WorldWideScience

Sample records for biologically active polypeptides

  1. In vitro gamma irradiation of some purified polypeptide hormones and their biological and radioimmunological activity

    International Nuclear Information System (INIS)

    Hromadova, M.; Macho, L.; Strbak, V.; Vigas, M.; Mikulaj, L.

    1979-01-01

    Some polypeptide hormones (adrenocorticotropin - ACTH, human and bovine growth hormone - GH, human menopausal gonadotropin - HMG, human luteinizing hormone - LH, and bovine thyrotropin - TSH) were irradiated either with 2.5 or 12.5 Mrad (1.1 Mrad/h) or both and their biological activity or immunoreactivity was tested within few days or 3 to 5 months after irradiation. Biological activity of irradiated ACTH (estimation of corticosterone released into medium by incubated adrenals - Saffran and Schally 1955) was not decreased in both time intervals tested. Ten days after irradiation of bovine GH no changes in biological activity (tibia test - Wilhelmi 1973) were found. No decrease of biological activity of irradiated HMG (augmentation of ovarian and uterine weight - Butt 1973) was found 4 months after irradiation and, finaly, no decrease of bovine TSH activity (radioiodine release from prelabelled thyroid in mice - McKenzie 1958) was found 2 to 30 days after irradiation with 2.5 Mrad, while a decrease was observed after 12.5 Mrad. Three to five months after irradiation, however, there was a decrease of biological activity after both doses. The immunological reactivity of irradiated HMG and LH did not differ from that of nonirradiated samples. The same was found with human GH after 2.5 Mrad, while a decrease of reactivity after 12.5 Mrad was detected. It was concluded that, in most of cases, the sterilizing dose of gamma radiation (2.5 Mrad) did not affect the biological activity of polypeptide hormones and that their sensitivity to irradiation appears to differ. (author)

  2. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. An acetylation site in lectin domain modulates the biological activity of polypeptide GalNAc-transferase-2

    DEFF Research Database (Denmark)

    Zlocowski, Natacha; Lorenz, Virginia; Bennett, Eric Paul

    2013-01-01

    Abstract Polypeptide GalNAc-transferases (ppGalNAc-Ts) are a family of enzymes that catalyze the initiation of mucin-type O-glycosylation. All ppGalNAc-T family members contain a common (QXW)3 motif which is present in R-type lectin group. Acetylation site K521 is part of the QKW motif of ß......-trefoil in the lectin domain of ppGalNAc-T2. We used a combination of acetylation and site-directed mutagenesis approaches to examine the functional role of K521 in ppGalNAc-T2. Binding assays of non-acetylated and acetylated forms of the mutant ppGalNAc-T2K521Q to various naked and aGalNAc-glycosylated mucin peptides...... indicated that degree of interaction of lectin domain with aGalNAc depends on the peptide sequence of mucin. Studies of inhibitory effect of various carbohydrates on interactions of ppGalNAc-T2 with MUC1aGalNAc indicate that point K521Q mutation enhance the carbohydrate specificity of lectin domain for aGalNAc...

  6. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  7. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    2017-06-20

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  8. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  9. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  12. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  13. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  14. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    Science.gov (United States)

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  16. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  17. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  18. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because...

  19. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  20. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  1. Investigation of Gelatin Polypeptides of Jellyfish (Rhopilema esculentum for Their Antioxidant Activity in vitro

    Directory of Open Access Journals (Sweden)

    Yong-Liang Zhuang

    2010-01-01

    Full Text Available Jellyfish gelatin was hydrolyzed by different proteases to obtain antioxidative polypeptides. The gelatin hydrolysate obtained by progressive hydrolysis using trypsin and Properase E exhibited the highest hydrolysis degree and antioxidant activity. Three series of gelatin polypeptides (SCP1, SCP2 and SCP3 were obtained by ultrafiltrating the gelatin hydrolysate through molecular mass cut-off membranes of 10, 6 and 2 kDa, respectively. Amino acid composition analysis showed that SCP3 had the highest total hydrophobic amino acid content. The in vitro antioxidant tests demonstrated that SCP2 had the strongest hydroxyl radical and hydrogen peroxide scavenging activities and metal chelating ability, while SCP3 showed the highest reducing power, antioxidant activity in linoleic acid emulsion system and superoxide anion radical scavenging activity. The results support the feasibility of jellyfish gelatin as a natural antioxidant polypeptide provider, and enzymatic hydrolysis and ultrafiltration could be potent future processing technologies to utilize the abundant jellyfish resource.

  2. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies.

    Science.gov (United States)

    Hammack, Sayamwong E; May, Victor

    2015-08-01

    The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones.

    Science.gov (United States)

    King, S Bradley; Toufexis, Donna J; Hammack, Sayamwong E

    2017-09-01

    Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.

  4. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  5. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J

    1995-01-01

    The distribution, localization, and smooth muscle effects of pituitary adenylate cyclase-activating polypeptide (PACAP) were studied in the human female genital tract. The concentrations of PACAP-38 and PACAP-27 were measured by radioimmunoassays, and both peptides were found throughout the genital...... was observed. The findings suggest a smooth muscle regulatory role of PACAP in the human female reproductive tract....... tract. The highest concentrations of PACAP-38 were detected in the ovary, the upper part of vagina, and the perineum. The concentrations of PACAP-27 were generally low, in some regions below the detection limit and in other regions 1 to 5% of the PACAP-38 concentrations. Immunocytochemistry revealed...

  6. UDP-[14C]glucose-labelable polypeptides from pea: Possible components of glucan synthase I activity

    International Nuclear Information System (INIS)

    Ray, P.M.; Dhugga, K.S.; Gallaghar, S.R.

    1989-01-01

    A membrane-bound polypeptide doublet of about 40 kD can be rapidly labeled with UDP-[ 14 C]glucose under the assay conditions for glucan synthase I (GS-I). Label seems covalently bound, and chases when unlabeled UDPG is added; it might represent a covalent intermediate in polysaccharide synthesis. Labeling and GS-I activity show several common features: they co-sediment with Golgi membranes in sucrose gradients; they depend similarly on Mg 2+ or Mn 2+ (not Ca 2+ ); they decrease dramatically from stem apex to base, and are higher in epidermis than internal tissue; they show similar sensitivities to several inhibitors. But the doublet still labels after polysaccharide-synthesizing activity has been destroyed by Triton X-100. The doublet polypeptides might be glucosyl tranferases whose ability to transfer glucose units to a glucan chain is detergent-sensitive, but to accept glucose from UDPG is not; or they might be detergent-insensitive primary glucose acceptors, from which a distinct, detergent-sensitive transferase(s) move(s) these units to glucan chains

  7. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  8. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  9. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  10. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  11. [Cycloferon biological activity characteristics].

    Science.gov (United States)

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S

    2014-01-01

    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  12. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  13. Pituitary adenylate cyclase activating polypeptide modulates catecholamine storage and exocytosis in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available A number of efforts have been made to understand how pituitary adenylate cyclase activating polypeptide (PACAP functions as a neurotrophic and neuroprotective factor in Parkinson's disease (PD. Recently its effects on neurotransmission and underlying mechanisms have generated interest. In the present study, we investigate the effects of PACAP on catecholamine storage and secretion in PC12 cells with amperometry and transmission electron microscopy (TEM. PACAP increases quantal release induced by high K+ without significantly regulating the frequency of vesicle fusion events. TEM data indicate that the increased volume of the vesicle is mainly the result of enlargement of the fluidic space around the dense core. Moreover, the number of docked vesicles isn't modulated by PACAP. When cells are acutely treated with L-DOPA, the vesicular volume and quantal release both increase dramatically. It is likely that the characteristics of amperometric spikes from L-DOPA treated cells are associated with increased volume of individual vesicles rather than a direct effect on the mechanics of exocytosis. Treatment with PACAP versus L-DOPA results in different profiles of the dynamics of exocytosis. Release via the fusion pore prior to full exocytosis was observed with the same frequency following treatment with PACAP and L-DOPA. However, release events have a shorter duration and higher average current after PACAP treatment compared to L-DOPA. Furthermore, PACAP reduced the proportion of spikes having rapid decay time and shortened the decay time of both fast and slow spikes. In contrast, the distributions of the amperometric spike decay for both fast and slow spikes were shifted to longer time following L-DOPA treatment. Compared to L-DOPA, PACAP may produce multiple favorable effects on dopaminergic neurons, including protecting dopaminergic neurons against neurodegeneration and potentially regulating dopamine storage and release, making it a promising

  14. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    Directory of Open Access Journals (Sweden)

    Matthew M. Hurley

    2016-08-01

    Full Text Available While pituitary adenylate cyclase activating polypeptide (PACAP signaling in the hypothalamic ventromedial nuclei (VMN has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger and hedonic-related (palatability drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding; surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding. In contrast, inhibition of the nucleus accumbens (NAc, through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive.

  15. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  16. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    Science.gov (United States)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  17. Pituitary Adenylate Cyclase-Activating Polypeptide Disrupts Motivation, Social Interaction, and Attention in Male Sprague Dawley Rats.

    Science.gov (United States)

    Donahue, Rachel J; Venkataraman, Archana; Carroll, F Ivy; Meloni, Edward G; Carlezon, William A

    2016-12-15

    Severe or prolonged stress can trigger psychiatric illnesses including mood and anxiety disorders. Recent work indicates that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in regulating stress effects. In rodents, exogenous PACAP administration can produce persistent elevations in the acoustic startle response, which may reflect anxiety-like signs including hypervigilance. We investigated whether PACAP causes acute or persistent alterations in behaviors that reflect other core features of mood and anxiety disorders (motivation, social interaction, and attention). Using male Sprague Dawley rats, we examined if PACAP (.25-1.0 µg, intracerebroventricular infusion) affects motivation as measured in the intracranial self-stimulation test. We also examined if PACAP alters interactions with a conspecific in the social interaction test. Finally, we examined if PACAP affects performance in the 5-choice serial reaction time task, which quantifies attention and error processing. Dose-dependent disruptions in motivation, social interaction, and attention were produced by PACAP, as reflected by increases in reward thresholds, decreases in social behaviors, and decreases in correct responses and alterations in posterror accuracy. Behavior normalized quickly in the intracranial self-stimulation and 5-choice serial reaction time task tests but remained dysregulated in the social interaction test. Effects on attention were attenuated by the corticotropin-releasing factor receptor-1 antagonist antalarmin but not the κ opioid receptor antagonist JDTic. Our findings suggest that PACAP affects numerous domains often dysregulated in mood and anxiety disorders, but that individual signs depend on brain substrates that are at least partially independent. This work may help to devise therapeutics that mitigate specific signs of these disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  19. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    International Nuclear Information System (INIS)

    Takegami, T.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9

  20. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    Science.gov (United States)

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Biological Activities of Hydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    S. Güniz Küçükgüzel

    2007-08-01

    Full Text Available There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, antiinflammatory, antiplatelet, antimalarial, antimicrobial, antimycobacterial, antitumoral, vasodilator, antiviral and antischistosomiasis activities. Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities.

  2. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072 ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.686, year: 2015

  3. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    Science.gov (United States)

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  4. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  5. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  6. The effects of isatin (indole-2, 3-dione on pituitary adenylate cyclase-activating polypeptide-induced hyperthermia in rats

    Directory of Open Access Journals (Sweden)

    Tóth Gábor

    2002-02-01

    Full Text Available Abstract Background Previous studies have demonstrated that centrally administered natriuretic peptides and pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38 have hyperthermic properties. Isatin (indole-2, 3-dione is an endogenous indole that has previously been found to inhibit hyperthermic effects of natriuretic peptides. In this study the aim was to investigate the effects of isatin on thermoregulatory actions of PACAP-38, in rats. Results One μg intracerebroventricular (icv. injection of PACAP-38 had hyperthermic effect in male, Wistar rats, with an onset of the effect at 2 h and a decline by the 6th h after administration. Intraperitoneal (ip. injection of different doses of isatin (25-50 mg/kg significantly decreased the hyperthermic effect of 1 μg PACAP-38 (icv., whereas 12.5 mg/kg isatin (ip. had no inhibiting effect. Isatin alone did not modify the body temperature of the animals. Conclusion The mechanisms that participate in the mediation of the PACAP-38-induced hyperthermia may be modified by isatin. The capability of isatin to antagonize the hyperthermia induced by all members of the natriuretic peptide family and by PACAP-38 makes it unlikely to be acting directly on receptors for natriuretic peptides or on those for PACAP in these hyperthermic processes.

  7. Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach

    Directory of Open Access Journals (Sweden)

    Dora Reglodi

    2018-03-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide. Therefore, the aim of the present review is to summarize currently available data on the distribution and effects of PACAP in the stomach. We review data on the localization of PACAP and its receptors in the stomach wall of various mammalian and non-mammalian species, we then give an overview on PACAP’s effects on secretion of gastric acid and various hormones. Effects on cell proliferation, differentiation, blood flow and gastric motility are also reviewed. Finally, we outline PACAP’s involvement and changes in various human pathological conditions.

  8. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    Science.gov (United States)

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  9. Pituitary adenylate cyclase activating polypeptide (PACAP signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target.

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2 were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote

  10. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    Science.gov (United States)

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  11. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T

    2014-01-01

    sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable......Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...

  12. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  13. Interpretation of sequential measurements of cancer antigen 125 (CA 125), carcinoembryonic antigen (CEA), and tissue polypeptide antigen (TPA) based on analytical imprecision and biological variation in the monitoring of ovarian cancer

    DEFF Research Database (Denmark)

    Tuxen, Malgorzata K.; Sölétormos, G; Petersen, P H

    2001-01-01

    The main objective with cancer antigen 125 (CA 125), carcinoembryonic antigen (CEA), and tissue polypeptide antigen (TPA) monitoring of ovarian cancer patients is to detect an early change of disease activity with high reliability. We hypothesized that a monitoring scheme for ovarian cancer patie...

  14. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    OpenAIRE

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-01-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We...

  15. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  16. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    International Nuclear Information System (INIS)

    Cohen, Joseph R; Resnick, Daniel Z; Niewiadomski, Pawel; Dong, Hongmei; Liau, Linda M; Waschek, James A

    2010-01-01

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1 +/- /p53 +/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [ 3 H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1 +/- /p53 +/- mice exhibit constitutive HH pathway activity

  17. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  18. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    Science.gov (United States)

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  19. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  20. Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads.

    Science.gov (United States)

    Li, M; Mbikay, M; Arimura, A

    2000-10-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is abundant not only in the brain, but also in the testis. Immunohistochemical studies have shown that PACAP-LI in rat testis is expressed stage specifically in spermatids. This suggests that testicular PACAP participates in the regulatory mechanism of spermatogenesis. Additionally, the ovary contains a relatively small amount of PACAP, conceivably involved in the regulation of folliculogenesis. PACAP is synthesized as a preprohormone and is processed by prohormone convertases, such as PC1, PC2, and PC4. PC4 is expressed only in the testis and ovary, where neither PC1 nor PC2 is expressed. However, whether PC4 is the sole endoprotease for the PACAP precursor in the gonads remains unknown. Recent studies using PC4-transgenic mice revealed that male PC4-null mice exhibited severely impaired fertility, although spermatogenesis appeared to be normal. The female PC4-null mice exhibited delayed folliculogenesis in the ovaries. To examine whether PC4 is the sole processing enzyme for the PACAP precursor in the gonads, we analyzed testicular and ovarian extracts from the PC4-null and wild-type mice for PACAP (PACAP38 and PACAP27) and its messenger RNA using reverse phase HPLC combined with specific RIAs and ribonuclease protection assay, respectively. For RIAs, three different polyclonal antisera with different recognition sites were used to identify PACAP38, PACAP27, and its precursor. Neither the testis nor the ovary from the PC4-null mice expressed PACAP38 or PACAP27, but the levels of PACAP transcripts in the testis and ovary of homozygous PC4-deficient mice were considerably elevated compared with those of the wild-type and heterozygous animals. The findings indicate that PC4 is the sole processing enzyme for the precursor of PACAP in the testis and ovary of mice. The possibility that the absence of bioactive PACAP in the testis and ovary of PC4-null mice caused severely impaired fertility in the males and

  1. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Science.gov (United States)

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  2. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  3. Ethnobotanical and biological activities of Leptadenia pyrotechnica ...

    African Journals Online (AJOL)

    Conclusion: This review includes the substance of different ethnobotanical uses, phytochemistry and exclusive capability of this plant in the field of anti-microbial and human disease activities. Key words: Leptadenia pyrotechnica, Biological activities, Desert plant, Ethnobotanical, Phytochemical activity, phytochemistry.

  4. Biological activities of Lavandula angustifolia essential oil

    OpenAIRE

    Bílková, Zuzana

    2013-01-01

    Zuzana Bílková, Biological activities of Lavandula angustifolia essential oil, Thesis, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, thesis author: PharmDr. Jan Martin, PhD., Hradec Králové, 2013, 72 pages. The thesis called "Biological activities of Lavandula angustifolia essential oil" is interested in biological activities of Lavandula angustifolia essential oil, specifically antifungal, antioxidant, anti-inflammatory, cytotoxicity, nematicidal and repellency activit...

  5. A review exploring biological activities of hydrazones

    Directory of Open Access Journals (Sweden)

    Garima Verma

    2014-01-01

    Full Text Available The development of novel compounds, hydrazones has shown that they possess a wide variety of biological activities viz. antimicrobial, anticonvulsant, antidepressant, anti-inflammatory, analgesic, antiplatelet, antimalarial, anticancer, antifungal, antitubercular, antiviral, cardio protective etc., Hydrazones/azomethines/imines possess-NHN = CH- and constitute an important class of compounds for new drug development. A number of researchers have synthesized and evaluated the biological activities of hydrazones. This review aims at highlighting the diverse biological activities of hydrazones.

  6. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    Science.gov (United States)

    Mor, A; Chartrel, N; Vaudry, H; Nicolas, P

    1994-10-25

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians.

  7. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer

    DEFF Research Database (Denmark)

    Brooks, Susan A; Carter, Tracey M; Bennett, Eric P

    2007-01-01

    understood, may mediate the synthesis of varied glycoforms of cellular proteins with different biological activities. Disruptions in glycosylation are a common feature of cancer and may have functional significance. Immunocytochemistry with confocal scanning laser microscopy was employed to detect members...... of the ppGalNAc-T family, ppGalNAc-T1, -T2, -T3, -T4 and -T6 in a range of breast cell lines. The cells were chosen to represent a range of phenotypes from 'normal'/benign (HMT 3,522), primary, non-metastatic breast cancer (BT 474), to aggressive, metastatic breast cancer (ZR75-1, T47D, MCF-7, DU 4...... tightly restricted ppGalNAc-T's may result in initiation of O-linked glycosylation at normally unoccupied potential glycosylation sites leading to altered glycoforms of proteins with changed biological activity which may contribute to the pathogenesis of cancer....

  8. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    Janna eBlechman

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  9. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis.

    Science.gov (United States)

    Pirger, Zsolt; Laszlo, Zita; Hiripi, Laszlo; Hernadi, Laszlo; Toth, Gabor; Lubics, Andrea; Reglodi, Dora; Kemenes, Gyorgy; Mark, Laszlo

    2010-11-01

    PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.

  10. Publishing activities improves undergraduate biology education.

    Science.gov (United States)

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  11. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  12. Investigation and characterization of receptors for pituitary adenylate cyclase-activating polypeptide in human brain by radioligand binding and chemical cross-linking

    International Nuclear Information System (INIS)

    Suda, K.; Smith, D.M.; Ghatei, M.A.; Murphy, J.K.; Bloom, S.R.

    1991-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel peptide of hypothalamic origin which increases adenylate cyclase activity in rat anterior pituitary cell cultures. The 38-amino acid peptide shows a close sequence homology to vasoactive intestinal peptide (VIP). Binding sites for PACAP in membranes from postmortem human brain tissue were studied using [ 125 I]PACAP27 as the radioligand. High specific binding sites (amount of specific binding measured at 0.25 nM [ 125 I]PACAP27 in femtomoles per mg protein +/- SEM; n = 4) were present in hypothalamus (344.5 +/- 13.0), brain stem (343.0 +/- 29.3), cerebellum (292.0 +/- 21.1), cortex (259.6 +/- 19.8), and basal ganglia (259.2 +/- 50.3). Specific binding sites in pituitary, although present, were less abundant (35.0 +/- 8.9). Binding of [ 125 I]PACAP27 was reversible and time, pH, and temperature dependent. Despite the homology with VIP, VIP was a poor inhibitor of [ 125 I]PACAP27 binding (IC50, greater than 1 microM) compared with PACAP27 (IC50, 0.5-1.3 nM) and PACAP38 (IC50, 0.2-1.3 nM). Scatchard plots of [ 125 I]PACAP27 binding showed the presence of both high and lower affinity sites. Chemical cross-linking of PACAP-binding sites revealed that [ 125 I]PACAP27 was bound to polypeptide chains of 67,000 and 48,000 mol wt. Thus, we have demonstrated the presence of PACAP-specific receptors in human brain which are not VIP receptors. This opens the possibility of PACAP functioning as a novel neurotransmitter/neuromodulator in human brain

  13. Benzimidazoles: A biologically active compounds

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2017-02-01

    Full Text Available Synthesis of commercially available benzimidazole involves condensation of o-phenylenediamine with formic acid. The most prominent benzimidazole compound in nature is N-riosyldimethylbenzimidazole, which serves as a axial ligand for cobalt in vitamin B12. The benzimidazole and its derivatives play a very important role as a therapeutic agent e.g. antiulcer and anthelmintic drugs. Apart from this the benzimidazole derivatives exhibit pharmacological activities such as antimicrobial, antiviral, anticancer, anti-inflammatory, analgesic, etc. The substituted benzimidazoles are summarized in this review to know about the chemistry as well as pharmacological activities.

