WorldWideScience

Sample records for biologically active compounds

  1. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  2. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Russell Keast

    2010-02-01

    Full Text Available The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds.

  3. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    OpenAIRE

    Armin Oskoueian; Jaafar, Hawa Z. E.; Rudi Hendra; Ehsan Oskoueian; Ehsan Karimi

    2012-01-01

    Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and fla...

  4. Synthesis, Characterization and Biological Activities of Organotin (IV Methylcyclohexyldithiocarbamate Compounds

    Directory of Open Access Journals (Sweden)

    Normah Awang

    2011-01-01

    Full Text Available Problem statement: The growing interest in the chemistry of sulphur donor ligands are due to their encouraging anticancer, antibacterial and antifungal activities as well as their widespread industrial application. Dithiocarbamates belong to this class and much attention has been paid to them. Approach: Novel organotin compounds with the molecular formula RmSn[S2CN(CH3(C6H11]4-m (where m = 2, R = CH3, C2H5; m = 3, R = C6H5 have been synthesized using in situ method. These compounds were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy. Results: Elemental analysis revealed that all compounds were of good purity. Infrared spectra of the compounds showed that the thioureide ν(C-N band was in the region 1450-1500 cm−1. The unsplitting band of ν(C-S in the region 974-979 cm−1 indicated the bidentate nature of the chelated dithiocarbamato legends. The 13C NMR chemical shift of the carbon atom in the N-CS2 group appeared in the range of 196.29-199.82 ppm. Single crystal analysis from one of these compounds showed that the chelating mode of the dithiocarbamate groups was isobidentate. These compounds have been screened for antibacterial activity against four bacteria; Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis. Only one of these compounds shows promising results against S. aureus and S. typhi. Cytotoxicity screening on human leukemic promyelocyte HL-60 cells found that two of these compounds were very active with CD50 values of 0.87 and 0.18 µg mL−1. Conclusion: The studied compounds were found to have the potential in biological activity especially in cytotoxicity where this possibly can be used for clinical trials after further research.

  5. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil.

    Science.gov (United States)

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Di Maio, Ilona; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  6. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  7. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated. PMID:22165149

  8. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    Directory of Open Access Journals (Sweden)

    Armin Oskoueian

    2012-01-01

    Full Text Available Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE/g dry weight (DW, and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH assay and the ferric reducing/antioxidant potential (FRAP. The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231, human colon adenocarcinoma (HT-29 and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to

  9. Biological surface-active compounds from marine bacteria.

    Science.gov (United States)

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  10. Biological activity of terpene compounds produced by biotechnological methods.

    Science.gov (United States)

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-06-01

    Context Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. Objective This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Materials and methods Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. Results trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Discussion and conclusions Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences. PMID:26808720

  11. Pearson versus Spearman, Kendall's Tau Correlation Analysis on Structure-Activity Relationships of Biologic Active Compounds

    OpenAIRE

    Jäntschi, Lorentz; Sorana-Daniela BOLBOACĂ

    2006-01-01

    A sample of sixty-seven pyrimidine derivatives with inhibitory activity on E. coli dihydrofolate reductase (DHFR) was studied by the use of molecular descriptors family on structure-activity relationships. Starting from the results obtained by applying of MDF-SAR methodology on pyrimidine derivatives and from the assumption that the measured activity (compounds’ inhibitory activity) of a biologically active compounds is a semi-quantitative outcome (can be related with the type of equipment us...

  12. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129. ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  13. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    isolated by Histopaque™ (Sigma- Aldrich, St. Louis, USA) flotation. Isolated PBMC were stained supravitally with fluorescent CFSE (Carboxyfluorescein succinimidyl ester) dye according to the method described by Witkowski (2008), re-suspended in culture..., from bacteria and viruses to aquatic animals (Rohrlack et al., 2004; Sedmak et al., 2008; Sønstebø & Rohrlack, 2011). As many cyanobacterial products are characterized by a unique biological activity, they have become a focus of high interest...

  14. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-10-01

    Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.

  15. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  16. Synthesis and Biological Activity of New 1,3-Dioxolanes as Potential Antibacterial and Antifungal Compounds

    Directory of Open Access Journals (Sweden)

    Hatice Başpınar Küçük

    2011-08-01

    Full Text Available A series of new enantiomerically pure and racemic 1,3-dioxolanes 1-8 was synthesized in good yields and short reaction times by the reaction of salicylaldehyde with commercially available diols using a catalytic amount of Mont K10. Elemental analysis and spectroscopic characterization established the structure of all the newly synthesized compounds. These compounds were tested for their possible antibacterial and antifungal activity. Biological screening showed that all the tested compounds, except 1, show excellent antifungal activity against C. albicans, while most of the compounds have also shown significant antibacterial activity against S. aureus, S. epidermidis, E. faecalis and P. aeruginosa.

  17. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties.

    Science.gov (United States)

    Wang, Bao-Lei; Shi, Yan-Xia; Zhang, Shu-Jun; Ma, Yi; Wang, Hong-Xue; Zhang, Li-Yuan; Wei, Wei; Liu, Xing-Hai; Li, Yong-Hong; Li, Zheng-Ming; Li, Bao-Ju

    2016-07-19

    A series of novel carboxamide compounds 19a-19j, 20a-20j and 22a-22d containing piperazine and arylsulfonyl moieties have been synthesized. The bioassay results showed that some compounds exhibited favorable herbicidal activities against dicotyledonous plants and many of them possessed excellent antifungal activities. Among 24 novel compounds, some showed superiority over the commercial fungicides Chlorothalonil, Dimethomorph, Thiophanate-methyl, Iprodione, and Zhongshengmycin at 500 mg/L concentration. Some compounds also exhibited high KARI inhibitory activity at 100 μg/mL concentration and could be used as new KARI lead inhibitors for further studies. Moreover, SAR of these new compounds were comprehensively investigated using different computational methods in which 3D-QSAR model obtained provided useful information for further structural optimization for the discovery of new fungicides. The results of this research will contribute to explore comprehensive biological activities of piperazine-containing compounds in different areas of chemistry. PMID:27092414

  18. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies.

    Science.gov (United States)

    Lourenço, André Luiz; Saito, Max Seidy; Dorneles, Luís Eduardo Gomes; Viana, Gil Mendes; Sathler, Plínio Cunha; Aguiar, Lúcia Cruz de Sequeira; de Pádula, Marcelo; Domingos, Thaisa Francielle Souza; Fraga, Aline Guerra Manssour; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Castro, Helena Carla; Cabral, Lucio Mendes

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations. PMID:25903367

  19. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  20. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    OpenAIRE

    Butnariu Monica; Coradini Cristina

    2012-01-01

    Abstract Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhy...

  1. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  2. The Potential Use of Indigobush (Amorpha fruticosa L.) as Natural Resource of Biologically Active Compounds

    OpenAIRE

    Tamara Jakovljević; Jasna Halambek; Kristina Radošević; Karla Hanousek; Marija Gradečki-Poštenjak; Višnja Gaurina Srček; Ivana Radojčić Redovniković; Alessandra De Marco

    2015-01-01

    Background and Purpose: Recent research indicates that a weed like Indigobush (Amorpha fruticosa L.) gives great opportunities for its commercialization through a rich spectrum of its beneficial biological features with possible use in the forestry and biotechnology field. Therefore, in this study we wanted to explore some of potential application of Indigobush extract, as a source of biologically active compounds, for animal cell culturing as well as green corrosion inhibitors. Materials ...

  3. Moooving forward on determining biologically active compounds in milk and their impact on health

    Science.gov (United States)

    Recent studies have demonstrated that some of the lesser studied components in milk, known as biologically active compounds (BACs), may provide potential benefits to human health. The added health-value of raw milk and milk from organic and grass-fed herds is strongly debated because of limited, an...

  4. BASIC SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME PHOSPHORCONTATNING ORGANIC COMPOUNDS CONTAINING FRAGMENTS OF UREA AND TRYHLORETILAMID

    Directory of Open Access Journals (Sweden)

    Gushylyk B.

    2013-10-01

    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  5. Database searching for compounds with similar biological activity using short binary bit string representations of molecules.

    Science.gov (United States)

    Xue, L; Godden, J W; Bajorath, J

    1999-01-01

    In an effort to identify biologically active molecules in compound databases, we have investigated similarity searching using short binary bit strings with a maximum of 54 bit positions. These "minifingerprints" (MFPs) were designed to account for the presence or absence of structural fragments and/or aromatic character, flexibility, and hydrogen-bonding capacity of molecules. MFP design was based on an analysis of distributions of molecular descriptors and structural fragments in two large compound collections. The performance of different MFPs and a reference fingerprint was tested by systematic "one-against-all" similarity searches of molecules in a database containing 364 compounds with different biological activities. For each fingerprint, the most effective similarity cutoff value was determined. An MFP accounting for only 32 structural fragments showed less than 2% false positive similarity matches and correctly assigned on average approximately 40% of the compounds with the same biological activity to a query molecule. Inclusion of three numerical two-dimensional (2D) molecular descriptors increased the performance by 15%. This MFP performed better than a complex 2D fingerprint. At a similarity cutoff value of 0.85, the 2D fingerprint totally eliminated false positives but recognized less than 10% of the compounds within the same activity class. PMID:10529986

  6. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429. ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.691, year: 2014

  7. Voltammetric and amperometric determination of biologically active organic compounds using various types of silver amalgam electrodes

    OpenAIRE

    Barek, Jiří; Fischer, Jan; Moreira, Josino C.; Wang, Joseph

    2014-01-01

    In this paper, possibilities of various types of silver amalgam electrodes for determination of micromolar and submicromolar concentrations of various electrochemically reducible biologically active organic compounds are reviewed. Attention is paid to the use of polished and mercury meniscus modified silver solid amalgam electrodes, silver amalgam paste electrodes both with and without pasting liquids, single crystal silver amalgam electrodes, composite silver amalgam electrodes, and porous s...

  8. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    Science.gov (United States)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  9. Bioreactor Cultivation of Zeltnera beyrichii (Torr. & A. Gray) Mans.: A Novel Source of Biologically Active Compounds

    OpenAIRE

    Miloš Radović; Branislav Šiler; Jasmina Nestorović Živković; Tijana Banjanac; Suzana Živković; Miloš Nikolić; Marina Soković; Danijela Mišić

    2013-01-01

    With regard to world’s increasing demand for biologically active compounds, a novel source of xanthones and secoiridoid glycosides has been studied . Zeltnera beyrichii (Torr. & A. Gray) Mans., an insufficiently acknowledged North American medicinal plant species, may be considered a pharmacological substitute for commercial C. erythraea Rafn, since it accumulates in aerial parts nearly the same amount of secoiridoid glycosides: swertiamarin, gentiopicrin, and sweroside (13.76, 7.56, and 0.17...

  10. Cytokinin Nucleosides - Natural Compounds with a Unique Spectrum of Biological Activities.

    Science.gov (United States)

    Drenichev, Mikhail S; Oslovsky, Vladimir E; Mikhailov, Sergey N

    2016-01-01

    Cytokinin nucleosides exhibit antitumor, antiviral, antiprotozoal, blood pressure reducing, anti-inflammatory, and antipsychotic activity. These compounds also influence platelet aggregation and exhibit some other biological activities. Cytokinins are N6-substituted adenines and represent an important group of phytohormones with diverse biochemical functions in plants, stimulating cell division and plant growth. The main structural feature of cytokinin nucleosides is the presence of a hydrophobic hydrocarbon moiety at the N6-position of adenosine. This moiety is responsible for a difference in physicochemical and biological properties as compared to adenosine. 1-N-Tuberculosinyladenosine and N6-tuberculosinyladenosine are specifically produced by Mycobacterium tuberculosis as components of the plasmatic membrane, thus making them attractive targets for clinical test development. Structurally related compounds were found in marine organisms. It has been shown also that tRNA contains N6-isoprenyladenosine and some other related compounds. This review summarizes the structural features, biological activity, and the synthesis of cytokinin nucleosides and some of their closely related derivatives such as cytokinins and terpene derivatives of adenine. PMID:27086793

  11. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  12. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Butnariu Monica

    2012-04-01

    Full Text Available Abstract Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH as well as the total antioxidant potential, using the ferric reducing power (FRAP assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC was used to identify and quantify phenolic compounds (depending on the method of extraction. Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls, polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.

  13. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  14. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  15. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    Science.gov (United States)

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. PMID:27286774

  16. Synthesis, Structure and Biological Activities of Novel Triazole Compounds Containing Thioamide Group

    Institute of Scientific and Technical Information of China (English)

    刘法谦; 秦永其; 许良忠; 陆路德; 杨绪杰; 汪信

    2005-01-01

    Two compounds 2-benzoyl-N-phenyl-2-( 1,2,4-triazol- 1-yl)thioacetamide (1) and 2-(4-chlorobenzoyl)-N-phenyl-2-(1,2,4-triazol-1-yl)thioacetamide (2) were synthesized from substituted acetophenone, triazole and phenyl isothiocyanate by several step reactions. The structure of compound 1 was determined by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic system with space group P21/c, a =0.8806(2) nm, b= 1.2097(2) nm, c= 1.4809(3) nm, β=105.88°, Z=4, V=1.5173(6) nm3, Dc= 1.411 Mg/m3, μ=0.22 mm-1, F(000)=672, final R1=0.040 and Rw=0.103. There is obvious potentially weak C—H…N intermolecular interaction in the crystal, which stabilizes the structure. The results of biological test show that the two compounds have antifungal and plant growth regulating activities.

