the true proportion parameter than SWC. Real data examples are also presented that corroborate the findings from the simulation. Overall, VT is recommended for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

  9. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    Science.gov (United States)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  10. Optimal phasing of district heating network investments using multi-stage stochastic programming

    Directory of Open Access Journals (Sweden)

    Romain Stephane Claude Lambert

    2016-06-01

    Full Text Available Most design optimisation studies for district heating systems have focused on the optimal sizing of network assets and on the location of production units. However, the strategic value of the flexibility in phasing of the inherently modular heat networks, which is an important aspect in many feasibility studies for district heating schemes in the UK, is almost always neglected in the scientific literature. This paper considers the sequential problem faced by a decision-maker in the phasing of long-term investments into district heating networks and their expansions. The problem is formulated as a multi-stage stochastic programme to determine the annual capital expenditure that maximises the expected net present value of the project. The optimisation approach is illustrated by applying it to the hypothetical case of the UK’s Marston Vale eco town. It was found that the approach is capable of simulating the optimal growth of a network, from both a single heat source or separate islands of growth, as well as the optimal marginal expansion of an existing district heating network. The proposed approach can be used by decision makers as a framework to determine both the optimal phasing and extension of district heating networks and can be adapted simply to various, more complex real-life situations by introducing additional constraints and parameters. The versatility of the base formulation also makes it a powerful approach regardless of the size of the network and also potentially applicable to cooling networks.

  11. Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    Energy Technology Data Exchange (ETDEWEB)

    Chancé, Antoine, E-mail: antoine.chance@cea.fr [CEA, IRFU, SACM, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Delferrière, Olivier; Schwindling, Jérôme [CEA, IRFU, SACM, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Bruni, Christelle; Delerue, Nicolas [LAL, UMR9607, CNRS and Université Paris Sud, Orsay (France); Specka, Arnd [LLR, UMR7638, CNRS and Ecole Polytechnique, Palaiseau (France); Cros, Brgitte; Maynard, Gillies; Paradkar, Bhooshan S. [LPGP, UMR8578, CNRS and Université Paris Sud, Orsay (France); Mora, Patrick [CPhT, UMR7644, CNRS and Ecole Polytechnique, Palaiseau (France)

    2014-03-11

    Laser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility (CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics.

  12. Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    Science.gov (United States)

    Chancé, Antoine; Delferrière, Olivier; Schwindling, Jérôme; Bruni, Christelle; Delerue, Nicolas; Specka, Arnd; Cros, Brgitte; Maynard, Gillies; Paradkar, Bhooshan S.; Mora, Patrick

    2014-03-01

    Laser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility (CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics.

  13. Short-Term Multi-Stage Stochastic Optimization of Hydropower Reservoirs Under Meteorological Uncertainty

    Science.gov (United States)

    Schwanenberg, D.; Naumann, S.; Allen, C.

    2014-12-01

    Hydroelectric power systems are characterized by variability and uncertainty in yield and water resources obligations. Market volatility and the growing number of operational constraints for flood control, navigation, environmental obligations and ancillary services (including load balancing requirements for renewable resources) further the need to quantify sources of uncertainty. This research presents an integrated framework to handle several sources of uncertainty. Main focus is on the meteorological forecast uncertainty based on deterministic and probabilistic Numerical Weather Predictions (NWP), its consistent propagation through load and streamflow forecasts, and the generation of scenario trees with novel multi-dimensional distance metrics. The scenario trees enable us to extend a deterministic optimization setup to a multi-stage stochastic optimization approach as the mathematical formulation of the short-term system management. The Federal Columbia River Power System (FCRPS), managed by the Bonneville Power Administration, the US Army Corps of Engineers and the Bureau of Reclamation, serves as a large-scale test case for the application of the new framework. We proof the feasibility of the new approach and verify the operational applicability within a real-time environment.

  14. Consolidation Theory for a Stone Column Composite Foundation under Multistage Loading

    Directory of Open Access Journals (Sweden)

    Shenggen Huang

    2016-01-01

    Full Text Available The consolidation theories considering instant load cannot fully reveal the consolidation mechanism of a stone column composite foundation used in the expressway embankments due to the time effect of loading; that is, the expressway embankments are often constructed in several stages for a long time. Meanwhile, owing to the special property that the pile-soil stress ratio is larger than 1, the consolidation theory for sand drain well foundation cannot be used directly in the consolidation analysis of stone column composite foundation. Based on the principle that the vertical load applied on the composite foundation is shared by the stone column and the surrounding soil, the governing solutions for the stone column composite foundation under a multistage load are established. By virtue of the separation of variables, the corresponding solutions of degree of consolidation for loading stage and maintaining load stage are derived separately. According to the Carrillo theorem, the solution for the average total degree of consolidation of entire composite foundation is also obtained. Finally, the reasonableness of the present solution has been verified by comparing the consolidation curve calculated by the present solution with that measured by site test.

  15. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors.

    Science.gov (United States)

    Dwivedi, Dipankar; Mohanty, Binayak P; Lesikar, Bruce J

    2013-05-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model

  16. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Science.gov (United States)

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  17. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Directory of Open Access Journals (Sweden)

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  18. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.

    Science.gov (United States)

    Chang, Amy L; Pribbenow, Christine M

    2016-05-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps

  19. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development

    Science.gov (United States)

    Chang, Amy L.; Pribbenow, Christine M.

    2016-01-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists’ leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants (“scholars”) from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP’s long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program’s 2010–2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and

  20. Potential biological applications of bio-based anacardic acids and their derivatives.

    Science.gov (United States)

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  1. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  2. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Fatma B. Hamad

    2015-04-01

    Full Text Available Cashew nut shells (CNS, which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  3. Quality fluctuation detection of an herbal injection based on biological fingerprint combined with chemical fingerprint.

    Science.gov (United States)

    Zhang, Lele; Ma, Lina; Feng, Wuwen; Zhang, Congen; Sheng, Feiya; Zhang, Yi; Xu, Chen; Dong, Gang; Dong, Xiaoping; Xiao, Xiaohe; Yan, Dan

    2014-08-01

    Herbal injection is one of the most important preparations of traditional Chinese medicine. More than 130 types of herbal injections are used clinically for 400 million patients annually with total sales of over four billion US dollars per year. However, the current quality control (QC) methods relying mainly on chemical fingerprints (CF) can hardly ensure quality and safety of the herbal injections with complex chemical composition and have resulted in an increase in serious adverse drug reactions. In this study, a comprehensive approach for the QC of a controversial herbal injection Shuang-Huang-Lian lyophilized powder (SHL) was established based on the quality fluctuation detection by a combination of CF and biological fingerprint (BF). High-performance liquid chromatography and the impedance-based xCELLigence system were applied to establish the CF and BF, respectively. In addition, multivariate analysis was performed to evaluate the discriminant ability of the two methods. The results showed that being subjected to environmental influence like oxygen/air, high temperature, and extreme illumination could lead to quality fluctuation of SHL. The combination of chemical and biological fingerprint method is a more powerful tool for the QC of SHL because it can clearly discriminate different groups of abnormal samples. This method can be used for the detection of quality fluctuation of SHL and can provide reference for the quality control of other herbal injections.

  4. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  5. Network-based analysis of affected biological processes in type 2 diabetes models.

    Directory of Open Access Journals (Sweden)

    Manway Liu

    2007-06-01

    Full Text Available Type 2 diabetes mellitus is a complex disorder associated with multiple genetic, epigenetic, developmental, and environmental factors. Animal models of type 2 diabetes differ based on diet, drug treatment, and gene knockouts, and yet all display the clinical hallmarks of hyperglycemia and insulin resistance in peripheral tissue. The recent advances in gene-expression microarray technologies present an unprecedented opportunity to study type 2 diabetes mellitus at a genome-wide scale and across different models. To date, a key challenge has been to identify the biological processes or signaling pathways that play significant roles in the disorder. Here, using a network-based analysis methodology, we identified two sets of genes, associated with insulin signaling and a network of nuclear receptors, which are recurrent in a statistically significant number of diabetes and insulin resistance models and transcriptionally altered across diverse tissue types. We additionally identified a network of protein-protein interactions between members from the two gene sets that may facilitate signaling between them. Taken together, the results illustrate the benefits of integrating high-throughput microarray studies, together with protein-protein interaction networks, in elucidating the underlying biological processes associated with a complex disorder.