  14. Biological activity of liposomal vanillin.

    Science.gov (United States)

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  15. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  16. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  17. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  18. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  19. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection.

    Science.gov (United States)

    Corich, Lucia; Busetti, Marina; Petix, Vincenzo; Passamonti, Sabina; Bandiera, Antonella

    2017-08-10

    Elastin is a fibrous protein that confers elasticity to tissues such as skin, arteries and lung. It is extensively cross-linked, highly hydrophobic and insoluble. Nevertheless, elastin can be hydrolysed by bacterial proteases in infectious diseases, resulting in more or less severe tissue damage. Thus, development of substrates able to reliably and specifically detect pathogen-secreted elastolytic activity is needed to improve the in vitro evaluation of the injury that bacterial proteases may provoke. In this work, two human biomimetic elastin polypeptides, HELP and HELP1, as well as the matrices derived from HELP, have been probed as substrates for elastolytic activity detection. Thirty strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients were analyzed in parallel with standard substrates, to detect proteolytic and elastolytic activity. Results point to the HELP-based 3D matrix as an interesting biomimetic model of elastin to assess bacterial elastolytic activity in vitro. Moreover, this model substrate enables to further elucidate the mechanism underlying elastin degradation at molecular level, as well as to develop biomimetic material-based devices responsive to external stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Marine Biology Activities. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  1. Vasoactive intestinal polypeptide (VIP) tissue distribution in the rat as measured by radioimmunoassay and by radioreceptorassay

    International Nuclear Information System (INIS)

    Besson, J.; Dupont, C.; Laburthe, M.; Bataille, D.; Rosselin, G.

    1977-01-01

    A new radioimmunoassay which allows the measurement of the rat vasoactive intestinal polypeptide, was performed. VIP is present in the whole digestive tract of rat, mainly between the duodenum and the colon. 1.5% of the total VIP is present in brain. The VIP-like immunoreactivity appears to correspond to biologically active molecule since a radioreceptorassay using liver plasma membranes as the target tissue, gives the same results as the radioimmunoassay [fr

  2. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1986-05-06

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-(/sup 3/H)ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate.

  3. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  4. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  5. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  6. Purification of the labeled cyanogen bromide peptides of the α polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the α-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate

  7. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    International Nuclear Information System (INIS)

    Schwarz, Margaret A.; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-01-01

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function

  8. Radiolysis of polypeptide

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Tanaka, Hiroshi; Takahashi, Katsuhiro; Ozaki, Makoto

    1981-01-01

    Almost the same results were obtained from the additional dipeptide, Gly-DL-Ala and DL-Ala-DL-Phe, by the γ-irradiation as previous report. Tri and tetrapeptide consisted of the same amino acid signified good stability than the others. Every polypeptide composed from sulfur contained amino acid exhaled the smell of hydrogen sulfide by the irradiation. It seemed that the stability by the difference of position of amino group in amino acid increased in order α, β, γ ... amino acid and that by the existence of hydroxyl group became smaller. (author)

  9. Parameters of biological activity in colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Š.; Topolčan, O.; Holubec jr., L.; Levý, M.; Pecen, Ladislav; Svačina, Š.

    2011-01-01

    Roč. 31, č. 1 (2011), s. 373-378 ISSN 0250-7005 Institutional research plan: CEZ:AV0Z10300504 Keywords : colorectal cancer * biological activity * prognosis * tumor markers * angiogenetic factors * metalloproteinases * adhesion molecules Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  10. Biological activities of some Xylooligosaccharides from ...

    African Journals Online (AJOL)

    Xylooligosaccharides (XOS's) exhibited considerable biological activities and be incorporated into many food products and in pharmaceutical and drug industry. XOS's were produced from xylose-containing polysaccharides (XPS's) obtained from natural, xylan-rich, agro-industrial wastes, i.e., corncobs and sugarcane ...

  11. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    Abrahams, P.J.

    1978-01-01

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  12. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate.

    Science.gov (United States)

    Pirger, Zsolt; László, Zita; Kemenes, Ildikó; Tóth, Gábor; Reglodi, Dóra; Kemenes, György

    2010-10-13

    Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.

  13. Luteinizing hormone-stimulated pituitary adenylate cyclase-activating polypeptide system and its role in progesterone production in human luteinized granulosa cells.

    Science.gov (United States)

    Park, Hyun-Jeong; Choi, Bum-Chae; Song, Sang-Jin; Lee, Dong-Sik; Roh, Jaesook; Chun, Sang-Young

    2010-01-01

    The present study examined the gonadotropin regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type I receptor (PAC(1)-R) expression, and its role in progesterone production in the human luteinized granulosa cells. The stimulation of both PACAP and PAC(1)-R mRNA levels by LH was detected using a competitive reverse transcription-polymerase chain reaction (RT-PCR). PACAP transcript was stimulated by LH reaching maximum levels at 12 hours in a dose dependent manner. LH treatment also stimulated PAC(1)-R mRNA levels within 24 hours. Addition of PACAP-38 (10(-7) M) as well as LH significantly stimulated progesterone production during 48 hours culture. Furthermore, co-treatment with PACAP antagonist partially inhibited LH-stimulated progesterone production. Treatment with vasoactive intestinal peptide, however, did not affect progesterone production. Taken together, the present study demonstrates that LH causes a transient stimulation of PACAP and PAC(1)-R expression and that PACAP stimulates progesterone production in the human luteinized granulosa cells, suggesting a possible role of PACAP as a local ovarian regulator in luteinization.

  14. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney.

    Science.gov (United States)

    Reglodi, Dora; Kiss, Peter; Horvath, Gabriella; Lubics, Andrea; Laszlo, Eszter; Tamas, Andrea; Racz, Boglarka; Szakaly, Peter

    2012-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2013-01-01

    Full Text Available Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

  16. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...... peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Triptans are effective and well tolerated in acute migraine management but the exact mechanism of action is still debated. Triptans might...

  17. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  18. Pituitary adenylate cyclase-activating polypeptide (PACAP has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    Directory of Open Access Journals (Sweden)

    Gabor Maasz

    2017-02-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin, metabolic enzyme (S-COMT, MB-COMT and MAO-B and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

  19. STRUCTURES AND BIOLOGICAL ACTIVITY OF CUPROPHYLLINS

    Directory of Open Access Journals (Sweden)

    Martynov A.V.

    2017-06-01

    Full Text Available Chlorophylls (a, b are the porphyrin compounds and most common chemical in the plant’s world. In fact, these compounds are an obligatory intermediate product both in energy metabolism and in plant catabolism. At the same time, currently there are few pharmaceutical preparations on the pharmaceutical market based on chlorophylls. Dyes based on hydrolyzed chlorophyll are successfully used in the food industry. Commercial chlorophylline is a copper complex of hydrolyzed chlorophylls. As shown earlier in TLC, the chlorophyllin mixture contains a large number of different compounds. It is like water-soluble saponified derivatives in the form of sodium-magnesium complexes, and similar structures in the form of a complex with copper. The latter are more brightly colored, soluble in water and widely used as coloring agents in cooking. In this case, if the initial chlorophyll was not found to have a pronounced biological activity, the substituted derivatives in the form of copper complexes possessed a number of new unique biological properties. Non-hydrolyzed hydrophobic cuprophylline obtained from eucalyptus leaves possessed high antimicrobial activity to most strains of staphylococci, inclusion resistant to antimicrobials and multiresistant strains. This drug is called Chlorophyllipt, it is allowed to be used as a medicinal product and is one of the oldest antibacterial drugs from plants on the market. It is marketed as ethanoic and oily solutions for topical use, and as an alcohol solution for intravenous injections. Its main purpose is the fight against staphylococcal infections. Recently, found that the oral administration of chlorophyllipt activates cellular immunity and indirectly exhibits antiviral activity. Another compound of cuprophyllin is water-soluble chlorophyllin. Some authors show the variability of the structure and biological activity of cuprophyllins. Different derivatives of chlorophyll have different biological activity

  20. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Marine natural flavonoids: chemistry and biological activities.

    Science.gov (United States)

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  2. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    Vasoactive intestinal polypeptide, a neuropeptide with wide distribution in the central and peripheral nervous system, has a broad spectrum of biologic actions. The demonstration of vasoactive intestinal polypeptide containing nerve fibers within the female and male genital tract 17 years ago...... indicated a putative role for this peptide in the local nervous control of reproductive functions. The genes encoding the preprovasoactive intestinal polypeptide precursor molecule and the vasoactive intestinal polypeptide receptor have been identified. The gene expression has been studied by the use...... in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate...

  3. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  4. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  5. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.

    Science.gov (United States)

    Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2016-10-28

    Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.

  6. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  7. Biologic activity of porphyromonas endodontalis complex lipids.

    Science.gov (United States)

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Polypeptide structure of a human dermal fibroblast-activating factor (FAF) derived from the U937 cultured line of human monocyte-like cells

    International Nuclear Information System (INIS)

    Cooke, M.P.; Allar, W.J.; Goetzl, E.J.; Dohlman, J.G.

    1986-01-01

    Six liter batches of 1 x 10 6 U937 cells/ml of serum-free RPMI medium were incubated with 100 ng/ml of phorbol myristate acetate for 48 hr at 37 0 C in 5% CO 2 in air to generate FAFs, as quantified by the stimulation of uptake of [ 3 H]thymidine by quiescent human dermal fibroblasts. Filtration of the supernatants on Sephadex G-75 resolved two FAFs of approximately 40,000 and 10-13,000 daltons. The latter principle was purified to homogeneity by sequential Sephadex G-50 filtration, revealing an apparent m.w. of 7-8000, Mono-Q FPLC anion-exchange chromatography with a linear gradient from 20 mM Tris-HCl (pH 8.3) to 0.5 M NaCl-20 mM Tris-HCl in 30 min, and two cycles of high-performance liquid chromatography (HPLC) on a 300 A pore 10 μm C4 column at 1 ml/min with 0.05% trifluoroacetic acid (TFA) in water to 30:70 (v:v) and then to 60:40 (v:v) acetonitrile: 0.05% TFA linearly in 15 min and 30 min, respectively, The FAF activity eluted from HPLC in a sharp peak of O.D. 215 nm at 45% acetonitrile. Analyses of amino acid composition of the highly purified 7-8000 dalton FAF-U937 revealed 37% hydrophobic, 14% basic, and 21% acidic or amide residues, as well as one tryrosine and one methionine. This U937 cell-derived FAF appears to be a unique acidic polypeptide growth factor

  9. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    Science.gov (United States)

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms. Copyright © Physiologia Plantarum 2012.

  10. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  11. Application of activation techniques to biological analysis

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1981-01-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials

  12. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  13. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  14. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  15. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  16. Isolated polypeptide having arabinofuranosidase activity

    Science.gov (United States)

    Foreman, Pamela; Van Solingen, Pieter; Goedegebuur, Frits; Ward, Michael

    2010-02-23

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry. TABLE-US-00001 cip1 cDNA sequence (SEQ ID NO: 1) GACTAGTTCA TAATACAGTA GTTGAGTTCA TAGCAACTTC 50 ACTCTCTAGC TGAACAAATT ATCTGCGCAA ACATGGTTCG CCGGACTGCT 100 CTGCTGGCCC TTGGGGCTCT CTCAACGCTC TCTATGGCCC AAATCTCAGA 150 CGACTTCGAG TCGGGCTGGG ATCAGACTAA ATGGCCCATT TCGGCACCAG 200 ACTGTAACCA GGGCGGCACC GTCAGCCTCG ACACCACAGT AGCCCACAGC 250 GGCAGCAACT CCATGAAGGT CGTTGGTGGC CCCAATGGCT ACTGTGGACA 300 CATCTTCTTC GGCACTACCC AGGTGCCAAC TGGGGATGTA TATGTCAGAG 350 CTTGGATTCG GCTTCAGACT GCTCTCGGCA GCAACCACGT CACATTCATC 400 ATCATGCCAG ACACCGCTCA GGGAGGGAAG CACCTCCGAA TTGGTGGCCA 450 AAGCCAAGTT CTCGACTACA ACCGCGAGTC CGACGATGCC ACTCTTCCGG 500 ACCTGTCTCC CAACGGCATT GCCTCCACCG TCACTCTGCC TACCGGCGCG 550 TTCCAGTGCT TCGAGTACCA CCTGGGCACT GACGGAACCA TCGAGACGTG 600 GCTCAACGGC AGCCTCATCC CGGGCATGAC CGTGGGCCCT GGCGTCGACA 650 ATCCAAACGA CGCTGGCTGG ACGAGGGCCA GCTATATTCC GGAGATCACC 700 GGTGTCAACT TTGGCTGGGA GGCCTACAGC GGAGACGTCA ACACCGTCTG 750 GTTCGACGAC ATCTCGATTG CGTCGACCCG CGTGGGATGC GGCCCCGGCA 800 GCCCCGGCGG TCCTGGAAGC TCGACGACTG GGCGTAGCAG CACCTCGGGC 850 CCGACGAGCA CTTCGAGGCC AAGCACCACC ATTCCGCCAC CGACTTCCAG 900 GACAACGACC GCCACGGGTC CGACTCAGAC ACACTATGGC CAGTGCGGAG 1000 GGATTGGTTA CAGCGGGCCT ACGGTCTGCG CGAGCGGCAC GACCTGCCAG 1050 GTCCTGAACC CATACTACTC CCAGTGCTTA TAAGGGGATG AGCATGGAGT 1100 GAAGTGAAGT GAAGTGGAGA GAGTTGAAGT GGCATTGCGC TCGGCTGGGT 1150 AGATAAAAGT CAGCAGCTAT GAATACTCTA TGTGATGCTC ATTGGCGTGT 1200 ACGTTTTAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1250 AAAAAAAAAA AAAAAAAAAG GGGGCGGCCG C 1271

  17. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  18. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  19. Anticancer Activity of Cobra Venom Polypeptide, Cytotoxin-II, against Human Breast Adenocarcinoma Cell Line (MCF-7) via the Induction of Apoptosis

    OpenAIRE

    Ebrahim, Karim; Shirazi, Farshad H.; Vatanpour, Hosein; zare, Abas; Kobarfard, Farzad; Rabiei, Hadi

    2014-01-01

    Purpose Breast cancer is a significant health problem worldwide, accounting for a quarter of all cancer diagnoses in women. Current strategies for breast cancer treatment are not fully effective, and there is substantial interest in the identification of novel anticancer agents especially from natural products including toxins. Cytotoxins are polypeptides found in the venom of cobras and have various physiological effects. In the present study, the anticancer potential of cytotoxin-II against...

  20. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  1. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Directory of Open Access Journals (Sweden)

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  2. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  3. NBS activities in biological reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Rasberry, S.D.

    1988-12-01

    NBS activities in biological reference materials during 1986-1988 are described with a preview of plans for future certifications of reference materials. During the period, work has been completed or partially completed on about 40 reference materials of importance to health, nutrition, and environmental quality. Some of the reference materials that have been completed during the period and are described include: creatinine (SRM 914a), bovine serum albumin (SRM 927a), cholesterol in human serum (SRM's 1951-1952), aspartate aminotransferase (RM 8430), cholesterol and fat-soluble vitamins in coconut oil (SRM 1563), wheat flour (SRM 1567a), rice flour (SRM 1568a), mixed diet (RM 8431a), dinitropyrene isomers and 1-nitropyrene (SRM 1596), and complex PAH's from coal tar (SRM 1597). Oyster tissue (SRM 1566a) is being analyzed and should be available in 1988.

  4. Biological activities of red propolis: a rewiew

    Science.gov (United States)

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  6. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  7. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    Science.gov (United States)

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  8. Biological activity of Serratia marcescens cytotoxin

    Directory of Open Access Journals (Sweden)

    G.V. Carbonell

    2003-03-01

    Full Text Available Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

  9. Activation analysis of biological materials at the Activation Analysis Centre

    International Nuclear Information System (INIS)

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  10. Cephalostatin analogues--synthesis and biological activity.

    Science.gov (United States)

    Flessner, Timo; Jautelat, Rolf; Scholz, Ulrich; Winterfeldt, Ekkehard

    2004-01-01

    discussion on this topic: see Chapter 3). In line with this are the observations that 14,15-alpha-epoxides do substantially decrease activity (cephalostatins 14 and 15) while a 14,15-beta-epoxide does not decrease activity (cephalostatin 4). Also in line with the "curvature theory" is the fact that ritterazine B (14-beta-hydrogen) is even more potent than ritterazine G (14,15-double bond). Therefore it is not clear if--at least one--14,15-double bond is essential for high activity. The synthesis and biological evaluation of completely 14-beta-saturated analogues (like 14'-beta-hydrogen ritterazine B) could answer this question. Synthesis of the partially saturated analogues 14' alpha-cephalostatin 1 1c and 7-deoxy-14' alpha-ritterazine B 2a showed that the stronger the divergence of conformation implied by the saturation is, the higher is the loss of activity, thus underlining the "curvature hypothesis". Synthesis showed, that analogues possessing the 14,15-double bond(s) are substantially better soluble, e.g. 26. Furthermore, the D-Ring area turned out to be sensitive for modifications, since substantially differing analogues, like 162, 163, and 164 were completely inactive. At least one 17-hydroxy group is part of all highly active cephalostatins/ritterazines. Loss of one out of two 17-hydroxy groups does not decrease activity (compare ritterazine K and L) but of the second 17-hydroxy groups (along with the 7-hydroxy group) as seen in the ritterazine series (compare ritterazines A/T and B/Y) leads to a significant decrease in activity. Increased activity of 17-ether analogues 178 and 179 points into the same direction All highly active cephalostatins and ritterazines are substantially asymmetric. Cephalostatins and ritterazines that are symmetric--either consisting of two polar units (cephalostatin 12 and ritterazine K) or two unpolar units (ritterazine N and ritterazine R)--or almost symmetric (cephalostatin 13 and ritterazine J, L, M, O, S) show substantially diminished

  11. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  12. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    International Nuclear Information System (INIS)

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina

    2005-01-01

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis

  13. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  14. A Review of the Secondary Metabolites and Biological Activities of ...

    African Journals Online (AJOL)

    Review Article. A Review of the Secondary Metabolites and Biological. Activities of Tinospora crispa ... triterpenes have been isolated, some of which have also shown corresponding biological activities. The current review is an update on the .... were found to exhibit higher antioxidative potency than the synthetic antioxidant.

  15. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.

    2008-01-01

    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  16. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    effects on peptide conformation. pi-orbital interactions at the molecular level were observed to be very sensitive to intermolecular distance and orientation of the chromophores attached to the alpha-helical peptide templates. When the methylstilbene or Oxa-PPV molecules were arranged on the same side of the helix with intermolecular spacing of 6A, the chromophores interacted strongly with each other forming excimers. Such interactions were absent when the molecules were arranged on the opposite side of the helix. These peptide-templated systems therefore offer enormous opportunities for the elucidation of complex photophysical phenomena that occur in relatively aggregated morphologies of conjugated species, but under dilute solution conditions in which the number of chromphores in the aggregate can be manipulated. Part 2. Synthesis and characterization of biocompatible polypeptide elastomer. Lately, the significance of mechanical forces and biological cues involved in tissue remodeling are highly valued; thus the capacity of a biomaterial to present a fitting mechanical and biological environment for optimal tissue generation has become a key parameter for biomaterial design. In addition to having suitable mechanical properties, materials used for these applications need to be biologically active, i.e. trigger dynamic interactions with cells and stimulate explicit cell and tissue responses. Thus, we have designed a resilin-based modular biomaterial incorporating both mechanically and biologically active domains to sense and aptly respond to the bio-mechanical demand or changes in their environment. The use of resilin-like polypeptides offers access to a class of hydrophilic elastomers with excellent resilience and high frequency responsiveness, which can be used for encapsulating hydrophilic drugs like proteins for drug delivery, and provides hydrophilic extracellular matrix mimicking cell adhesive and enzyme degradable substrate for tissue engineering. Hence, we have

  17. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  18. Galloylation of polyphenols alters their biological activity

    Czech Academy of Sciences Publication Activity Database

    Karas, D.; Ulrichová, J.; Valentová, Kateřina

    2017-01-01

    Roč. 105, JUL 2017 (2017), s. 223-240 ISSN 0278-6915 R&D Projects: GA MŠk(CZ) LD15082; GA MŠk(CZ) LD15084; GA MŠk(CZ) LO1304 Grant - others:GA ČR(CZ) GAP303/12/G163 Program:GA Institutional support: RVO:61388971 Keywords : Polyphenols * Gallic acid * Galloylation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.778, year: 2016

  19. NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide

    International Nuclear Information System (INIS)

    Alana, Inigo; Hewage, Chandralal M.; G. Malthouse, J. Paul; Parker, Jeremy C.; Gault, Victor A.; O'Harte, Finbarr P.M.

    2004-01-01

    Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic β-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length α-helical conformation between residues F 6 and A 28 . This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists

  20. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    Science.gov (United States)

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full

  1. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  2. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    OpenAIRE

    El Mokhtar Essassi; R. Bouhfid; Y. Kandri Rodi; S. Ferfra; H. Benzeid; Y. Ramli

    2010-01-01

    Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  3. Constituents and biological activities of Schinus polygamus.

    Science.gov (United States)

    Erazo, Silvia; Delporte, Carla; Negrete, Rosa; García, Rubén; Zaldívar, Mercedes; Iturra, Gladys; Caballero, Esther; López, José Luis; Backhouse, Nadine

    2006-10-11

    The folk medicine employs Schinus polygamus to treat arthritic pain and cleansing of wounds. As no reports of pharmacological studies supporting its anti-inflammatory and analgesic properties, extracts of increasing polarity were assayed on the base of fever, pain and inflammation, together with its antimicrobial activity. All the extracts showed pharmacological activities. From the most active extracts different metabolites were isolated that can in part explain the antipyretic, anti-inflammatory, and analgesic activity: beta-sitosterol, shikimic acid together with quercetin, previously reported. Also, the essential oil of leaves and fruits was obtained and compared with the oil obtained from Schinus polygamus collected in Argentine. Oils differed in composition and in antibacterial activity, where the Chilean species exhibited a wide spectrum of activity against Gram-positive and Gram-negative bacteria, and the most abundant compound found in leaves and fruits was beta-pinene, meanwhile the Argentine species showed high activity against Bacillus cereus, and the main components resulted to be alpha-phellandrene and limonene.