  17. Application of Kohonen Neural Networks in classification of biologically active compounds.

    Science.gov (United States)

    Kirew, D B; Chretien, J R; Bernard, P; Ros, F

    1998-01-01

    Automated data classification is an indispensable tool in Drug Design. It allows to select homogeneous training sets or to distinguish compounds with required biological properties. The Kohonen Neural Networks (KNN) suggest new means for classification of biologically interesting compounds. In this paper, first, capabilities of KNN in data dimensionality reduction are presented as compared with the capabilities of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The advantages of KNN become evident with increasing data dimensionality and size of the training set. Then, new methods are suggested to evaluate the quality of KNN models. Finally, a case study on chemical and biological data is presented. The database studied includes more than 2000 organophosphorous potent pesticides. The Kohonen maps were obtained which allow to distinguish compounds with different biological behavior. PMID:9517011

  18. Bioreactor Cultivation of Zeltnera beyrichii (Torr. & A. Gray Mans.: A Novel Source of Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Miloš Radović

    2013-08-01

    Full Text Available With regard to world’s increasing demand for biologically active compounds, a novel source of xanthones and secoiridoid glycosides has been studied . Zeltnera beyrichii (Torr. & A. Gray Mans., an insufficiently acknowledged North American medicinal plant species, may be considered a pharmacological substitute for commercial C. erythraea Rafn, since it accumulates in aerial parts nearly the same amount of secoiridoid glycosides: swertiamarin, gentiopicrin, and sweroside (13.76, 7.56, and 0.17 mmol per 100 g dry weight, respectively in plants grown under greenhouse condition, and a considerable amount of xanthones: decussatin and eustomin. Additionally, Z. beyrichii produced as much biomass during cultivation in RITA ® temporary immersion bioreactors as greenhouse-grown plants, in a third of the time. Plants grown in bioreactors contained moderate levels of total phenolics and total flavonoids, and possessed modest antioxidant activity and antimicrobial potential against eight bacterial and eight fungal species. Therefore, this species may be highly recommended for cultivation either in natural environment, or in bioreactors under in vitro conditions, for producing compounds of interest of modern pharmacology and food industry.

  19. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  20. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg-1 at three different temperatures. The derived parameters, such as apparent molar volume of solute (φV)), limiting apparent molar volume of solute (φV0), limiting apparent molar expansivity (φE0), thermal expansion coefficient (α*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT) ). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  1. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    Science.gov (United States)

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. PMID:27309772

  2. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes.

    Science.gov (United States)

    Baker, Beth H; Martinovic-Weigelt, Dalma; Ferrey, Mark; Barber, Larry B; Writer, Jeffery H; Rosenberry, Donald O; Kiesling, Richard L; Lundy, James R; Schoenfuss, Heiko L

    2014-10-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted. PMID:24974177

  3. Synthesis and biological activity of some heterocyclic compounds containing benzimidazole and beta-lactam moiety

    Indian Academy of Sciences (India)

    K F Ansari; C Lal

    2009-11-01

    A number of 1-substituted-2-methyl benzimidazole derivatives have been synthesized and tested for their antibacterial activities. The chemical structures of the newly synthesized compounds were verified on the basis of spectral and elemental methods of analyses. Investigation of antimicrobial activity of the compounds was done by disc diffusion method using Gram-positive (S. aureus, S. mutans and B. subtilis), Gram-negative (E. coli, S. typhi and P. aeruginosa) bacteria and fungi (C. albicans, A. flavus and A. niger). Among the compounds tested 5a, 5b, 5d, 5i, 5j and 5k exhibited good antibacterial activities against Gram positive bacteria, while 5d and 5i also showed notable antifungal activity. Specially compounds 5a and 5b exhibited appreciable activity against S. aureus and B. subtilis comparable to reference drugs.

  4. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    OpenAIRE

    André Luiz Lourenço; Max Seidy Saito; Luís Eduardo Gomes Dorneles; Gil Mendes Viana; Plínio Cunha Sathler; Lúcia Cruz de Sequeira Aguiar; Marcelo de Pádula; Thaisa Francielle Souza Domingos; Aline Guerra Manssour Fraga; Carlos Rangel Rodrigues; Valeria Pereira de Sousa; Helena Carla Castro; Lucio Mendes Cabral

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approache...

  5. Synthesis and biological activity of sulfur compounds showing structural analogy with combretastatin A-4

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos A. dos; Prado, Paulo C.; Carvalho, Wanderley R. de; Lima, Ricardo V. de; Beatriz, Adilson; Lima, Denis P. de, E-mail: denis.lima@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Departamento de Quimica; Hamel, Ernest [Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD (United States); Dyba, Marzena A. [Basic Science Program , SAIC-Frederick, Inc., Structural Biophysics Laboratory National Cancer Institute, Frederick, MD (United States); Albuquerque, Sergio [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-09-01

    We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904),and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15). (author)

  6. Synthesis and biological activities of certain mesoionic sydnone compounds containing chalcone moiety.

    Science.gov (United States)

    Deshpande, Shreenivas R; Pai, K Vasantakumar

    2010-06-01

    In order to have antibacterial, analgesic and anti-inflammatory activity in the same molecule, 4-[1-oxo-3- (substituted aryl)-2-propenyl]-3-(4-chlorophenyl) sydnones were synthesized by condensing 4-acetyl-3-(4-chlorophenyl)sydnone with various substituted aryl aldehydes and characterized by spectral studies; 4-acetyl-3-(4-chlorophenyl)sydnone itself, was prepared by acetylation of 3-(4-chlorophenyl) sydnone. The newly synthesized compounds were evaluated for antibacterial and anti-inflammatory activities by cup plate and carrageenan induced rat paw edema methods respectively. Some of the compounds showed promising antibacterial and anti-inflammatory activities. PMID:24825982

  7. Synthesis of new biologically active compounds containing linked thiazolyl-thiazolidinone heterocycles

    Directory of Open Access Journals (Sweden)

    Nagaraj Adki

    2012-01-01

    Full Text Available A new series of 1,3-benzothiazol-2-yl-1,3-thiazolan-4-one 5a-j has been synthesized by the reaction of 2-(4-methylphenyl-3-(5,5,7-trimethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-2-yl-1,3-thiazolan-4-one 4 with aryl aldehydes. Chemical structures of all the new compounds were established by IR, 1H, 13C NMR, MS and elemental data. The compounds 5a-j were evaluated for their antibacterial activity against Gram-positive bacteria viz. Bacillus subtilis (MTCC 441, Bacillus sphaericus (MTCC 11, Staphylococcus aureus (MTCC 96 and Gram-negative bacteria viz. Pseudomonas aeruginosa (MTCC 741, Klebsiella aerogenes (MTCC 39, Chromobacterium violaceum (MTCC 2656. Amongst them, compounds containing [(4-chlorophenylmethyli- dene] moiety 5b, [(3-nitrophenylmethylidene] moiety 5d and [(2-thienylmethylidene] moiety 5j showed significant antibacterial activity, almost equal/more than the activity of the standard drug Streptomycin. Further, the compounds 5a-j were also screened for their antifungal activity against Candida albicans (ATCC 10231, Aspergillus fumigatus (HIC 6094, Trichophyton rubrum (IFO 9185, and Trichophyton mentagrophytes (IFO 40996. Most of these new compounds showed appreciable activity against test bacteria and fungi and emerged as potential molecules for further development.

  8. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  9. The Potential Use of Indigobush (Amorpha fruticosa L. as Natural Resource of Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Tamara Jakovljević

    2015-05-01

    Full Text Available Background and Purpose: Recent research indicates that a weed like Indigobush (Amorpha fruticosa L. gives great opportunities for its commercialization through a rich spectrum of its beneficial biological features with possible use in the forestry and biotechnology field. Therefore, in this study we wanted to explore some of potential application of Indigobush extract, as a source of biologically active compounds, for animal cell culturing as well as green corrosion inhibitors. Materials and Methods: The effect of ethanol extract of Indigobush seeds was studied on human tumor cell lines (HeLa and MCF-7 and cell viability was determined by WST-1 method after 72 hours of treatment with 6 different extract concentrations (0.5-10 mg∙mL-1. The inhibition effect of Indigobush seeds extract on the corrosion of aluminum in 0.5 M hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS methods. Results: Results showed that the addition of Indigobush extract had a stimulatory effect on MCF-7 cells growth at the concentrations >1 mg∙mL-1 while the same effect on HeLa cells was observed only at the highest concentration of Indigobush extract (10 mg∙mL-1. The stimulatory effect of Indigobush extract on cell viability was more pronounced when the cells were grown in a medium with 5% FBS compared to 10% FBS (v/v. Indigobush extract did not show cytotoxic effect on MCF-7 and HeLa cells. Electrochemical studies showed that with increasing extract concentrations (2.5-15 mg∙mL-1 the values of corrosion current densities decrease, while the polarization resistance values increase. The maximum inhibition efficiency of Indigobush extract is reached at concentration of 15 mg∙mL-1 (82.9%. Conclusions: The Indigobush ethanol extract has no cytotoxic effect on human tumor cell lines MCF-7 and HeLa. Results confirmed that extract originated from Indigobush has the potential to utilize for the

  10. Non-traditional metal electrode materials in electrochemical nvironmental analysis of biologically active compounds

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Šestáková, Ivana

    Tenerife: WSEAS, 2007 - (Otesteanu, M.; Celikyay, S.; Mastorakis, N.; Lache, S.; Benra, F.), s. 181-185 ISBN 978-960-6766-20-6. [WSEAS International Conference on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT (EED'07) /5./. Tenerife (ES), 14.12.2007-16.12.2007] R&D Projects: GA ČR GA203/07/1195; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal electrode materials * biologically actove compounds * electrochemistry Subject RIV: CG - Electrochemistry

  11. Study of the Biological Activity of Novel Synthetic Compounds with Antiviral Properties against Human Rhinoviruses

    Directory of Open Access Journals (Sweden)

    Raffaello Pompei

    2011-04-01

    Full Text Available Picornaviridae represent a very large family of small RNA viruses, some of which are the cause of important human and animal diseases. Since no specific therapy against any of these viruses currently exists, palliative symptomatic treatments are employed. The early steps of the picornavirus replicative cycle seem to be privileged targets for some antiviral compounds like disoxaril and pirodavir. Pirodavir’s main weakness is its cytotoxicity on cell cultures at relatively low doses. In this work some original synthetic compounds were tested, in order to find less toxic compounds with an improved protection index (PI on infected cells. Using an amino group to substitute the oxygen atom in the central chain, such as that in the control molecule pirodavir, resulted in decreased activity against Rhinoviruses and Polioviruses. The presence of an -ethoxy-propoxy- group in the central chain (as in compound I-6602 resulted in decreased cell toxicity and in improved anti-Rhinovirus activity. This compound actually showed a PI >700 on HRV14, while pirodavir had a PI of 250. These results demonstrate that modification of pirodavir’s central hydrocarbon chain can lead to the production of novel derivatives with low cytotoxicity and improved PI against some strains of Rhinoviruses.

  12. SYNTHESIS AND BIOLOGICAL ACTIVITIES OF CERTAIN MESOIONIC SYDNONE COMPOUNDS CONTAINING CHALCONE MOIETY

    OpenAIRE

    Deshpande, Shreenivas R.; Pai, K. Vasantakumar

    2010-01-01

    In order to have antibacterial, analgesic and anti-inflammatory activity in the same molecule, 4-[1-oxo-3- (substituted aryl)-2-propenyl]-3-(4-chlorophenyl) sydnones were synthesized by condensing 4-acetyl-3-(4-chlorophenyl)sydnone with various substituted aryl aldehydes and characterized by spectral studies; 4-acetyl-3-(4-chlorophenyl)sydnone itself, was prepared by acetylation of 3-(4-chlorophenyl) sydnone. The newly synthesized compounds were evaluated for antibacterial and anti-inflammato...

  13. Facile Synthesis and Antimicrobial Evaluation of Some New Heterocyclic Compounds Incorporating a Biologically Active Sulfamoyl Moiety

    Directory of Open Access Journals (Sweden)

    Elham S. Darwish

    2014-01-01

    Full Text Available A facile and convenient synthesis of new heterocyclic compounds containing a sulfamoyl moiety suitable for use as antimicrobial agents was reported. The precursor 3-oxo-3-phenyl-N-(4-sulfamoylphenylpropionamide was coupled smoothly with arenediazonium salt producing hydrazones which reacted with malononitrile or triethylorthoformate affording pyridazine and triazine derivatives, respectively. Also, the reactivity of the same precursor with DMF-DMA was followed by aminotriazole; aromatic aldehydes was followed by hydrazine hydrate, triethylorthoformate, or thiourea affording triazolo[1,5-a]pyrimidine, pyrazole, acrylamide, and dihydropyrimidine derivatives, respectively. On the other hand, treatment of the precursor propionamide with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt which was treated with dilute HCl followed by 2-bromo-1-phenylethanone affording carboxamide derivative. While the same intermediate salt reacted in situ with chloroacetone, ethyl 2-chloroacetate, 3-(2-bromoacetyl-2H-chromen-2-one, methyl iodide, or 2-oxo-N-phenylpropane hydrazonoyl chloride afforded the thiophene, ketene N,S-acetal, and thiadiazole derivatives, respectively. The structure of the new products was established based on elemental and spectral analysis. Antimicrobial evaluation of some selected examples from the synthesized products was carried out whereby four compounds were found to have moderate activities and one compound showed the highest activity.

  14. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  15. Tandem Reactions Using Nitrile Imines: Synthesis of Some Novel Heterocyclic Compounds with Expected Biological Activity

    Directory of Open Access Journals (Sweden)

    Adil A. H. Gobouri

    2016-03-01

    Full Text Available New functionalized 7,9-dimethylpyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidine-5,6,8(1H,7H,9H-trione derivatives were synthesized via reaction of the hydrazonoyl halides with 7,8-dihydro-1,3-dimethyl-7-thioxopyrimido[4,5-d]pyrimidine-2,4,5(1H,3H,6Htrione. The biological activity of the products has been evaluated. The mechanism and the regioselectivity of the studied reactions have been discussed.