  6. 基于伪动态的混沌人工鱼群算法在多阶段输电网络规划中的应用%Multistage transmission network planning based on pseudo-dynamic chaotic artificial fish school algorithm

    Institute of Scientific and Technical Information of China (English)

    聂宏展; 王毕元

    2011-01-01

    与传统输电网络规划不同,多阶段输电网络规划需要考虑时段因素,在何阶段搭建何种路线使全局规划方案最优.多阶段规划的难点是阶段之间的过渡,后面阶段的决策要根据前面阶段的决策来定,对于大规模输电网规划经典的动态规划方法无法解决.利用伪动态规划的思想处理多阶段问题,这样减少了算法的迭代次数和运算时间.将混沌优化算法和人工鱼群算法相结合,摆脱了混沌搜索的盲目性和人工鱼搜索的局限性,使该混合算法效率高、收敛速度快.对巴西南部46节点系统的计算结果表明,该混合算法具有可行性和高效性.%The traditional transmission network planning is confined to a single-level construction, while the actual transmission network planning needs to take into account the time factor, namely how to build the best route to network planning. The difficulty of the multi-stage planning is the transition between stages, with the later stages of the decision-making depending on earlier stages of decision-making. Classic dynamic programming can not solve largescale transmission network planning program. In this paper, pseudo-dynamic programming deals with the multistage problem, whose objective is to reduce the number of iterations. The combination of Chaotic Optimization Algorithm and Artificial Fish School Algorithm is free from blindness and limitations of the hybrid algorithm search. The hybrid algorithm is efficient and quick in computation. The calculation results of the 46-bus system reveal that applying hybrid algorithm into transmission network planning is not only feasible, but also has a very high computational efficiency.

  7. Compression-based classification of biological sequences and structures via the Universal Similarity Metric: experimental assessment

    Directory of Open Access Journals (Sweden)

    Manzini Giovanni

    2007-07-01

    Full Text Available Abstract Background Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. It is currently primarily handled using alignments. However, the alignment methods seem inadequate for post-genomic studies since they do not scale well with data set size and they seem to be confined only to genomic and proteomic sequences. Therefore, alignment-free similarity measures are actively pursued. Among those, USM (Universal Similarity Metric has gained prominence. It is based on the deep theory of Kolmogorov Complexity and universality is its most novel striking feature. Since it can only be approximated via data compression, USM is a methodology rather than a formula quantifying the similarity of two strings. Three approximations of USM are available, namely UCD (Universal Compression Dissimilarity, NCD (Normalized Compression Dissimilarity and CD (Compression Dissimilarity. Their applicability and robustness is tested on various data sets yielding a first massive quantitative estimate that the USM methodology and its approximations are of value. Despite the rich theory developed around USM, its experimental assessment has limitations: only a few data compressors have been tested in conjunction with USM and mostly at a qualitative level, no comparison among UCD, NCD and CD is available and no comparison of USM with existing methods, both based on alignments and not, seems to be available. Results We experimentally test the USM methodology by using 25 compressors, all three of its known approximations and six data sets of relevance to Molecular Biology. This offers the first systematic and quantitative experimental assessment of this methodology, that naturally complements the many theoretical and the preliminary experimental results available. Moreover, we compare the USM methodology both with methods based on alignments and not. We may group our experiments into two sets. The first one, performed via ROC

  8. Design and Fabrication of Polysilicon-based Piezoresistive Microcantilever For Biological Sensing

    Science.gov (United States)

    Madzhi, Nina Korlina; Ahmad, Anuar bin; Khuan, Lee Yoot; Rani, Rozina Abd.; Syono, Mohd. Ismahadi; Abdullah, Firdaus

    2009-06-01

    This paper describes the fabrication process of a piezoresistive microcantilever sensor that is used as a platform for biological sensing such as salivary amylase-activity. The 0.5 μm-thick piezoresistive sensors are made on polysilicon-based cantilever beam. This surface micromachined microcantilever is based on silicon wafers and fabricated using 0.5 μm CMOS process technology . The range of microcantilevers is 40-140 μm long, 0.5-1 μm thick, and 40 μm wide. The force sensitivity of implemented sensors ranges from 2-10 Pa is corresponding to salivary amylase-activity adsorbed on the piezoresistive microcantilever.

  9. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength λ = 0.5 μm and providing flush energy E = 1 MJ and brightness 4 x 1022 W cm-2 sr-1 within steering pulse duration τ ∼ 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R ampersand D

  10. An Enhanced Genetic Algorithm to Solve the Static and Multistage Transmission Network Expansion Planning

    Directory of Open Access Journals (Sweden)

    Luis A. Gallego

    2012-01-01

    Full Text Available An enhanced genetic algorithm (EGA is applied to solve the long-term transmission expansion planning (LTTEP problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1 generation of an initial population using fast, efficient heuristic algorithms, (2 better implementation of the local improvement phase and (3 efficient solution of linear programming problems (LPs. Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem.

  11. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.;

    2010-01-01

    Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups with...... vertical walls. The strategy consists of forming a conical cup with a taper angle in the first stage, followed by three subsequent stages that progressively move the conical shape towards the desired cylindrical geometry. The investigation includes material characterization, determination of forming......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  12. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    Science.gov (United States)

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  13. [Study on action mechanism of Danhong injection based on computational system biology approach].

    Science.gov (United States)

    Lv, Yan-ni; Wei, Xiao-hua; Xiao, Pin

    2015-02-01

    Danhong injection is a compound preparation of traditional Chinese medicine Salvia miltiorrhiza and Carthamus tinctorius, and has been widely applied in treating coronary heart diseases and ischemic encephalopathy in clinic. Despite the complexity of its chemical compounds and the diversity of targets, especially in system biology, there have not a report for its action mechanism as a whole regulatory biological network. In this study, protein data of S. miltiorrhiza and C. tinctorius were searched in TCMGeneDIT database and agilent literature search (ALS) system to establish the multi-component protein network of S. miltiorrhiza, C. tinctorius and Danhong injection. Besides, the protein interaction network was built based on the protein-protein interaction in Genecards, BIND, BioGRID, IntAct, MINT and other databases. According to the findings, 10 compounds of S. miltiorrhiza and 14 compounds of C. tinctorius were correlated with proteins. The 24 common compounds had interactions with 81 proteins, and formed a protein interaction network with 60 none-isolated nodes. The Cluster ONE module was applied to make an enrichment analysis on the protein interaction network and extract one sub-network with significant difference P <0.05. The sub-network contains 23 key proteins, which involved five signaling pathways, namely Nod-like receptor signaling pathway, epithelial cell signaling in helicobacter pylori infection, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and neurotrophin signaling pathway through KEGG signaling pathway mapping. In this study, the computational system biology approach was adopted to preliminarily explain the molecular mechanism of main compounds of Danhong injection in preventing and treating diseases and provide reference for systematic studies on traditional Chinese medicine compounds. PMID:26084184

  14. Dynamic neuronal ensembles: Issues in representing structure change in object-oriented, biologically-based brain models

    Energy Technology Data Exchange (ETDEWEB)

    Vahie, S.; Zeigler, B.P.; Cho, H. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    This paper describes the structure of dynamic neuronal ensembles (DNEs). DNEs represent a new paradigm for learning, based on biological neural networks that use variable structures. We present a computational neural element that demonstrates biological neuron functionality such as neurotransmitter feedback absolute refractory period and multiple output potentials. More specifically, we will develop a network of neural elements that have the ability to dynamically strengthen, weaken, add and remove interconnections. We demonstrate that the DNE is capable of performing dynamic modifications to neuron connections and exhibiting biological neuron functionality. In addition to its applications for learning, DNEs provide an excellent environment for testing and analysis of biological neural systems. An example of habituation and hyper-sensitization in biological systems, using a neural circuit from a snail is presented and discussed. This paper provides an insight into the DNE paradigm using models developed and simulated in DEVS.