  4. Smart systems related to polypeptide sequences

    Directory of Open Access Journals (Sweden)

    Lourdes Franco

    2016-03-01

    Full Text Available Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light- and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.

  5. Biologically active substances from Zanthoxylum capense(thumb.) Harv.

    CSIR Research Space (South Africa)

    Steyn, PS

    1998-08-01

    Full Text Available A chemical investigation into the composition of Zanthoxylum capense yielded several biologically active compounds, including pellitorine. A convenient HPLC method was developed to determine the presence of pellitorine in crude extracts from plants...

  6. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  7. Biological activities of Rumex dentatus L: Evaluation of methanol ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... of different the extracts of R. dentatus effectively inhibited tumor ... Plants contain thousands of biologically active mole- .... The vials were kept open over night with .... between prokaryotic and eukaryotic cells (Stachel and.

  8. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Oee-Sook Park

    2009-11-01

    Full Text Available The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  9. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    Science.gov (United States)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  10. Physical activity and biological maturation: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Denise Araújo Bacil

    2015-03-01

    Full Text Available OBJECTIVE: To analyze the association between physical activity (PA and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders.

  11. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    cyanobacteria, enzyme activity, enzyme inhibitors, immunological activity, natural products, nonribosomal peptides, plant growth regulators 2 INTRODUCTION Cyanobacteria are Gram-negative bacteria which are widely distributed in many water bodies..., immunological, 4 antimicrobial and plant growth tests. The overall aim of the experiments was to identify strains showing the most promising biological activity for potential biotechnological application. MATERIALS AND METHODS Isolation, culture...

  12. Synthesis and biological activity of radiolabeled phytosterols

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, A.

    1984-01-01

    /sup 3/H and /sup 14/C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with /sup 3/H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled (29-/sup 3/H)-(24-/sup 14/C) fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the /sup 3/H//sup 14/C ratio decreases in the organic layer as a function of time, due to loss of /sup 3/H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The (29-/sup 3/H) phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation.

  13. Synthesis and biological activity of radiolabeled phytosterols

    International Nuclear Information System (INIS)

    De Palma, A.

    1984-01-01

    3 H and 14 C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with 3 H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled [29- 3 H]-[24- 14 C] fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the 3 H/ 14 C ratio decreases in the organic layer as a function of time, due to loss of 3 H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The [29- 3 H] phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation

  14. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  15. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    Science.gov (United States)

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  16. Polypeptide synthesis in alphavirus-infected aedes albopictus cells during the establishment of persistent infection

    International Nuclear Information System (INIS)

    Richardson, M.A.; Boulton, R.W.; Raghow, R.S.; Dalgarno, L.

    1980-01-01

    Polypeptide synthesis was examined in mosquito cells during the establishment of a persistent infection with two alphaviruses, Ross River virus (RRV) and Semliki Forest virus (SFV), and in vertebrate cells cytopathically-infected with the same viruses. In Aedes albopictus cells, RRV reached peak titres at 34-48 hours p.i. At 12 hours 85 per cent of cells assayed as infected by infective centre assay; by 48 hours when persistence was established, virus production was reduced and <5 per cent of cells assayed as infected. There was not shutdown of host polypeptide synthesis during infection. Viral polypeptide synthesis was maximal between 10 and 24 hours p.i. The major viral polypeptides labelled were nucleocapsid protein and envelope protein(s).The precursor polypeptide p95 which was prominent in infected BHK cells was not detected in mosquito cells. Similar results were obtained on SFV infection. During the establishment of persistence there was a coordinate decline in the synthesis of RRV polypeptides, reaching undetectable levels by 72 hours p.i. Subculturing persistently-infected cells led to a small increase in viral polypeptide synthesis and virus titre. In contrast, during RRV growth in BHK cells host protein synthesis was severely inhibited and by 9-11 hours p.i. virus-specific polypeptide synthesis represented more than 90 per cent of total protein synthetic activity. (author)

  17. SYNTHESIS, CHARACTERIZATION OF BIOLOGICALLY ACTIVE N ...

    African Journals Online (AJOL)

    DR. AMINU

    2013-12-02

    Dec 2, 2013 ... Gibbs free energy of the complex compound are 3.1x1011 and -64.15 KJmol-1, respectively, suggesting ... Schiff base and its iron(II) complex showed good activity. Keywords: ... maximum solubility in DMF and DMSO at room.

  18. New uracil derivatives and their biological activity

    International Nuclear Information System (INIS)

    Hudecova, D.; Striganova, J.; Chovanec, P.; Uher, M.

    1998-01-01

    Present study is concentrated to the research of antimicrobial activity of some derivatives of the uracil and 1,3-dimethyluracyl. The antimicrobial effects of these compounds have been tested on various strains of bacteria, yeasts, and filamentous fungi. The highest antimicrobial effects were found with dithiocarbamato-derivatives, which were effective against pathogenic and non-pathogenic bacteria (IC 50 = 7-25 μg cm -3 ), yeasts (IC 50 = 9-60 μg cm -3 ) and filamentous fungi.The most sensitive fungus to dithiocarbamato-derivatives was Botritis cinerea. It seems to be apparent that the presence of the -NH-C(S)-S- group in molecules of derivatives of uracil and and 1,3-dimethyluracyl influencing the incorporation rate [ 14 ]-adenine and 14 ]-leucine into the biomolecules and also markedly inhibits oxygen consumption (IC 50 = 58 μg cm -3 ). The same derivative demonstrated no mutagenic activity. (authors)

  19. Isolation and biological activity of frankiamide.

    Science.gov (United States)

    Haansuu, J P; Klika, K D; Söderholm, P P; Ovcharenko, V V; Pihlaja, K; Haahtela, K K; Vuorela, P M

    2001-07-01

    An antibiotic produced by the symbiotic actinomycete Frankia strain AiPs1 was isolated from culture broth using optimized thin-layer chromatography and high-performance liquid chromatography (HPLC) methods. The novel compound that was isolated, dubbed frankiamide, displayed antimicrobial activity against all 14 Gram-positive bacterial strains and six pathogenic fungal strains tested. The pathogenic actinomycete Clavibacter michiganensis and the oomycete Phytophthora were especially susceptible. In addition to displaying antimicrobial activity, frankiamide also strongly inhibited 45Ca(2+) fluxes in clonal rat pituitary GH4C1 tumor cells and was comparable to a frequently used calcium antagonist, verapamil hydrochloride. The results of HPLC analysis, supported by both nuclear magnetic resonance and mass spectroscopy studies, showed that frankiamide has a high affinity for Na(+) ions.

  20. Heterologous expression of biologically active chicken granulocyte ...

    African Journals Online (AJOL)

    user

    2012-02-07

    Feb 7, 2012 ... CD4+ T cells to enhance the ability of secreting antibody and also enhance the function of CD8+ T cells. (Papatriantafyllou, 2011; Tovey and Lallemand, 2010). GM-CSF also is a key regulator of IL-1beta production. Furthermore, It was reported that GM-CSF play a key role in the activation of Th1 and Th17 ...

  1. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  2. Synthesis and biological activity of organothiophosphoryl polyoxotungstates.

    Science.gov (United States)

    Sun, Zhengang; Liu, Jutao; Ma, Jianfang; Liu, Jingfu

    2002-01-01

    Organothiophosphoryl polyoxotungstates R(contains)XW(infinityinfinity)O(contains exists) (/-) , R(contains) P(contains)W(infinity),O(infinity) (/-), R(contains)PW( exists)O(contains) (Delta) (-)(X = P, Si, Ge, B or Ga; R = PhP(S), C(6)H(11)P(S)) have been prepared from lacunary polyoxoanions and PhP(S). The products were characterized by elemental analysis, IR, and NMR spectroscopy. According to spectroscopic observations, the hybrid anions consist of a lacunary anion framework on which are grafted two equivalent or groups through P-O-W bridges. Some of the title compounds showed the antigerm activity.

  3. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides.

    Science.gov (United States)

    Huang, Chen; Morlighem, Jean-Étienne Rl; Zhou, Hefeng; Lima, Érica P; Gomes, Paula B; Cai, Jing; Lou, Inchio; Pérez, Carlos D; Lee, Simon Ming; Rádis-Baptista, Gandhi

    2016-10-05

    Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  5. Biologically active extracts with kidney affections applications

    International Nuclear Information System (INIS)

    Pascu, Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-01-01

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  6. Biologically active extracts with kidney affections applications

    Energy Technology Data Exchange (ETDEWEB)

    Pascu, Mihaela, E-mail: mihhaela_neagu@yahoo.com [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Pascu, Daniela-Elena [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Cozea, Andreea [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Transilvania University of Brasov, Faculty of Food and Tourism, 148 Castle Street, 500036 Brasov (Romania); Bunaciu, Andrei A. [SCIENT – Research Center for Instrumental Analysis, S.C. CROMATEC-PLUS S.R.L., 18 Sos. Cotroceni, Bucharest 060114 (Romania); Miron, Alexandra Raluca; Nechifor, Cristina Aurelia [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania)

    2015-12-15

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  7. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  8. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  9. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina; Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu

    2001-01-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  10. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  11. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  12. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    Science.gov (United States)

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  13. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    Science.gov (United States)

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  14. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  15. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  16. Glucose-dependent Insulinotropic Polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel B; Calanna, Salvatore; Holst, Jens Juul

    2014-01-01

    CONTEXT: Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE: We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses......: During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased...... glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon...

  17. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics.

    Science.gov (United States)

    Byrne, Mark; Murphy, Robert; Kapetanakis, Antonios; Ramsey, Joanne; Cryan, Sally-Ann; Heise, Andreas

    2015-09-17

    Significant advances in the synthesis of polypeptides by N-carboxyanhydride (NCA) polymerisation over the last decade have enabled the design of advanced polypeptide architectures such as star-shaped polypeptides. These materials combine the functionality offered by amino acids with the flexibility of creating stable nanoparticles with adjustable cargo space for therapeutic delivery. This review highlights recent advances in the synthesis of star polypeptides by NCA polymerisation followed by a critical review of the applications of this class of polymer in the delivery of therapeutic agents. This includes examples of traditional small-molecule drugs as well as the emerging class of biologics such as genetic therapeutics (gene delivery). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    El Mokhtar Essassi

    2010-04-01

    Full Text Available Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  19. Preparation of biologically active 32P-labeled human relaxin. Displaceable binding to rat uterus, cervix, and brain

    International Nuclear Information System (INIS)

    Osheroff, P.L.; Ling, V.T.; Vandlen, R.L.; Cronin, M.J.; Lofgren, J.A.

    1990-01-01

    Relaxin is a member of the insulin family of polypeptide hormones and is known to exert its biological effects on various parts of the mammalian reproductive system. Biologically active human relaxin has been chemically synthesized based on the nucleotide sequence obtained from an ovarian cDNA clone. In the present study synthetic human relaxin was radiolabled by phosphorylation with cAMP-dependent protein kinase and [gamma-32P]ATP to a specific activity of 5000 Ci/mmol. The phosphorylated relaxin was purified on cation exchange high performance liquid chromatography and was shown to co-migrate with relaxin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mass spectrometry revealed a single phosphorylated site on the B chain of relaxin. The 32P-relaxin was able to bind to a goat anti-relaxin antibody, and this binding could be displaced by unlabeled relaxin in a concentration-dependent manner. A comparison of the concentration responses of cellular cAMP production stimulated by relaxin and phosphorylated relaxin in a primary human uterine cell line showed that phosphorylation did not affect the in vitro biological efficacy of relaxin. This made it suitable for in situ autoradiographic localization of relaxin binding sites in rat uterine, cervical, and brain tissue sections. Displacement of the binding of 100 pM 32P-relaxin by 100, 10, and 3 nM unlabeled relaxin, but not by 100 nM insulin, insulin-like growth factor-I, and an insulin-like growth factor-I analog, demonstrated the high affinity and specificity of such binding. We conclude that 32P-labeled human relaxin is biologically and immunologically active and that this novel probe binds reversibly and with high affinity to classical (e.g. uterus) and unpredicted (e.g. brain) tissues

  20. Purification of the labeled cyanogen bromide peptides of the. cap alpha. polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the ..cap alpha..-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate.

  1. Biological activity of antitumoural MGBG: the structural variable.

    Science.gov (United States)

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  2. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  3. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  4. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  5. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  6. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  7. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  8. Effect of gamma irradiation on biological activity of thyrotropin

    Energy Technology Data Exchange (ETDEWEB)

    Strbak, V; Macho, L; Sedlak, J; Hromadova, M

    1976-03-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma irradiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity being after the former dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in a decrease of biological activity already during first month. The structural changes in the molecule of TSH were apparently not very extensive, since a decrease of disulfide bonds from 0.96 to 0.77 M per 1M of TSH was found immediately after the irradiation, while uv absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by the decrease of TSH stability during storage in dry state. It is hypothesized that TSH molecule may be affected in ..beta.. subunit or in its connection with ..cap alpha...

  9. Effect of gamma irradiation on biological activity of thyrotropin

    International Nuclear Information System (INIS)

    Strbak, V.; Macho, L.; Sedlak, J.; Hromadova, M.

    1976-01-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma radiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity after the 0.5 Mrad dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in decreased biological activity already during the first month. The structural changes in the TSH molecule were apparently not very extensive, as a decrease of disulfide bonds from 0.96 to 0.77 M per 1 M of TSH was found immediately after the irradiation, while UV absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by a decrease of TSH stability during storage in dry state. It is hypothesized that a TSH molecule may be affected in a β subunit or in its connection with α. (author)

  10. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  11. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  12. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  13. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  14. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Novotná, E.; Waisser, K.; Kuneš, J.; Palát, K.; Skálová, L.; Szotáková, B.; Buchta, V.; Stolaříková, J.; Ulmann, V.; Pávová, Marcela; Weber, Jan; Komrsková, J.; Hašková, P.; Vokřál, I.; Wsól, V.

    2017-01-01

    Roč. 350, č. 8 (2017), č. článku e1700020. ISSN 0365-6233 Institutional support: RVO:61388963 Keywords : biological activity * cytotoxicity * isocitrate lyase * isothiosemicarbazone * tuberculosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.994, year: 2016

  15. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  16. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    Background: Metal ions play a vital role in the design of more biologically active drugs. Aim: The paper reviewed the .... 2H2O by direct reaction of copper(II) sulphate pentahydrate with ciprofloxacin in distilled water. ... membered ring and the chloride ion completes the seven coordination around the Ca2+ion.[37-39].

  17. Biological activities of species in the genus Tulbaghia : A review ...

    African Journals Online (AJOL)

    Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from ...

  18. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  19. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  20. Physio-chemical evaluation and biological activity of Ajuga ...

    African Journals Online (AJOL)

    Physio-chemical evaluation and biological activity of Ajuga bracteosa wall and Viola odoroto Linn. Anwar Ali Shad, M. Zeeshan, Hina Fazal, Hamid Ullah Shah, Shabir Ahmed, Hasem Abeer, E. F. Abd_Allah, Riaz Ullah, Hamid Afridi, Akash tariq, Muhammad Adnan Asma ...

  1. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  2. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  3. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  4. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate

    OpenAIRE

    Pirger, Zsolt; László, Zita; Kemenes, Ildikó; Tóth, Gábor; Reglődi, Dóra; Kemenes, György

    2010-01-01

    Similar to other invertebrate and vertebrate animals, cAMP dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unkno...

  5. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    Science.gov (United States)

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  7. Gut-Sourced Vasoactive Intestinal Polypeptide Induced by the Activation of α7 Nicotinic Acetylcholine Receptor Substantially Contributes to the Anti-inflammatory Effect of Sinomenine in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    MengFan Yue

    2018-06-01

    Full Text Available Sinomenine has long been used for the treatment of rheumatoid arthritis in China. However, its anti-inflammatory mechanism is still debatable because the in vitro minimal effective concentration (≥250 μM is hardly reached in either synovium or serum after oral administration at a therapeutic dose. Recent findings suggest that the α7 nicotinic acetylcholine receptor (α7nAChR might mediate the inhibitory effect of sinomenine on macrophage activation, which attracts us to explore the anti-arthritis mechanism of sinomenine by taking neuroendocrine-inflammation axis into consideration. Here, we showed that orally administered sinomenine ameliorated the systemic inflammation of collagen-induced arthritis (CIA rats, which was significantly diminished by either vagotomy or the antagonists of nicotinic acetylcholine receptors (especially the antagonist of α7nAChR, but not by the antagonists of muscarinic receptor. Sinomenine might bind to α7nAChR through interacting with the residues Tyr184 and Tyr191 in the pocket. In addition, the generation of vasoactive intestinal polypeptide (VIP from the gut of CIA rats and cultured neuron-like cells was selectively enhanced by sinomenine through the activation of α7nAChR-PI3K/Akt/mTOR pathway. The elevated levels of VIP in the serum and small intestine of rats were negatively correlated with the scores of joint destruction. The crucial role of VIP in the anti-arthritic effect of sinomenine was confirmed by using VIP hybrid, a non-specific antagonist of VIP receptor. Taken together, intestine-sourced VIP mediates the anti-arthritic effect of sinomenine, which is generated by the activation of α7nAChR.

  8. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  9. Radiometric microbiologic assay for the biologically active forms of niacin

    International Nuclear Information System (INIS)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-01-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced 14 CO 2 from L-[U- 14 C] malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 μg niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays

  10. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  11. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  12. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  13. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.

    Science.gov (United States)

    Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2008-06-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  14. A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts.

    Directory of Open Access Journals (Sweden)

    Sara Monteiro

    Full Text Available There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed.

  15. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  16. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  17. The Biological Activities of Sesterterpenoid-Type Ophiobolins

    Directory of Open Access Journals (Sweden)

    Wei Tian

    2017-07-01

    Full Text Available Ophiobolins (Ophs are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A–W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR cells and cancer stem cells (CSCs. Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure–activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  18. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  20. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  1. Biological activities of secondary metabolites of the order Zoanthids

    Directory of Open Access Journals (Sweden)

    Zahra Aminikhoei

    2015-11-01

    Full Text Available The phylum Cnidaria is a large, diverse and ecologically important group of marine invertebrates, which produce powerful toxins and venoms. The number of marine natural product from cnidarians isolated from class Anthozoa. Among the Anthozoa, the order of zoanthids are sessile, clonal and mostly brightly colored invertebrate which produce high biodiversity of cytolitic, neurotoxic and cardiotoxic compounds. Zoanthids containing palytoxins are reportedly among the most toxic marine organisms known. In addition, a high concentration of zoanthamine alkaloids extracted from this group.The zoanthamine alkaloids were isolated over 20 years ago, exhibit a broad range of biological activities.The best studied and most well-known biological activity of zoanthamine derivative significantly suppressed bone resorption and enhanced bone formation.

  2. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  3. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  4. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  5. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  6. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  7. Allobetulin and Its Derivatives: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Talgat S. Seitembetov

    2011-03-01

    Full Text Available This review covers the chemistry of allobetulin analogs, including their formation by rearrangement from betulin derivatives, their further derivatisation, their fusion with heterocyclic rings, and any further rearrangements of allobetulin compounds including ring opening, ring contraction and ring expansion reactions. In the last part, the most important biological activities of allobetulin derivatives are listed. One hundred and fifteen references are cited and the relevant literature is covered, starting in 1922 up to the end of 2010.

  8. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  9. Biological Activities and Phytochemicals of Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Habsah Abdul Kadir

    2013-08-01

    Full Text Available Swietenia macrophylla King (Meliaceae is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.

  10. Synthesis and biological activity of imidazopyridine anticoccidial agents: part I.

    Science.gov (United States)

    Scribner, Andrew; Dennis, Richard; Hong, Jean; Lee, Shuliang; McIntyre, Donald; Perrey, David; Feng, Dennis; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2007-01-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we present the synthesis and biological activity of imidazo[1,2-a]pyridine anticoccidial agents. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  11. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    Science.gov (United States)

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL -1 and 0.6-0.7 ng mL -1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  14. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  15. Phytochemistry and biological activities of Heracleum persicum: a review.

    Science.gov (United States)

    Majidi, Zahra; Sadati Lamardi, S N

    2018-05-24

    Heracleum persicum Desf. ex Fisch is used in Iranian traditional medicines, for the treatment of various diseases including neurological, gastrointestinal, respiratory, rheumatological and urinary tract diseases. In phytochemical analysis of H. persicum, several classes of natural chemicals including volatile (aliphatic esters, carbonyls, phenyl propenes and terpenes) and nonvolatile (flavonoids, furanocoumarins, tannins and alkaloids) constituents as well as different minerals have been identified. Scientific studies on H. persicum proved that it has a wide range of biological and pharmacological activities. This article has provided comprehensive information on Iranian traditional uses, phytochemistry and pharmacological activities of H. persicum. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  16. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  17. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  18. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  19. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  20. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Summary of diamino pyrazoles derived and study their biological activities

    International Nuclear Information System (INIS)

    Hagui, Marwa

    2016-01-01

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN ( 1 H, 13 C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity

  2. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  3. Natural products as a resource for biologically active compounds

    International Nuclear Information System (INIS)

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod) 3 is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous 13 C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the 1 H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants

  4. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    International Nuclear Information System (INIS)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1982-01-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH 2 -coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins in vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X

  5. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  6. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  7. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    Science.gov (United States)

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities.