  16. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  17. Occurrence of Endocrine Active Compounds and Biological Responses in the Mississippi River - Study Design and Data, June through August 2006

    Science.gov (United States)

    Lee, Kathy E.; Yaeger, Christine S.; Jahns, Nathan D.; Schoenfuss, Heiko L.

    2008-01-01

    Concern that selected chemicals in the environment may act as endocrine active compounds in aquatic ecosystems is widespread; however, few studies have examined the occurrence of endocrine active compounds and identified biological markers of endocrine disruption such as intersex occurrence in fish longitudinally in a river system. This report presents environmental data collected and analyzed by the U.S. Geological Survey, Minnesota Pollution Control Agency and St. Cloud State University as part of an integrated biological and chemical study of endocrine disruption in fish in the Mississippi River. Data were collected from water, bed sediment, and fish at 43 sites along the river from the headwaters at Lake Itasca to 14 miles downstream from Brownsville, Minnesota during June through August 2006. Twenty-four individual compounds were detected in water samples, with cholesterol, atrazine, N,N-diethyl-meta-toluamide, metolachlor, and hexahydrohexamethylcyclopentabenzopyran detected most frequently (in at least 10 percent of the samples). The number of compounds detected in water per site ranged from 0 to 8. Forty individual compounds were detected in bed-sediment samples. The most commonly detected compounds (in at least 50 percent of the samples) were indole, beta-sitosterol, cholesterol, beta-stigmastanol, 3-methyl-1H-indole, p-cresol, pyrene, phenol, fluoranthene, 3-beta coprostanol, benzo[a]pyrene, acetophenone, and 2,6-dimethylnaphthalene. The total number of detections in bed sediment (at a site) ranged from 3 to 31. The compounds NP1EO, NP2EO, and 4-nonylphenol were detected in greater than 10 percent of the samples. Most (80 percent) female fish collected had measurable concentrations of vitellogenin. Vitellogenin also was detected in 62, 63, and 33 percent of male carp, smallmouth bass, and redhorse, respectively. The one male walleye sample plasma sample analyzed had a vitellogenin detection. Vitellogenin concentrations were lower in male fish (not

  18. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  19. Chemical characterization and evaluation of biological activity of Cynara cardunculus extractable compounds

    OpenAIRE

    Ramos, Patrícia Alexandra Bogango

    2015-01-01

    The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their ant...

  20. [Biologically active garlic compounds and perspectives of their use in the therapeutic and prophylactic diet (review)].

    Science.gov (United States)

    Slepko, G I; Lobareva, L S; Mikhalenko, L Ia; Shatniuk, L N

    1994-01-01

    Therapeutic action of garlic and garlic's preparations at diseases of vessels and heart, organs of digestion, breachs of lipid exchange and system mycosis was connected with presence of complex of sulfur contain compounds:thiosulfinates, dialkilsulfides, dithiins, adgoens, thioglycosidepeptides. These compounds were picked out from garlic or synthesired rendered corresponding action to blood's properties, metabolism and infection processes in organism. Garlic preparations in composition of products of nutrition can be effective for different system of prophylactice nutrition and dietotherapy. Scientific and technical dataes were essential for preparation of technology of new products from garlic. PMID:7871772

  1. EPlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements

    DEFF Research Database (Denmark)

    Plumb, J.; Lyons, J.; Nørby, Karin Kristiane;

    2015-01-01

    The newly developed ePlantLIBRA database is a comprehensive and searchable database, with up-to-date coherent and validated scientific information on plant food supplement (PFS) bioactive compounds, with putative health benefits as well as adverse effects, and contaminants and residues. It is the...

  2. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  3. Tumor-targeted boron-containing amino acids and their related compounds. Synthesis and biological activity

    International Nuclear Information System (INIS)

    In a series of our synthetic studies on boron-containing amino acids and their related compounds for BNCT (Boron Neutron Capture Therapy), p-boronophenylalanine (BPA), p-boronophenylserine (BPS), o-carboranylmethyl-3-hydroxytyrosine (CMHT) and their derivatives were designed and synthesized by using of isocyano compounds as a starting material. Two water-soluble amino alcohols, BPA-OH and BPS-OH, were prepared by the reduction of the corresponding N-formyl amino esters. On the other hand, CMHTA, an amide derivative of CMHT, was synthesized by an aldol-type condensation of isocyanoacetamide with 4-(o-carboranylmethyloxy)benz aldehyde as a key reaction. The relative tumor cell (human glioma T98G) killing effect of nBPS-OH, nBPA-OH and CMHTA against 10BPA was 0.7, 1.0 and 4.9, respectively. The uptake of CMHTA by the tumor cell increased with increasing cultivation time. (J.P.N.)

  4. Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea

    Directory of Open Access Journals (Sweden)

    Mansour Znati

    2014-02-01

    Full Text Available The present work describes the phytochemical study on Ferula lutea flowers. Total phenolics and flavonoids of the n-butanol and ethyl acetate extracts were quantified (phenolics [40.68–52.29 mg gallic acid equivalent/g of dry weight], flavonoids [12.38–14.72 mg quercitin/g dry weight]. Two diastereoisomers were isolated and identified using spectroscopic techniques (1D, 2D NMR and GC-MS. The extracts and diastereoisomers were tested for antioxidant, antiacetylcholinesterase, antimicrobial, antidiabectic, cytotoxic (leukemia cell line activities and allelopathic potentialities. The strongest antioxidant activity was obtained for the ethyl acetate extract (IC50 = 12.8 ± 1.29 µg/mL. The two extracts exhibited high antidiabetic activity (54.1 and 52.1% at 40 µg/mL.

  5. The radioimmunoassay of biologically active compounds in parotid fluid and plasma

    International Nuclear Information System (INIS)

    Parotid fluid collection is a simple stress-free procedure. The potential value of parotid fluid estimations of clomipramine, a tricyclic antidepressant, d-norgestrel, a synthetic contraceptive steroid and cortisol have been evaluated for assessment of clinical status and patient compliance. These compounds circulate bound largely to plasma proteins. Their concentration in parotid fluid, which reflects the non-protein bound fraction, is low but assay sensitivity (10, 1 and 30 pg/tube respectively) is adequate. Excellent agreement (r>0.9) was observed when parotid fluid samples were assayed with and without chromatographic purification. Clomipramine levels following oral dosage (150 mg) rose steadily to a maximum in plasma but showed wide fluctuations in parotid fluid. Clomipramine therapy can only be assessed by plasma assays, but patient compliance may be checked by parotid fluid concentrations. Following an oral dose of d-norgestrel (0.3 mg), parotid fluid levels rose steadily to a maximum but plasma response was biphasic making correlation impossible. The sensitivity and high throughput of the d-norgestrel methodology suggests its use in evaluating patient compliance in large-scale fertility control programmes. Changes in circulating cortisol concentrations were rapidly and accurately reflected in parotid fluid in normal volunteers. Parotid fluid cortisol showed a marked diurnal rhythm, suppression to low levels after dexamethasone, and elevation following Synacthen. Low levels after Synacthen stimulation in a patient with secondary adrenal atrophy and constant high levels in Cushingoid patients indicate that parotid fluid cortisol levels could be used for accurate adrenocortical evaluation. The value in rapid screening procedures is stressed since the assay can be performed directly on only 10 μl of parotid fluid. (author)

  6. EuroFIR-BASIS - a combined composition and biological activity database for bioactive compounds in plant-based foods

    DEFF Research Database (Denmark)

    Gry, Jørn; Black, Lucinda; Eriksen, Folmer Damsted; Pilegaard, Kirsten; Plumb, Jenny; Rhodes, Mike; Sheehan, Darina; Kiely, Mairéad; Kroon, Poul A.

    2007-01-01

    Mounting evidence suggests that certain non-nutrient bioactive compounds promote optimal human health and reduce the risk of chronic disease. An Internet-deployed database, EuroFIR-BASIS, which uniquely combines food composition and biological effects data for plant-based bioactive compounds, is...... being developed. The database covers multiple compound classes and 330 major food plants and their edible parts with data sourced from quality-assessed, peer-reviewed literature. The database will be a valuable resource for food regulatory and advisory bodies, risk authorities, epidemiologists and...... researchers interested in diet and health relationships, and product developers within the food industry....

  7. Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities

    Directory of Open Access Journals (Sweden)

    Azhar Rasul

    2013-01-01

    Full Text Available Pinocembrin (5,7-dihydroxyflavanone is one of the primary flavonoids isolated from the variety of plants, mainly from Pinus heartwood, Eucalyptus, Populus, Euphorbia, and Sparattosperma leucanthum, in the diverse flora and purified by various chromatographic techniques. Pinocembrin is a major flavonoid molecule incorporated as multifunctional in the pharmaceutical industry. Its vast range of pharmacological activities has been well researched including antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In addition, pinocembrin can be used as neuroprotective against cerebral ischemic injury with a wide therapeutic time window, which may be attributed to its antiexcitotoxic effects. Pinocembrin exhibits pharmacological effects on almost all systems, and our aim is to review the pharmacological and therapeutic applications of pinocembrin with specific emphasis on mechanisms of actions. The design of new drugs based on the pharmacological effects of pinocembrin could be beneficial. This review suggests that pinocembrin is a potentially promising pharmacological candidate, but additional studies and clinical trials are required to determine its specific intracellular sites of action and derivative targets in order to fully understand the mechanism of its anti-inflammatory, anticancer, and apoptotic effects to further validate its medical applications.

  8. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology

    Directory of Open Access Journals (Sweden)

    Jia-You Fang

    2009-01-01

    Full Text Available Squalene is a triterpene that is an intermediate in the cholesterol biosynthesis pathway. It was so named because of its occurrence in shark liver oil, which contains large quantities and is considered its richest source. However, it is widely distributed in nature, with reasonable amounts found in olive oil, palm oil, wheat-germ oil, amaranth oil, and rice bran oil. Squalene, the main component of skin surface polyunsaturated lipids, shows some advantages for the skin as an emollient and antioxidant, and for hydration and its antitumor activities. It is also used as a material in topically applied vehicles such as lipid emulsions and nanostructured lipid carriers (NLCs. Substances related to squalene, including β-carotene, coenzyme Q10 (ubiquinone and vitamins A, E, and K, are also included in this review article to introduce their benefits to skin physiology. We summarize investigations performed in previous reports from both in vitro and in vivo models.

  9. Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Omar

    2011-09-01

    Full Text Available Defatted Jatropha curcas L. (J. curcas seed kernels contained a high percentage of crude protein (61.8% and relatively little acid detergent fiber (4.8% and neutral detergent fiber (9.7%. Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC analyses showed the presence of gallic acid and pyrogallol (phenolics, rutin and myricetin (flavonoids and daidzein (isoflavonoid. The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy, acetic acid and furfural (2-furancarboxaldehyde in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0–1.63 cm at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe3+ to ferrous ion (Fe2+. Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.

  10. Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum:biological activity and structure

    Institute of Scientific and Technical Information of China (English)

    Carolina Santiago; Lin Sun; Murray Herbert Gibson Munro; Jacinta Santhanam

    2014-01-01

    Objective:To study bioactivity and compounds produced by an endophytic Phoma sp. fungus isolated from the medicinal plant Cinnamomum mollissimum. Methods: Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate. This was followed by bioactivity profiling of the crude extract fractions obtained via high performance liquid chromatography. The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi. Compounds purified from active fractions which showed antibacterial, antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis, mass spectrometry and admission to AntiMarin database. Results: Three known compounds, namely 4-hydroxymellein, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one and 1-(2,6-dihydroxyphenyl) ethanone, were isolated from the fungus. The polyketide compound 4-hydroxymellein showed high inhibitory activity against P388 murine leukemic cells (94.6%) and the bacteria Bacillus subtilis (97.3%). Meanwhile, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one, a benzopyran compound, demonstrated moderate inhibitory activity against P388 murine leukemic cells (48.8%) and the fungus Aspergillus niger (56.1%). The second polyketide compound, 1 (2,6-dihydroxyphenyl) ethanone was inactive against the tested targets. Conclusions: These findings demonstrate the potential of endophytes as producers of pharmacologically important compounds, including polyketides which are major secondary metabolites in fungi.

  11. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds

    Science.gov (United States)

    Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168

  12. polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum:biological activity and structure

    Institute of Scientific and Technical Information of China (English)

    Carolina; Santiago; Lin; Sun; Murray; Herbert; Gibson; Munro; Jacinta; Santhanam

    2014-01-01

    Objective:To study bioactivity and compounds produced by an endophytic Phoma sp.fungus isolated from the medicinal plant Cinnamomum mollissimum.Methods:Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate.This was followed by hioaclivity profiling of the crude extract fractions obtained via high performance liquid chromatography.The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi.Compounds purified from active fractions which showed antibacterial,antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis,mass spectrometry and admission to AntiMarin database.Results:Three known compounds,namely 4—hydroxymellein,4,8—dihydroxy—6—melhoxy—3—methyl—3,4-dihydro—1H-isochromen-1—one and 1—(2,6-dihydroxyphenyl) ethanone,were isolated from the fungus.The polyketide compound 4—hydroxymellein showed high inhibitory activity against P388 murine leukemic cells(94.6%) and the bacteria Bacillus sublilis(97.3%).Meanwhile.4,8—dihydroxy-6—melhoxy—3—meth) 1—3,4-dihydro—1H—isochromen—1-one,a benzopyran compound,demonstrated moderate inhibitory activity against P388 murine leukemic cells(48.8%)and the fungus Aspergillus niger(56.1%).The second polyketide compound.1(2,6—dihydroxyphenyl)ethanone was inactive against the tested targets.Conclusions:These findings demonstrate the potential of endophytes as producers ol pharmacologically important compounds,including polyketides which are major secondary metabolites in fungi.

  13. Synthesis of organometallic-based biologically active compounds: In vitro antibacterial, antifungal and cytotoxic properties of some sulfonamide incorporated ferrocences.