  15. Bridging cancer biology and the patients' needs with nanotechnology-based approaches.

    Science.gov (United States)

    Fonseca, Nuno A; Gregório, Ana C; Valério-Fernandes, Angela; Simões, Sérgio; Moreira, João N

    2014-06-01

    Cancer remains as stressful condition and a leading cause of death in the western world. Actual cornerstone treatments of cancer disease rest as an elusive alternative, offering limited efficacy with extensive secondary effects as a result of severe cytotoxic effects in healthy tissues. The advent of nanotechnology brought the promise to revolutionize many fields including oncology, proposing advanced systems for cancer treatment. Drug delivery systems rest among the most successful examples of nanotechnology. Throughout time they have been able to evolve as a function of an increased understanding from cancer biology and the tumor microenvironment. Marketing of Doxil® unleashed a remarkable impulse in the development of drug delivery systems. Since then, several nanocarriers have been introduced, with aspirations to overrule previous technologies, demonstrating increased therapeutic efficacy besides decreased toxicity. Spatial and temporal targeting to cancer cells has been explored, as well as the use of drug combinations co-encapsulated in the same particle as a mean to take advantage of synergistic interactions in vivo. Importantly, targeted delivery of siRNA for gene silencing therapy has made its way to the clinic for a "first in man" trial using lipid-polymeric-based particles. Focusing in state-of-the-art technology, this review will provide an insightful vision on nanotechnology-based strategies for cancer treatment, approaching them from a tumor biology-driven perspective, since their early EPR-based dawn to the ones that have truly the potential to address unmet medical needs in the field of oncology, upon targeting key cell subpopulations from the tumor microenvironment. PMID:24613464

  16. Simulation of three-dimensional viscous flow within a multistage turbine

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark

    1989-01-01

    This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.

  17. Simulation of 3-D viscous flow within a multi-stage turbine

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark

    1989-01-01

    This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.

  18. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    OpenAIRE

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, P.; Ogink, N. W. M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter. The three multi-stage scrubbers were one double-stage scrubber (acid stage+ bio-filter), one double-stage ...

  19. Synthesis and Biological Evaluation of Scutellaria Flavone Cyclaneaminol Mannich Base Derivatives as Novel CDK1 Inhibitors.

    Science.gov (United States)

    Ha, Lisha; Qian, Yuan; Zhang, Shixuan; Ju, Xiulan; Sun, Shiyou; Guo, Hongmin; Wang, Qianru; Li, Kangjian; Fan, Qingyu; Zheng, Yang; Li, Hailiang

    2016-01-01

    Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in the cell proliferation process and a new target in the research and development of anti-cancer drugs. Natural flavones are selective CDK1 inhibitors which can suppress the proliferation of cancer cells. However, their bioavailability is poor. To solve these problems, 6 Scutellaria flavones were isolated from hydrolyzed products of Scutellaria baicalensis and used as lead compounds, 18 Scutellaria flavones cyclane-aminol Mannich base derivatives were semi-synthesized and their biological activity as novel CDK1 inhibitors was evaluated. Results indicated that the biological activity of 8-Hydroxypiperidinemethyl-baicalein (BA-j) is the highest among these compounds. BA-j is a selective CDK1 inhibitor, and has broad-spectrum anti-proliferative activity in human cancer cells (IC50 12.3μM). BA-j can capture oxygen free radicals (.O2(-)) and selectively increase intracellular H2O2 level in cancer cells and activated lymphocytes, thus inducing their apoptosis rather than in normal cells. These findings suggest that BA-j selectively induces apoptosis in cancer and activated lymphocyte by controlling intracellular H2O2 level, and can be developed into a novel anti-proliferative agent for the treatment of cancer, AIDS, and some immune diseases. PMID:26411959

  20. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T; Savery, Nigel J; Grierson, Claire S; di Bernardo, Mario

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher. PMID:22936991

  1. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    Science.gov (United States)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  2. Particle-based model to simulate the micromechanics of biological cells

    Science.gov (United States)

    van Liedekerke, P.; Tijskens, E.; Ramon, H.; Ghysels, P.; Samaey, G.; Roose, D.

    2010-06-01

    This paper is concerned with addressing how biological cells react to mechanical impulse. We propose a particle based model to numerically study the mechanical response of these cells with subcellular detail. The model focuses on a plant cell in which two important features are present: (1) the cell’s interior liquidlike phase inducing hydrodynamic phenomena, and (2) the cell wall, a viscoelastic solid membrane that encloses the protoplast. In this particle modeling framework, the cell fluid is modeled by a standard smoothed particle hydrodynamics (SPH) technique. For the viscoelastic solid phase (cell wall), a discrete element method (DEM) is proposed. The cell wall hydraulic conductivity (permeability) is built in through a constitutive relation in the SPH formulation. Simulations show that the SPH-DEM model is in reasonable agreement with compression experiments on an in vitro cell and with analytical models for the basic dynamical modes of a spherical liquid filled shell. We have performed simulations to explore more complex situations such as relaxation and impact, thereby considering two cell types: a stiff plant type and a soft animal-like type. Their particular behavior (force transmission) as a function of protoplasm and cell wall viscosity is discussed. We also show that the mechanics during and after cell failure can be modeled adequately. This methodology has large flexibility and opens possibilities to quantify problems dealing with the response of biological cells to mechanical impulses, e.g., impact, and the prediction of damage on a (sub)cellular scale.

  3. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis.

    Science.gov (United States)

    Simmons, Rachel D; Kumar, Sandeep; Thabet, Salim Raid; Sur, Sanjoli; Jo, Hanjoong

    2016-09-01

    Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium. Also, there are a variety of strategies used for the global profiling of the genome, transcriptome, miRNA-ome, DNA methylome, and metabolome that are important to define the biological and pathophysiological mechanisms of endothelial dysfunction and atherosclerosis. Finally, systems biology can be used to integrate these 'omics' datasets, especially those that derive data based on a single animal model, in order to better understand the pathophysiology of atherosclerosis development in a holistic manner and how this integrative approach could be used to identify novel molecular diagnostics and therapeutic targets to prevent or treat atherosclerosis. WIREs Syst Biol Med 2016, 8:378-401. doi: 10.1002/wsbm.1344 For further resources related to this article, please visit the WIREs website. PMID:27341633

  4. Biological network module-based model for the analysis of differential expression in shotgun proteomics.

    Science.gov (United States)

    Xu, Jia; Wang, Lily; Li, Jing

    2014-12-01

    Protein differential expression analysis plays an important role in the understanding of molecular mechanisms as well as the pathogenesis of complex diseases. With the rapid development of mass spectrometry, shotgun proteomics using spectral counts has become a prevailing method for the quantitative analysis of complex protein mixtures. Existing methods in differential proteomics expression typically carry out analysis at the single-protein level. However, it is well-known that proteins interact with each other when they function in biological processes. In this study, focusing on biological network modules, we proposed a negative binomial generalized linear model for differential expression analysis of spectral count data in shotgun proteomics. In order to show the efficacy of the model in protein expression analysis at the level of protein modules, we conducted two simulation studies using synthetic data sets generated from theoretical distribution of count data and a real data set with shuffled counts. Then, we applied our method to a colorectal cancer data set and a nonsmall cell lung cancer data set. When compared with single-protein analysis methods, the results showed that module-based statistical model which takes account of the interactions among proteins led to more effective identification of subtle but coordinated changes at the systems level. PMID:25327611

  5. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  6. Mode 3 Project-Based O-Level: Part II Biology

    Science.gov (United States)

    Greatorex, D.; Lock, R.

    1978-01-01

    Presents a British biology course for the O-level which aims to promote the understanding of broad biological principles through an environmental approach. Results of proper assessment and overall examination performance are also revealed. (HM)

  7. YeastMed: an XML-Based System for Biological Data Integration of Yeast

    OpenAIRE

    Briache, Abdelaali; Marrakchi, Kamar; Kerzazi, Amine; Navas-Delgado, Ismael; Montes, Jose F Aldana; Hassani, Badr D. Rossi; Lairini, Khalid

    2010-01-01

    A key goal of bioinformatics is to create database systems and software platforms capable of storing and analysing large sets of biological data. Hundreds of biological databases are now available and provide access to huge amount of biological data. SGD, Yeastract, CYGD-MIPS, BioGrid and PhosphoGrid are five of the most visited databases by the yeast community. These sources provide complementary data on biological entities. Biologists are brought systematically to query these data sources i...

  8. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  9. An individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure

    CERN Document Server

    Rikvold, Per Arne

    2007-01-01

    We study an individual-based predator-prey model of biological coevolution, using linear stability analysis and large-scale kinetic Monte Carlo simulations. The model exhibits approximate 1/f noise in diversity and population-size fluctuations, and it generates a sequence of quasi-steady communities in the form of simple food webs. These communities are quite resilient toward the loss of one or a few species, which is reflected in different power-law exponents for the durations of communities and the lifetimes of species. The exponent for the former is near -1, while the latter is close to -2. Statistical characteristics of the evolving communities, including degree (predator and prey) distributions and proportions of basal, intermediate, and top species, compare reasonably with data for real food webs.

  10. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold.