  8. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  9. Biological activity of Penaeus monodon GILT in shrimp pathogen protection

    Directory of Open Access Journals (Sweden)

    Aekkaraj Nualla-ong

    2017-04-01

    Full Text Available Gamma-interferon-inducible lysosomal thiol reductase (GILT contains a CXXC active site motif that possesses thiol reductase activity by catalyzing the disulfide bond reduction of exogenous antigens. Mutating the active site of human GILT to change the cysteine residues to serine residues eliminates this property. Our previous study reported that Penaeus monodon GILT (PmGILT contained a CXXS active site motif. Therefore, we assessed the enzymatic activity of PmGILT and demonstrated that it displayed identical thiol reductase activity at an acidic pH. In addition, the biological activity of PmGILT against shrimp pathogens, including white spot syndrome virus (WSSV and Gram-negative bacteria, was investigated. The neutralization of WSSV with PmGILT indicated the inhibition of WSSV invasion into shrimp hemocyte cells. Moreover, the relative percentage survival of shrimp injected with PmGILT-treated virus solution was 75%. Finally, the antimicrobial activity of PmGILT was confirmed by the growth inhibition of Vibrio harveyi. These results establish the role of PmGILT in the inhibition of the virulence of two major shrimp pathogens.

  10. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Abdel kader, S.M.; El Sayed, M.M.; El Malt, E.A.; Shaker, E.S.; Abdel Aziz, H.G.

    2010-01-01

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  11. Investigating Biological Activity Spectrum for Novel Styrylquinazoline Analogues

    Directory of Open Access Journals (Sweden)

    Jaroslaw Polanski

    2009-10-01

    Full Text Available In this study, series of ring-substituted 2-styrylquinazolin-4(3H-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  12. Biological Activity Predictions and Hydrogen Bonding Analysis in Quinolines

    Science.gov (United States)

    Gupta, Palvi; Kamni

    The paper has been designed to make a comprehensive review of a particular series of organic molecular assembly in the form of compendium. An overview of general description of fifteen quinoline derivatives has been given. The biological activity spectra of quinoline derivatives have been correlated on structure activity relationships base which provides the different Pa (possibility of activity) and Pi (possibility of inactivity) values. Expositions of the role of intermolecular interactions in the identified derivatives have been discussed with the standard distance and angle cut-off criteria criteria as proposed by Desiraju and Steiner (1999) in an International monogram on crystallography. Distance-angle scatter plots for intermolecular interactions are presented for a better understanding of the packing interactions which exist in quinoline derivatives.

  13. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  14. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  15. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  16. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  17. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  18. Eurotium (Aspergillus) repens metabolites and their biological activity.

    Science.gov (United States)

    Podojil, M; Sedmera, P; Vokoun, J; Betina, V; Baráthová, H; Duracková, Z; Horáková, K; Nemec, P

    1978-01-01

    Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities--echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 microgram/ml, caused 50% mor7 tality in Artemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50% growth inhibition at a concentration of 0.1 microgram/ml.

  19. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  20. Physicochemical Characteristics and Biological Activity of Irradiated Pectin Solution

    International Nuclear Information System (INIS)

    Kwon, J.H.; Kang, H.J.; Jo, C.O.; Jeong, I.Y.; Byun, M.W.

    2005-01-01

    Pectin was dissolved in HCI, citric acid, and deionized distilled water (DW, 2%, v/v) and irradiated at different irradiation doses (2.5-50 kGy) by gamma ray to investigate its physicochemical characteristics and biological activity. Viscosity of pectin solution was significantly decreased by irradiation up to 10 kGy, then remained constant thereafter. Gamma-irradiation increased monosaccharide and polysaccharide levels up to 30-40 kDa. Electron donating ability of pectin solution was highest when DW was added was increased by increasing irradiation dose (p less than 0.05)

  1. New enamine derivatives of lapachol and biological activity

    Directory of Open Access Journals (Sweden)

    OLIVEIRA MAILCAR F.

    2002-01-01

    Full Text Available A convenient synthesis of the new enamine derivatives 2-(4-morpholinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione, 2-(1-piperidinyl-3-(3-methyl-2-butenyl-1,4-naphtalenedione and 2-(1-pyrrolidinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione was carried out from natural 2-hydroxy-3-(3-methyl-2-butenyl-1,4-naphthalenedione (lapachol and morpholine, piperidine and pyrrolidine. The structures of the products were established mainly by NMR analysis, including 2D experiments. Biological activities of these products were evaluated against Artemia salina, Aedes aegypti and cytotoxicity using A549 human breast cells.

  2. Secondary metabolites and biological activity of Pentas species: A minireview

    Directory of Open Access Journals (Sweden)

    Heba-tollah M. Sweelam

    2018-03-01

    Full Text Available The genus Pentas belongs to the Rubiaceae family, which contains approximately 40 species. Several Pentas species were reported to be used as a folk treatment by African indigenous people in treating some diseases such as malaria, tapeworms, dysentery, gonorrhea, syphilis and snake poisoning. This article covers the period from 1962 to 2017 and presents an overview of the biological activity of different Pentas species and describes their phytochemical traits. As a conclusion, the main secondary metabolites from Pentas species are quinones, highly oxygenated chromene-based structures, and iridoids. Pentas species are widely used in folk medicine but they have to be more investigated for their medicinal properties.

  3. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Directory of Open Access Journals (Sweden)

    Petunin AI

    2010-01-01

    Full Text Available Abstract Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs to various targets in vivo.

  4. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  5. Parsley: a review of ethnopharmacology, phytochemistry and biological activities.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abbasabadi, Zahra; Ardekani, Mohammad Reza Shams; Rahimi, Roja; Farzaei, Fatemeh

    2013-12-01

    To summarize comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley. Databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013. The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence". Parsley has been used as carminative, gastro tonic, diuretic, antiseptic of urinary tract, anti-urolithiasis, anti-dote and anti-inflammatory and for the treatment of amenorrhea, dysmenorrhea, gastrointestinal disorder, hypertension, cardiac disease, urinary disease, otitis, sniffle, diabetes and also various dermal disease in traditional and folklore medicines. Phenolic compounds and flavonoids particularly apigenin, apiin and 6"-Acetylapiin; essential oil mainly myristicin and apiol; and also coumarins are the active compounds identified in Petroselinum crispum. Wide range of pharmacological activity including antioxidant, hepatoprotective, brain protective, anti-diabetic, analgesic, spasmolytic, immunosuppressant, anti-platelet, gastroprotective, cytoprotective, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities have been exhibited for this plant in modern medicine. It is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

  6. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  7. Study of local conformation and molecular movements of homo-polypeptides in aqueous solutions by using magnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Perly, Bruno

    1980-01-01

    The objective of this research thesis is to study local conformations and mobilities of some typical homo-polypeptides by using techniques of magnetic resonance. By using these techniques, it is possible to make highly local observations of molecular elements which allows very efficient analysis of structural and dynamic properties of several biologically important compounds to be performed, and the study of their interactions. After a presentation of the general properties of the studied polypeptides, of magnetic resonance and of magnetic relaxation, the author presents some elements of macromolecular dynamics and movement models. Then, he reports the study of local conformations and structural transitions, applications of spin marking to the dynamic study of polypeptides, a dynamic study of the polypeptide skeleton under the form of statistic balls, the study of local movements of side chains by using nuclear relaxation, the study of the coupling of movements of main and side chains, and of the nuclear relaxation induced by a radical spin marker

  8. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  9. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  10. Exploring rhizosphere bacteria of Eichhornia crassipes for metal tolerance and biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Gomez, S.; Ribeiro, M.; Deshpande, S.A.; Singh, K.S.; DeSouza, L.

    Cl3, They were further screened for antibiotic sensitivity and biological activity according to Kirby-Bauer disc diffusion method The MTB under metal stress condition showed significant biological activity against clinical pathogens, fouling...

  11. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

    Directory of Open Access Journals (Sweden)

    Xiaohan Wang

    2017-11-01

    Full Text Available Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs, are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

  12. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...... orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion...

  13. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass

    Directory of Open Access Journals (Sweden)

    Konstantin I. Galkin

    2017-12-01

    Full Text Available Reductive amination of 2,5-diformylfuran (DFF was used to implement the transition from bio-derived 5-hydroxymethylfurfural (HMF to pharmaceuticals. The synthesized bis(aminomethylfurans were utilized as building blocks for the construction of new derivatives with structural cores of naturally occurring biologically active compounds. Using the one-pot procedure, which included the Diels–Alder reaction followed by hydrogenation of the double bond, bio-derived analogues of the anticancer drug norcantharidin were obtained. The cyclization process was diastereoselective, and resulted in the formation of tricyclic products with the endo configuration. Analysis of cytotoxycity for the resulting tricyclic amine-containing compounds showed an increase of anticancer activity as compared with the unsubstituted norcantharimide.

  14. Borrelidin B: isolation, biological activity, and implications for nitrile biosynthesis.

    Science.gov (United States)

    Schulze, Christopher J; Bray, Walter M; Loganzo, Frank; Lam, My-Hanh; Szal, Teresa; Villalobos, Anabella; Koehn, Frank E; Linington, Roger G

    2014-11-26

    Borrelidin (1) is a nitrile-containing bacterially derived polyketide that is a potent inhibitor of bacterial and eukaryotic threonyl-tRNA synthetases. We now report the discovery of borrelidin B (2), a tetrahydro-borrelidin derivative containing an aminomethyl group in place of the nitrile functionality in borrelidin. The discovery of this new metabolite has implications for both the biosynthesis of the nitrile group and the bioactivity of the borrelidin compound class. Screening in the SToPS assay for tRNA synthetase inhibition revealed that the nitrile moiety is essential for activity, while profiling using our in-house image-based cytological profiling assay demonstrated that 2 retains biological activity by causing a mitotic stall, even in the absence of the nitrile motif.

  15. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  16. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion......Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...

  17. INTERACTION BETWEEN DIFFERENT MOLECULAR FORMS OF IMMUNOGLOBULIN A AND RECOMBINANT DERIVATIVES POLYPEPTIDES OF BAC RECEPTOR PROTEINS FROM GROUP B STREPTOCOCCI

    Directory of Open Access Journals (Sweden)

    A. S. Korzhueva

    2008-01-01

    Full Text Available Abstract. The article concerns interactions between immunoglobulin A and recombinant P6, P7, P8 polypeptides, designed on the basis of externally localized Bac protein of the Group B streptococci, possessing IgA-binding activity.There is a current demand for immunochemical reagents that are strictly specific for IgA, in order to develop antigenic standards for detection of IgA levels in biological fluids, as well as for affinity purification of IgA and its fragments.To analyze an opportunity of the abovementioned application ways for these proteins, a special study was performed to assay an interaction capability of recombinant P6, P7, P8 polypeptides binding to Fc regions of different IgA forms (serum IgA, secretory IgA, subclasses of serum IgA – IgA1, IgA2. Selectivity of ligand binding was specially confirmed.It was found out that, among three presented polypeptides, the structure of recombinant P6 derivative proved to be optimal for IgA-binding ability of Bac protein.Structural features of IgA-binding fragments of Bac protein, i.e., binding site position on the IgA molecule (proximity to epitopes for three monoclonal antibodies, variability of the site structure, as well as resistance of binding site for P6, P7, P8 in IgA molecule against partial disulfide bonds reduction. (Med. Immunol., vol. 10, N 4-5, pp 327-336.

  18. Iodine and tritium labelling of curarizing and cardiotoxic agents. Study of the conformation of toxic polypeptides extracted from snake venom

    International Nuclear Information System (INIS)

    Menez, Andre.

    1977-01-01

    A short review of present-day knowledge on the action mechanism of toxic snake venom polypeptides is followed by a study of the radioactive labelling of some toxic compounds. Those dealt with more especially are Naja nigricollis α toxin and Laticauda semifasciata b erabutoxin, then (+) tubocurarin, a non-peptidic curarizing alkaloid, and two cardiotoxic polypeptides: cytotoxin II and cardiotoxin γ extracted from the venom of Naja naja and Naja nigricollis respectively. The labelling principle is based on the specific fixation of one or more iodine atoms then tritium substitution of the halogen by catalytic hydrogenolysis. As predicted from titration of the aromatic groups the halogenation process, obtained by addition of iodine monochloride, takes place sometimes on the phenolic nuclei and sometimes on the imidazole nuclei, the position of which targets within each sequence has been identified. From results of the study of reactivity towards iodine combined with those of basic titration, the accessibility of several aromatic nuclei has also been defined. Each iodinated polypeptide is then hydrogenolysed in the presence of tritium gas giving a specific activity between 4 and 27 Ci/mmole according to the compound treated. In all cases the biological potential and physical properties of the radioactive material obtained by the above titration process remained intact. An example of the bonding kinetics of short toxins with the partially purified choligenic receptor is given in the special case of tritiated b erabutoxin. The affinity of this toxin for its receptor target is strong, though slightly less so than that of tritiated Naja nigricollis α toxin [fr

  19. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  20. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity.

    Science.gov (United States)

    Gautam, Ajay Kumar; Gupta, Neha; Narvekar, Dakshita T; Bhadkariya, Rajni; Bhagyawant, Sameer S

    2018-05-01

    Lectins are proteins that are subject of intense investigations. Information on lectin from chickpea ( Cicer arietinum L.) with respect to its biological activities are very limited. In this study, we purified lectin from the seeds of chickpea employing DEAE-cellulose and SP-Sephadex ion exchange chromatography and identified its molecular subunit mass as 35 kDa. The free radical scavenging activity of lectin measured by the DPPH assay has IC 50 of 0.88 µg/mL. Lectin exerted antifungal activity against Candida krusei , Fusarium oxysporium oxysporium , Saccharomyces cerevisiae and Candida albicans , while antibacterial activity against E. coli , B. subtilis , S. marcescens and P. aeruginosa. The minimum inhibitory concentrations were 200, 240, 160 and 140 µg for C. krusei, F. oxysporium , S. cerevisiae and C. albicans respectively. Lectin was further examined for its antiproliferative potential against cancerous cell line. The cell viability assay indicated a high inhibition activity on Ishikawa, HepG2, MCF-7 and MDA-MB-231 with IC 50 value of 46.67, 44.20, 53.58 and 37.46 µg/mL respectively. These results can provide a background for future research into the benefits of chickpea lectin to pharmacological perspective.

  1. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion

    OpenAIRE

    Gandhi, Sunny J.; Rabadiya, Bhavdeep

    2017-01-01

    Biological activity of the fracture site is very important factor in treatment planning of fracture nonunion. If no biological activity is detected, then an autologous bone graft can be supplemented or osteogenic supplementations, such as bone morphogenetic protein is given. If biological activity is present, then secure fixation is sufficient to achieve bony union. Biological activity of nonunions is usually assessed by conventional radiographs. The presence of callus formation is usually as...

  2. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....

  3. Preparation and characterization of new biologically active polyurethane foams.

    Science.gov (United States)

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  4. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  5. Biotransformation of Lactones with Methylcyclohexane Ring and Their Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Wińska

    2016-12-01

    Full Text Available The aim of the study was to obtain biological active compounds during biotransformation. Three bicyclic halolactones with methylcyclohexane ring (2-chloro-4-methyl-9-oxabicyclo-[4.3.0]nonan-8-one, 2-bromo-4-methyl-9-oxabicyclo[4.3.0]nona- -8-one and 2-iodo-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one obtained from the corresponding γ,δ-unsaturated acid were subjected to a screening biotransformation using 22 fungal strains. Two of these strains (Cunninghamella japonica AM472 and Fusarium culmorum AM10 were able to transform halolactones into 2-hydroxy-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one by hydrolytic dehalogenation with good yield. The biotransformation product was structurally different from its synthetically prepared analog. All halolactones and hydroxylactones were tested for their biological activity. The chlorolactone inhibited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.3 and Candida albicans (max ΔOD = 0 strains. Bromolactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0 and Fusarium linii (max ΔOD = 0 strains. Iodolactone limited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.25, Candida albicans (max ΔOD = 0.45 and Pseudomonas fluorescens (max ΔOD = 0.42 strains. Hydroxylactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0.36 and Pseudomonas fluorescens (max ΔOD = 0.39 strains only. The test performed on aphids Myzus persicae (Sulz. showed that chloro- and bromolactone exhibited deterrent activity after 24 h (ID = 0.5 and 0.4, respectively, while hydroxylactone was a weak attractant (ID = −0.3.

  6. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    Science.gov (United States)

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators.

  7. Biological Activity and Phytochemical Study of Scutellaria platystegia.

    Science.gov (United States)

    Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.

  8. Biological Activities of the Essential Oil from Erigeron floribundus

    Directory of Open Access Journals (Sweden)

    Riccardo Petrelli

    2016-08-01

    Full Text Available Erigeron floribundus (Asteraceae is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD, a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%, caryophyllene oxide (12.4% and limonene (8.8%. The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL. Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL, with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g.

  9. Chemistry and Biological Activities of Flavonoids: An Overview

    Science.gov (United States)

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  10. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  11. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  12. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  13. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  14. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  15. BIOLOGICALLY ACTIVE SUBSTANCES OF THE LAURUS NOBILIS LEAVES

    Directory of Open Access Journals (Sweden)

    N. M. Nasukhova

    2017-01-01

    Full Text Available Laurus nobilis L. is an evergreen dioecious, rarely monecious plant up to 12-15 m high. The plant’s name is devoted to an Ancient Greek God of Sun Apollo and is a symbol of peace and victory. It was used in making up wreaths for emperors, generals, and poets. Its natural area includes Mediterranean countries with high level of annual precipitation. It is actively cultivated as a decorative plant in Europe, Russia, USA and other countries. It is cultivated in Turkey, Algeria, Morocco, Portugal, Spain, Italy, France, Russia, and Mexico. The aim of the study is the review of available literature about isolation, identification, quantitative determination of biologically active compounds of the Laurus nobilis leaves in the established species and their pharmacological activity. Materialsand methods. The study was carried out using searching (PubMed, CiteSeer, arXiv, library databases (eLibrary, Cyberleninka, and ResearchGate free social network. Results and discussion. We have established that Laurus nobilis leaves have components of essential oil, phenolic compounds, and sesquiterpenic lactones as the principal active substances. Qualitative composition and quantitative content of these compound groups in these raw materials varies depending on the ecological and geographical, edaphic, climatic factors, phase of the plant growth, cultivation technology, drying method etc. The results of the pharmacological studies of the extracts, summary fractions, and individual compounds of Laurus nobilis leaves characterize this type of raw materials as a perspective source for a more profound study. Conclusion. As the available open review data showed, the essential oil components, phenolic compounds (phenolic acids, flavonoids, etc, sesquiterpenic lactones of Laurus nobilis exhibit a diverse spectrum of pharmacological activity. Antimicrobial (widely, anti-virus, anti-inflammatory, anti-diabetic, and cytoxic (anticancer activities, established in extracts

  16. Zoanthid mucus as new source of useful biologically active proteins.

    Science.gov (United States)

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  17. Neutron activation analysis on determination of arsenic in biological matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida, E-mail: menezes@cdtn.br, E-mail: cida@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k{sub 0}-Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  18. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

  19. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  20. Neutron activation analysis on determination of arsenic in biological matrixes

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida

    2013-01-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k 0 -Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  1. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  2. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  3. Laser Polarimeter for Measurement of Optical Activity of Biological Objects

    Science.gov (United States)

    Protasov, E. A.; Protasov, D. E.; Ryzhkova, A. V.

    In this paper has been described the polarimetric device for measurement of optical activity of biological tissues, where the source of radiation is an infrared laser with a wave λ=0.808 micron. The polarizers used are polarizing prisms of Glan - Taylor. To obtain required angular resolution (0.180/cm) has been developed a device that converts the angle of rotation of the analyzer into electrical signal, which is fed to the appropriate scan digital oscilloscope. The passage of the polarized light through the fingers of the hand was established and the angles of rotation of the polarization vector of the transmitted radiation were measured, the values of which may be determined by the content of hemoglobin in the blood.

  4. Notes on the genus Paramignya: Phytochemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Ninh The Son

    2018-06-01

    Full Text Available Genus Paramignya belongs to Rutaceae family, with interesting secondary metabolites, comprising main classes of compounds coumarin and coumarin glycosides, acridone alkaloids, tirucallane and tirucallane glycosides, phenols, and flavonoids, as well as several compounds limonoid, lignin glycoside and sterol. Paramignya species has been employing as folk medicines against hepatitis, diabetes, cancer, nose infections. Many bioactive reported such as cytotoxic assay, antioxidant, antiinflammatory, antiumor cancer, α-glucosidase inhibitory activities indicated either Paramignya extracts, fractions, or isolated compounds to become valuable resources for natural new drug developments. However, no evidences are reported for general view about this genus. In current paper, we exhibit overview almost of isolated components and biological evaluations from this genus. These findings are important to improve the values of these medicinal plants for the health benefit, drug discovery and guideline for future researches.

  5. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  6. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  7. Structure and Biological Activity of Pathogen-like Synthetic Nanomedicines

    Science.gov (United States)

    Lőrincz, Orsolya; Tőke, Enikő R.; Somogyi, Eszter; Horkay, Ferenc; Chandran, Preethi; Douglas, Jack F.; Szebeni, János; Lisziewicz, Julianna

    2011-01-01

    Here we characterize the structure, stability and intracellular mode-of-action of DermaVir nanomedicine that is under clinical development for the treatment of HIV/AIDS. This nanomedicine is comprised of pathogen-like pDNA/PEIm nanoparticles (NPs) having the structure and function resembling spherical viruses that naturally evolved to deliver nucleic acids to the cells. Atomic force microscopy demonstrated spherical 100–200nm NPs with a smooth polymer surface protecting the pDNA in the core. Optical-absorption determined both the NP structural stability and biological activity relevant to their ability to escape from the endosome and release the pDNA at the nucleus. Salt, pH and temperature influence the nanomedicine shelf-life and intracellular stability. This approach facilitates the development of diverse polyplex nanomedicines where the delivered pDNA-expressed antigens induce immune responses to kill infected cells. PMID:21839051

  8. Analysis of urine composition in type Ⅱ diabetic mice after intervention therapy using holothurian polypeptides

    Science.gov (United States)

    Li, Yanyan; Xu, Jiajie; Su, Xiurong

    2017-07-01

    Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hpyerglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of holothurian polypeptides treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  9. Biological activities of undescribed North American lichen species.