    Science.gov (United States)

    Chohan, Zahid H

    2009-02-01

    Sulfonamides incorporated ferrocene (SIF) have been synthesized by the condensation reaction of sulfonamides (sulfanilamide, sulfathiazole or sulfamethaxazole) with 1,1'-diacetylferrocene. The synthesized compounds (SIF(1)-SIF(4)) have been characterized by their physical, spectral and analytical properties and have been screened for their in vitro antibacterial properties against pathogenic bacterial strains e.g., Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using Agar-well diffusion method. Most of the compounds showed good antibacterial activity whereas, all the compounds exhibited significant antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:18608785

  14. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities

    Directory of Open Access Journals (Sweden)

    Mirjana Ž. Muruzović

    2016-07-01

    Full Text Available In this study, we determined the concentration of total phenols, flavonoids, tannins, and proanthocyanidins in the water, diethyl ether, acetone, and ethanol extracts of Agrimonia eupatoria L. We also investigated the antioxidant activity of these extracts using two methods [2,2-diphenyl-1-picrylhydrazyl (DPPH and reducing power] and their in vitro antimicrobial (antibacterial and antifungal activity on some selected species of bacteria and fungi. In addition, the effects of the acetone and water extracts on the inhibition of biofilm formation of Proteus mirabilis and Pseudomonas aeruginosa were investigated using the crystal violet method. The concentration of total phenols was measured according to the Folin–Ciocalteu method and the values obtained ranged from 19.61 mgGA/g to 220.31 mgGA/g. The concentration of flavonoids was examined by the aluminum chloride method and the values obtained ranged from 20.58 mgRU/g to 97.06 mgRU/g. The total tannins concentration was measured by the polyvinylpolypyrrolidone method and the values obtained ranged from 3.06 mgGA/g to 207.27 mgGA/g. The concentration of proanthocyanidins was determined by the butanol–HCl method and the values obtained ranged from 4.15 CChE/g to 103.72 CChE/g. Among the various extracts studied, the acetone extract exhibited good antioxidant activity (97.13%, as determined by the DPPH method. The acetone extract was active in the absorbance value range from 2.2665 to 0.2495 (as determined by the reducing power method. The strongest antimicrobial activity was detected on G+ bacteria, especially on probiotic species, and the acetone extract demonstrated the highest activity. Biofilm inhibitory concentration required to reduce biofilm coverage by 50% values for acetone extract was 4315 μg/mL for P. mirabilis and 4469.5 μg/mL for P. aeruginosa. The results provide a basis for further research of this plant species.

  15. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  16. SYNTHESIS, STRUCTURE AND BIOLOGICAL ACTIVITY OF N(4-ALLYL-3-THIOSEMICARBAZONES AND THEIR COORDINATION COMPOUNDS WITH SOME 3D METALS

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2016-02-01

    Full Text Available The paper presents a review of different N(4-allyl-3-thiosemicarbazones and their coordination compounds described in literature. N(4-allyl-3-thiosemicarbazide can form corresponding thiosemicarbazones with aliphatic, aromatic and heteroaromatic carbonyl compounds. In the presence of transitional metal ions they can form coordination compounds of different structures. Both coordination compounds and proligands manifest antitumor, antibacterial, antiviral, and antimalarial activities. Copper(II coordination compounds with these ligands manifest better antitumor activity than corresponding proligands. SINTEZA, STRUCTURA ŞI ACTIVITATEA BIOLOGICĂ A N(4-ALIL-3-TIOSEMICARBAZONELOR ŞI A COMPUŞILOR COORDINATIVI AI UNOR METALE 3D CU ACEŞTI LIGANZILucrarea prezintă o revistă a N(4-alil-3-tiosemicarbazonelor şi a compuşilor coordinativi cu aceşti liganzi descrise în literatura de specialitate. N(4-alil-3-tiosemicarbazida formează tiosemicarbazone cu aldehide şi cetone alifatice, aro­matice şi heteroaromatice. În prezenţa ionilor de metale de tranziţie acestea pot forma compuşi coordinativi cu diferite structuri. N(4-alil-3-tiosemicarbazonele şi compuşii coordinativi manifestă activitate antitumorală, antibacterială, antivirală şi antimalarică. Compuşii coordinativi ai cuprului cu aceşti liganzi manifestă activitate antitumorală sporită în comparaţie cu N(4-alil-3-tiosemicarbazonele corespunzătoare. 

  17. Synthesis of Heterocylic Compounds of Biological Interest from Carbohydrate Derivatives

    OpenAIRE

    M. F. Martinez Esperón; Fascio, M. L.; N. B. D’Accorso

    2000-01-01

    The synthesis of some isoxazolic compounds from carbohydrate derivatives is described. These products are obtained by 1,3-dipolar cycloaddition reaction and their functionalization leads to derivatives with potential biological activities.

  18. Phosphorus-nitrogen compounds. Part 23: Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclotriphosphazenes

    Science.gov (United States)

    Asmafiliz, Nuran; Kılıç, Zeynel; Hayvalı, Zeliha; Açık, Leyla; Hökelek, Tuncer; Dal, Hakan; Öner, Yağmur

    2012-02-01

    The Schiff base compounds ( 1 and 2) are synthesized by the condensation reactions of 2-furan-2-yl-methylamine with 2-hydroxy-3-methoxy- and 2-hydroxy-5-methoxy-benzaldehydes and reduced with NaBH 4 to give the new N/O-donor-type ligands ( 3 and 4). The monospirocyclotriphosphazenes containing 1,3,2-oxazaphosphorine rings ( 5 and 6) are prepared from the reactions of N 3P 3Cl 6 with 3 and 4, respectively. The reactions of 5 and 6 with excess pyrrolidine, morpholine, and 1,4-dioxa-8-azaspiro [4,5] decane (DASD) produce tetrapyrrolidino ( 5a and 6a), morpholino ( 5b and 6b), and 1,4-dioxa-8-azaspiro [4,5] deca ( 5c and 6c) spirocyclotriphosphazenes. The structural investigations of the compounds are examined by 1H, 13C, 31P NMR, DEPT, HSQC, and HMBC techniques. The solid-state structures of 5, 5a, and 6 are determined using X-ray crystallography. The compounds 5a, 5b, 5c, 6a, 6b, and 6c are subjected to antimicrobial activity against six patojen bacteria and two yeast strains. In addition, interactions between these compounds and pBR322 plasmid DNA are presented by agarose gel electrophoresis.

  19. Synthesis of Some Novel Compounds of Saccharinyl Acetic Acid Containing Nucleus and Evaluation of Their Biological Activities as Antimicrobial

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2016-03-01

    Full Text Available A new series of Compounds of Saccharinyl Acetic acid Containing nucleus have been prepared via an improved synthetic procedure. Where saccharinyl moiety have been introduced to 4-benzylidine-2-methyl-1,3-oxazole-5-one in position 2 , compound (3 which has been reacted with nitrogen neucleophiles as hydrazine hydrate , phenyl haydrazine, aniline, p-toludine, m,p-aminobezoic acid to get compounds from (4-6. Also the reaction of compound (3 witharomatic substrate in presence of anhydrous AlCl3 (Friedel – Crafts reaction afforded acetamide derivative (7 via the elimination of arylidine group. Moreover saccharinyl acetic acid hydrazide (8 was refluxed in acetic anhydride to give benzisothiazole derivative (9, which reacted with carbon nuleophiles (Grignard reagent to afford compound (10. But when compound (9 reacted with PCl5/POCl3 it gave compound (11 which reacted with urea and thiourea to give compound (12(a, and b. Also the condensation of compound (9 with aromatic aldehyde gave compound (13. Structures of all synthesized compounds were elucidated from I.R., 1HNMR, mass-spectroscopy, and elemental analysis.

  20. Synthesis, Characterization, and Biological Activity Studies of Copper(II Mixed Compound with Histamine and Nalidixic Acid

    Directory of Open Access Journals (Sweden)

    Egla Yareth Bivián-Castro

    2009-01-01

    Full Text Available A mixed copper complex with deprotonated nalidixic acid (nal and histamine (hsm was synthesized and characterized by FTIR, UV-Vis, elemental analysis, and conductivity. The crystal structure of [Cu(hsm(nalH2O]Cl·3H2O (chn showed a pentacoordinated cooper(II in a square pyramidal geometry surrounded by two N atoms from hsm, two O atoms from the quinolone, and one apical water oxygen. Alteration of bacterial DNA structure and/or associated functions in vivo by [Cu(hsm(nalH2O]Cl·3H2O was demonstrated by the induction of a recA-lacZ fusion integrated at the amyE locus of a recombinant Bacillus subtilis strain. Results from circular dichroism and denaturation of calf thymus DNA (CT-DNA suggested that increased amounts of copper complex were able to stabilize the double helix of DNA in vitro mainly by formation of hydrogen bonds between chn and the sugars of DNA minor groove. In vivo and in vitro biological activities of the chn complex were compared with the chemical nuclease [Cu(phen(nalH2O]NO3·3H2O (cpn where phen is phenanthroline.

  1. Use of an in vitro flat-bed biofilm model to measure biologically active anti-odour compounds.

    Science.gov (United States)

    Saad, S; Hewett, K; Greenman, J

    2013-09-01

    The objective of this study was to demonstrate the utility of a modified flat-bed perfusion biofilm matrix system for testing toothpaste formulations directly, without dilution, as a layer in direct contact with the biofilm matrix surface. Final biofilm yields and volatile sulphur compounds (VSC) biogenesis were measured to show the relative efficacy of toothpaste formulations. Diffusion characteristics of the flat-bed system to exposure with Meridol® tooth and tongue gel (TTG; 1,400 ppm F(-) from amine fluoride/stannous fluoride, 0.5 % zinc lactate, oral malodour counteractives) was assessed using a bioluminescent target species Escherichia coli Nissle 1917/pGLITE coupled with a low-light photon camera to visualise the kill kinetics. Tongue-flora derived, mixed culture biofilms (n = 4) received 5, 15 and 30 min treatment with TTG, respectively, to determine the optimum time of exposure. VSC biogenesis was measured from headspace samples by gas chromatography prior to and following treatment of two daily applications for 4 days of treatment (TTG), positive control (CHX gel) and negative controls (placebo and sham treatment). Viable counts were performed at the end of experiments by destructive sampling of the biofilms and plating onto selective and non-selective agar. Following a single treatment with TTG, the E. coli biofilm with lux target gave >50 % reduction of luminescence within 2 to 3 h before recovering to a steady state over 10 h, suggesting biofilm cidal activity rather biostasis. For mixed culture biofilms, 15- and 30-min treatment exposure with TTG gave almost identical reductions in final biofilm yields. For comparing efficacy of treatments, biofilms treated with TTG gave greatest reductions in both pre-post levels of H2S (P < 0.01) and CH3SH (P < 0.05) and population yields at the end of the experiments (P < 0.001) compared to placebo and positive control. The in vitro flat-bed perfusion model may be used to replicate many of

  2. Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor)

    OpenAIRE

    Amusant, N.; Moretti, Christian; Richard, B; Prost, E; J.M. Nuzillard; Thevenon, M. F.

    2007-01-01

    The chemical analysis of the compounds present in dichloromethane and ethanolic fractions as well as bioassays enable to understand the differences in the durability of Eperua falcata and Eperua grandiflora. The main distinction between these two species is the acidic subfraction of diterpenoid extract, which is antifungal in Eperua falcata when tested under in-vitro conditions. This study also shows that ethanolic fraction plays an important role in the mechanism of natural durability. Furth...

  3. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  4. 2-(Substituted phenyl-3,4-dihydroisoquinolin-2-iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Xin-Juan Yang

    2013-08-01

    Full Text Available The title compounds are a class of structurally simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs. In order to develop novel QBA-like antifungal drugs, in this study, 24 of the title compounds with various substituents on the N-phenyl ring were evaluated for bioactivity against seven phytopathogenic fungi using the mycelial growth rate method and their SAR discussed. Almost all the compounds showed definite activities in vitro against each of the test fungi at 50 μg/mL and a broad antifungal spectrum. In most cases, the mono-halogenated compounds 2–12 exhibited excellent activities superior to the QBAs sanguinarine and chelerythrine. Compound 8 possessed the strongest activities on each of the fungi with EC50 values of 8.88–19.88 µg/mL and a significant concentration-dependent relationship. The SAR is as follows: the N-phenyl group is a high sensitive structural moiety for the activity and the characteristics and position of substituents intensively influence the activity. Generally, electron-withdrawing substituents remarkably enhance the activity while electron-donating substituents cause a decrease of the activity. In most cases, ortha- and para-halogenated isomers were more active than the corresponding m-halogenated isomers. Thus, the title compounds emerged as promising lead compounds for the development of novel biomimetic antifungal agrochemicals. Compounds 8 and 2 should have great potential as new broad spectrum antifungal agents for plant protection.