    Science.gov (United States)

    Shahin, Mai I; Abou El Ella, Dalal A; Ismail, Nasser S M; Abouzid, Khaled A M

    2014-10-01

    In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a series of new quinoxaline-based derivatives was designed and synthesized. The target compounds were biologically evaluated for their inhibitory activity against VEGFR-2. The design of the target compounds was accomplished after a profound study of the structure activity relationship (SAR) of type-II VEGFR-2 inhibitors. Among the synthesized compounds, 1-(2-((4-methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa) displayed the highest inhibitory activity against VEGFR-2. Molecular modeling study involving molecular docking and field alignment was implemented to interpret the variable inhibitory activity of the newly synthesized compounds.

  11. Fabrication Effects on Polysilicon-based Micro cantilever Piezo resistivity for Biological Sensing Application

    International Nuclear Information System (INIS)

    In principle, adsorption of biological molecules on a functionalized surface of a micro fabricated cantilever will cause a surface stress and consequently the cantilever bending. In this work, four different type of polysilicon-based piezo resistive micro cantilever sensors were designed to increase the sensitivity of the micro cantilevers sensor because the forces involved is very small. The design and optimization was performed by using finite element analysis to maximize the relative resistance changes of the piezo resistors as a function of the cantilever vertical displacements. The resistivity of the piezo resistivity micro cantilevers was analyzed before and after dicing process. The maximum resistance changes were systematically investigated by varying the piezo resistor length. The results show that although the thickness of piezo resistor was the same at 0.5 μm the resistance value was varied. (author)

  12. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    Science.gov (United States)

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  13. Supplemental control of lepidopterous pests on Bt transgenic sweet corn with biologically-based spray treatments.

    Science.gov (United States)

    Farrar, Robert R; Shepard, B Merle; Shapiro, Martin; Hassell, Richard L; Schaffer, Mark L; Smith, Chad M

    2009-01-01

    Biologically-based spray treatments, including nucleopolyhedroviruses, neem, and spinosad, were evaluated as supplemental controls for the fall armyworm, Spodoptera frugiperda (J. E. Smith), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on transgenic sweet corn, Zea mays (L.) (Poales: Poaceae), expressing a Cry1Ab toxin from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). Overall, transgenic corn supported lower densities of both pests than did nontransgenic corn. Control of the fall armyworm was improved in both whorl-stage and tassel-stage corn by the use of either a nucleopolyhedrovirus or neem, but the greatest improvement was seen with spinosad. Only spinosad consistently reduced damage to ears, which was caused by both pest species. In general, efficacy of the spray materials did not differ greatly between transgenic and nontransgenic corn.

  14. A one-compartment fructose/air biological fuel cell based on direct electron transfer.

    Science.gov (United States)

    Wu, Xuee; Zhao, Feng; Varcoe, John R; Thumser, Alfred E; Avignone-Rossa, Claudio; Slade, Robert C T

    2009-10-15

    The construction and characterization of a one-compartment fructose/air biological fuel cell (BFC) based on direct electron transfer is reported. The BFC employs bilirubin oxidase and d-fructose dehydrogenase adsorbed on a cellulose-multiwall carbon nanotube (MWCNT) matrix, reconstituted with an ionic liquid, as the biocathode and the bioanode for oxygen reduction and fructose oxidation reactions, respectively. The performance of the bioelectrode was investigated by chronoamperometric and cyclic voltammetric techniques in a standard three-electrode cell, and the polarization and long-term stability of the BFC was tested by potentiostatic discharge. An open circuit voltage of 663 mV and a maximum power density of 126 microWcm(-2) were obtained in buffer at pH 5.0. Using this regenerated cellulose-MWCNT matrix as the immobilization platform, this BFC has shown a relatively high performance and long-term stability compared with previous studies.

  15. A biologically motivated signal transmission approach based on stochastic delay differential equation

    Science.gov (United States)

    Xu, Mingdong; Wu, Fan; Leung, Henry

    2009-09-01

    Based on the stochastic delay differential equation (SDDE) modeling of neural networks, we propose an effective signal transmission approach along the neurons in such a network. Utilizing the linear relationship between the delay time and the variance of the SDDE system output, the transmitting side encodes a message as a modulation of the delay time and the receiving end decodes the message by tracking the delay time, which is equivalent to estimating the variance of the received signal. This signal transmission approach turns out to follow the principle of the spread spectrum technique used in wireless and wireline wideband communications but in the analog domain rather than digital. We hope the proposed method might help to explain some activities in biological systems. The idea can further be extended to engineering applications. The error performance of the communication scheme is also evaluated here.

  16. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    CERN Document Server

    Rikvold, Per Arne

    2007-01-01

    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisym...

  17. A versatile bacterial expression vector based on the synthetic biology plasmid pSB1.

    Science.gov (United States)

    Skrlj, Nives; Erculj, Nina; Dolinar, Marko

    2009-04-01

    We have developed an Escherichia coli expression vector that is particularly useful for construction and production of fusion proteins. Based on the synthetic biology pSB1C3 platform, the resulting vector offers a combination of useful features: the strong T7 promoter combined with lac operator, OmpA signal sequence, a selection of cloning sites located at convenient positions and a 3'-terminal His-10 tag. Each of these regions is flanked by a restriction site that allows for easy vector modification, including removal of the signal sequence without perturbation of the reading frame. All the elements were assembled by stepwise addition of three cassettes for which the design was made de novo. To prove the efficiency of the new vector, named pMD204, we successfully produced a cysteine proteinase inhibitor variant in the periplasm and in the cytoplasm of E. coli, in both cases as a soluble and active protein. PMID:19027858

  18. Investigation of biological effects of some Mannich Bases containing Bis-1,2,4- Triazole.

    Science.gov (United States)

    Parlak, A E; Celik, S; Karatepe, M; Turkoglu, S; Alayunt, N O; Dastan, S D; Ulas, M; Sandal, S; Tekin, S; Koparir, M

    2016-01-01

    In this study, the effects of Mannich bases containing bis-1,2,4-triazole on the levels of in vivo malondialdehyde (MDA) and antioxidant vitamins (A, E, C) were examined in serum, livers and kidneys of rats. DA and vitamin (A, E, C) levels were determined by high performance liquid chromatography (HPLC). Antioxidant effect was investigated by determining the MDA levels in Saccharomyces cerevisiae cells as in vitro. Furthermore, the antitumor effects of compounds were investigated against MCF-7 human breast cancer cells. Interrelations of results among control and compound groups were evaluated using SPSS statistical software package. As a result, some of the compounds showed effective biological activity when compared to control conditions. The test compounds used in this study may be effective for utilization in the selection and design of model compounds for further studies. PMID:27453272

  19. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  20. Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Telgmann, Lena [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); Sperling, Michael [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); European Virtual Institute for Speciation Analysis (EVISA), Münster (Germany); Karst, Uwe, E-mail: uk@uni-muenster.de [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany)

    2013-02-18

    Highlights: ► All major methods for the analysis of Gd-based MRI contrast agents are discussed. ► Biological and environmental samples are covered. ► Pharmacokinetics and species transformation can be investigated. ► The figures of merit as limit of detection and analysis time are described. -- Abstract: The development of analytical methods and strategies to determine gadolinium and its complexes in biological and environmental matrices is evaluated in this review. Gadolinium (Gd) chelates are employed as contrast agents for magnetic resonance imaging (MRI) since the 1980s. In general they were considered as safe and well-tolerated, when in 2006, the disease nephrogenic systemic fibrosis (NSF) was connected to the administration of MRI contrast agents based on Gd. Pathogenesis and etiology of NSF are yet unclear and called for the development of several analytical methods to obtain elucidation in this field. Determination of Gd complex stability in vitro and in vivo, as well as the quantification of Gd in body fluids like blood and urine was carried out. Separation of the Gd chelates was achieved with high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). For detection, various methods were employed, including UV–vis absorbance and fluorescence spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). A second challenge for analysts was the discovery of high concentrations of anthropogenic Gd in surface waters draining populated areas. The source could soon be determined to be the increasing administration of Gd complexes during MRI examinations. Identification and quantification of the contrast agents was carried out in various surface and groundwater samples to determine the behavior and fate of the Gd chelates in the environment. The improvement of limits of detection (LOD) and limits of quantification (LOQ) was and still is the goal of past and ongoing

  1. BClass: A Bayesian Approach Based on Mixture Models for Clustering and Classification of Heterogeneous Biological Data

    Directory of Open Access Journals (Sweden)

    Arturo Medrano-Soto

    2004-12-01

    Full Text Available Based on mixture models, we present a Bayesian method (called BClass to classify biological entities (e.g. genes when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.