    Science.gov (United States)

    Yeash, Erik A; Letwin, Lyndon; Malek, Lada; Suntres, Zacharias; Knudsen, Kerry; Christopher, Lew P

    2017-11-01

    Lichens provide a large array of compounds with the potential for pharmaceutical development. In the present study, extracts from three previously undescribed North American lichen species were examined for antioxidant, antibacterial and anticancer activities. The results from this study demonstrated the following: (i) Acarospora socialis ethanol extract exhibited significant DPPH antioxidant scavenging activities, which were concentration dependent; (ii) acetone and ethyl acetate extracts of Xanthoparmelia mexicana inhibited Gram-positive bacteria but had no effect on Gram-negative bacteria; X. mexicana acetone extract yielded a minimum inhibitory concentration (MIC) of 20.9 µg mL -1 against Staphylococcus aureus, and 41.9 µg mL -1 against Enterococcus faecalis; (iii) acetone extract of Lobothallia alphoplaca inhibited growth of cultured breast cancer MCF-7 cells with an effective concentration (EC 50 ) of 87 µg mL -1 ; the MCF-7 cell cycle appears arrested in the G2 phase, whereas the DNA synthesis cell cycle (S) may be inhibited. New lichen species that possess strong biological activities have been identified. These lichens comprise secondary metabolites that possess antioxidant, antibacterial and anticancer properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. BIOLOGICAL ACTIVITY OF APPLE JUICE ENRICHED BY HERBAL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2015-02-01

    Full Text Available Herbal phytochemicals have recently become an attractive subject for scientists in many different research areas. The aim of this study was to determine antioxidant activity, total polyphenol and flavonoid content of apple juice enriched by water herbal extracts. Secondary was to evaluate sensory characteristic of enriched apple juice. It was found that applications of water herbal extracts to apple juice increase antioxidant activities, and also total polyphenol and flavonoid content with compare to pure apple juice. The highest biological activities were detected in apple juice with addition of lemon balm (14.42 mg TEAC/L; 84.38 mg TEAC/L; 50.88 mg GAE/L; 36.26 μg QE/L, oregano (14.92 mg TEAC/L; 79.97 mg TEAC/L; 50.51 mg GAE/L; 31.02 μg QE/L and salvia (8.40 mg TEAC/L; 30.40 mg TEAC/L; 23.33 mg GAE/L; 27.67 μg QE/L water extract. Sensorial analysis of samples showed, that enriched juices had better properties for evaluators with compared to pure juice. The aim of this study was also to mention the potential use of medicinal herbs in food industry, because plant bioactive compounds can play an important role in preventing cardiovascular diseases, cancers and reduction inflammatory action.

  11. Evaluation of the biological activity of sunflower hull extracts

    Energy Technology Data Exchange (ETDEWEB)

    Taha, F. S.; Wagdy, S. M.; Hassanein, M. M. M.; Hamed, S. F.

    2012-11-01

    This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA). In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anti carcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio) and methanol to ethanol to water (7:7:6 v/v/v) mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anti carcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the extract. Thus it can

  12. Phytochemical Analysis and Biological Activities of Cola nitida Bark

    Directory of Open Access Journals (Sweden)

    Durand Dah-Nouvlessounon

    2015-01-01

    Full Text Available Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida’s bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5±0.7 mm (C. albicans to 9.5±0.7 mm (P. vulgaris. The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida’s bark can be used to hold meat products and also like phytomedicine.

  13. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  14. Preliminary Phytochemical and Biological activities on Russelia juncea Zucc

    Directory of Open Access Journals (Sweden)

    Maryam Bibi

    2017-12-01

    Full Text Available To probe the ethnomedicinal claims of Russelia juncea Zucc. (Plantaginaceae as prescribed traditionally in the folklore history of medicines. Methods: The dichloromethane and methanol extracts of aerial parts and roots were examined for antimicrobial, antioxidant, antiglycation, insecticidal, leishmanicidal, cytotoxic and phytotoxic activities. Different phytochemical tests were also performed to confirm the presence of various groups of secondary metabolites such as alkaloids, glycosides, saponins, tannins, flavonoids and terpenoids. Results: Phytochemical screening of this plant confirmed the presence of alkaloids, saponins, tannins, flavonoids and terpenoids. Antibacterial activity was only shown by RJRD with 80% inhibition at the concentration of 150µg/ml against Shigella flexneri. Among the tested samples, RJAM and RJRM displayed significant radical scavenging activity up to 93% and 89% with IC50 values of 184.75 ± 4.05µM and 263.01 ± 9.36µM. The significant antiglycation potential was exhibited by RJAD, RJAM and RJRM with 55.35%, 62.25% and 59.22% inhibition and IC50 values of 0.84 ± 0.08mg/ml, 1.37 ± 0.15mg/ml and 1.52 ± 0.10mg/ml respectively. Moderate leishmanicidal activity was exposed by RJAD and RJRM with IC50 values of 73.04 ± 1.05µg/ml and 77.66 ± 0.23µg/ml while RJAM was found to be more potent and exposed significant leishmanicidal activity having IC50 of 48 ± 0.39µg/ml. However, prominent cytotoxic activity was displayed by RJRM with 66.08% inhibition and IC50 of 31.20 ± 3µg/ml. Non-significant antifungal, insecticidal and phytotoxic activities were demonstrated by all the tested samples. Conclusion: All the above contributions give serious attentiveness to scientists to isolate and purify the biologically active phytoconstituents by using advanced scientific methodologies that serve as lead compounds in the synthesis of new therapeutic agents of desired interest in the world of drug discovery.

  15. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  16. O-Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3: POSSIBLE ROLE OF POLYPEPTIDE GalNAc-TRANSFERASE-2 IN REGULATION OF CONCENTRATIONS OF PLASMA LIPIDS

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B; Bennett, Eric Paul

    2010-01-01

    immediately C-terminal (TT(226)). We developed an in vivo model system in CHO ldlD cells that was used to show that O-glycosylation in the processing site blocked processing of ANGPTL3. Genome-wide SNP association studies have identified the polypeptide GalNAc-transferase gene, GALNT2, as a candidate gene...... for low HDL and high triglyceride blood levels. We hypothesized that the GalNAc-T2 transferase performed critical O-glycosylation of proteins involved in lipid metabolism. Screening of a panel of proteins known to affect lipid metabolism for potential sites glycosylated by GalNAc-T2 led to identification...

  17. Nanostructured complexes of polyelectrolytes and charged polypeptides

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Ouyang, W.; Bohatá, Karolína; Kessler, B.

    2010-01-01

    Roč. 12, Sp. Iss. 9 (2010), B519-B528 ISSN 1438-1656. [Sino-German Symposium on Advanced Biomedical Nanostructures /1./. Jena, 26.10.2009-30.10.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : situ ATR-FTIR * alpha-helical polypeptides * multilayer films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.746, year: 2010

  18. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  19. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  20. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  1. A novel conformation of gel grown biologically active cadmium nicotinate

    Science.gov (United States)

    Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.

    2017-11-01

    The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.

  2. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    Science.gov (United States)

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  3. Syntheses and biological activities of 13-substituted avermectin aglycons.

    Science.gov (United States)

    Mrozik, H; Linn, B O; Eskola, P; Lusi, A; Matzuk, A; Preiser, F A; Ostlind, D A; Schaeffer, J M; Fisher, M H

    1989-02-01

    The reactions of sulfonate esters of the allylic/homoallylic 13-alcohol of 5-O-(tert-butyldimethylsilyl)-22,23-dihydroavermectin B1a aglycon (1a) were investigated. Nucleophilic substitution gave 13 beta-chloro and 13 beta-iodo derivatives, while solvolytic reaction conditions yielded 13 alpha-methoxy, 13 alpha-fluoro, and 13 alpha-chloro products. A mixture of 13 alpha- and 13 beta-fluorides was obtained upon reaction with DAST. The 13 beta-iodide gave, upon elimination with lutidine, the 8(9),10(11),12(13),14(15)-tetraene. The 13 beta-alcohol and the rearranged 15-ol 13(14)-ene and 15-amino 13(14)-ene derivatives were obtained by substitution via the allylic carbonium ion. MEM ethers 11 and 12 of the two epimeric 13-ols were prepared by alkylation with MEM chloride. In contrast, methylation of 1a with MeI and Ag2O in CH2Cl2 occurred exclusively at the tertiary 7-hydroxy group and not at the secondary 13 alpha-ol. Oxidation of the allylic alcohol 1a proceeded under Swern conditions but not with MnO2 to the 13-oxo aglycon, which was reduced by NaBH4 exclusively to the natural 13 alpha-ol, while reductive amination with NaCNBH3-NH4OAc gave the 13 alpha-amine. The methoxime derivative was obtained in the form of the two geometric isomers. Anthelmintic activities against the sheep nematode Trichostrongylus colubriformis, miticidal activities against the two-spotted spider mite (Tetranychus urticae), and insecticidal activities against the southern armyworm (Spodoptera eridania) as well as the binding constants to a free living nematode (Caenorhabditis elegans) derived receptor assay were obtained and compared to avermectin B1a, 22,23-dihydroavermectin B1a, and the 13-deoxy-22,23-dihydroavermectin B1 aglycon related to the milbemycins. None of the newly prepared derivatives exceeded the potency of the three reference compounds. Lipophilic 13-substituents such as halogen, alkoxy, and methoxime retained high biological activities in all assays, while the more polar

  4. Actinobacteria from arid and desert habitats: diversity and biological activity

    Directory of Open Access Journals (Sweden)

    Joachim eWink

    2016-01-01

    Full Text Available Abstract The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability.At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS and nonribosomal peptide synthetase (NRPS genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria

  5. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity.

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2015-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  6. Important biological activities induced by Thalassophryne maculosa fish venom.

    Science.gov (United States)

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  7. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  8. [Biologically active substances of black currant of new varieties].

    Science.gov (United States)

    Miasishcheva, N V; Artemova, E N

    2013-01-01

    The assortment of black currant actively replenishes and is constantly updated as a result of successful work of domestic and foreign selectors. New grades of black currant are characterized by the raised content of biologically active substances, including vitamin C, P-active agents, pectin and are of special interest for studying. Fresh berries of seven grades (Azhurnaya, Arapka, Iskushenie, Kreolka, Ladushka, Orel serenade, Ocharovanie) of black currant which were selected by the All-Russian research institute of selection of fruit crops and are perspective for cultivation in the Central Chernozem Region of Russia were chosen as objects for research. The nutritional value of fresh berries was found to vary. Average content of soluble solids was 14.1%, while those below the average were observed in Kreolka (12.1%). The maximum amount of sugars characterized Ladushka grade (11.05%), minimum--Kreolka (9.00%). It has been found that most varieties have fairly high acidity. It is worth noting grade Ladushka, which had the highest sugar-acid index (4.39), with the lowest acidity (2.51%). The highest content of ascorbic acid was found in varieties Orel Serenade--183.7 mg/100 g, the smallest--Ocharovanie--110 mg/100 g, grade Azhurnaya, Kreolka, Ladushka exceeded this indicator average value (144.9 mg/100 g). In terms of the amount of P-active substances stood grades having values above the average (722.2 mg/100 g): Azhurnaya (789.8 mg/100 g), Kreolka (864.5 mg/100 g), Oryol serenade (765.6 mg/100 g). The average content of pectin in the studied berries of black currant was 7.92%, with a minimum of 6.30% was observed in grades Azhurnaya, maximum 9.90%--the kind Oryol serenade. High values of this index were characterized by grade Ladushka, Ocharovanie. Azhurnaya varieties, Creole, Orel serenade had high levels of ascorbic acid and P-active substances. Sort Ladushka marked as a dessert due to the largest sugar-acid ratio. Ladushka, Orel Serenade, Ocharovanie have the

  9. Biological activities caused by far-infrared radiation

    Science.gov (United States)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  10. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nonoxidized, biologically active parathyroid hormone determines mortality in hemodialysis patients

    DEFF Research Database (Denmark)

    Tepel, Martin; Armbruster, Franz Paul; Grön, Hans Jürgen

    2013-01-01

    Background: It was shown that nonoxidized PTH (n-oxPTH) is bioactive, whereas the oxidation of PTH results in a loss of biological activity. Methods: In this study we analyzed the association of n-oxPTH on mortality in hemodialysis patients using a recently developed assay system. Results......: Hemodialysis patients (224 men, 116 women) had a median age of 66 years. One hundred seventy patients (50%) died during the follow-up period of 5 years. Median n-oxPTH levels were higher in survivors (7.2 ng/L) compared with deceased patients (5.0 ng/L; P = .002). Survival analysis showed an increased survival...... in the highest n-oxPTH tertile compared with the lowest n-oxPTH tertile (χ(2), 14.3; P = .0008). Median survival was 1702 days in the highest n-oxPTH tertile, whereas it was only 453 days in the lowest n-oxPTH tertile. Multivariable-adjusted Cox regression showed that higher age increased odds for death, whereas...

  12. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  13. Biological Activities of Three Essential Oils of the Lamiaceae Family

    Directory of Open Access Journals (Sweden)

    Gema Nieto

    2017-08-01

    Full Text Available Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  14. Biological Activities of Three Essential Oils of the Lamiaceae Family.

    Science.gov (United States)

    Nieto, Gema

    2017-08-23

    Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  15. Essential Oils from Neotropical Piper Species and Their Biological Activities

    Science.gov (United States)

    da Trindade, Rafaela; Alves, Nayara Sabrina; Figueiredo, Pablo Luís; Maia, José Guilherme S.; Setzer, William N.

    2017-01-01

    The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases. PMID:29240662

  16. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  18. Elastin-like polypeptides: A strategic fusion partner for biologics.

    Science.gov (United States)

    Yeboah, Agnes; Cohen, Rick I; Rabolli, Charles; Yarmush, Martin L; Berthiaume, Francois

    2016-08-01

    Elastin-like peptides (ELPs) are derivatives of tropoelastin with a unique property that allows them to stay soluble below a certain critical temperature but reversibly form aggregates above that temperature. Since they are derived from tropoelastin, ELPs are biocompatible, non-toxic, and non-immunogenic. The unique properties of ELPs have made them a desirable class of fusion tags used in several biomedical applications including targeted drug delivery and enhancing the half-life of protein drugs. The most significant property of an ELP is that when fused to other proteins, the phase transition property of the ELP is maintained, and the target protein can be purified using the thermally driven property of the ELP. The ELP tag purification process is simple and inexpensive, and involves cycling the protein above and below the transition temperature of the ELP fusion followed by centrifugation to obtain the desired protein, without any need for chromatography. Consequently, using ELPs as a purification tag should be potentially interesting to biopharmaceutical companies who spend a significant percentage of their manufacturing costs on expensive protein purification techniques such as chromatography and filtration. However, ELP tags have not yet been used for commercial protein purification due to some challenges of translating this technique, which has been demonstrated mostly in academic laboratories, to a biotechnology manufacturing environment. The article first reviews the state-of-the-art in protein "ELPylation," and discusses some applications which have benefitted from using ELP as a fusion tag. Then, the article discusses the main advantages of using ELP as a purification tag, and evaluates the remaining hurdles for its implementation in industrial protein production. Biotechnol. Bioeng. 2016;113: 1617-1627. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Guangxin Yuan

    2018-01-01

    Full Text Available Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

  20. TISSUE POLYPEPTIDE-SPECIFIC ANTIGEN - A DISCRIMINATIVE PARAMETER BETWEEN PROSTATE-CANCER AND BENIGN PROSTATIC HYPERTROPHY

    NARCIS (Netherlands)

    MARRINK, J; OOSTEROM, R; BONFRER, HMG; SCHRODER, FH; MENSINK, HJA

    1993-01-01

    The serum concentration of the cell proliferation marker TPS (tissue polypeptide-specific antigen) was compared with the tumour marker PSA (prostate specific antigen). PSA was found elevated in 50% of the benign prostatic hypertrophy (BPH) patients, in 88% of the patients with active prostate cancer

  1. Development of Bicarbonate-Activated Peroxide as a Chemical and Biological Warfare Agent Decontaminant

    National Research Council Canada - National Science Library

    Richardson, David E

    2006-01-01

    ...) and other chemistry for the decontamination of chemical and biological warfare agents. The mechanism of formation of the active oxidant, peroxymonocarbonate, has been investigated in detail. New surfoxidants...

  2. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.

  4. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins II reactions at side-chain loci in model systems

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1983-11-01

    The major emphasis in radiation biology at the molecular level has been on the nucleic acid component of the nucleic acid-protein complex because of its primary genetic importance. But there is increasing evidence that radiation damage to the protein component also has important biological implications. Damage to capsid protein now appears to be a major factor in the radiation inactivation of phage and other viruses. And, there is increasing evidence that radiation-chemical change in the protein component of chromation leads to changes in the stability of the repressor-operator complexes involved in gene expression. Knowledge of the radiation chemistry of protein is also of importance in other fields such as the application of radiation sterilization to foods and drugs. Recent findings that a class of compounds, the α,α'-diaminodicarboxylic acids, not normally present in food proteins, are formed in protein radiolysis is of particular significance since certain of their peptide derivatives have been showing to exhibit immunological activity. The purpose of this review is to bring together and to correlate our present knowledge of products and mechanisms in the radiolysis of peptides, polypeptides and proteins both aqueous and solid-state. In part 1 we presented a discussion of the radiation-induced reactions of the peptide main-chain in model peptide and polypeptide systems. Here in part 2 the emphasis is on the competing radiation chemistry at side-chain loci of peptide derivatives of aliphatic, aromatic-unsaturated and sulfur-containing amino acids in similar systems. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis, and ESR spectroscopy are included

  5. Characterization of biological macromolecules by electrophoresis and neutron activation

    International Nuclear Information System (INIS)

    Stone, S.F.; Hancock, D.; Zeisler, R.

    1987-01-01

    A procedure combining polyacrylamide gel electrophoresis (PAGE) with INAA and autoradiography was developed to study biological macromolecules and their associated trace elements. Results from the application of this method to several metalloproteins are presented. (author)

  6. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  8. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  9. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  10. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  11. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Goetze, Oliver; Anstipp, Jens

    2004-01-01

    ) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines......The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass....... Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA...

  12. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    1984-01-01

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG) [de

  13. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  14. Screening of some marine plants from the Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Solimabi; Kamat, S.Y.; DeSouza, L.; Reddy, C.V.G.; Bhakuni, D.S.; Dhawan, B.N.

    Extracts of twenty five seaweeds from Indian coast have been put through a broad biological screen which includes tests for antiviral, antibacterial, antifungal, antiprotozoal, antifertility activities and a wide range of pharmacological activities...

  15. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  16. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  17. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  18. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  19. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  20. Caffeine-water-polypeptide interaction in aqueous solution

    Science.gov (United States)

    Ghabi, Habib; Dhahbi, Mahmoud

    1999-04-01

    The interaction of caffeine monomer with the synthetic polypeptides polyasparagine (pAg) and polyaspartic acid (pAsp) was studied by UV spectrophotometry. The results show that different types of interactions are possible depending on the nature of polypeptide. The form of the complex was discussed.

  1. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  2. Profiling the biological activity of oxide nanomaterials with mechanistic models

    NARCIS (Netherlands)

    Burello, E.

    2013-01-01

    In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties

  3. Synthesis and biological activity of new homolupanes and homolupane saponins

    Czech Academy of Sciences Publication Activity Database

    Sidoryk, K.; Korda, A.; Rárová, Lucie; Oklešťková, Jana; Strnad, Miroslav; Cmoch, P.; Pakulski, Z.; Gwardiak, K.; Karczewski, R.; Luboradzki, R.

    Roč. 71, č. 13 ( 2015 ), s. 2004-2012 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Homobetulin * Homobetulinic acid * Glycosylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.645, year: 2015

  4. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  5. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2

    Directory of Open Access Journals (Sweden)

    Mi Huaiyu

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  6. Evaluation of some biological activities of Abelia triflora R Br ...

    African Journals Online (AJOL)

    Antidiabetic and cardiovascular activities were determined by screening for peroxisome proliferator-activated receptor alpha (PPARα) and PPARɣ agonistic activities. In vitro cytotoxic activity was determined against a set of four human cancer cell lines (SK-MEL, KB, BT-549, SK-OV-3) and two non-cancerous kidney cell ...

  7. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  8. An anti-cancer WxxxE-containing azurin polypeptide inhibits Rac1-dependent STAT3 and ERK/GSK-3β signaling in breast cancer cells.

    Science.gov (United States)

    Zhang, Zhe; Luo, Zhiyong; Min, Wenpu; Zhang, Lin; Wu, Yaqun; Hu, Xiaopeng

    2017-06-27

    In our previous study, we characterized a mycoplasmal small GTPase-like polypeptide of 240 amino acids that possesses an N-terminal WVLGE sequence. The N-terminal WVLGE sequence promotes activation of Rac1 and subsequent host cancer cell proliferation. To investigate the function of the WxxxE motif in the interaction with Rac1 and host tumor progression, we synthesized a 35-amino acid WVLGE-containing polypeptide derived from a cell-penetrating peptide derived from the azurin protein. We verified that the WVLGE-containing polypeptide targeted MCF-7 cells rather than MCF-10A cells. However, the WVLGE-containing polypeptide inhibited activation of Rac1 and induced cellular phenotypes that resulted from inhibition of Rac1. In addition, the WVLGE-containing polypeptide down-regulated phosphorylation of the STAT3 and ERK/GSK-3β signaling pathways, and this effect was abolished by either stimulation or inhibition of Rac1 activity. We also found that the WVLGE-containing polypeptide has a Rac1-dependent potential to suppress breast cancer growth in vitro and in vivo. We suggest that by acting as a Rac1 inhibitor, this novel polypeptide may be useful for the treatment of breast cancer.