  5. Real-Time Biological Annotation of Synthetic Compounds.

    Science.gov (United States)

    Gerry, Christopher J; Hua, Bruce K; Wawer, Mathias J; Knowles, Jonathan P; Nelson, Shawn D; Verho, Oscar; Dandapani, Sivaraman; Wagner, Bridget K; Clemons, Paul A; Booker-Milburn, Kevin I; Boskovic, Zarko V; Schreiber, Stuart L

    2016-07-20

    Organic chemists are able to synthesize molecules in greater number and chemical complexity than ever before. Yet, a majority of these compounds go untested in biological systems, and those that do are often tested long after the chemist can incorporate the results into synthetic planning. We propose the use of high-dimensional "multiplex" assays, which are capable of measuring thousands of cellular features in one experiment, to annotate rapidly and inexpensively the biological activities of newly synthesized compounds. This readily accessible and inexpensive "real-time" profiling method can be used in a prospective manner to facilitate, for example, the efficient construction of performance-diverse small-molecule libraries that are enriched in bioactives. Here, we demonstrate this concept by synthesizing ten triads of constitutionally isomeric compounds via complexity-generating photochemical and thermal rearrangements and measuring compound-induced changes in cellular morphology via an imaging-based "cell painting" assay. Our results indicate that real-time biological annotation can inform optimization efforts and library syntheses by illuminating trends relating to biological activity that would be difficult to predict if only chemical structure were considered. We anticipate that probe and drug discovery will benefit from the use of optimization efforts and libraries that implement this approach. PMID:27398798

  6. Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka; Cerna, Milena; Pastorkova, Anna; Jelinek, Richard; Benes, Ivan; Novak, Jiri; Sram, Radim J

    2003-04-09

    The capital of the Czech Republic, Prague, appears today to be one of the most polluted residential areas in the country, whereas air pollution in the Northern Bohemia region (the former 'Black Triangle Region') has substantially decreased during the last decade, especially with respect to the gaseous pollutant SO{sub 2}. This study evaluated the biological activities of complex mixtures of organic compounds adsorbed onto ambient air particles (PM10) collected during the summer and winter seasons of 2000-2001 at three monitoring sites - Teplice (TP), Prague-Smichov (PRG-SM) (city centre) and Prague-Libus (PRG-LB) (suburban area). The following short-term in vitro assays with strikingly different endpoints were used: a bacterial mutagenicity test using the Salmonella typhimurium tester strain TA98 and YG1041, an acellular assay (CT DNA) combined with {sup 32}P-postlabelling to evaluate DNA adduct-forming potency and the chick embryotoxicity screening test (CHEST). The results of the mutagenicity test with the YG1041 strain, the acellular genotoxicity (DNA adducts) and the embryotoxicity tests responded to the amount of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs) analysed in the EOM (dichloromethane extractable organic matter) samples tested. Nevertheless, the biological effects of the EOM did not differ between locations. The highest biological activity of the ambient air in terms of organic compounds associated with particles (per unit volume of air) was seen in the Prague city centre during both summer and winter seasons. At this location, B[a]P concentration ranged from 0.1 to 8.9 ng/m{sup 3} (mean 0.3 and 3.6 ng/m{sup 3} for summer and winter seasons, respectively), 13 PAHs ranged from 11 to 343 ng/m{sup 3} (mean 52 and 160 ng/m{sup 3} for summer and winter seasons, respectively). Generally, using in vitro tests, higher ambient air activity was found in the winter season as compared with the summer season at all three monitoring sites

  7. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. PMID:26586600

  8. Síntesis y Actividad Biológica de Nuevos Compuestos Gemini Peptídicos Synthesis and Biological Activity of New Peptide-Based Gemini Compounds

    Directory of Open Access Journals (Sweden)

    Diana M Müller

    2011-01-01

    Full Text Available Se ha sintetizado y evaluado la actividad antimicrobiana de nuevos compuestos gemini derivados de un tetrapéptido. La síntesis se realizó utilizando química en fase sólida y N-d -alquilación directa e indirecta de los residuos peptídicos de ornitina . La actividad antimicrobiana se ensayó frente a cepas ATCC (American Type Culture Collection mediante difusión en agar y determinación de la concentración inhibitoria mínima. El método directo de N- alquilación con carbonato de potasio fue el más adecuado con rendimientos del 40 % permitiendo obtener compuestos mono y di alquilados biológicamente activos. La baja masa molecular de estos compuestos, su forma simple de obtención y su actividad hacia bacterias causantes de enfermedades de transmisión alimentaria los hace tecnológicamente atractivos para ser utilizados como preservadores alimentarios. La presencia de ornitina en las moléculas les otorga resistencia enzimática y vida media biológica mayor, por que podrían ser utilizados para el desarrollo de drogas con fines terapéuticos.The antimicrobial activity of new gemini derived from a tetrapeptide has been evaluated. The synthesis was carried out using solid phase chemistry and N - d - direct and indirect alkylation of the ornithine peptide residue . The antimicrobial activity was tested against ATCC strains (American Type Culture Collection by well-diffusion assay and determination of minimal inhibitory concentration. The method of N- alkylation with potassium carbonate was the best with yields of 40% allows achieving biologically active mono and dialkylate surfactants. The low molecular weight of these compounds, their simple way of preparation and their activity towards bacteria causing food-borne diseases makes them technologycally attractive for use as food preservatives. The presence in the molecules of ornithine gives them enzymatic resistance and a longer biological half-life and thus may be used to develop drugs

  9. Some biological compounds, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. sub sp. montana from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Emre, I.; Kursat, M.; Yilmaz, O.; Erecevit, P.

    2011-07-01

    This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids), radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54+-0.13-3.05+-0.04%), oleic acid (C18:1 n9, 22.41+-0.8-18.83+-0.1%) and a-inolenic acid were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol and ergosterol as well as beta-sitosterol. The present findings show that Nepeta italica L. contains morin, catechin, naringin and Sideritis montana L. subsp. montana contains morin, naringenin as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios. (Author).

  10. Some biological compounds, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Emre, I.; Kursat, M.; Yilmaz, O.; Erecevit, P.

    2011-07-01

    This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids), radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54+-0.13-3.05+-0.04%), oleic acid (C18:1 n9, 22.41+-0.8-18.83+-0.1%) and a-inolenic acid were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol and ergosterol as well as beta-sitosterol. The present findings show that Nepeta italica L. contains morin, catechin, naringin and Sideritis montana L. subsp. montana contains morin, naringenin as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios. (Author).

  11. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    Science.gov (United States)

    Carbone, Katya; Fiordiponti, Luciano

    2016-01-01

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines. PMID:27455227

  12. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  13. Some biological compounds, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. sub sp. montana from Turkey

    International Nuclear Information System (INIS)

    This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids), radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54+-0.13-3.05+-0.04%), oleic acid (C18:1 n9, 22.41+-0.8-18.83+-0.1%) and a-inolenic acid were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol and ergosterol as well as beta-sitosterol. The present findings show that Nepeta italica L. contains morin, catechin, naringin and Sideritis montana L. subsp. montana contains morin, naringenin as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios. (Author).

  14. Biological activity determination

    Czech Academy of Sciences Publication Activity Database

    Madronová, L.; Novák, J.; Kubíček, J.; Antošová, B.; Kozler, J.; Novák, František

    New York: Nova Science Publisher, 2011 - (Madronová, L.), s. 85-103. (Chemistry Research and Applications). ISBN 978-1-61668-965-0 Institutional research plan: CEZ:AV0Z60660521 Keywords : biological activity * determination * potassium humate samples Subject RIV: CB - Analytical Chemistry, Separation

  15. 微藻的生物活性物质及其功能%Biologically active compounds from microalgae and its health function

    Institute of Scientific and Technical Information of China (English)

    卢仡; 林红华; 柯群

    2011-01-01

    Microalgae are a biochemically diverse assemblage of microorganisms amenable to fermentation and mass culture.Most of these microalgae species produce unique products like carotenoids,antioxidants,fatty acids, enzymes,polymers,peptides,toxins and sterols.Microalgae might become economic sources of new drugs,other specialty chemicals and functional foods because production can be optimized in controlled culture. This paper introduced the biologically active compounds from microalgae and its health function, studies of microalgae in human nutrition and new trends in microalgae food,researched on microalgal health food,and the development of information was provided.%微藻是适于发酵和生物培养的一种微生物生化组合.大多数微藻产生特有的生物活性物质,如类胡萝卜素、抗氧化剂、脂肪酸、酶类、聚合物、肽类、毒素和甾醇.由于微藻可以控制、优化培养条件,将能成为新的药品、特种化学品和功能食品的经济资源.本文对微藻的生物活性物质及其保健功能、微藻与人类营养方面的研究以及微藻食品的新发展做了较全面的介绍,以期时微藻保健食品的研究、开发提供有益的参考.

  16. 具有生物活性的有机硅化合物的制备%Preparations of Organosilicon Compounds with Biological Activity

    Institute of Scientific and Technical Information of China (English)

    李中华; 田德美; 朱传方

    1999-01-01

    Substituted arylaminopropyl silatranes(Ⅰ)and N-arylsulfonyl aminopropyl silatranes(Ⅱ)were prepared and their structures were identified by IR, 1 HNMR and elemental analysis.Bioassay results were showed that some of these compounds had a good antibacterial activity.

  17. Xanthane sesquiterpenoids: structure, synthesis and biological activity.

    Science.gov (United States)

    Vasas, Andrea; Hohmann, Judit

    2011-04-01

    The aim of this review is to survey the naturally occurring xanthanes and xanthanolides, their structures, biological activities, structure–activity relationships and synthesis. There has been no comprehensive review of this topic previously. On the basis of 126 references, 112 compounds are summarized. PMID:21321751

  18. Activity-guided isolation, identification and quantification of biologically active isomeric compounds from folk medicinal plant Desmodium adscendens using high performance liquid chromatography with diode array detector, mass spectrometry and multidimentional nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Zielińska-Pisklak, Monika A; Kaliszewska, Dorota; Stolarczyk, Magdalena; Kiss, Anna K

    2015-01-01

    The antioxidant activity of the crude extract (60% ethanol) from the leaves of Desmodium adscendens (Sw.) DC. (Fabaceae) was observed in DPPH, xanthine/xanthine oxidase, lipid peroxydation and neutrophils burst tests. Further activity-guided fractionation on C18 column (water, 20% methanol, 50% methanol and 100% methanol) resulted in the separation of the fraction (50% methanol) with the highest antioxidant capacity. HPLC-DAD analysis of biologically active fraction revealed the presence of two pairs of flavonoid isomers as the dominant constituents. Those compounds were isolated and purified by multi-step liquid column chromatography (Sephadex LH20). Their structures were elucidated by various spectroscopic techniques, including NMR, UV and MS. Based on 1D and 2D NMR spectra as well as ion fragmentation, flavonoids were identified as: isovitexin 2''-O-xyloside (1), vitexin 2''-O-xyloside (2), vitexin (3) and isovitexin (4). The hybrid HSQC-DEPT technique provided very fast determination of the glycosylation positions in aglycone and the type of glycosidic bond in the flavonoid isomers. This study provides novel information concerning identity of the major compounds present in the leaves of D. adscendens cultivated in Ghana, which broadens the knowledge about anti-inflammatory, antiallergic and antioxidant properties of their extracts. PMID:25240729

  19. SYNTHESIS AND BIOLOGICAL ACTIVITY OF FURAN DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Verma Anupam

    2011-04-01

    Full Text Available Furan derivative are an important class of heterocyclic compound that possess important biological properties. From last few decades a considerable amount of attention has been focussed on synthesis of Furan derivatives and screening them for different pharmacological activities.The furan ring system is the basic skeleton of numerous compounds possessing cardiovascular activities. An iodinated lipophilic furan derivative is widely used in the treatment of ventricular and atrial fibrillation. These moieties are widely employed as antibacterial, antiviral, anti-inflammatory, antifungal, antitumor, Antihyperglycemic, Analgesic, Anticonvulsant etc. Slight change in substitution pattern in furan nucleus causes distinguishable difference in their biological activities. In this review we are discussing about synthesis and various biological activities of newly synthesized furan derivatives.

  20. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops.

    Science.gov (United States)

    Dušek, Martin; Jandovská, Vladimíra; Čermák, Pavel; Mikyška, Alexandr; Olšovská, Jana

    2016-08-15

    The phenolic compounds, secondary metabolites of hops represent a large family of compounds that could be subsequently divided into smaller groups based on the similarities between their chemical structures. The antibacterial, antifungal and antiviral properties of hops are well known, but there is a lack of information about antimicrobial activities of individual hop compounds. This study was carried out with an objective to identify compounds present in hops that have potential antibacterial activity. In the first stage of experiment, the active compounds with potential anti-microbial activity had to be extracted from hop cones. Therefore, minced hop cones were applied on solid growth medium inoculated with Staphylococcus aureus. The active substances that migrated into the medium created an inhibition zone. In the second stage of experiment, the inhibition zones were cut out from Petri dishes, active compounds were extracted from these zones and consequently analyzed using LC-HRMS. These complex assays were developed and optimized. The data were acquired by using a quadrupole-orbitrap hybrid mass spectrometer by targeted-MS2 experiment in both ionization modes. The MS method has been developed as a screening method with a subsequent fragmentation of compound of interest on the base of inclusion mass list. The unknown compounds extracted from inhibition zones have been identified either by searching against a database or their structure has been elucidated on the basis of their fragmentation spectra. On the basis of this experiment the list of active compounds with potential anti-microbial activities was enhanced. PMID:27260455

  1. Human biological monitoring of suspected endocrine-disrupting compounds

    Directory of Open Access Journals (Sweden)

    Moosa Faniband

    2014-02-01

    Full Text Available Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends.

  2. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  3. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20338672

  4. Design, synthesis, and biological evaluation of a biyouyanagin compound library

    OpenAIRE

    Nicolaou, K. C.; Sanchini, Silvano; Sarlah, David; Lu, Gang; Wu, T. Robert; Nomura, Daniel K.; Cravatt, Benjamin F.; Cubitt, Beatrice; de la Torre, Juan C.; Hessell, Ann J.; Burton, Dennis R.

    2011-01-01

    Modern drug discovery efforts rely, to a large extent, on lead compounds from two classes of small organic molecules; namely, natural products (i.e., secondary metabolites) and designed compounds (i.e., synthetic molecules). In this article, we demonstrate how these two domains of lead compounds can be merged through total synthesis and molecular design of analogs patterned after the targeted natural products, whose promising biological properties provide the motivation. Specifically, the pre...