  2. PATIENT-CENTRED SCREENING FOR PRIMARY IMMUNODEFICIENCY, A MULTI-STAGE DIAGNOSTIC PROTOCOL DESIGNED FOR NONIMMUNOLOGISTS: 2011 UPDATE

    Directory of Open Access Journals (Sweden)

    E. de Vries

    2013-01-01

    Full Text Available Abstract. Members of the European Society for Immunodeficiencies (ESID and other colleagues have updated themulti-stage expert-opinion-based diagnostic protocol for non-immunologists incorporating newly defined primary immunodeficiency diseases (PIDs. The protocol presented here aims to increase the awareness of PIDs among doctors working in different fields. Prompt identification of PID is important for prognosis, but this may not be an easy task. The protocol therefore starts from the clinical presentation of the patient. Because PIDs may present at all ages, this protocol is aimed at both adult and paediatric physicians. The multi-stage design allows cost-effective screening for PID of the large number of potential cases in the early phases, with more expensive tests reserved for definitive classification in collaboration with a specialist in the field of immunodeficiency at a later stage.

  3. Ni–Cr based dental alloys; Ni release, corrosion and biological evaluation

    International Nuclear Information System (INIS)

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10–15% for female adults and 1–3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni–Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni–Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: ► Nickel released was higher than the limits imposed in EU in contact with the skin. ► No direct relationship between the biological evaluation and chemical degradation.

  4. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  5. What Are They Thinking? Automated Analysis of Student Writing about Acid–Base Chemistry in Introductory Biology

    OpenAIRE

    Haudek, Kevin C; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark

    2012-01-01

    Students’ writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid–base behavior of biological functional groups and to explain their answers. Student e...

  6. From raw data to biological discoveries: a computational analysis pipeline for mass spectrometry-based proteomics.

    Science.gov (United States)

    Lavallée-Adam, Mathieu; Park, Sung Kyu Robin; Martínez-Bartolomé, Salvador; He, Lin; Yates, John R

    2015-11-01

    In the last two decades, computational tools for mass spectrometry-based proteomics data analysis have evolved from a few stand-alone software solutions serving specific goals, such as the identification of amino acid sequences based on mass spectrometry spectra, to large-scale complex pipelines integrating multiple computer programs to solve a collection of problems. This software evolution has been mostly driven by the appearance of novel technologies that allowed the community to tackle complex biological problems, such as the identification of proteins that are differentially expressed in two samples under different conditions. The achievement of such objectives requires a large suite of programs to analyze the intricate mass spectrometry data. Our laboratory addresses complex proteomics questions by producing and using algorithms and software packages. Our current computational pipeline includes, among other things, tools for mass spectrometry raw data processing, peptide and protein identification and quantification, post-translational modification analysis, and protein functional enrichment analysis. In this paper, we describe a suite of software packages we have developed to process mass spectrometry-based proteomics data and we highlight some of the new features of previously published programs as well as tools currently under development. Graphical Abstract ᅟ.

  7. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  8. From Raw Data to Biological Discoveries: A Computational Analysis Pipeline for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Lavallée-Adam, Mathieu; Park, Sung Kyu Robin; Martínez-Bartolomé, Salvador; He, Lin; Yates, John R.

    2015-11-01

    In the last two decades, computational tools for mass spectrometry-based proteomics data analysis have evolved from a few stand-alone software solutions serving specific goals, such as the identification of amino acid sequences based on mass spectrometry spectra, to large-scale complex pipelines integrating multiple computer programs to solve a collection of problems. This software evolution has been mostly driven by the appearance of novel technologies that allowed the community to tackle complex biological problems, such as the identification of proteins that are differentially expressed in two samples under different conditions. The achievement of such objectives requires a large suite of programs to analyze the intricate mass spectrometry data. Our laboratory addresses complex proteomics questions by producing and using algorithms and software packages. Our current computational pipeline includes, among other things, tools for mass spectrometry raw data processing, peptide and protein identification and quantification, post-translational modification analysis, and protein functional enrichment analysis. In this paper, we describe a suite of software packages we have developed to process mass spectrometry-based proteomics data and we highlight some of the new features of previously published programs as well as tools currently under development.

  9. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  10. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  11. Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Karpievitch, Yuliya V.; Polpitiya, Ashoka D.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2010-12-01

    Mass spectrometry-based proteomics has become the tool of choice for identifying and quantifying the proteome of an organism. Though recent years have seen a tremendous improvement in instrument performance and the computational tools used, significant challenges remain, and there are many opportunities for statisticians to make important contributions. In the most widely used "bottom-up" approach to proteomics, complex mixtures of proteins are first subjected to enzymatic cleavage, the resulting peptide products are separated based on chemical or physical properties and analyzed using a mass spectrometer. The two fundamental challenges in the analysis of bottom-up MS-based proteomics are: (1) Identifying the proteins that are present in a sample, and (2) Quantifying the abundance levels of the identified proteins. Both of these challenges require knowledge of the biological and technological context that gives rise to observed data, as well as the application of sound statistical principles for estimation and inference. We present an overview of bottom-up proteomics and outline the key statistical issues that arise in protein identification and quantification.

  12. Recovery of soil base saturation following termination of N deposition: Increased biological weathering?

    Science.gov (United States)

    Lucas, R. W.; Högberg, P.

    2012-12-01

    have been an increase in the weathering rate of base cations following the termination of N addition. Such an increase may be biologically mediated by the soil microbial community receiving increased allocation of recent photosynthate below ground following the termination of N addition and is not accounted for in current biogeochemical models.

  13. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  14. Understanding, accepting and controlling risks: A multistage framework for risk communication

    NARCIS (Netherlands)

    Vlek, C.A.J.

    1995-01-01

    The meanings and functions of cc risk communication a (RC, for shea) are specified on the basis of a multistage framework for handling societal risks. After identifying various reasons for RC, essential components of > are briefly discussed : basic risk communicator positions, different levels of ri

  15. UNDERSTANDING, ACCEPTING AND CONTROLLING RISKS - A MULTISTAGE FRAMEWORK FOR RISK COMMUNICATION

    NARCIS (Netherlands)

    VLEK, CAJ

    1995-01-01

    The meanings and functions of cc risk communication a (RC, for shea) are specified on the basis of a multistage framework for handling societal risks. After identifying various reasons for RC, essential components of > are briefly discussed : basic risk communicator positions, different levels of ri

  16. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reduci

  17. Axial liquid mixing in a gas-liquid Multi-Stage Agitated Contactor (MAC)

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M; Bouma, M.J; VanderWerf, M.H.

    1996-01-01

    Data on interstage liquid mixing are reported for a gas-liquid Multi-stage Agitated Contactor (MAC). A dynamic method using heat as a tracer was applied for water, n-octane and monoethylene glycol as liquids both with and without the presence of a dispersed gas phase (air). In all cases, the axial m

  18. Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks

    NARCIS (Netherlands)

    Atuonwu, J.C.; Cao, Y.; Rangaiah, G.P.; Tade, M.O.

    2011-01-01

    The use of multistage evaporators, motivated by the energy economy from reusing the flashed steam is common in a wide range of process industries. Such evaporators however present several control problems which manifest in the form of strong interactions among the many process variables, significant

  19. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results...

  20. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  1. Research on EMI Reduction of Multi-stage Interleaved Bridgeless Power Factor Corrector

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    Working as an electronic pollution eliminator, the Power Factor Corrector's (PFC) own Electromagnetic Interference (EMI) problems have been blocking its performance improvement for long. In this paper, a systematic research on EMI generation of a multi-stage Two-Boost-Circuit Interleaved Bridgeless...

  2. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Abou Neel, Ensanya Ali, E-mail: eabouneel@kau.edu.sa [Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah (Saudi Arabia); Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta (Egypt); Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Chrzanowski, Wojciech [The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006 (Australia); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan Campbell, E-mail: j.knowles@ucl.ac.uk [Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds.

  3. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Science.gov (United States)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  4. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  5. Proceedings First Workshop on Applications of Membrane computing, Concurrency and Agent-based modelling in POPulation biology

    CERN Document Server

    Milazzo, Paolo; 10.4204/EPTCS.33

    2010-01-01

    This volume contains the papers presented at the first International Workshop on Applications of Membrane Computing, Concurrency and Agent-based Modelling in Population Biology (AMCA-POP 2010) held in Jena, Germany on August 25th, 2010 as a satellite event of the 11th Conference on Membrane Computing (CMC11). The aim of the workshop is to investigate whether formal modelling and analysis techniques could be applied with profit to systems of interest for population biology and ecology. The considered modelling notations include membrane systems, Petri nets, agent-based notations, process calculi, automata-based notations, rewriting systems and cellular automata. Such notations enable the application of analysis techniques such as simulation, model checking, abstract interpretation and type systems to study systems of interest in disciplines such as population biology, ecosystem science, epidemiology, genetics, sustainability science, evolution and other disciplines in which population dynamics and interactions...