  9. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    Science.gov (United States)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  10. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  11. The half-lives of biological activity of some pesticides in water

    OpenAIRE

    Kyaw Myint Oo,

    2001-01-01

    In the absence of analytical methods, the half-lives of biological activity of pesticides can be estimated by bioassays. To determine the half-lives of biological acivity of pesticides to fish, static bioassays were conducted in the laboratory with ten different formulations of pesticides using Labeo rohita as a bio-indicator. The half-lives of biological activity for ten different pesticides in soft water at pH 7.5 and 27░C, ranged from 4.6 days to 11.8 days. The half-life of biological acti...

  12. Novel and rare prenyllipids - Occurrence and biological activity.

    Science.gov (United States)

    Szymańska, Renata; Kruk, Jerzy

    2018-01-01

    The data presented indicate that there is a variety of unique prenyllipids, often of very limited taxonomic distribution, whose origin, biosynthesis, metabolism and biological function deserves to be elucidated. These compounds include tocoenols, tocochromanol esters, tocochromanol acids, plastoquinones and ubiquinones. Additionally, based on the available data, it can be assumed that there are still unrecognized prenyllipids, like prenylquinols fatty acid esters of the hydroquinone ring, including prenylquinol phosphates, and others, whose biological function might be of great importance. Our knowledge of these compounds is not only important from the scientific point of view, but may also be of practical significance to medicine, pharmacy or cosmetics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Pharmacological and biological activities of Mirabilis jalapa L.

    Directory of Open Access Journals (Sweden)

    Rozina Rozina

    2016-05-01

    Full Text Available AbstractPlants have been used for health care and medical purposes for several thousands of years. The number of higher plant species on earth is about 250000. It is estimated that 35000 to 70000 species have, at one time or another, been used in some cultures for medicinal purposes. One of these is Mirabilis jalapa L. which is traditionally used as Purgative and emetic, for treatment of many gastrointestinal disorders, including dysentery, diarrhea, muscle pain and abdominal colic. Besides this it also exhibits certain useful activities like Antiviral activity, Antimicrobial activity, Antimalarial activity, Anthelmintic activity, Antioxidant activity, Aytotoxic activity Anti-tubercular drugs induced hepatotoxicity, Antinociceptive activity, Antifungal activity, Anti-corrosion activity, Antispasmodic activity, Anti-inflammatory activity and many others. Pharmacologically active compounds include active alcoholic extract, ether compound-3,3’-Methylenebis (4- hydroxycoumarin N-D-alpha-Phenylyglycinelaminaribiitol-3-(4-(dimethylamino cinnamoyl 4hydroxycoumarin. The purpose of my review is to find out the areas of scope and to give the detail of the work done on Mirabilis Jalapa L. for future research work.

  14. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    International Nuclear Information System (INIS)

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  15. FINASOL OSR 52 active components biodegradation by using the biologic activator Biolen IG 30

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D. [Universidad de las Islas Baleares, Palma de Mallorca (Spain); Perez-Navarro, A.; Morales, N. [Universidad Alfonso X El Sabio, Madrid (Spain)

    1997-10-01

    Degradation of the active ingredients in the FINASOL OSR 52, a commonly used dispersant in the treatment of marine oil spills, was studied. BIOLEN IG 30, comprising a mixture of bacteria, specially selected for their ability to degrade a wide range of chemical compounds, was used as the biodegrading agent. The kinetic coefficients of the degradation process were determined at different conditions, at ambient temperature, and at controlled 20 degrees C. BIOLEN IC 10 biologic activator was found to be adequate for total ionic and anionic dispersant degradation of the FINASOL OSR 52 at room temperature and at controlled 20 degrees C. Weekly addition of one gram of BIOLEN IG 30 was observed to improve biodegradation percentages for both ionic and anionic dispersants at controlled 20 degrees C. 12 refs., 5 tabs., 4 figs.

  16. FINASOL OSR 52 active components biodegradation by using the biologic activator Biolen IG 30

    International Nuclear Information System (INIS)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D.; Perez-Navarro, A.; Morales, N.

    1997-01-01

    Degradation of the active ingredients in the FINASOL OSR 52, a commonly used dispersant in the treatment of marine oil spills, was studied. BIOLEN IG 30, comprising a mixture of bacteria, specially selected for their ability to degrade a wide range of chemical compounds, was used as the biodegrading agent. The kinetic coefficients of the degradation process were determined at different conditions, at ambient temperature, and at controlled 20 degrees C. BIOLEN IC 10 biologic activator was found to be adequate for total ionic and anionic dispersant degradation of the FINASOL OSR 52 at room temperature and at controlled 20 degrees C. Weekly addition of one gram of BIOLEN IG 30 was observed to improve biodegradation percentages for both ionic and anionic dispersants at controlled 20 degrees C. 12 refs., 5 tabs., 4 figs

  17. Biological activity of Stevia rebaudiana Bertoni and their relationship to health.

    Science.gov (United States)

    Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi

    2017-08-13

    The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.

  18. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  19. Biologically active compounds to develop bioelectronics and bio photonics

    Science.gov (United States)

    Mishra, Ashok Kumar; Tiwari, Satya Prakash

    2018-05-01

    Recent reports on biomaterials and biological systems at nano scale provide researchers with a fertile ground with regard to materials, enabling bioelectronics, bio sensing and new nanotechnologies that cover a wide range of applications. The signal transductions have been reported for many biological phenomenons and new field of biophysics namely Biosensors and Bioelectronics have been emerged out. The advances in the study of various aspects of bio molecules like electrical, optical, thermal etc has established the interesting area of research like biophotonics, nanobiotechnology, molecular solid, molecular liquids, bio instrumentation etc. The present study discusses the some aspects and applications of the bioprocess yields nanostructures that are nearly flawless in composition, stereo specific in structure, and flexible. Furthermore, these biomaterials are environment friendly because they are biodegradable in nature. Biological compounds are self assembled into complex nanostructures and behave like a system possessing long range hierarchical nanoscale order. In addition, chemical modification and genetic engineering can be used to modify bio materials to enhance a specific property. Various biomaterials have been reported which allow nanostructure control for nano photonic applications. The dielectric and conduction properties of the bio molecules have been the subject of many investigations. As a result, there exist a wealth of valuable information on the charge transport and rotational properties of many bio molecules. Amino acids and proteins, nucleic acids, lipids, cell and tissues have been characterized over a wide frequency spectrum ranging from a few hertz to Giga hertz. In certain cases, dielectric measurements have been exploited to probe the physical changes taking place in biologically important structures, for example, in lipid phase transition process in membrane. The phase transition in membrane may be analyzed by applying the theory for

  20. Biological activities of Umbilicaria crustulosa (Ach.) frey acetone extract

    OpenAIRE

    Zlatanović Ivana; Stanković Miroslava; Stankov-Jovanović Vesna; Mitić Violeta; Zrnzević Ivana; Đorđević Aleksandra; Stojanović Gordana

    2017-01-01

    This paper reports for the first time the effect of an acetone extract of Umbilicaria crustulosa on the micronucleus distribution of human lymphocytes, and on the cholinesterase activity and antioxidant activity by the cupric ion reducing antioxidant capacity (CUPRAC) method. Additionally, the total phenolic compounds (TPC) and the antioxidant properties were estimated via DPPH, ABTS and TRP assays. Moreover, the antibacterial activity against two Gram-positive and three Gram-negative bacteri...

  1. Molecular Dynamics Simulation of Cholera Toxin A-1 Polypeptide

    Directory of Open Access Journals (Sweden)

    Badshah Syed Lal

    2016-01-01

    Full Text Available A molecular dynamics (MD simulation study of the enzymatic portion of cholera toxin; cholera toxin A-1 polypeptide (CTA1 was performed at 283, 310 and 323 K. From total energy analysis it was observed that this toxin is stable thermodynamically and these outcomes were likewise confirmed by root mean square deviations (RMSD investigations. The Cα root mean square fluctuation (RMSF examinations revealed that there are a number of residues inside CTA1, which can be used as target for designing and synthesizing inhibitory drugs, in order to inactivate cholera toxin inside the human body. The fluctuations in the radius of gyration and hydrogen bonding in CTA1 proved that protein unfolding and refolding were normal routine phenomena in its structure at all temperatures. Solvent accessible surface area study identified the hydrophilic nature of the CTA1, and due to this property it can be a potential biological weapon. The structural identification (STRIDE algorithm for proteins was successfully used to determine the partially disordered secondary structure of CTA1. On account of this partially disordered secondary structure, it can easily deceive the proteolytic enzymes of the endoplasmic reticulum of host cells.

  2. Biological activities and nutritional value of Tapinanthus bangwensis ...

    African Journals Online (AJOL)

    The ethyl acetate and dichloromethane fractions exhibited significant cytotoxic effects towards HeLa cells with IC50 values of 24.25 and 24.43 μg/ml respectively. In the DPPH assay, the ethyl acetate fraction showed the highest activity while the butanol fraction showed the highest activity in the metal chelating and the lipid ...

  3. BIOLOGICAL VALUE OF PUNY FRUITS RELATED TO THEIR ANTIRADICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. BALOGHOVÁ

    2007-05-01

    Full Text Available All analysed species of puny fruits (red currant (Ribes rubrum L variant Jonkheervan Tets, white currant (Ribes vulgare L. variant Blanka, black currant (Ribesnigrum L. variant Eva, blueberry (Vaccinium myrtilis variant Berkeley, elderberry(Sambucus nigra L. variant Sambo, hawthorn (Crataegus oxyacantha, mulberry(Morus nigra L. genotypes M152 and M047 are natural sources of anthocyanpigments and vitamin C with a high antiradical activity. Due to the fact that thehighest antiradical activity is not accompanied by the highest content of anthocyansand vitamin C in puny fruits, we suppose that the antiradical activity of plantmaterials is also connected with the presence of other compounds with antioxidantand antiradical activity. From our results follows that all studied puny fruits with ahigh antiradical activity increase the antioxidant value of human nutrition and alsoits prophylactic and medicinal effect.

  4. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    Science.gov (United States)

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  5. Phytochemical prospection and biological activity of Duroia macrophylla (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Daiane Martins

    2014-12-01

    Full Text Available Context: Duroia macrophylla (Rubiaceae is endemic from the Amazon Rainforest. Aims: To perform phytochemical profile of Duroia macrophylla extracts and to evaluate them as antioxidant, insecticidal and cytotoxic. Methods: Dichloromethane and methanol extracts of leaves and branches (collected three times were subjected to phytochemical screening by comparative thin layer chromatography and NMR analyses. The extracts were assayed to antioxidant (DPPH and Fe-phenanthroline, at 10 μg/mL, insecticidal on Sitophilus zeamais (by ingestion of stored grains and contact, both at 10 mg/mL and toxic activities on Artemia salina (1000 μg/mL. Results: There were found evidences of terpenes, phenolic substances (phenols and flavonoids and alkaloids, with differences between the vegetal part, collection period and solvent used. Antioxidant evaluations showed three of twelve were active and two were considered moderately active, with a relationship dependently of concentration. All methanol extracts showed the presence of phenolic substances (phenols and flavonoids but one showed only phenols. For insecticidal activity, there were three most active extracts, two of which showed only presence of terpenes and the other, besides terpenes, phenolic substances (phenols and flavonoids. For Artemia salina toxicity assay, the five most active were all from the 2nd and 3rd collections. Conclusions: The active extracts of D. macrophylla in each test were different. Three methanol extracts showed antioxidant activity; three extracts showed insecticidal activity and the presence of terpenic substances and five extracts presented cytotoxic activity, but it was not possible to correlate it with any specific secondary metabolite.

  6. Aktivitas Biologis Imunoglobulin Yolk Anti Parvovirus Setelah Perlakuan Suhu (BIOLOGY ACTIVITIES OF IgY PARVOVIRUS AFTER HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Suartini

    2016-02-01

    Full Text Available This study aims to determine the effect of temperature on the biological activity of various crude and precipitate specific Immunoglobulin (IgY Canine parvovirus (CPV. Hiperimun serum conducted on Isa Brown chickens injected with antigen CPV. Crude yolk Ig preparations derived from chicken serum without purification while the yolk Ig preparations precipitates obtained by the chicken serum was precipitated with ammonium sulfate and dialyzed. Both types of Ig yolk given treatment temperature 50ºC, 60ºC, 70ºC, and 80ºC for 15 minutes. To test Gel Precipitation Test (AGPT is performed to determine whether there is a specific IgY CPV in the serum of chickens. Biological activity of both types of Ig detected with Barriers Haemagglutination test (HI. The design used in this study is completely randomized design factorial. The results of this study indicate that the temperature was highly significant on the activities of IgY crude and precipitates. Activities IgY crude and precipitate down to the treatment temperature of 50ºC, 60ºC, 70ºC, and 80ºC. Geometric Mean Titer crude IgY respectively - were 26.67, 26, 25.33, and <2º Unit HI while IgY precipitates are respectively 26.33, 25.67, 24, and <2º Unit HI. Based on the results of this study concluded that the biological activity of crude IgY better than IgY precipitates after treatment of a wide range of temperatures.

  7. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2014-01-01

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  8. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  9. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  10. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  11. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Science.gov (United States)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  12. Synthesis, characterization and evaluation of biological activities of ...

    African Journals Online (AJOL)

    doped zinc oxide (Mn-doped ZnO) nanoparticles were prepared ... The antimicrobial activities of the nanoparticles against different bacterial strains were determined using agar diffusion ...... Importance of Clerodendrum Genus: A Current Review.

  13. Tests of biological activity of metabolites from Penicillium expansum (Link Thom various isolates

    Directory of Open Access Journals (Sweden)

    Halina Borecka

    2013-12-01

    Full Text Available Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition was compared with the growth in control seeds. The biological activity of the metabolites was specific for the isolates, those from apples being more active. Thirty two isolates from pears and 34 from apples were examined.

  14. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  15. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  16. Biological Activities of Aerial Parts Extracts of Euphorbia characias

    Directory of Open Access Journals (Sweden)

    Maria Barbara Pisano

    2016-01-01

    Full Text Available The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer’s disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods.

  17. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones.

    Science.gov (United States)

    du Toit, Karen; Drewes, Siegfried E; Bodenstein, Johannes

    2010-03-01

    This work reviews the four basic structural types of homoisoflavanones. The relationships between the various structures of homoisoflavanones and their plant origins, ethnobotany and biological activities are put into perspective.

  18. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata.

    Science.gov (United States)

    Chung, Ill-Min; Rajakumar, Govindasamy; Lee, Ji-Hee; Kim, Seung-Hyun; Thiruvengadam, Muthu

    2017-07-01

    Eclipta prostrata belongs to a family of medicinal plants (Asteraceae) and plays a role in the treatment of several diseases, including infectious hepatitis, snake venom poisoning, gastritis, and respiratory diseases such as a cough and asthma. A number of compounds, including thiophene derivatives, steroids, triterpenes, flavonoids, polyacetylenes, polypeptides, and coumestans, have been isolated from E. prostrata. The plant functional compounds can act as reducing agent in the field of nanoparticle synthesis. The extracts of E. prostrata are widely used for green biosynthesis of various metal and metal oxide nanoparticles, nanoparticles, which showed a potential for pharmaceutical, biotechnological, and biomedical applications. Establishment of a efficient in vitro regeneration and genetic transformation method of E. prostrata is a vital prerequisite for application of biotechnology in order to improve secondary metabolite yields. The present mini-review discusses its pharmacological profile, chemical constituents, biotechnological, and ethnomedical uses, mainly focusing on antimyotoxic, antihemorrhagic, antiproliferative, antioxidant, antitumor, antihyperglycemic, antidementia, antimicrobial, antihyperlipidemic, antivenom, anti-HIV, and larvicidal activities, so that the pharmaceutical potential of the plant can be better evaluated. The mini review, providing up-to-date phytochemical and other information on E. prostrata, will serve a reference for further studies.

  19. INFLUENCE OF BIOLOGICALLY ACTIVE SUBSTANCES ON TOMATO YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    G. I. Yarovoy

    2017-01-01

    Full Text Available The study of influence of growth regulators and biopreparations affecting on decrease of disease development, increase of yield capacity and final product quality was carried out in tomato. It was shown that all preparations were effective in decreasing the process of diseases development and increasing the yield capacity and product quality. The studies were carried out in the experimental fields at the Institute of Vegetables and Melons NAAS, in Ukraine in 2011-2012. The field studies were performed according to ‘Methodology of Experimental Work in Vegetable and Melon Growing’ on area sown with cultivars ‘Karas’ and ‘Kremenchugskiy’. The fungicides ‘Mars U 77%’, ‘Vimpel with Fitotsid’, ‘Vermistim’ wth ‘Azotofit’ and ‘Bioglobin’ with ‘Azotofit’ were used on cultivars of tomato, as control were the plants without treatment. It was determined that all preparations decreased the development of diseases. On average, the development of early dry spot had decreased by 12.2–16.1% and anthracnose by 10.0–12.6% in the cultivars ‘Kremenchugskiy’ and ‘Karas’. Thus, biopreparations used on the varieties ‘Kremenchugskiy’ and ‘Karas’ were effective in decrease of disease development, such as early dry spot, anthracnose, in a range of 39.1–52.7 %. Generally, during observation period the efficacy index of the preparations ‘Vermistim’ with ‘Azotofit’, ‘Bioglobin’ with ‘Azotofit’ was higher than others preparations on the varieties ‘Kremenchug and ‘Karas’ against early dry spot (48.3–50.9%, 50.3–52.7% and anthracnose (46.1–47.0%, 47.6–48.5%. The results showed that the vast majority of biological preparations, phytohormones used against diseases in tomato crops of varieties ‘Kremenchugskiy’ and ‘Karas’, were effective in a range of 39.1-52.7% and also maintained the tomato yield within 2.8-5.1 t/ha or 8.1- 13.9%. The biological preparations, phytohormones improved

  20. Use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: A review

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available Soil biological activities are vital for the restoration of soil contaminated with hydrocarbons. Their role includes the biotransformation of petroleum compounds into harmless compounds. In this paper, the use of biological activities as potential...

  1. Synthesis and Biological Activity Evaluation of Novel Heterocyclic Pleuromutilin Derivatives

    Directory of Open Access Journals (Sweden)

    Yunpeng Yi

    2017-06-01

    Full Text Available A series of pleuromutilin derivatives were synthesized by two synthetic procedures under mild reaction conditions and characterized by Nuclear Magnetic Resonance (NMR, Infrared Spectroscopy (IR, and High Resolution Mass Spectrometer (HRMS. Most of the derivatives with heterocyclic groups at the C-14 side of pleuromutilin exhibited excellent in vitro antibacterial activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA, methicillin-resistant Staphylococcus epidermidis (MRSE, and vancomycin-resistant Enterococcus (VRE in vitro antibacterial activity. The synthesized derivatives which contained pyrimidine rings, 3a, 3b, and 3f, displayed modest antibacterial activities. Compound 3a, the most active antibacterial agent, displayed rapid bactericidal activity and affected bacterial growth in the same manner as that of tiamulin fumarate. Moreover, molecular docking studies of 3a and lefamulin provided similar information about the interactions between the compounds and 50S ribosomal subunit. The results of the study show that pyrimidine rings should be considered in the drug design of pleuromutilin derivatives.

  2. Biological activities of Suaeda heterophylla and Bergenia stracheyi

    Directory of Open Access Journals (Sweden)

    Iftikhar Ali

    2014-09-01

    Full Text Available Objective: To evaluate the antioxidant, phytotoxic, antimicrobial, insecticidal, cytotoxic, antiglycative, and xanthine oxidase activities of different extracts of Suaeda heterophylla (S. heterophylla and Bergenia stracheyi (B. stracheyi. Methods: The extracts of S. heterophylla and B. stracheyi were evaluated for antioxidant, phytotoxic, antimicrobial, insecticidal, cytotoxic, antiglycative, and xanthine oxidase activities using standard experimental methods. Results: The overall antioxidant potential of ethyl acetate extract of S. heterophylla was the strongest, followed by chloroform extract, methanolic extract and n-hexane extract. It is interesting to note that ethyl acetate fraction showed 94.98% inhibition at concentration of 60 µg/mL while standard ascorbic acid showed 98.49% inhibition at same concentration. The crude methanol extracts of S. heterophylla and B. stracheyi showed significant phytotoxic activity at the highest dose. Moreover, methanol extract of B. stracheyi possessed strong activity in xanthine oxidase enzyme inhibition. Conclusions: Antioxidant, phytotoxic, and xanthine oxidase activities of different fractions of S. heterophylla and B. stracheyi clearly demonstrate that these fractions possess great potential for the food, cosmetic and pharmaceutical industries.

  3. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  4. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  5. Target organs for avian pancreatic polypeptide

    International Nuclear Information System (INIS)

    Kimmel, J.R.; Pollock, H.G.