  5. BENZIMIDAZOLES: THE LATEST INFORMATION ON BIOLOGICAL ACTIVITIES

    OpenAIRE

    Singh Gurvinder; Kaur Maninderjit; Chander Mohan

    2013-01-01

    Benzimidazole is a heterocyclic aromatic organic compound. It is an important pharmacophore and a privileged structure in medicinal chemistry. Benzimidazole and its derivatives play an important role in medical field with large number of Pharmacological activities such as antimicrobial, antiviral, antidiabetic and anticancer activity. This review is summarized to know about the chemistry of different derivatives of benzimidazoles along with their biological actions such as antioxidant, antimi...

  6. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  7. Some Biological Compounds, Radical Scavenging Capacities and Antimicrobial Activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana from Turkey

    Directory of Open Access Journals (Sweden)

    Erecevit, Pınar

    2011-03-01

    Full Text Available This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54±0.13- 3.05±0.04%, oleic acid (C18:1 n9, 22.41±0.8-18.83±0.1% and α-linolenic acid (C18:3 n3;39.56±0.67-77.04±2.07% were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol (630.07±1.81µg/g, 80.74±0.71µg/g, respectively and ergosterol (1.11±0.14µg/g, 161.32±0.63µg/g respectively as well as beta-sitosterol (2.93±0.03 µg/g. The present findings show that Nepeta italica L. contains morin (37.79±1.09μg/g, catechin (124.39±2.23µg/g, naringin (475.96±3.57µg/g and Sideritis montana L. subsp. montana contains morin (188.41±2.53µg/g, catechin (64.14±1.86μg/g, naringenin (38.34±1.78μg/g as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios.Este estudio ha determinado algunos compuestos biológicos (ácidos grasos, vitaminas liposolubles, esteroles y flavonoides, capacidad atrapadora de radicales libres, y actividades antimicrobianas de las semillas de Nepeta italica L. y Sideritis montana L. subsp. montana. Se encontró que el ácido palmítico (C16:0; 8.54±0.13-3.05±0.04%, ácido oleico (C18:1 n9, 22.41±0.8-18.83±0.1% y α-linolénico (C18:3 n 3;39.56±0.67-77.04±2.07% eran mayoritarios en ambas semillas de Nepeta italica L. y Sideritis

  8. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072. ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.407, year: 2014

  9. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    NARCIS (Netherlands)

    Tangerman, Albert

    2009-01-01

    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  10. labeling of some organic compounds of expected biological activity with Tc-99m eluted from a chromatographic column packed with zirconium molybdate containing mo-99

    International Nuclear Information System (INIS)

    The growth of nuclear medicine has been due mainly to the availability of 99mTc-radiopharmaceuticals; this single isotope is used in over 80% of all diagnostic procedures. Each year, roughly 25 million procedures are carried out with 99mTc-radio-pharmaceuticals, the universal use of this radioisotope (Technetium-99m, t1/2= 6.02 h) is due to its advantageous properties such as suitable half-life (it is short enough to save the patient from high radiation dose, and long enough to carry out labeling and scintigraphic measurements), γ-ray energy (140 keV; 89.4%) reasonable for SPECT, and very low abundance β- emission. Technetium-99m is readily available in a sterile, pyrogen free, and no-carrier added state from 99Mo/99mTc generators.The selection of iminodiacetic acid (IDA) derivatives to target 99mTc as radioactive element to the hepatobiliary system is based on the reported finding that iminodiacetic acid capable of complexing reduced Tc-99m and easily incorporated into biologically active molecules. 99mTc labeled iminodiacetic acid (IDA) derivatives offer a high degree of specificity for localization in the gallbladder with rapid extraction by the polygonal cells of the liver and very low urinary excretion. Various diseases related to liver function, such as jaundice and biliary obstruction, are diagnosed by the use of 99mTc-labeled IDA derivatives. Chronic and acute cholecystitis can be differentiated with 99mTc-IDA derivatives.In the presented work, 99mTc in an acceptable radionuclidic, radiochemical and chemical purity using an easy and cheap method was produced. The produced 99mTc was suitable to be used in the labeling techniques and in studying of the biological behavior of some synthesized iminodiacetic acid derivatives (1-naphthyl carbamoylmethyl iminodiacetic acid (NIDA), Diphenyl methyl carbamoylmethyl iminodiacetic acid (DMIDA) and Biphenyl-2-yl carbamoylmethyl iminodiacetic acid (BPIDA)). NIDA, DMIDA and BPIDA were synthesized and well characterized

  11. Synthesis, Spectroscopic and Physicochemical Characterization and Biological Activity of Co(II) and Ni(II) Coordination Compounds with 4-Aminoantipyrine Thiosemicarbazone

    OpenAIRE

    Ram K. Agarwal; Surendra Prasad

    2004-01-01

    We describe the synthesis and characterization of cobalt(II) and nickel(II) coordination compounds of 4[N-(furan-2’-aldimine)amino]antipyrine thiosemicarbazone (FFAAPTS) and 4[N-(4'-nitrobenzalidene) amino]antipyrine thiosemicarbazone (4'-NO2BAAPTS). All the isolated compounds have the general composition MX2(L)(H2O) (M = Co2+ or Ni2+; X = Cl, Br, NO3, NCS or CH3COO; L = FFAAPTS or 4'-NO2BAAPTS) and M(ClO4)2(L)2 (M = Co2+ or Ni2+; L = FFAAPTS or 4'-NO2BAAPTS). Infrared spectral studies i...

  12. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF SOME NOVEL ARYL AND HETROARYL CHALCONE ANALOGUES

    OpenAIRE

    Tribhuvan Singh; R Lavanya; Srikanth Merugu; P.Sudhakar; Syeda Sana Yasmeen

    2012-01-01

    A new series of Heterocyclic chalcones showed diversified biological activities. In view of potential biological activities of Heterocyclic chalcones derivative were prepared by claisen-Schmidt condensation technique. The compound were screened for anti-inflammatory and antibacterial activity.

  13. Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000-2001

    Czech Academy of Sciences Publication Activity Database

    Binková, Blanka; Černá, M.; Pastorková, A.; Jelínek, R.; Beneš, I.; Novák, J.; Šrám, Radim

    2003-01-01

    Roč. 525, - (2003), s. 43-59. ISSN 0027-5107 R&D Projects: GA MŽP SI/340/2/00 Grant ostatní: GA-(XE) IC QLRT-2000-00091 Institutional research plan: CEZ:AV0Z5039906 Keywords : Air pollution * air particles (PM10) * polycyclic aromatic compounds Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.433, year: 2003

  14. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools

    International Nuclear Information System (INIS)

    We investigated occurrence of selected compounds (4-t-octylphenol: 4-t-OP; 4-nonylphenols: 4-NP; bisphenol-A: BPA; estrone: E1; 17β-estradiol: E2; triclosan: TCS) and estrogenicity in surface water and sediment of the Yellow River in China by using combined chemical analysis and in vitro yeast screen bioassay. Estrogenic compounds 4-t-OP, 4-NP, BPA, E1, E2 and TCS were measured in the water samples, with their average concentrations of 4.7, 577.9, 46.7, 1.3, ND and 6.8 ng/L, respectively. In sediment, the average concentrations of 4-t-OP, 4-NP, BPA and TCS were 35.7, 0.5, 1.7 and 0.7 ng/g while E1 and E2 were not detected in the sediments of all selected sites. In general, the estrogenic compounds in surface water and sediment of the Yellow River were at relatively low levels, thus having medium to minimal estrogenic risks in most sites except for the site of east Lanzhou with high estrogenic risks. - Highlights: ► The concentrations for the target compounds in the dry season were higher than in the wet season. ► Lower concentrations in the river sediments than reported data in other regions were observed due to the sandy nature. ► Estrone and estradiol were not detected in sediment. ► High estrogenic risks were found at the site of east Lanzhou with sewage effluent discharge. - Estrogenic risks to aquatic organisms were assessed by using combined chemical analysis and in vitro bioassay.

  15. Synthesis, Spectroscopic and Physicochemical Characterization and Biological Activity of Co(II and Ni(II Coordination Compounds with 4-Aminoantipyrine Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Ram K. Agarwal

    2004-01-01

    Full Text Available We describe the synthesis and characterization of cobalt(II and nickel(II coordination compounds of 4[N-(furan-2’-aldimineamino]antipyrine thiosemicarbazone (FFAAPTS and 4[N-(4'-nitrobenzalidene amino]antipyrine thiosemicarbazone (4'-NO2BAAPTS. All the isolated compounds have the general composition MX2(L(H2O (M = Co2+ or Ni2+; X = Cl, Br, NO3, NCS or CH3COO; L = FFAAPTS or 4'-NO2BAAPTS and M(ClO42(L2 (M = Co2+ or Ni2+; L = FFAAPTS or 4'-NO2BAAPTS. Infrared spectral studies indicate that both the thiosemicarbazones coordinate in their neutral form and they act as {N,N,S} tridentate chelating ligands. Room temperature magnetic measurements and electronic spectral studies suggest the distorted octahedral geometries of the prepared complexes. Thermogravimetric studies are also reported and the possible structures of the complexes are proposed. Antibacterial and antifungal properties of these metal-coordination compounds have also been studied.

  16. Brassinosteroids and their Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Strnad, Miroslav

    Vol. Part XIII. Heidelberg: Springer Verlag, 2013 - (Ramawat, K.; Mérillon, J.), s. 3851-3871 ISBN 978-3-642-22143-9 R&D Projects: GA AV ČR IAA400550801 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Anticancer activity * apoptosis * bioassay Subject RIV: EB - Genetics ; Molecular Biology

  17. Aminoderivatives of cycloalkanespirohydantoins: synthesis and biological activity.

    Science.gov (United States)

    Naydenova, Emilia; Pencheva, Nevena; Popova, Julita; Stoyanov, Neyko; Lazarova, Maria; Aleksiev, Boris

    2002-03-01

    3-Aminocycloalkanespiro-5-hydantoins were synthesized and their biological activity was studied. In contrast to hydantoins, these compounds failed to induce either anticonvulsive effects in the central nervous system or inhibitory effects on cholinergic contractions in the enteric nervous system. However, they exerted well pronounced, atropinsensitive, contractile effects on the guinea-pig ileum longitudinal muscle preparations. Structure-activity relationships established allow the assumption that: (i) the reduction of the ring size in the molecule of the spirohydantoins leads to an increase in the potency of the respective analogue to induce contractile effect; (ii) the introduction of -NH2 in position 3 increases the ability of all the compounds studied to exert contractions; (iii) the enlargement of the ring leads to: (1) an increase of the degree of desensitization of the preparations; and (2) a decrease (except 1a) of the potency of the analogues to exert contractile effects. PMID:11989796

  18. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  19. A comprehensive screen for volatile organic compounds in biological fluids.

    Science.gov (United States)

    Sharp, M E

    2001-10-01

    A headspace gas chromatographic (GC) screen for common volatile organic compounds in biological fluids is reported. Common GC phases, DB-1 and DB-WAX, with split injection provide separation and identification of more than 40 compounds in a single 20-min run. In addition, this method easily accommodates quantitation. The screen detects commonly encountered volatile compounds at levels below 4 mg%. A control mixture, providing qualitative and semiquantitative information, is described. For comparison, elution of the volatiles on a specialty phase, DB-624, is reported. This method is an expansion and modification of a screen that had been used for more than 20 years. During its first year of use, the expanded screen has proven to be advantageous in routine forensic casework. PMID:11599614

  20. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    Science.gov (United States)

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  1. Biological Activities of Polyphenols from Grapes

    Directory of Open Access Journals (Sweden)

    Hua-Bin Li

    2010-02-01

    Full Text Available The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included.

  2. Biological activity of guanidino purines

    Czech Academy of Sciences Publication Activity Database

    Česnek, Michal; Holý, Antonín

    Marburg : University of Marburg, 2006. s. 85. ISBN 3-89703-685-1. [Joint Meeting of the Czech, German and Hungarian Pharmaceutical Societies. 04.10.2006-07.10.2006, Marburg] R&D Projects: GA MŠk(CZ) 1M0508 Grant ostatní: Descartes Prize(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological activity * guanidino purines Subject RIV: CC - Organic Chemistry

  3. Determination of Radiotracer Stability of Tritium-Labelled Compounds in Biological Studies

    International Nuclear Information System (INIS)

    The recent extensive use of tritium-labelled compounds in biological studies makes it imperative that investigators verify the radiotracer stability of tritiated compounds. Even purification of labelled compounds to constant specific activity does not preclude the possibility of the tritium atom exchanging with hydrogen within a biological system. Radiotracer stability can be demonstrated by various methods once, meticulous radiochemical purification of the labelled material has been effected. In this report three different methods for establishing radiotracer stability of tritiated compounds are described. One approach is to compare the biological half-life of a H3-compound to that of a similar compound labelled with C14. This method is especially applicable to endogenous substances which undergo isotopic dilution when administered to animals. Stability of exogenous compounds can be verified by a second method. Here it is only necessary to demonstrate no diminution in specific activity when the labelled material is re-isolated from biological samples. A third method, less time-consuming than the first, and applicable to both endogenous and exogenous material is the determination of H3 to C14 isotope ratio in a mixture of the same compound labelled with both isotopes. Identical isotope ratios before administration of the double-labelled material and after re-isolation from organs or excreta demonstrate radiotracer stability. This method is particularly applicable where isolation of minute amounts of material necessitates the use of non-radioactive carrier. Data demonstrating the use of these methods for the verification of radiotracer stability will be presented with special reference to labelled cholesterol, morphine and digitoxin as examples for the three respective methods. (author)

  4. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13C- and 15N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [13C]-acetic acid, [13C]-formaldehyde, [13C]-allyl alcohol and [13C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this synthesis on a

  5. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  6. Electrochemical activation of reactions involving organometallic compounds

    International Nuclear Information System (INIS)

    Data on the electrochemical activation of various reactions involving organometallic compounds are generalised. Primary attention is devoted to the main types of transformation that can be performed by electrochemical electron transfer: redox activation of 16- and 18-electron complexes of transition metals, molybdenum, tungsten, and ruthenium in particular, as the first step of a broad range of reactions, electrocatalysis, mediator processes, and electrosynthesis of compounds containing carbon-metal σ-bonds

  7. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    OpenAIRE

    Yoon-Ha Kim; Gauhar Rehman; Shabir Ahmad; Syed Abdullah Gilani; Muhammad Hamayun; Javid Hussain; Abdul Latif Khan; Sang-Mo Kang; In-Jung Lee

    2010-01-01

    Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on ...