  6. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Science.gov (United States)

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works. PMID:26805924

  7. Fab-based bispecific antibody formats with robust biophysical properties and biological activity.

    Science.gov (United States)

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J

    2015-01-01

    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.

  8. The semantic metadatabase (SEMEDA): ontology based integration of federated molecular biological data sources.

    Science.gov (United States)

    Köhler, Jacob; Schulze-Kremer, Steffen

    2002-01-01

    A system for "intelligent" semantic integration and querying of federated databases is being implemented by using three main components: A component which enables SQL access to integrated databases by database federation (MARGBench), an ontology based semantic metadatabase (SEMEDA) and an ontology based query interface (SEMEDA-query). In this publication we explain and demonstrate the principles, architecture and the use of SEMEDA. Since SEMEDA is implemented as 3 tiered web application database providers can enter all relevant semantic and technical information about their databases by themselves via a web browser. SEMEDA' s collaborative ontology editing feature is not restricted to database integration, and might also be useful for ongoing ontology developments, such as the "Gene Ontology" [2]. SEMEDA can be found at http://www-bm.cs.uni-magdeburg.de/semeda/. We explain how this ontologically structured information can be used for semantic database integration. In addition, requirements to ontologies for molecular biological database integration are discussed and relevant existing ontologies are evaluated. We further discuss how ontologies and structured knowledge sources can be used in SEMEDA and whether they can be merged supplemented or updated to meet the requirements for semantic database integration. PMID:12542408

  9. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  10. Peptide-based, two-fluorophore, ratiometric probe for quantifying mobile zinc in biological solutions.

    Science.gov (United States)

    Zhang, Daniel Y; Azrad, Maria; Demark-Wahnefried, Wendy; Frederickson, Christopher J; Lippard, Stephen J; Radford, Robert J

    2015-02-20

    Small-molecule fluorescent sensors are versatile agents for detecting mobile zinc in biology. Capitalizing on the abundance of validated mobile zinc probes, we devised a strategy for repurposing existing intensity-based sensors for quantitative applications. Using solid-phase peptide synthesis, we conjugated a zinc-sensitive Zinpyr-1 derivative and a zinc-insensitive 7-hydroxycoumarin derivative onto opposite ends of a rigid P9K peptide scaffold to create HcZ9, a ratiometric fluorescent probe for mobile zinc. A plate reader-based assay using HcZ9 was developed, the accuracy of which is comparable to that of atomic absorption spectroscopy. We investigated zinc accumulation in prostatic cells and zinc levels in human seminal fluid. When normal and tumorigenic cells are bathed in zinc-enriched media, cellular mobile zinc is buffered and changes slightly, but total zinc levels increase significantly. Quantification of mobile and total zinc levels in human seminal plasma revealed that the two are positively correlated with a Pearson's coefficient of 0.73.

  11. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  12. Task-Oriented Parameter Tuning Based on Priority Condition for Biologically Inspired Robot Application

    Directory of Open Access Journals (Sweden)

    Jaesung Kwon

    2015-01-01

    Full Text Available This work gives a biologically inspired control scheme for controlling a robotic system. Novel adaptive behaviors are observed from humans or animals even in unexpected disturbances or environment changes. This is why they have neural oscillator networks in the spinal cord to yield rhythmic-motor primitives robustly under a changing task. Hence, this work focuses on rhythmic arm movements that can be accomplished in terms of employing a control approach based on an artificial neural oscillator model. The main challenge is to determine various parameters for applying a neural feedback to robotic systems with performing a desired behavior and self-maintaining the entrainment effect. Hence, this work proposes a task-oriented parameter tuning algorithm based on the simulated annealing (SA. This work also illustrates how to technically implement the proposed control scheme exploiting a virtual force and neural feedback. With parameters tuned, it is verified in simulations that a 3-DOF planar robotic arm traces a given trajectory precisely, adapting to uneven external disturbances.

  13. Efifciency of Concrete Crack-healing based on Biological Carbonate Precipitation

    Institute of Scientific and Technical Information of China (English)

    LUO Mian; QIAN Chunxiang; LI Ruiyang; RONG Hui

    2015-01-01

    The aim of this study was to improve the capacity for crack-repair in concrete by developing a new way. The self-healing agent based on biological carbonate precipitation was developed. Crack-healing capacity of the cement paste specimens with this biochemical agent was researched. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the precipitation in cracks. The healing efficiency was evaluated by measuring the water permeability after crack healing as well.The experimental results show that the applied biochemical agent can successfully improve the self-healing capacity of the cement paste specimens as larger cracks can be healed. The cracks with a width of 0.48 mm in the specimens with the biochemical agent are nearly fully healed by the precipitation after 80d repair. SEM and XRD analysis results demonstrate that the white precipitation in cracks is calcium carbonate, which displays spherical crystal morphology. Meanwhile, the water permeability test result shows that the biochemical agent can significantly decrease the water permeability of the cement paste specimens, the water permeability of specimens with the biochemical agent respectively decreases by 84%and 96%after 7 d and 28 d immersion in water, however the control specimens only respectively decrease by 41%and 60%, which indicates that the bacteria-based concrete appears to be a promising approach to increase concrete durability.

  14. Seepage flow behaviors of multi-stage fractured horizontal wells in arbitrary shaped shale gas reservoirs

    Science.gov (United States)

    Zhao, Yu-Long; Shan, Bao-Chao; Zhang, Lie-Hui; Liu, Qi-Guo

    2016-10-01

    The horizontal well incorporated with massive hydraulic fracturing has become a key and necessary technology to develop shale gas reservoirs efficiently, and transient pressure analysis is a practical method to evaluate the effectiveness of the fracturing. Until now, however, the related studies on the pressure of such wells have mainly focused on regular outer-boundaries, such as infinite, circular and rectangular boundary shapes, which do not always fulfill the practical conditions and, of course, could cause errors. By extending the boundary element method (BEM) into the application of multi-staged fractured horizontal wells, this paper presents a way of analyzing the transient pressure in arbitrary shaped shale gas reservoirs considering ad-/de-sorption and diffusion of the shale gas with the ‘tri-porosity’ mechanism model. The boundary integral equation can be obtained by coupling the fundamental solution of the Helmholtz equation with the dimensionless diffusivity equation. After discretizing the outer-boundaries and the fractures, the boundary integral equations are linearized and the coefficient matrix of the pressure on the boundaries is assembled, after which bottom-hole pressure can be calculated conveniently. Comparing the BEM solution with semi-analytical solution cases, the accuracy of the new solution can be validated. Then, the characteristic curves of the dimensionless pseudo pressure, as well as its derivative for a well in shale gas reservoirs, are drawn, based on which the parameters’ sensitivity analyses are also conducted. This paper not only enriches the well testing theory and method in shale gas reservoirs, but also provides an effective method to solve problems with complex inner- and outer-boundaries.

  15. Optimization of Multistage Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated Temperatures and Short Extraction Times

    Directory of Open Access Journals (Sweden)

    Konstantinos Stamatopoulos

    2013-12-01

    Full Text Available The aim of the present study was to improve the recovery of polyphenols from olive leaves (OL by optimizing a multistage extraction scheme; provided that the olive leaves have been previously steam blanched. The maximum total phenol content expressed in ppm caffeic acid equivalents was obtained at pH 2, particle size 0.315 mm, solid-liquid ratio 1:7 and aqueous ethanol concentration 70% (v/v. The optimum duration time of each extraction stage and the operation temperature, were chosen based on qualitative and quantitative analysis of oleuropein (OLE, verbascoside, luteolin-7-O-glucoside and apigenin-7-O-glucoside performed by high performance liquid chromatography with diode array detector (HPLC-DAD. The optimum conditions for multistage extraction were 30 min total extraction time (10 min × 3 stages at 85 °C. The 80% of the total yield of polyphenols was obtained at the 1st stage of the extraction. The total extraction yield of oleuropein was found 23 times higher (103.1 mg OLE/g dry weight (d.w. OL compared to the yield (4.6 mg OLE/g d.w. OL obtained by the conventional extraction method (40 °C, 48 h. However, from an energetic and hence from an economical point of view it is preferable to work at 40 °C, since the total extraction yield of polyphenolic compounds was only 17% higher for a double increase in the operating temperature (i.e., 85 °C.