    1981-01-01

    The problem of the physiological function of pancreatic polypeptide (PP) has been approached by attempting to identify target organs. Avian PP (aPP) labeled with 125I at either the C-terminus (aPP-C) or the N-terminus (aPP-N) was injected into fasted chickens and allowed to circulate for 3-120 min. At the end of the equilibration period, the anesthetized bird was perfused first with saline, then with Buoin's solution. Samples of fixed tissue from various organs were collected, weighed, and counted. Control experiments consisted of coinjection of unlabeled aPP to compete for receptors. The rate of disappearance of aPP-N from plasma was greater than that of aPP-C. Binding of aPP-N by spleen, duodenum, ileum, pancreas, and bone marrow was markedly reduced by coinjection of unlabeled aPP. A similar but less marked reduction in binding was found in liver and proventriculus. aPP-C gave less conclusive results. The maximal competitive effect of unlabeled PP could be achieved in most cases with 30 microgram unlabeled aPP. It is concluded that pancreas, duodenum, ileum, spleen, and bone marrow, and probably liver and proventriculus, are target organs for aPP in the chicken and that the C-terminal region of aPP is involved in receptor binding

  6. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  7. Biological activities of Umbilicaria crustulosa (Ach. frey acetone extract

    Directory of Open Access Journals (Sweden)

    Zlatanović Ivana

    2017-01-01

    Full Text Available This paper reports for the first time the effect of an acetone extract of Umbilicaria crustulosa on the micronucleus distribution of human lymphocytes, and on the cholinesterase activity and antioxidant activity by the cupric ion reducing antioxidant capacity (CUPRAC method. Additionally, the total phenolic compounds (TPC and the antioxidant properties were estimated via DPPH, ABTS and TRP assays. Moreover, the antibacterial activity against two Gram-positive and three Gram-negative bacteria were determined. Acetone extract of U. crustulosa at concentration of 1 and 2 μg mL-1 decreased a frequency of micronuclei (MN by 10.8 and 16.8 %, respectively, acting more or slightly less than the synthetic protector amifostine (AMF, WR-2721, 11.4 %, at concentration of 1 μg mL-1. The tested extract did not inhibit cholinesterase activity nor did it exhibit activity toward the examined bacteria. The extract reduced the concentration of DPPH and ABTS radicals by 88.7 and 96.2 %, respectively. Values for total reducing power (TRP and cupric reducing capacity (CUPRAC were 0.6197±0.0166 μg ascorbic acid equivalents (AAE per mg of dry extract, and 19.7641±1.6546 μg trolox equivalents (TE per mg of dry extract, respectively. The total phenol content was 350.4188 ±14.587 μg gallic acid equivalents (GAE per mg of dry extract. The results of the present study showed that U. crustulosa acetone extract is a promising candidate for in vivo experiments considering its antioxidant activity and protective effect on human lymphocytes. [Projekat Ministarstva nauke Republike Srbije, br. 172047

  8. Fluorine determinations in biological materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Demiralp, R.; Guinn, V.P.; Becker, D.A.

    1992-01-01

    Exploratory studies were carried out at the University of California, Irvine on several freeze-dried human diet materials and on two freeze-dried vegetation materials - all prospective reference materials. The University of California, Irvine equipment includes a 250-kW TRIGA Mark 1 reactor, 2.5 x 10 12 n/cm 2 ·s thermal flux, 3-s sample transfer time, and a typical 18% Ge(Li)/4,096-channel gamma-ray spectrometer with a detector resolution of 3.3 keV at 1,332 keV. In these exploratory studies, it was found that it was not feasible to measure fluorine with adequate precision or accuracy at fluorine concentrations much less than ∼100 ppm. These initial studies, however, defined the magnitudes of the various difficulties. One good outcome of these studies was the demonstration that the otherwise excellent Teflon-mill brittle-fracture method for homogenizing freeze-dried biological samples was not suitable if fluorine was to be determined. Abrasion of the Teflon increased the fluorine content of a human diet sample about sevenfold (compared with similar treatment of the same material in an all-titanium mill)

  9. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].

    Science.gov (United States)

    Vasilchenko, A S; Rogozhin, E A; Valyshev, A V

    2015-01-01

    Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.

  10. Some Biological Activities of Malaysian Leech Saliva Extract

    OpenAIRE

    Abdualrahman M. Abdualkader; Ahmed Merzouk; Abbas Mohammed Ghawi; and Mohammed Alaama

    2011-01-01

    Leeches were fed on the phagostimulatory solution through parafilm membrane. The satiated leeches were forced to regurgitate the solution by soaking them in an ice-container. The anticoagulant activity was ascertained using thrombin time assay (TT). The result revealed that the saliva concentration which increases TT by 100% (IC100) is 43.205µg/ml plasma. The antimicrobial activity of the saliva was tested against several bacterial spp. (E.coli, P.aeruginosa, B.cereus, Sal.typhi and S...

  11. The biological activity of a novel pyrethroid: metofluthrin.

    Science.gov (United States)

    Sugano, Masayo; Ishiwatari, Takao

    2012-01-01

    Metofluthrin (commercial name: SumiOne(®), Eminence(®)) is a novel pyrethroid insecticide developed by Sumitomo Chemical Co., Ltd. Metofluthrin has extremely high insecticidal activity to various pest insects, especially to mosquitoes. In addition, Metofluthrin has relatively high volatility and low mammalian toxicity. Metofluthrin is therefore suitable for use not only in conventional mosquito control formulations such as coils and liquid vaporizers, but also in a variety of novel devices that do not require heating, such as fan vaporizers and paper and resin emanators. Here we describe the insecticidal activity of Metofluthrin mainly against mosquitoes in various formulations in both laboratory and field trials.

  12. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    Science.gov (United States)

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  14. Phenolic compounds and biological activity of Capsicum annuum L ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate antifungal and antioxidant activities of vegetable extracts (Capsicum annuum L. cv. Dora, cv. Strizanka, cv. Morava), grown in Serbia. Different experimental models have included the determination content of total phenolics, total flavonoids, antioxidant capacity and minimum ...

  15. Synthesis and biological activity of some heterocyclic compounds ...

    Indian Academy of Sciences (India)

    Administrator

    lactam) moiety. 23 such as penicillin, cephalosporin and carbapenem (figure 2). It is also associated with a variety of therapeutic activities. 24–28. In continuation of our work to develop potential antimicrobial molecules,. 29,30 we report here the ...

  16. Determination of cephalosporin acylase activity by biological and ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... microorganisms with cephalosporin acylase activity was developed. The core part of cephalosporin was replaced by 6-amino penicillinic acid (6-APA) to generate new substrates glutaryl-6-APA and adipoyl-6-APA for screen- ing. Serratia marcescens that is sensitive to 6-APA and resistant to penicillin G, ...

  17. Biological activities of four essential oils against Anopheles gambiae ...

    African Journals Online (AJOL)

    The control of malaria is still a challenge partly due to mosquito's resistance to current available insecticides. The aim of this work was to evaluate the ovicidal, larvicidal and repellent activities of Lantana camara, Hyptis suaveolens, Hyptis spicigera and Ocimum canum essential oils against Anopheles gambiae s.l. ...

  18. Some biological activities of Pycnanthus angolensis (Welw.) Warb ...

    African Journals Online (AJOL)

    These findings indicate a correlation in the activities of the leaves and as such serve as panacea for infectious diseases and therefore scientific justification to some of the folkloric uses of the plant. Keywords: Antimicrobial; Larvicidal; Brine shrimp lethality; Pycnanthus angolensis. Journal of Pharmacy and Bioresources Vol.

  19. Research on prokaryocyte expression and biological activity of the ...

    African Journals Online (AJOL)

    Furthermore, the ATPase activity of the protein was also assayed using ultraviolet spectrophotometry based on PiColorLock Gold reagent. An effective expression method was established for BLM protein in E. coli. The obvious bioactivities of the protein were observed in binding to ssDNA or dsDNA, unwinding the dsDNA in ...

  20. Programming biological operating systems: genome design, assembly and activation.

    Science.gov (United States)

    Gibson, Daniel G

    2014-05-01

    The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.

  1. Phytoconstituents and biological activities of essential Oil from Rhus ...

    African Journals Online (AJOL)

    The present study determined the major phytoconstituents, the antioxidant and the antimicrobial activities of Rhus lancea essential oil against eight bacterial and four fungal species. The yield was 0.18% and the major phytoconstituents found were µ-pinene, benzene and d-3-carene. The oil exhibited remarkable ...

  2. chemical constituents and biological activity of three tanzanian wild

    African Journals Online (AJOL)

    Mgina

    antimicrobial activities infer that the three mushroom species are potential functional food substrates. INTRODUCTION. Termitomyces is a tropical edible ... extract (32 g) on cooling in the fridge at -. 4°C formed white crystals of mannitol and ... against the bacteria Vibrio cholerae and. Escherichia coli, and the fungus Candida.

  3. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  4. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis.

    Science.gov (United States)

    Satyal, Prabodh; Jones, Tyler H; Lopez, Elizabeth M; McFeeters, Robert L; Ali, Nasser A Awadh; Mansi, Iman; Al-Kaf, Ali G; Setzer, William N

    2017-03-05

    Rosemary ( Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%-37.7%), 1,8-cineole (16.1%-29.3%), (+)-verbenone (0.8%-16.9%), (-)-borneol (2.1%-6.9%), (-)-camphor (0.7%-7.0%), and racemic limonene (1.6%-4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities.

  5. [Biologically active compounds from the aqueous extract of Urtica dioica].

    Science.gov (United States)

    Wagner, H; Willer, F; Kreher, B

    1989-10-01

    From the water extract of the roots of Urtica dioica (stinging nettle) a polysaccharide fraction was isolated which revealed activity in the carrageenan rat paw edema model and lymphocyte transformation test. Ion exchange chromatography and gel filtration of this fraction afforded 4 different polysaccharides, one of which reduced dose dependent hemolysis in the classical pathway of the complement test. The Urtica dioica lectin (UDA) was reisolated and found to stimulate the proliferation of human lymphocytes.

  6. Biological activities and phenolic contents of Argania spinosa L ...

    African Journals Online (AJOL)

    Cytotoxic activity was evaluated by methyl-thiazolyldiphenyl-tetrazolium bromide (MTT) assay. Results: The results revealed abundant polyphenols and flavonoids (221.39 ± 5.70 μg GAEq/1 g and 66.86 ± 3.36 μg CAEq/1 g, respectively) in the leaf extract. UPLC-DAD-ESI-QTOF-MS profiling showed the presence of ...

  7. Glutarimides: Biological activity, general synthetic methods and physicochemical properties

    Directory of Open Access Journals (Sweden)

    Popović-Đorđević Jelena B.

    2015-01-01

    Full Text Available Glutarimides, 2,6-dioxopiperidines are compounds that rarely occur in natural sources, but so far isolated ones exert widespread pharmacological activities, which makes them valuable as potential pharmacotherapeutics. Glutarimides act as androgen receptor antagonists, anti-inflammatory, anxiolytics, antibacterials, and tumor suppressing agents. Some synthetic glutarimide derivatives are already in use as immunosuppressive and sedative (e.g., thalidomide or anxiolytics (buspirone drugs. The wide applicability of this class of compounds, justify the interest of scientists to explore new pathways for its syntheses. General methods for synthesis of six-membered imide ring, are presented in this paper. These methods include: a reaction of dicarboxylic acids with ammonia or primary amine, b reactions of cyclization: amido-acids, diamides, dinitriles, nitrilo-acids, amido-nitriles, amido-esters, amidoacyl-chlorides or diacyl-chlorides, c adition of carbon-monoxide on a,b-unsaturated amides, d oxidation reactions, e Michael adition of active methylen compounds on methacrylamide or conjugated amides. Some of the described methods are used for closing glutarimide ring in syntheses of farmacological active compounds sesbanimide and aldose reductase inhibitors (ARI. Analyses of the geometry, as well as, the spectroscopic analyses (NMR and FT-IR of some glutarimides are presented because of their broad spectrum of pharmacological activity. To elucidate structures of glutarimides, geometrical parameters of newly synthesized tert-pentyl-1-benzyl-4-methyl-glutarimide-3-carboxylate (PBMG are analyzed and compared with the experimental data from X-ray analysis for glutarimide. Moreover, molecular electrostatic potential (MEP surface which is plotted over the optimized geometry to elucidate the reactivity of PBMG molecule is analyzed. The electronic properties of glutarimide derivatives are explained on the example of thalidomide. The Frontier Molecular Orbital

  8. Precision of neutron activation analysis for environmental biological materials

    International Nuclear Information System (INIS)

    Hamaguchi, Hiroshi; Iwata, Shiro; Koyama, Mutsuo; Sasajima, Kazuhisa; Numata, Yuichi.

    1977-01-01

    Between 1973 and 1974 a special committee ''Research on the application of neutron activation analysis to the environmental samples'' had been organized at the Research Reactor Institute, Kyoto University. Eleven research groups composed mainly of the committee members cooperated in the intercomparison programme of the reactor neutron activation analysis of NBS standard reference material, 1571 Orchard Leaves and 1577 Bovine Liver. Five different type of reactors were used for the neutron irradiation; i.e. KUR reactor of the Research Reactor Institute, Kyoto University, TRIGA MARK II reactor of the Institute for Atomic Energy, Rikkyo University, and JRR-2, JRR-3, JRR-4 reactor of Japan Atomic Energy Research Institute. Analyses were performed mainly by instrumental method. Precision of the analysis of 23 elements in Orchard Leaves and 13 elements in Bovine Liver presented by the different research groups was shown in table 4 and 5, respectively. The coefficient of variation for these elements was from several to -- 30 percent. Averages given to these elements agreed well with the NBS certified or reference values. Thus, from the practical point of view for the routine multielement analysis of environmental samples, the validity of the instrumental neutron activation technique for this purpose has been proved. (auth.)

  9. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    International Nuclear Information System (INIS)

    Mostafa, A. A.; Solkamy, E.N.; Sayed, Sh. R. M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Adil, S.F.

    2015-01-01

    Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40-60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm) followed by Staphylococcus aureus (14.8?mm) and S. pyogenes (13.6 mm) while the least activity was observed for Salmonella typhi (12.5 mm) at concentration of 5 μg/disc. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 2.5 μg/disc and less than 2.5 μg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  10. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Kaiwei Huang

    2016-05-01

    Full Text Available Polysaccharide (DOPA from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2 of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2 could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H2O2-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.

  11. Objectives of research activities in Biology Branch, Chalk River Nuclear Laboratories, 1976

    International Nuclear Information System (INIS)

    1977-03-01

    The primary responsibility assigned to the Biology Branch within the framework of CRNL has been an active engagement in basic research related to the assessment of radiation hazards, particularly those to be expected after exposure to relatively low doses of radiation delivered at low dose-rates. The present group is characterized by a broad interest in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into biological effects, with a special focus of attention on the mechanisms by which the initial damage can be largely repaired and by which the risks to man are modified under different circumstances. The basic concepts in radiation biology and risk estimates are reviewed in the light of recent literature on these topics. The current and proposed research activities of the Biology Branch are described. General and specific recommendations for future activities are given. (author)

  12. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    Science.gov (United States)

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  14. Thermal mud maturation: organic matter and biological activity.

    Science.gov (United States)

    Centini, M; Tredici, M R; Biondi, N; Buonocore, A; Maffei Facino, R; Anselmi, C

    2015-06-01

    Many of the therapeutic and cosmetic treatments offered in spas are centred on mud therapy, to moisturize the skin and prevent skin ageing and rheumatic diseases. Thermal mud is a complex matrix composed of organic and inorganic elements which contribute to its functions. It is a natural product derived from the long mixing of clay and thermal water. During its maturation, organic substances are provided by the microalgae, which develop characteristic of the composition of thermal water. The aim of this study was to identify methods for introducing objective parameters as a basis for characterizing thermal mud and assessing its efficacy. Samples of thermal mud were collected at the Saturnia spa, where there are several sulphureous pools. The maturation of the mud was evaluated by organic component determination using extractive methods and chromatographic analysis (HPLC, GC-MS, SPME). We also studied the radical scavenging activity of mud samples at different stages of maturation, in a homogeneous phase, using several tests (DPPH, ORAC, ABTS). We identified several classes of compounds: saturated and unsaturated fatty acids, hydroxyl acids, dicarboxylic acids, ketoacids, alcohols and others. SPME analysis showed the presence of various hydrocarbons compounds (C(11) -C(17)) and long-chain alcohols (C(12) -C(16)). Six or seven months seemed appropriate to complete the process of maturation, and the main effect of maturation time was the increase of lipids. Six-month mud showed the highest activity. The hydrophilic extract was more active than the lipophilic extract. The results indicate that maturation of thermal mud can be followed on the basis of the changes in its organic composition and antioxidant properties along the time. They also highlight the need to develop reference standards for thermal muds in relation to assess their use for therapeutic and cosmetic purposes. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    Directory of Open Access Journals (Sweden)

    Fereshteh Golfakhrabadi

    2015-10-01

    Full Text Available Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum.Methods: Acetyl cholinesterase (AChE inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively.Results: The major components of essential oil were (z-β-ocimene (43.3%, α-pinene (18.23% and bornyl acetate (3.98%. Among 43 identified components, monoterpenes were the most compounds (84.63%. The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml-1 and it was effective against Anophelesstephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml-1. The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml-1.Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models.

  16. Some Biological Activities of Malaysian Leech Saliva Extract

    Directory of Open Access Journals (Sweden)

    Abdualrahman M. Abdualkader

    2011-12-01

    Full Text Available Normal 0 21 false false false MS X-NONE AR-SA Leeches were fed on the phagostimulatory solution through parafilm membrane. The satiated leeches were forced to regurgitate the solution by soaking them in an ice-container. The anticoagulant activity was ascertained using thrombin time assay (TT. The result revealed that the saliva concentration which increases TT by 100% (IC100 is 43.205µg/ml plasma. The antimicrobial activity of the saliva was tested against several bacterial spp. (E.coli, P.aeruginosa, B.cereus, Sal.typhi and S.aureus  and fungi spp. (C.albicans and C.neoformans. It was found that saliva has an inhibition activity against Sal.typhi (minimal inhibitory concentration MIC 78.253µg/ml, S.aureus (MIC 78.253µg/ml and E.coli (MIC 121.256µg/ml.ABSTRAK: Pacat-pacat diberi makan larutan phagostimulatory menerusi membran parafilem. Pacat-pacat yang kekenyangan itu dipaksa memuntahkan larutan tersebut dengan direndam di dalam bekas berisi ais. Aktiviti antigumpal ditentukan menggunakan cerakin masa trombin (TT. Keputusan menunjukkan kepekatan air liur pacat menyebabkan pertambahan TT sebanyak 100% (IC100 iaitu 43.205µg/ml plasma. Aktiviti antimikrob air liur telah diuji dengan pelbagai jenis bakteria (E.coli, P.aeruginosa, B.cereus, Sal.typhi dan S.aureus dan pelbagai jenis kulat (C.albicans and C.neoformans. Didapati air liur menghasilkan aktiviti perencatan terhadap Sal.typhi (kepekatan perencat minima (Minimal inhibitory concentration - MIC 78.253µg/ml, S.aureus (MIC 78.253µg/ml dan E.coli (MIC 121.256µg/ml.

  17. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  18. Biological and environmental reference materials in neutron activation analysis work

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The great usefulness of reference materials, especially ones of certified elemental composition, is discussed with particular attention devoted to their use in instrumental neutron activation analysis (INAA) work. Their use, including both certified and uncertified values, in calculations made by the INAA Advance Prediction Computer Program (APCP) is discussed. The main features of the APCP are described, and mention is made of the large number of reference materials run on the APCP (including the new personal computer version of the program), with NBS Oyster Tissue SRM-1566 used as the principal examle. (orig.)

  19. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity

    OpenAIRE

    Mandal, Shyamapada; Mandal, Manisha

    2015-01-01

    Coriandrum sativum L. (C. sativum) is one of the most useful essential oil bearing spices as well as medicinal plants, belonging to the family Umbelliferae/Apiaceae. The leaves and seeds of the plant are widely used in folk medicine in addition to its use as a seasoning in food preparation. The C. sativum essential oil and extracts possess promising antibacterial, antifungal and anti-oxidative activities as various chemical components in different parts of the plant, which thus play a great r...

  20. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  1. Implications of the use of experimental activities in biology education in public schools

    Directory of Open Access Journals (Sweden)

    Vânia Cardoso da Silva Morais

    2016-04-01

    Full Text Available This study aimed to verify the influence of a didactic sequence with experimental activities on student motivation in relation to the subject matter Biology and check the possibility of applying such a result having as input the cultural-historical perspective and the dynamic of the three pedagogical moments. The work is part of a Master Degree research developed with 70 students from a high school in Patos de Minas city. The analysis of the data collected through observation, questionnaires, reports, testimonies of students, filming and photography of biology classes, points out that the use of experimental activities in Biology classes contributed to the increase of student motivation relating to Biology classes favoring the teaching-learning process and also to promote a converge between the scientific knowledge and reality of the students besides encourage their self-esteem and investigative sense. The results also indicate that it is possible to develop at school a didactic sequence based on the complementarity of two different theoretical lines like the dynamics of the three moments and in the historical and cultural perspective. Based on above considerations, we believe that the use of experimental activities following didactics positively influences student motivation in relation to Biology, favoring the teaching and learning of Biology. However, it is the whole of this, as the theory and the posture of motivating teachers, allowed approximation between scientific knowledge and reality of the students, enabling greater learning of biological concepts.

  2. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    Science.gov (United States)

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  3. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis

    Directory of Open Access Journals (Sweden)

    Prabodh Satyal

    2017-03-01

    Full Text Available Rosemary (Rosmarinus officinalis L. is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia, Alabama (USA, Western Cape (South Africa, Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+-α-pinene (13.5%–37.7%, 1,8-cineole (16.1%–29.3%, (+-verbenone (0.8%–16.9%, (−-borneol (2.1%–6.9%, (−-camphor (0.7%–7.0%, and racemic limonene (1.6%–4.4%. Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities.

  4. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  5. Multielement analysis of biological standards by neutron activation analysis

    International Nuclear Information System (INIS)

    Nadkarni, R.A.