  8. Biological activity of ruthenium nitrosyl complexes.

    Science.gov (United States)

    Tfouni, Elia; Truzzi, Daniela Ramos; Tavares, Aline; Gomes, Anderson Jesus; Figueiredo, Leonardo Elias; Franco, Douglas Wagner

    2012-01-01

    Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [Ru(II)NO(+)](3+)/[Ru(II)NO(0)](2+) reduction potential, the specific rate constant for NO liberation from the [RuNO](2+) moiety, and the quantum yield of NO release. PMID:22178685

  9. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  10. Biological Activities of Scolopendrid Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Kim Sung-Chul

    2010-09-01

    Full Text Available 2Reactive Oxygen Species(ROS are continuously produced at a high rate as a by- product of aerobic metabolism. Since tissue damage by free radical increases with age, the reactive oxygen species(ROS such as hydrogen peroxide(H2O2, nitric oxide(NO. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. Our reserch objective was to examine the in vitro biological activity of Scolopendrid Pharmacopuncture, including the total poly-phenol content, DPPH radical scavenging, ABTS radical scavenging, Superoxide dismutase(SOD-like activity, Nitrite scavenging ability. The total poly-phenol contents of Scolopendrid Pharmacopuncture was 35.859mg/L. Elctron donation ability on DPPH was 36.82%. The 2,2'-azinobis-3-ehtlbezothiazoline-6- sulfonic acid radical decolorization (ABTS was 84.7%. The superoxide dismutase (SOD-like activities of Scolopendrid Pharmacopuncture was 44.33%. The nitrite scavenging effects were pH dependent, and were highest at pH 1.5(45.2% and lowest at pH 6.0(11.3%. We conclude that Scolopendrid Pharmacopuncture may be useful as potential sources of antioxidant.

  11. Secondary metabolites in grasses: characterization and biological activity

    OpenAIRE

    Aldo Tava

    2007-01-01

    In a series of studies dealing on the nutritional value of forage species, more attention was focussed on several compounds, named secondary metabolites, that are important in determining nutritional characteristics. Secondary metabolites are compounds detected in the green materials in low concentration compared to primary metabolites (proteins, sugars, lipids, fibers), but of fundamental importance for the plant physiology. The possess several biological activities and this contribute to th...

  12. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    Science.gov (United States)

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  13. Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    Directory of Open Access Journals (Sweden)

    Łukasz Pałkowski

    2015-01-01

    Full Text Available The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA, which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds.

  14. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  15. Studies on the biological effects of deuteriated organic compounds

    International Nuclear Information System (INIS)

    The antifungal activity of some perdeuterated fatty acids with a normal chain of 11 to 18 carbon atoms was investigated on common dermatophytes Epidermophyton floccosum, Microsporum canis, Trichophyton mentagrophytes and T. rubrum under in vitro conditions. A perdeuterated compound is one in which most of the hydrogen atoms in the molecule are replaced by deuterium. These studies were performed by the dilution technique with respiratory measurements. Perdeuteration of of some fatty acids increases their inhibitory effect on the dermatophyte growth. Perdeuterated n-hendecanoic acid proved to be the most active of the substances tested. Possible mechanisms behind the enhanced antifungal activity due to the perdeuteration of fatty acids are discussed. The present study investigates the antifungal properties of some perdeuterated fatty acids on dermatophytes in vitro

  16. Synthesis, Mass Spectrometric Studies, and Biological Evaluation of 3,5-Dimethoxyhomophthalic Acid and Related Compounds

    Institute of Scientific and Technical Information of China (English)

    GHULAM Qadeer; NASIM Hasan-rama; FAN Zhi-jin

    2007-01-01

    3,5-Dimethoxyhomophthalic acid was synthesized in four steps from 3,5-dimethoxycinnamic acid via a series of reactions including cyclization of 3-(3' ,5'-dimethoxyphenyl) propionic acid to 5,7-dimethoxy-1-indanone and oxidative decomposition of methyl-2-hydroxy-2-[ 5,7-dimethyoxy-1-oxo-1H-inden-2 (3H) -ylidene ] acetate to 3,5-dimethoxyhomophthalic acid. The synthesized compounds were characterized by elemental analysis, IR, 1H NMR, and MS. The biological evaluation experiments of 3,5-dimthoxyhomophthalic acid and the related synthesized compounds were also carried out. Naturally occurring biologically active isocoumarins were prepared in a single step by the condensation of the homophthalic acid with appropriate acid chlorides.

  17. Identification, isolation and characterization of active compounds from the Indian green mussels to develop drugs

    Digital Repository Service at National Institute of Oceanography (India)

    ) display biological activity against the malaria parasite (mouse and human tested). A compound (NIO-3) may find use for developing effective drugs for the prevention and treatment of osteoporosis, osteoarthritis, rheumatoid arthritis, prevention of bone...

  18. ANTIMICROBIAL ACTIVITY OF DIFFERENT THIOSEMICARBAZONE COMPOUNDS AGAINST MICROBIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    Negi Parul

    2012-05-01

    Full Text Available Thiosemicarbazone belongs to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety. They have been evaluated over the last 50 year as antiviral, antibacterial, antifungal, antimalarial, anticancer, leprosy, rheumatism, trypanosomiasis and coccidiodis. Thiosemicarbazones were prepared by simple process in which N4-thiosemicarbazone moiety was replaced by aliphatic, arylic and cyclic amines. Present study reported the anti-microbial activity of different thiosemicarbazone compounds against certain bacterial and fungal pathogens viz. Bacillus cereus, Staphylococcus epidermis, Moraxella cattarhalis, Staph. Saprophyticus, Candida albicans and Aspergillus flavans.

  19. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    Science.gov (United States)

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted. PMID:26250546

  20. Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties.

    Science.gov (United States)

    Kalinowska, Monika; Bielawska, Aleksandra; Lewandowska-Siwkiewicz, Hanna; Priebe, Waldemar; Lewandowski, Włodzimierz

    2014-11-01

    Apples are among the most popular fruits in the world. They are rich in phenolic compounds, pectin, sugar, macro- and microelements. Applying different extraction techniques it is possible to isolate a particular group of compounds or individual chemicals and then test their biological properties. Many reports point to the antioxidant, antimicrobial, anticancer and many other beneficial effects of apple components that may have potential applications in food, pharmaceutical and cosmetic industries. This paper summarizes and compiles information about apple phenolic compounds, their biological properties with particular emphasis on health-related aspects. The data are reviewed with regard to different apple varieties, part of apple, cultivation model and methods of extraction. PMID:25282014

  1. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  2. Secondary metabolites from Inula britannica L. and their biological activities.

    Science.gov (United States)

    Khan, Abdul Latif; Hussain, Javid; Hamayun, Muhammad; Gilani, Syed Abdullah; Ahmad, Shabir; Rehman, Gauhar; Kim, Yoon-Ha; Kang, Sang-Mo; Lee, In-Jung

    2010-03-01

    Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica. PMID:20336001

  3. Potential biological activity of acacia honey.

    Science.gov (United States)

    Muhammad, Aliyu; Odunola, Oyeronke A; Ibrahim, Mohammed A; Sallau, Abdullahi B; Erukainure, Ochuko L; Aimola, Idown A; Malami, Ibrahim

    2016-01-01

    Recent advances in functional foods-based research have increasingly become an area of major interest because it affects human health and activities. Functional foods are classes of foods with health promoting and disease preventing properties in addition to multiple nutritional values and of such type is honey. Acacia honey is a type of honey produced by bees (Apis mellifera) fed on Acacia flowers, hence the name. This review focuses on the potential biological activities of Acacia honey which includes quality, antioxidant, immuno-modulatory, antiproliferative and neurological properties at in vitro and in vivo levels. Based on our review, Acacia honey used from various researches is of high purity, contains some bioactive compounds ranging from vitamins, phenolics, flavonoids and fatty acids. It's highly nutritional with strong antioxidant and immuno-modulatory potentials which may therefore be considered a potential candidate for both cancer prevention and treatment. Neurologically, it may be considered as a viable therapeutic agent in the management of Alzheimer's disease. PMID:26709666

  4. Biological Activities of Plant Pigments Betalains.

    Science.gov (United States)

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2016-04-25

    Betalains are a family of natural pigments present in most plants of the order Caryophyllales. They provide colors ranging from yellow to violet to structures that in other plants are colored by anthocyanins. These include not only edible fruits and roots but also flowers, stems, and bracts. The recent characterization of different bioactivities in experiments with betalain containing extracts and purified pigments has renewed the interest of the research community in these molecules used by the food industry as natural colorants. Studies with multiple cancer cell lines have demonstrated a high chemopreventive potential that finds in vitro support in a strong antiradical and antioxidant activity. Experiments in vivo with model animals and bioavailability studies reinforce the possible role played by betalains in the diet. This work provides a critical review of all the claimed biological activities of betalains, showing that the bioactivities described might be supported by the high antiradical capacity of their structural unit, betalamic acid. Although more investigations with purified compounds are needed, the current evidences suggest a strong health-promoting potential. PMID:25118005

  5. Synthesis, structure and biological properties of active spirohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Lazić Anita M.

    2016-01-01

    Full Text Available Spirohidantoins represent an pharmacologically important class of heterocycles since many derivatives have been recognized that display interesting activities against a wide range of biological targets. First synthesis of cycloalkanespiro-5-hydantoins was performed by Bucherer and Lieb 1934 by the reaction of cycloalkanone, potassium cyanide and ammonium-carbonate at reflux in a mixture of ethanol and water. QSAR (Quantitative Structure-Activity Relationship studies showed that a wide range of biological activities of spirohydantoin derivatives strongly depend upon their structure. This paper describes different methods of synthesis of spirohydantoin derivatives, their physico-chemical properties and biological activity. It emphasizes the importance of cycloalkanespiro-5-hydantoins with anticonvulsant, antiproliferative, antipsychotic, antimicrobial and antiinflammatory properties as well as their importance in the treatment of diabetes. Numerous spirohydantoin compounds exhibit physiological activity such as serotonin and fibrinogen antagonist, inhibitors of the glycine binding site of the NMDA receptor also, antagonist of leukocyte cell adhesion, acting as allosteric inhibitors of the protein-protein interactions. Some spirohydantoin derivatives have been identified as antitumor agents. Their activity depends on the substituent presented at position N-3 of the hydantoin ring and increases in order alkene > ester > ether. Besides that, compounds that contain two electron withdrawing groups (e.g. fluorine or chlorine on the third and fourth position of the phenyl ring are better antitumor agents than compounds with a single electron withdrawing group. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  6. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  7. BIOLOGICAL ACTIVITIES OF OXAZINE AND ITS DERIVATIVES: A REVIEW

    Directory of Open Access Journals (Sweden)

    SINDHU T J

    2014-12-01

    Full Text Available Oxazine derivatives are an important class of heterocycles, which has attracted much synthetic interest due to their wide range of biological activities. Oxazine is a heterocyclic compound can be formally derived from benzene, and its reduction products, by suitable substitution of carbon (and hydrogen atoms by nitrogen and oxygen. In the last few years oxazine derivatives have proved to be valuable synthetic intermediates and also possess important biological activities like sedative, analgesic, antipyretic, anticonvulsant, antitubercular, antitumour, antimalarial and antimicrobial. In these days, development of drug resistance is a major problem and to overcome this situation, it is necessary to synthesize new classes of compounds. The aim of the article is to review the generalization of the collected data about the synthesis of oxazine derivatives and their activities. We hope that this work will be a definite interest for researchers concerned with azines in generally and oxazines in particular.

  8. Synthesis, Biological Activities of Mono-substituted Pyrimidine-pyridine Sulfonylurea Compounds%单取代嘧啶基吡啶磺酰脲化合物的合成和生物活性

    Institute of Scientific and Technical Information of China (English)

    童军; 郑占英; 李永红; 王素华; 李正名

    2012-01-01

    [方法]以单取代苯磺酰脲除草剂为基础,在分子中以吡啶环代替苯环设计合成了15个新的吡啶磺酰脲化合物,所有合成的化合物经核磁、元素分析确证,并对其生物活性进行了研究.[结论]剂量为300 g a.i./hm2时,大部分化合物对被测4种杂草的抑制活性不明显.%[Methods] Based on the structure of mono-substituted pyrimidine sulfonylurea herbicides developed 15 novel pyridinyl sulfonylurea molecules containing mono-substituted pyrimidine rings were designed and synthesized. The structures of all compounds were confirmed by 1H NMR and elemental analysis. The bioassay was also carried out, [Conclusions] The biological screening results showed that the inhibitory effects of most of synthesized compounds were not obvious at the concentration of 300 g a.i./ha.

  9. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF SOME NOVEL ARYL AND HETROARYL CHALCONE ANALOGUES

    Directory of Open Access Journals (Sweden)

    Tribhuvan Singh

    2012-07-01

    Full Text Available A new series of Heterocyclic chalcones showed diversified biological activities. In view of potential biological activities of Heterocyclic chalcones derivative were prepared by claisen-Schmidt condensation technique. The compound were screened for anti-inflammatory and antibacterial activity.