  16. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    Science.gov (United States)

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  17. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    Science.gov (United States)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  18. Students’ experienced coherence between chemistry and biology in context-based secondary science education

    NARCIS (Netherlands)

    Boer, H.J.; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have be

  19. A knowledge base for teaching biology situated in the context of genetic testing

    NARCIS (Netherlands)

    van der Zande, P.A.M.; Waarlo, A.J.; Brekelmans, M.; Akkerman, S.F.; Vermunt, J. D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testin

  20. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge…

  1. A Standards-Based Content Analysis of Selected Biological Science Websites

    Science.gov (United States)

    Stewart, Joy E.

    2010-01-01

    The purpose of this study was to analyze the biology content, instructional strategies, and assessment methods of 100 biological science websites that were appropriate for Grade 12 educational purposes. For the analysis of each website, an instrument, developed from the National Science Education Standards (NSES) for Grade 12 Life Science coupled…

  2. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  3. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  4. Modelling Cost-Effectiveness of Biologic Treatments Based on Disease Activity Scores for the Management of Rheumatoid Arthritis in Spain

    Directory of Open Access Journals (Sweden)

    Ariel Beresniak

    2011-01-01

    Full Text Available Background. The objective of this simulation model was to assess the cost-effectiveness of different biological treatment strategies based on levels of disease activity in Spain, in patients with moderate to severe active RA and an insufficient response to at least one anti-TNF agent. Methods. Clinically meaningful effectiveness criteria were defined using DAS28 scores: remission and Low Disease Activity State (LDAS thresholds. Monte-Carlo simulations were conducted to assess cost-effectiveness over 2 years of four biological sequential strategies composed of anti-TNF agents (adalimumab, infliximab, abatacept or rituximab, in patients with moderate to severe active RA and an insufficient response to etanercept as first biological agent. Results. The sequential strategy including etanercept, abatacept and adalimumab appeared more efficacious over 2 years (102 days in LDAS compared to the same sequence including rituximab as second biological option (82 days in LDAS. Cost-effectiveness ratios showed lower costs per day in LDAS with abatacept (427 € compared to rituximab as second biological option (508 €. All comparisons were confirmed when using remission criteria. Conclusion. Model results suggest that in patients with an insufficient response to anti-TNF agents, the biological sequences including abatacept appear more efficacious and cost-effective than similar sequences including rituximab or cycled anti-TNF agents.

  5. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape.

    Science.gov (United States)

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing

    2013-04-01

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6. PMID:23586746

  6. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    International Nuclear Information System (INIS)

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10−15 kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections

  7. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  8. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    Science.gov (United States)

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  9. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. PMID:24411382

  10. Problem-based learning on cell biology and ecophysiology using integrated laboratory and computational activities

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available Since all the known biological systems require water for their basic biochemical processes, one can find several osmoregulation mechanisms on living organisms for adaptation to related environmental challenges. Osmosis is a cellular mechanism of water movement across membranes which is known to be present throughout the tree of life and occurs by either diffusion across the membrane bilayer or by a faster movement mediated by transmembrane channel proteins, called aquaporins. The expression of aquaporins is regulated at, the cellular level, by environment conditions such as hydric stress, therefore allowing the adaptation of organisms to increase salinity in soils, water deprivation and increase beverage intake.  Osmosis and diffusion concepts have been described to be difficult to learn, so, in order to promote meaningfull learning, we used a problem-based learning approach that integrates a laboratory activity and a computer simulation model of osmosis and a two phase conceptual mapping. We observed that high school students developed adequate laboratory skills and were able to communicate their results as text and using scientific drawings; and the learning environment was adequate. Therefore we presented a successful implementation case of integrated PBL, in a public portuguese school, that may constitute an example to facilitate the implementation of active inquiry strategies by other teachers, as well as the basis for future research.

  11. Synchrotron-based X-ray fluorescence, imaging and elemental mapping from biological samples

    Indian Academy of Sciences (India)

    D V Rao; M Swapna; R Cesareo; A Brunetti; T Akatsuka; T Yuasa; T Takeda; G E Gigante

    2011-02-01

    The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of ∼ 10 m, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a `step-and-repeat’ mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulated trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements.

  12. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    Science.gov (United States)

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-07-01

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10-15 kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  13. DNA methylation-based measures of biological age: meta-analysis predicting time to death

    Science.gov (United States)

    Chen, Brian H.; Marioni, Riccardo E.; Colicino, Elena; Peters, Marjolein J.; Ward-Caviness, Cavin K.; Tsai, Pei-Chien; Roetker, Nicholas S.; Just, Allan C.; Demerath, Ellen W.; Guan, Weihua; Bressler, Jan; Fornage, Myriam; Studenski, Stephanie; Vandiver, Amy R.; Moore, Ann Zenobia; Tanaka, Toshiko; Kiel, Douglas P.; Liang, Liming; Vokonas, Pantel; Schwartz, Joel; Lunetta, Kathryn L.; Murabito, Joanne M.; Bandinelli, Stefania; Hernandez, Dena G.; Melzer, David; Nalls, Michael; Pilling, Luke C.; Price, Timothy R.; Singleton, Andrew B.; Gieger, Christian; Holle, Rolf; Kretschmer, Anja; Kronenberg, Florian; Kunze, Sonja; Linseisen, Jakob; Meisinger, Christine; Rathmann, Wolfgang; Waldenberger, Melanie; Visscher, Peter M.; Shah, Sonia; Wray, Naomi R.; McRae, Allan F.; Franco, Oscar H.; Hofman, Albert; Uitterlinden, André G.; Absher, Devin; Assimes, Themistocles; Levine, Morgan E.; Lu, Ake T.; Tsao, Philip S.; Hou, Lifang; Manson, JoAnn E.; Carty, Cara L.; LaCroix, Andrea Z.; Reiner, Alexander P.; Spector, Tim D.; Feinberg, Andrew P.; Levy, Daniel; Baccarelli, Andrea; van Meurs, Joyce; Bell, Jordana T.; Peters, Annette; Deary, Ian J.; Pankow, James S.; Ferrucci, Luigi; Horvath, Steve

    2016-01-01

    Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality. PMID:27690265

  14. Biological basis of total body irradiation; Bases biologiques de l`irradiation corporelle totale

    Energy Technology Data Exchange (ETDEWEB)

    Dubray, B.; Helfre, S.; Dendale, R.; Cosset, J.M. [Institut Curie, 75 - Paris (France). Dept. d`Oncologie-Radiotherapie; Giraud, P. [Hopital Tenon, 75 - Paris (France). Service de Radiotherapie

    1999-03-01

    A comprehensive understanding of the radiobiological bases of total body irradiation (TBI) is made difficult by the large number of normal and malignant tissues that must be taken into account. In addition, tissue responses to irradiation are also sensitive to associated treatments, type of graft and a number of patient characteristics. Experimental studies have yielded a large body of data, the clinical relevance of which still requires definite validation through randomized trials. Fractionated TBI schemes are able to reduce late normal tissue toxicity, but the ultimate consequences of the fractional dose reduction do not appear to be equivocal. Thus, leukemia and lymphoma cells are probably more radio-biologically heterogeneous than previously thought, with several cell lines displaying relatively high radioresistance and repair capability patterns. The most primitive host-type hematopoietic stem cells are likely to be at least partly protected by TBI fractionation and may hamper late engraftment. Similarly, but with possibly conflicting consequences on the probability of engraftment, the persistence of a functional marrow stroma may also be fractionation-sensitive, while higher rejection rates have been reported after T-depletion grafts and fractionated TBI. in clinical practice (as for performance of relevant clinical trials), the influence of these results are rather limited by the heavy logistic constraints created by a sophisticated and time-consuming procedure. Lastly, clinicians are now facing an increasing incidence of second cancers, at least partly induced by irradiation, which jeopardize the long-term prospects of otherwise cured patients. (authors)

  15. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qili [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China); Shirinzadeh, Bijan [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Cui, Maosheng [Biotechnology Lab of Animal Reproduction, Tianjin Animal Sciences, Tianjin 300112 (China); Sun, Mingzhu; Liu, Yaowei; Zhao, Xin, E-mail: zhaoxin@nankai.edu.cn [Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China)

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  16. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  17. Trait-based representation of biological nitrification: Model development, testing, and predicted community composition