    1977-01-01

    Up to 28 elements were determined in two IAEA standards: Animal Muscle H4 and Fish Soluble A 6/74, and three NBS standards: Spinach: SRM-1570, Tomato Leaves: SRM-1573 and Pine Needles: SRM-1575 by instrumental neutron-activation analysis. Seven noble metals were determined in two NBS standards: Coal: SRM-1632 and Coal Fly Ash: SRM-1633 by radiochemical procedure while 11 rare earth elements were determined in NBS standard Orchard Leaves: SRM-1571 by instrumental neutron-activation analysis. The results are in good agreement with the certified and/or literature data where available. The irradiations were performed at the Cornell TRIGA Mark II nuclear reactor at a thermal neutron flux of 1-3x10 12 ncm -2 sec -1 . The short-lived species were determined after a 2-minute irradiation in the pneumatic rabbit tube, and the longer-lived species after an 8-hour irradiation in the central thimble facility. The standards and samples were counted on coaxial 56-cm 3 Ge(Li) detector. The system resolution was 1.96 keV (FWHM) with a peak to Compton ratio of 37:1 and counting efficiency of 13%, all compared to the 1.332 MeV photopeak of Co-60. (T.I.)

  6. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides.

    Science.gov (United States)

    Buysse, Ann M; Yap, Maurice Ch; Hunter, Ricky; Babcock, Jonathan; Huang, Xinpei

    2017-04-01

    Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  8. Effect of synthetic adjuvants of biological activity of spleen proteins

    International Nuclear Information System (INIS)

    Kartasheva, A.L.; Yuferova, N.V.; Drozhennikov, V.A.; Orlova, E.B.; Perevezentseva, O.S.; Filatov, P.P.

    1981-01-01

    Intraperitoneal administration to mice of synthetic adjuvants of a polyanion type increases the spleen mass by 500% and rises the content of proteins with activity of inhibitor of DNAase 1. A protein fraction isolated from the spleen of treated animals administered to exposed (7.7 Gy) mice alone or in a combination with exogenous DNA increases survival up to 61.1 and 80.5%, respectively, as opposed to 36.6% in the case of administration of proteins from intact animals, or 8.3% in the control (no treatment). The protein fraction from treated animals administered to mice exposed to 5.1-5.5 Gy accelerates the recovery of hemopoesis and immune response better than proteins of intact animals

  9. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.

  10. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1975-01-01

    The use of 14 C made it possible to separate root respired CO 2 and microbial CO 2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14 CO 2 . Under axenic conditions evolution of 14 CO 2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14 CO 2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here [fr

  11. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: CULTIVATION OF CREATIVITY

    Directory of Open Access Journals (Sweden)

    Cristina SÎRBU

    2011-01-01

    Full Text Available Creative achievement is obvious in the arts but it is essential in all other fields including the sciences and business. Creativity allows for the making of connections across different domains of knowledge. It is possible in all areas of human activity and all young people and adults have creative abilities. It is cultivated through rigorous training and by practicing of dynamic capabilities over an extended period of time. Creativity needs time, flow, interaction, suspension of judgement. It is influenced by much more than the shape and content of the formal school curriculum. The roles of teachers are to recognise young people's creative capacities; and to provide the creative climate in which they can be realised. Educational actors have the power to unlock the creative and innovative potential of the young. Creative learning requires innovative and flexible teaching. Creative education involves a balance between teaching knowledge and skills, and encouraging innovation.

  12. Phytochemical and Biological Activities of Pseudocalymma elegans: A False Garlic.

    Science.gov (United States)

    Wahid, Sana; Versiani, Muhammad Ali; Jahangir, Sajid; Jawaid, Khurshid; Shafique, Maryam; Khan, Huma; Faizi, Shaheen

    2017-10-01

    Evaluation of phytochemical constituents and antioxidant and antimicrobial activities of hexane (PELH), dichloromethane (PELDCM), ethyl acetate (PELEA), and MeOH (PELM) extracts of young leaves of Pseudocalymma elegans have been carried out. Moreover, extracts have also been explored for the presence of sulphur containing compounds, 1,2-dithiolane (33), diallyl disulfide (35), 3-vinyl-1,2-dithiacyclohex-5-ene (37), and diallyl trisulfide (38) responsible for the garlic like smell of P. elegans. All the extracts were found to be antioxidant and showed potent inhibition with IC 50 values of 0.168 ± 0.001, 0.128 ± 0.002, 0.221 ± 0.011, and 0.054 ± 0.001, respectively, as compared to standard drugs ascorbic acid (AA) and butylated hydroxytoluene (BHT). The ethyl acetate extract (PELE) showed excellent activities against few Gram-positive and Gram-negative bacteria and some fungi as compared with standard drug ceftriaxone (3rd generation cephalosporin) and nystatin, respectively. Chemical constituents of hexane, dichloromethane, and ethyl acetate extracts were identified by gas chromatography-mass spectrometry and mass spectral library search. Over all 55 chemical constituents were first time identified from the leaves which included branched and n-hydrocarbons, fatty acids, fatty acid methyl esters, fatty alcohols, terpenes, alkaloid, vitamins, glycosides, aromatic compounds, and sulfur containing compounds. Two known chemical constituents, ursolic acid (1) and β-amyrin (2), were also purified for the first time from the MeOH extract. To elucidate the structures of these compounds, UV, IR, EI-MS, 1 H- and 13 C-NMR spectroscopy were used. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  15. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Science.gov (United States)

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. SESQUITERPENE LACTONES

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2016-01-01

    Full Text Available Artemisia annua is an herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpene lactones of artemisinin was isolated from the aboveground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment.The purpose of the study was the review of the information from the open sources about the study for sesquiterpene lactones of Artemisia annua referring to its pharmacological activity.Methods. The study was carried out using informational and search engines (PubMed, ScholarGoogle, library databases (eLibrary, Cyberleninca, and the results of our own researches.Results. It was established that apart from the essential oil and phenolic compounds, aboveground part of Artemisia annua, it contains a significant amount of sesquiterpene lactones. Qualitative content and quantitative composition of sesquiterpene lactones varies depending on the ecological and geographic factors, plants growing phase, cultivation technology, drying methods etc. Well-known pharmacological studies of the extracts from Artemisia annua herb with sesquiterpene lactones, as well as individual compounds of this group characterize this type of raw materials as a perspective source for more profound research.Conclusion. Our analysis of the open materials on the sesquiterpene lactones of Artemisia annua, including phytochemical and pharmacological ones, allows characterization of the Artemisia annua herb as a perspective source for new drugs working out.

  17. Rubus fruticosus L.: constituents, biological activities and health related uses.

    Science.gov (United States)

    Zia-Ul-Haq, Muhammad; Riaz, Muhammad; De Feo, Vincenzo; Jaafar, Hawa Z E; Moga, Marius

    2014-07-28

    Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.

  18. Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses

    Directory of Open Access Journals (Sweden)

    Muhammad Zia-Ul-Haq

    2014-07-01

    Full Text Available Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.

  19. Coriander (Coriandrum sativum L. essential oil: Chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Shyamapada Mandal

    2015-06-01

    Full Text Available Coriandrum sativum L. (C. sativum is one of the most useful essential oil bearing spices as well as medicinal plants, belonging to the family Umbelliferae/Apiaceae. The leaves and seeds of the plant are widely used in folk medicine in addition to its use as a seasoning in food preparation. The C. sativum essential oil and extracts possess promising antibacterial, antifungal and anti-oxidative activities as various chemical components in different parts of the plant, which thus play a great role in maintaining the shelf-life of foods by preventing their spoilage. This edible plant is non-toxic to humans, and the C. sativum essential oil is thus used in different ways, viz., in foods (like flavouring and preservatives and in pharmaceutical products (therapeutic action as well as in perfumes (fragancias and lotions. The current updates on the usefulness of the plant C. sativum are due to scientific research published in different web-based journals.

  20. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    Science.gov (United States)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  1. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  2. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  3. Chemical Diversity and Biological Activity of the Volatiles of Five Artemisia Species from Far East Russia

    Science.gov (United States)

    2014-01-01

    primarily sesquiterpene lactones [4,5], diterpenes, coumarins [1], polyacetylenes [6] and flavonoids [1,7,8] as the main metabolites. Biological activity...liver injuries, Gen. Pharmacol. 32(6), 661-667. [62] B. Oomah and G. Mazza (1996). Flavonoids and antioxidative activities in buckwheat, J. Agric. Food

  4. Effects of heat on the biological activity of wild Cordyceps sinensis

    Directory of Open Access Journals (Sweden)

    Pengkai Wu

    2015-01-01

    Conclusions: These results suggested that heat treatment does not adversely affect SOD or DNase activity, polysaccharide content, or cordycepin dissolution. Thus, heat treatment might be a safe processing method to extend the storage time of wild C. sinensis without compromising biological activity.

  5. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  6. Biological Activity Alterations of Human Amniotic Membrane Pre and Post Irradiation Tissue Banking.

    Science.gov (United States)

    Nemr, Waleed; Bashandy, A S; Araby, Eman; Khamiss, O

    Innate immunity of Human Amniotic Membrane (HAM) and its highly active secretome that rich with various types of growth factors and anti-inflammatory substances proposed it as a promising material for many medical studies and applications. This study evaluate the biological activity of cultivated HAM pre and post tissue banking process in which freeze-dried HAM was sterilized by 25 KGray (kGy) dose of γ radiation. The HAM's antimicrobial activity, viability, growth of isolated human amniotic epithelial cells (HAECs), hematopoietic stimulation of co-cultivated murine bone marrow cells (mammalian model), scaffold efficiency for fish brain building up (non-mammalian model) and self re-epithelialization after trypsin denuding treatment were examined as supposed biological activity features. Native HAM revealed viability indications and was active to kill all tested microorganisms; 6 bacterial species (3 Gram-positive and 3 Gram-negative) and Candida albicans as a pathogenic fungus. Also, HAM activity promoted colony formation of murine hematopoietic cells, Tilapia nilotica brain fragment building-up and self re-epithelialization after trypsin treatment. In contrary, radiation-based tissue banking of HAM caused HAM cellular death and consequently lacked almost all of examined biological activity features. Viable HAM was featured with biological activity than fixed HAM prepared by irradiation tissue banking.

  7. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    Science.gov (United States)

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  8. Characterization and biological activity of Solidago canadensis complex.

    Science.gov (United States)

    Šutovská, M; Capek, P; Kocmálová, M; Fraňová, S; Pawlaczyk, I; Gancarz, R

    2013-01-01

    Polyphenolic-polysaccharide-protein complex has been isolated from flowers of Solidago canadensis L. by hot alkaline extraction procedure. Compositional analyses of S canadensis complex revealed the presence of carbohydrates (43 wt%), protein (27 wt%), phenolics (12 wt%), uronic acids (10 wt%) and inorganic material (8 wt%). The carbohydrate part was rich in neutral sugars (81 wt%) while uronids were determined in lower amount (19 wt%). Monosaccharide analysis of carbohydrate part revealed the presence of five main sugar components, i.e. rhamnose (~23 wt%), arabinose (~20 wt%), uronic acids (~19 wt%), galactose (~17 wt%) and glucose (~14 wt%), and indicated thus the presence of rhamnogalacturonan and arabinogalactan in S. canadensis complex. HPLC analysis of complex showed one single peak of molecule mass at 11.2 kDa. Antitussive activity tests, performed in three doses of Solidago complex, showed the reduction of the number of cough efforts in the dose-dependent manner. Higher doses (50 and 75 mg/kg b.w.) were shown to be by 15 and 20% more effective than that of lower one (25mg/kg b.w.). However, the antitussive effect of the highest dose (75 mg/kg b.w.) was by 10% lower in comparison with that of codeine, the strongest antitussive agent. Besides, the highest dose of the complex (75 mg/kg b.w.) significantly decreased values of specific airways resistance and their effect remained longer as that of salbutamol, a representative of classic antiasthmatic drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. ESSENTIAL OIL

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2016-01-01

    Full Text Available Artemisia annua is a herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpenic lactone of artemisinin was isolated from the above-ground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment. The purpose of the study was to review the data from the open sources about a component composition of Artemisia annua essential oil in the spectrum of its pharmacological activity. Methods. The study was carried out using information and searching sources (PubMed, ScholarGoogle, library data bases (eLibrary, Cyberleninca, as well as the results of our studies. Results. We have established that aboveground part of Artemisia annua have a significant amount  of essential oil apart from the sesquiterpene lactones. Essential oil contains more than 120 components, which belong to different classes of natural compounds. The study for dynamics of the essential oil accumulation in the Artemisia annua herb showed that the amount of oil in the herb rises significantly during budding, reaching maximum value in blossom. Qualitative composition and quantitative content of certain components varies depending on ecological and  geographical factors,  plant growing phase, cultivation technology, drying methods etc. Well-known pharmacological studies of essential oil of the Artemisia annua characterize it as a prospective source for the development of new antimicrobial medicinal drugs. Besides, as the studies shown, it can be related to the 6 class according to K. Sidorov’s classification – “relatively non-hazardous substances”. Conclusion. The analysis of the open sources on the study of essential oil of Artemisia annua made by us, as well as the results of our own studies, including phytochemical studies allow characterizing the essential oil of Artemisia annua as a prospective source for the working out of new antimicrobial drugs.

  10. Unraveling origins of the heterogeneous curvature dependence of polypeptide interactions with carbon nanostructures.

    Science.gov (United States)

    Jana, Asis K; Tiwari, Mrityunjay K; Vanka, Kumar; Sengupta, Neelanjana

    2016-02-17

    Emerging nanotechnology has rapidly broadened interfacial prospects of biological molecules with carbon nanomaterials (CNs). A prerequisite for effectively harnessing such hybrid materials is a multi-faceted understanding of their complex interfacial interactions as functions of the physico-chemical characteristics and the surface topography of the individual components. In this article, we address the origins of the curvature dependence of polypeptide adsorption on CN surfaces (CNSs), a phenomenon bearing an acute influence upon the behavior and activity of CN-protein conjugates. Our benchmark molecular dynamics (MD) simulations with the amphiphilic full-length amyloid beta (Aβ) peptide demonstrate that protein adsorption is strongest on the concave (inner) CN surface, weakest on the convex (outer) surface, and intermediary on the planar surface, in agreement with recent experimental reports. The curvature effects, however, are found to manifest non-uniformly between the amino acid subtypes. To understand the underlying interplay of the chemical nature of the amino acids and surface topography of the CNs, we performed high-level quantum chemical (QM) calculations with amino acid analogs (AAA) representing their five prominent classes, and convex, concave and planar CN fragments. Molecular electrostatic potential maps reveal pronounced curvature dependence in the mixing of electron densities, and a resulting variance in the stabilization of the non-covalently bound molecular complexes. Interestingly, our study revealed that the interaction trends of the high-level QM calculations were captured well by the empirical force field. The findings in this study have important bearing upon the design of carbon based bio-nanomaterials, and additionally, provide valuable insights into the accuracy of various computational techniques for probing non-bonded interfacial interactions.

  11. Mineralogical characteristics of the silica polymorphs in relation to their biological activities

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr. [Los Alamos National Lab., NM (United States); Heaney, P.J. [Princeton Univ., NJ (United States). Dept. of Geological and Geophysical Sciences

    1993-10-01

    Numerous aspects of minerals (including the silica polymorphs) can effect their biological activities. These include periodic structures, compositional variations, dissolution characteristics, surface properties, and particle size/shape. In order to understand mineral-induced pathogenesis in a mechanistic way, the links between these properties and biochemical processes must be elucidated. This paper presents some of the basic properties of the silica polymorphs that may relate to pathogenicity and mineralogical strategies for designing biological assays to evaluate these properties.

  12. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    Science.gov (United States)

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  13. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  14. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    Science.gov (United States)

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  15. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  16. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  17. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    Koval'skaya, L.P.; Petrash, I.P.; Medvedeva, T.N.; Lezhneva, M.L.; Shchegoleva, G.I.

    1974-01-01

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  18. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    Science.gov (United States)

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  19. Suitable activated stable nuclide tracer technique and its applications in biology and medicine

    International Nuclear Information System (INIS)

    Zhang Weicheng

    1989-01-01

    Stable isotopes as tracers in biology and medicine have been more extensively used. Mass spectrometry has been a classic technique in the analysis of stable isotopes because it is very sensitive and precise. Activation analysis has recently been introduced as an analytical tool. Its fast speed and simplicity is a great advantage for handling large batches of samples in isotopic tracer experiments. The combination of enriched stable isotope tracer studies and activation analysis techniques has become an ideal and reliable technique, especially in the fields of biology and medicine. This paper presents a survey of the fundamental principle, the character and the applications in biology and medicine for the suitable activated stable isotope tracer techniques

  20. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    Science.gov (United States)

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  1. A study on biological activity of marine fungi from different habitats in coastal regions

    OpenAIRE

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results show...

  2. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  3. Elastin-like polypeptides: the power of design for smart cell encapsulation.

    Science.gov (United States)

    Bandiera, Antonella

    2017-01-01

    Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.

  4. Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros.

    Science.gov (United States)

    An, M; Pratley, J E; Haig, T

    2001-02-01

    Twenty compounds identified in vulpia (Vulpia myuros) residues as allelochemicals were individually and collectively tested for biological activity. Each exhibited characteristic allelochemical behavior toward the test plant, i.e., inhibition at high concentrations and stimulation or no effect at low concentrations, but individual activities varied. Allelopathins present in large quantities, such as syringic, vanillic, and succinic acids, possessed low activity, while those present in small quantities, such as catechol and hydrocinnamic acid, possessed strong inhibitory activity. The concept of a phytotoxic strength index was developed for quantifying the biological properties of each individual allelopathin in a concise, comprehensive, and meaningful format. The individual contribution of each allelopathin, assessed by comparing the phytotoxic strength index to the overall toxicity of vulpia residues, was variable according to structure and was influenced by its relative proportion in the residue. The majority of compounds possessed low or medium biological activity and contributed most of the vulpia phytotoxicity, while compounds with high biological activity were in the minority and only present at low concentration. Artificial mixtures of these pure allelochemicals also produced phytotoxicity. There were additive/synergistic effects evident in the properties of these mixtures. One such mixture, formulated from allelochemicals found in the same proportions as occur in vulpia extract, produced stronger activity than another formulated from the same set of compounds but in equal proportions. These results suggest that the exploration of the relative composition of a cluster of allelopathins may be more important than simply focusing on the identification of one or two compounds with strong biological activity and that synergism is fundamental to the understanding of allelopathy.

  5. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  6. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes

    Directory of Open Access Journals (Sweden)

    R. Rajavel

    2008-01-01

    Full Text Available Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde] malonoyl dihydrazone], metal complexes with Cu(II, Ni(II, Zn(II and oxovanadium(IV have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values.

  7. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    Science.gov (United States)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  8. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  9. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  10. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity.

    Science.gov (United States)

    Pasdaran, Ardalan; Hamedi, Azadeh

    2017-12-01

    Scrophularia genus (Scrophulariaceae) includes about 350 species commonly known as figwort. Many species of this genus grow wild in nature and have not been cultivated yet. However, some species are in danger of extinction. This paper reviews the chemical compounds, biological activities and the ethnopharmacology of some Scrophularia species. All information was obtained through reported data on bibliographic database such as Scopus, United States National Agricultural Library, Biological Abstracts, EMBASE, PubMed, MedlinePlus, PubChem and Springer Link (1934-2017). The information in different Pharmacopoeias on this genus was also gathered from 1957 to 2007. The structures of 204 compounds and their biological activity were presented in the manuscript: glycoside esters, iridoid glycosides and triterpenoids are the most common compounds in this genus. Among them, scropolioside like iridoids have shown potential for anti-inflammatory, hepatoprotective and wound healing activity. Among the less frequently isolated compounds, resin glycosides such as crypthophilic acids have shown potent antiprotozoal and antimicrobial activities. The Scrophularia genus seems to be a rich source of iridoids and terpenoids, but isolation and identification of its alkaloids have been a neglected area of scientific study. The diverse chemical compounds and biological activities of this genus will motivate further investigation on Scrophularia genus as a source of new therapeutic medications.

  11. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  12. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  13. Synthesis and biological activity of oxytocin analogues containing unnatural amino acids in position 9: structure activity study

    Czech Academy of Sciences Publication Activity Database

    Magafa, V.; Borovičková, Lenka; Slaninová, Jiřina; Cordopatis, P.

    2010-01-01

    Roč. 38, č. 5 (2010), s. 1549-1559 ISSN 0939-4451 Institutional research plan: CEZ:AV0Z40550506 Keywords : oxytocin antagonists * position 9 * unnatural amino acids * biological activity Subject RIV: CC - Organic Chemistry Impact factor: 4.106, year: 2010

  14. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

    International Nuclear Information System (INIS)

    Mei, Q.; Chen, Y.; Hong, J.; Chen, H.; Ding, X.; Yin, Y.; Koh, K.; Lee, J.

    2012-01-01

    Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies. (author)

  15. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus: a review

    Directory of Open Access Journals (Sweden)

    Gun-Woo Oh

    2017-11-01

    Full Text Available Abstract Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous japonicus (Selenka is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

  16. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules.

    Science.gov (United States)

    Venepally, Vijayendar; Reddy Jala, Ram Chandra

    2017-12-01

    Heterocyclic compounds are the interesting core structures for the development of new bioactive compounds. Fatty acids are derived from renewable raw materials and exhibit various biological activities. Several researchers are amalgamating these two bioactive components to yield bioactive hybrid molecules with some desirable features. Heterocyclic-fatty acid hybrid derivatives are a new class of heterocyclic compounds with a broad range of biological activities and significance in the field of medicinal chemistry. Over the last few years, many research articles emphasized the significance of heterocyclic-fatty acid hybrid derivatives. The present review article focuses the developments in designing and biological evaluation of heterocyclic-fatty acid hybrid molecules. Copyright © 2017. Published by Elsevier Masson SAS.

  17. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  18. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    Science.gov (United States)

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  20. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    Science.gov (United States)

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.