    Directory of Open Access Journals (Sweden)

    Nick eBouskill

    2012-10-01

    Full Text Available Trait-based microbial models show clear promise as tools to represent the diversity and activity of microorganisms across ecosystem gradients. These models parameterize specific traits that determine the relative fitness of an ‘organism’ in a given environment, and represent the complexity of biological systems across temporal and spatial scales. In this study we introduce a microbial community trait-based modeling framework (MicroTrait focused on nitrification (MicroTrait-N that represents the ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA and nitrite oxidizing bacteria (NOB using traits related to enzyme kinetics and physiological properties. We used this model to predict nitrifier diversity, ammonia (NH3 oxidation rates and nitrous oxide (N2O production across pH, temperature and substrate gradients. Predicted nitrifier diversity was predominantly determined by temperature and substrate availability, the latter was strongly influenced by pH. The model predicted that transient N2O production rates are maximized by a decoupling of the AOB and NOB communities, resulting in an accumulation and detoxification of nitrite to N2O by AOB. However, cumulative N2O production (over six month simulations is maximized in a system where the relationship between AOB and NOB is maintained. When the reactions uncouple, the AOB become unstable and biomass declines rapidly, resulting in decreased NH3 oxidation and N2O production. We evaluated this model against site level chemical datasets from the interior of Alaska and accurately simulated NH3 oxidation rates and the relative ratio of AOA:AOB biomass. The predicted community structure and activity indicate (a parameterization of a small number of traits may be sufficient to broadly characterize nitrifying community structure and (b changing decadal trends in climate and edaphic conditions could impact nitrification rates in ways that are not captured by extant biogeochemical models.

  18. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity

  19. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  20. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  1. Terrestrial Slugs as a Model Organism for Inquiry-Based Experimentation in a Majors General Biology Laboratory

    Science.gov (United States)

    Peters, Brenda J.; Blair, Amy C.

    2013-01-01

    Many biology educators at the undergraduate level are revamping their laboratory curricula to incorporate inquiry-based research experiences so that students can directly participate in the process of science and improve their scientific reasoning skills. Slugs are an ideal organism for use in such a student-directed, hypothesis-driven experience.…

  2. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  3. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  4. Biological control of beet armyworm, Spodoptera exigua, with baculoviruses in greenhouses : development of a comprehensive process-based model

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Vlak, J.M.; Rabbinge, R.; Werf, van der W.

    2002-01-01

    We describe the development of a comprehensive process-based model simulating the epizootiology and agronomic efficacy of baculoviruses used for biological control of beet armyworm, Spodoptera exigua, in greenhouse chrysanthemum. The model is built to help understand, evaluate, and predict the effec

  5. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  6. Applications of NMR-based metabolomics in biological and environmental research

    Science.gov (United States)

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used by biologists to study the dynamic response of biological systems (cells, tissues, or whole organisms) under diverse physiological or pathological conditions. Metabolomics deals with the qu...

  7. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted.

  8. Local buckling analysis of biological nanocomposites based on a beam-spring model

    OpenAIRE

    Zhiling Bai; Baohua Ji

    2015-01-01

    Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existin...

  9. Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

    OpenAIRE

    Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal

    2014-01-01

    Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...

  10. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    OpenAIRE

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-01-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various mo...

  11. Biologically active collagen-based scaffolds: advances in processing and characterization

    OpenAIRE

    Yannas, I.V.; Tzeranis, D. S.; Harley, B A; So, P. T. C.

    2010-01-01

    A small number of type I collagen–glycosaminoglycan scaffolds (collagen–GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identif...

  12. Gene Network Biological Validity Based on Gene-Gene Interaction Relevance

    OpenAIRE

    Francisco Gómez-Vela; Norberto Díaz-Díaz

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in...

  13. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  14. Scenario trees and policy selection for multistage stochastic programming using machine learning

    CERN Document Server

    Defourny, Boris; Wehenkel, Louis

    2011-01-01

    We propose a hybrid algorithmic strategy for complex stochastic optimization problems, which combines the use of scenario trees from multistage stochastic programming with machine learning techniques for learning a policy in the form of a statistical model, in the context of constrained vector-valued decisions. Such a policy allows one to run out-of-sample simulations over a large number of independent scenarios, and obtain a signal on the quality of the approximation scheme used to solve the multistage stochastic program. We propose to apply this fast simulation technique to choose the best tree from a set of scenario trees. A solution scheme is introduced, where several scenario trees with random branching structure are solved in parallel, and where the tree from which the best policy for the true problem could be learned is ultimately retained. Numerical tests show that excellent trade-offs can be achieved between run times and solution quality.

  15. Multistage ensemble of feedforward neural networks for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Jovanović Radiša Ž.

    2016-01-01

    Full Text Available Feedforward neural network models are created for prediction of heating energy consumption of a university campus. Actual measured data are used for training and testing the models. Multistage neural network ensemble is proposed for the possible improvement of prediction accuracy. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as a member of the ensemble. Three different averaging methods (simple, weighted and median for obtaining ensemble output are applied. Besides this conventional approach, single radial basis neural network in the second level is used to aggregate the selected ensemble members. It is shown that heating energy consumption can be predicted with better accuracy by using ensemble of neural networks than using the best trained single neural network, while the best results are achieved with multistage ensemble.

  16. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  17. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    Science.gov (United States)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye

  18. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    International Nuclear Information System (INIS)

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  19. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.

    Science.gov (United States)

    Blanken, W; Janssen, M; Cuaresma, M; Libor, Z; Bhaiji, T; Wijffels, R H

    2014-12-01

    Microalgae biofilms could be used as a production platform for microalgae biomass. In this study, a photobioreactor design based on a rotating biological contactor (RBC) was used as a production platform for microalgae biomass cultivated in biofilm. In the photobioreactor, referred to as Algadisk, microalgae grow in biofilm on vertical rotating disks partially submerged in a growth medium. The objective is to evaluate the potential of the Algadisk photobioreactor with respect to the effects of disk roughness, disk rotation speed and CO2 concentration. These objectives where evaluated in relationship to productivity, photosynthetic efficiency, and long-term cultivation stability in a lab-scale Algadisk system. Although the lab-scale Algadisk system is used, operation parameters evaluated are relevant for scale-up. Chlorella Sorokiniana was used as model microalgae. In the lab-scale Algadisk reactor, productivity of 20.1 ± 0.7 g per m(2) disk surface per day and a biomass yield on light of 0.9 ± 0.04 g dry weight biomass per mol photons were obtained. Different disk rotation speeds did demonstrate minimal effects on biofilm growth and on the diffusion of substrate into the biofilm. CO2 limitation, however, drastically reduced productivity to 2-4 g per m(2) disk surface per day. Productivity could be maintained over a period of 21 weeks without re-inoculation of the Algadisk. Productivity decreased under extreme conditions such as pH 9-10, temperature above 40°C, and with low CO2 concentrations. Maximal productivity, however, was promptly recovered when optimal cultivation conditions were reinstated. These results exhibit an apparent opportunity to employ the Algadisk photobioreactor at large scale for microalgae biomass production if diffusion does not limit the CO2 supply.

  20. Silica- and silylated europium-based luminescent hybrids: new analysis tools for biological environments

    International Nuclear Information System (INIS)

    The association of the very interesting luminescence properties of the lanthanide chelates with the physicochemical properties of inorganic matrix such as silica is a promising way to obtain new probes or luminescent markers for biology analyses. In this idea, this work focuses on the preparation of new hybrid materials based on the grafting of new europium(III) complexes on silica nanoparticles. These europium complexes were developed in our group using bifunctional ligands containing both complexing and grafting sites. Intrinsic characteristic of the ligands gives us the ability to make a covalent bond between the material surface and the complex. Two different methodologies were used; the first one is the direct grafting reaction involving the complex and silica nanoparticles (i.e. dense or meso-porous particles). The second one is the Stoeber reaction, where the SiO2 nanoparticles were prepared in presence of the europium complex. The last methodology has an additional difficult, because of the presence of silylated europium complex, it needs a closer control of the physicochemical conditions. The new organic-inorganic hybrid materials, obtained in this work, present an interesting luminescence behavior and this one is depending on the localization of the europium complex, i.e. on the surface or within the nanoparticles. In addition, the obtained hybrids present the nano-metric dimension and the complex is not leachable. Analyses were realized to describe the luminescence properties, beyond surface and structural characteristics. Initial results show that the new hybrids are promising candidates for luminescent bio-markers, particularly for the time-resolved analysis. (author)