  10. Humin-based complexes and study of their biological activity under irradiation

    International Nuclear Information System (INIS)

    Full text : Several experimental studies have indicated that humin acids has features such as antioxidant activity, antiradiation activity and other. It is known that the humin acids are biologically active organic compounds with characteristics of high polyfunctional and complexing acids. The biological activity of these compounds is connected with presence of phenolic and hydroxyl groups. The main goal of this research is to increase biological activity and sorption properties of humin acids and obtaining of their modified and enriched forms with organic minerals and their analysis on model plant objects. Humin acids solutions can stimulate the life activity of irradiated plants with critical doses and plants growing in the polluted soils with radionuclides

  11. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    Science.gov (United States)

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  12. BIOLOGICALLY ACTIVE TRITERPENOIDS USABLE AS PRODRUGS

    Czech Academy of Sciences Publication Activity Database

    Urban, M.; Kvasnica, Miroslav; Dickinson, N.J.; Sarek, J.

    Hauppauge NY : Nova Science Pub. Inc, 2015, s. 25-49. ISBN 978-1-63463-656-8 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : triterpenoids * therapeutics * biological activity Subject RIV: EB - Genetics ; Molecular Biology http://site.ebrary.com/lib/alltitles/docDetail.action?docID=11006921

  13. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.

    Science.gov (United States)

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  14. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  15. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  16. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. PMID:21953905

  17. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    Institute of Scientific and Technical Information of China (English)

    V Rajashekar; E Upender Rao; Srinivas P

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird’s eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation.

  18. Biologically active substance usable in organic agriculture

    OpenAIRE

    Šircová, Alena

    2012-01-01

    Organic farming system is a model of continuous agricultural activities, in that no synthetic pesticides, herbicides, growth regulators or GMOs may be used for plant protection. Such biological plant protection is allowed, where different antagonistic relationships between individual micro- and macro-organisms and pests occur. Certain biologically active substances contained in plants have a positive effect in protecting plants from pests and diseases as well as extracts from them functio...

  19. Orally active opioid compounds from a non-poppy source.

    Science.gov (United States)

    Raffa, Robert B; Beckett, Jaclyn R; Brahmbhatt, Vivek N; Ebinger, Theresa M; Fabian, Chrisjon A; Nixon, Justin R; Orlando, Steven T; Rana, Chintan A; Tejani, Ali H; Tomazic, Robert J

    2013-06-27

    The basic science and clinical use of morphine and other "opioid" drugs are based almost exclusively on the extracts or analogues of compounds isolated from a single source, the opium poppy (Papaver somniferum). However, it now appears that biological diversity has evolved an alternative source. Specifically, at least two alkaloids isolated from the plant Mitragyna speciosa, mitragynine ((E)-2-[(2S,3S)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[3,2-h]quinolizin-2-yl]-3-methoxyprop-2-enoic acid methyl ester; 9-methoxy coryantheidine; MG) and 7-hydroxymitragynine (7-OH-MG), and several synthetic analogues of these natural products display centrally mediated (supraspinal and spinal) antinociceptive (analgesic) activity in various pain models. Several characteristics of these compounds suggest a classic "opioid" mechanism of action: nanomolar affinity for opioid receptors, competitive interaction with the opioid receptor antagonist naloxone, and two-way analgesic cross-tolerance with morphine. However, other characteristics of the compounds suggest novelty, particularly chemical structure and possible greater separation from side effects. We review the chemical and pharmacological properties of these compounds. PMID:23517479

  20. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities

    OpenAIRE

    Shukranul Mawa; Khairana Husain; Ibrahim Jantan

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is l...

  1. In vitro biological activities of alkaloids from Cryptolepis sanguinolenta.

    Science.gov (United States)

    Cimanga, K; De Bruyne, T; Lasure, A; Van Poel, B; Pieters, L; Claeys, M; Berghe, D V; Kambu, K; Tona, L; Vlietinck, A J

    1996-02-01

    In our biological screening of higher plants, an aqueous and an 80% EtOH extract from the root bark of Cryptolepis sanguinolenta showed potent antibacterial, anticomplementary, and moderate antiviral activities, but no antifungal effect could be detected. Bioassay-guided fractionation of the 80% EtOH extract led to the isolation of three alkaloids: quindoline (1), hydroxycryptolepine (2), cryptolepine.HCl (3), and the corresponding base cryptolepine (4). All compounds strongly inhibited the growth of Gram-positive bacteria (MIC 500 micrograms/ml) against selected Gram-negative bacteria. They also possessed a bactericidal effect depending on the bacterial strain. Compounds 1, 2 and 3 displayed a dose-dependent inhibitory effect on the classical pathway of the complement system while compounds 2 and 3 activated the alternative pathway, except for compound 1. Compound 3 was found to possess an antiherpetic activity. Compounds 1 and 4 showed no antiviral effect, but were quite cytotoxic in the antiviral test system down to a concentration of 1 microgram/ml. PMID:8720383

  2. Synthesis and biological evaluation of biaryl analogs of antitubulin compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tozatti, Camila Santos Suniga; Khodyuk, Rejane Goncalves Diniz; Silva, Adriano Olimpio da; Santos, Edson dos Anjos dos; Amaral, Marcos Serrou do; Lima, Denis Pires de, E-mail: denis.lima@ufms.br [Centro de Ciencias Exatas e Tecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Hamel, Ernest [Screening Technologies Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, MD (United States)

    2012-07-01

    This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [{sup 3}H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site. (author)

  3. Synthesis and biological evaluation of biaryl analogs of antitubulin compounds

    Directory of Open Access Journals (Sweden)

    Camila Santos Suniga Tozatti

    2012-01-01

    Full Text Available This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [³H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site.

  4. Biological Activities of Asparagus Racemosus

    OpenAIRE

    Potduang, Buppachart; Meeploy, Maneerat; Giwanon, Rattanasiri; Benmart, Yaowaluck; Kaewduang, Montree; Supatanakul, Winai

    2008-01-01

    Cytotoxic, antioxidant, tyrosinase inhibitory, antimicrobial activities of the crude ethanol extract of dry powdered roots of Asparagus racemosus (Liliaceae) were investigated. The LC50 to brine shrimp was 2189.49 µg/ml; the EC50 for DPPH radical scavenging was 381.91 µg/ml; the IC50 for tyrosinase inhibition was 7.98 mg/ml. The extract was active at 5–20 mg/ml against various pathogenic microbial (16 species, 18 strains) using the agar dilution assay, with the minimum inhibitory concentratio...

  5. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    Science.gov (United States)

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  6. Study of Transport of Biologically Important Compounds in\

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šestáková, Ivana; Vodičková, H.; Jaklová Dytrtová, Jana; Gál, M.

    Singapore: IACSIT Press, 2015, s. 43-50. (International Proceedings of Chemical, Biological & Environmental Engineering. Vol. 90). ISBN 978-981-09-7382-7. [International Conference on Environment, Chemistry and Biology (ICECB 2015) /4./. Auckland (NZ), 19.11.2015-21.11.2015] R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : membrane * cell * protoplast Subject RIV: CG - Electrochemistry

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    OpenAIRE

    Hee Jae Shin; Muhammad Abdul Mojid Mondol; Mohammad Tofazzal Islam

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activi...

  8. Biological remediation of explosives and related nitroaromatic compounds

    Czech Academy of Sciences Publication Activity Database

    Snellinx, Z.; Nepovím, Aleš; Taghavi, S.; Vangronsveld, J.; Vaněk, Tomáš; Lelie, D.

    2002-01-01

    Roč. 9, - (2002), s. 48-61. ISSN 0944-1344 R&D Projects: GA ČR GA206/99/P034; GA ČR GA206/99/1252 Institutional research plan: CEZ:AV0Z4055905 Keywords : biological remediation Subject RIV: CE - Biochemistry Impact factor: 1.238, year: 2002

  9. CANTHARELLUS CIBARIUS - CULINARY-MEDICINAL MUSHROOM CONTENT AND BIOLOGICAL ACTIVITY.

    Science.gov (United States)

    Muszyńska, Bozena; Kała, Katarzyna; Firlej, Anna; Sułkowska-Ziaja, Katarzyna

    2016-01-01

    One of the most frequently harvested mushrooms in Polish forests is Yellow chanterelle (chanterelle) - Cantharellus cibarius Fr. from the Cantharellaceae family. Chanterelle is an ectomycorrhizal mushroom occurring in Poland. Chanterelle lives in symbiosis with pine, spruce, oak and hombeam. In cookery, chanterelle is appreciated because of the aroma, taste, firmness and crunchiness of its fruiting bodies. Wild edible mushrooms are widely consumed in Asia, Western Europe and Central America. Chanterelle contains a great number of carbohydrates and proteins and a low amount of fat. Actual review presents the main groups of physiologically active primary and secondary metabolites in the fruiting bodies of chanterelle such as indole and phenolic compounds, carbohydrates, fatty acids, proteins, free amino acids, sterols, carotenoids, enzymes, vitamins and elements with biological activity. The presence of these compounds and elements conditions the nutrient and therapeutic activity of chanterelle, e.g., immunomodulatory, anti-inflammatory, antioxidant, antiviral, antimicrobial and antigenotoxic properties. PMID:27476275

  10. Grape Seed Oil Compounds: Biological and Chemical Actions for Health.

    Science.gov (United States)

    Garavaglia, Juliano; Markoski, Melissa M; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  11. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    Science.gov (United States)

    Garavaglia, Juliano; Markoski, Melissa M.; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  12. PREDICTION OF BIOLOGICAL ACTIVITY SPECTRA FOR SECONDARY METABOLITES FROM MARINE MACROALGAE CAULERPA SPP (CHLOROPHYTA – CAULERPALS

    Directory of Open Access Journals (Sweden)

    R. Azhaguraj

    2012-05-01

    Full Text Available This study aims to evaluate the biological activity of Caulerpin β-Sitosterol, Taraxerol and Palmtic acid isolated from the marine macro algae Caulerpa spp. The PASS computer program was used in this study to predict the biological activity profile of the four Phenazine derivates. The results were analyzed to show various biological activities like pharmacological (Kinase inhibitor, Neuroprotector and Antiviral, Effects (Oxidoreductase inhibitor, Acid Phosphatase inhibitor and toxicological activity (Teratogen of these compounds. The PASS software is useful for the study of biological activity of secondary metabolites.

  13. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    Cédric Charrier; Joëlle Roche; Jean-Pierre Gesson; Philippe Bertrand

    2009-07-01

    New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid and aminobenzamide derivatives. The first fluorinated derivatives of trichostatic acid are described, such as 6-fluoro trichostatin A, with antiproliferative activities in the micromolar range and with histone deacetylase inhibitory activity.

  14. RECENT ADVANCES OF QUINAZOLINONE DERIVATIVES AS MARKER FOR VARIOUS BIOLOGICAL ACTIVITIES

    OpenAIRE

    Anshul Chawla; Chesta Batra

    2013-01-01

    Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide. Quinazolinone and its derivatives constitute an important class of heterocyclic compounds. The chemistry of quinazoline compounds has more than centuries old history; however the intense search for biologically active substances in this series began only in the last few decades. In this present communication an attempt is made to cover the medicinally active compounds, along with the recent discoveries...

  15. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  16. Oxovanadium(IV) Compounds of cis-[VOCl(N-N)2]+ (N-N = 4,4'- and 5,5'-dimethyl-2,2'-bipyridine); Crystal Structure and Biological Activity

    International Nuclear Information System (INIS)

    Vanadium(IV) complexes in a general formula of cis-[VOX(N-N)2]0/+1, (X=Cl., OH., SO4-2 and N-N = phen, bipy) have been reported. We considered the methyl-substituted bipyridine analogues, 4,4'-dimethyl-2,2'-bipyridine (4dmbpy) and 5,5'-dimethyl-2,2'-bipyridine (5dmbpy) as ligands since our last studies on cytotoxicity of oxovanadium(IV) exhibited that introduction of a methyl group into N-N ligands causes further enhanced cytotoxicity of the related complex. Totally, two new oxovanadium(IV), [VOCl(4dmbpy)2]·Cl·H2O·C2H5OH (1) and [VOCl(5dmbpy)2]·Cl·H2O·CH3OH (2) were synthesized, proposing anticancer activity of the cationic part of the complexes, as ionic vanadium compounds show to increase membrane permeability with a potential for dose reduction.4 Both complexes were fully characterized by means of elemental analysis, IR and UV-Vis. spectroscopy as well as the X-ray diffraction method. Furthermore their cytotoxicity were assayed in three cell cultures, colorectal adenocarcinoma (Caco-2), colon carcinoma (HT-29) and breast ductal carcinoma (T47D) by means of MTT assay (MTT=3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide) and the results were compared with cisplatin, an anticancer drugs which shows limited activity on colon and breast cancers

  17. New biologically active hydrogen sulfide donors.

    Science.gov (United States)

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  18. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  19. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds.

    Science.gov (United States)

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Wilkinson, Shane R; Szular, Joanna; Kaiser, Marcel

    2016-07-19

    A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as antitrypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four of eleven compounds were moderately active against Leishmania donovani axenic parasites while none were deemed active against T. brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against each parasite was observed. There was good correlation between lipophilicity (clogP value) and antileishmanial activity or toxicity against L6 cells. Similarly, good correlation existed between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole but were not activated by the type I nitrorectusase (NTR). PMID:27092415

  20. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  1. Recent insight into the biological activities of synthetic xanthone derivatives.

    Science.gov (United States)

    Shagufta; Ahmad, Irshad

    2016-06-30

    Xanthones are a class of oxygen containing heterocyclic compounds with a broad range of biological activities, and they have prominent significance in the field of medicinal chemistry. Xanthone is an attractive scaffold for the design and development of new drugs due to its promising biological activities, primarily as anticancer, antimalarial, antimicrobial, anti-HIV, anticonvulsant, anticholinesterase, antioxidant, anti-inflammatory, and as inhibitors of several enzymes like α-glycosidase, topoisomerase, protein kinase, aromatase, etc. In this review, we have compiled and discussed recent developments on the pharmacological profile of synthetic xanthone derivatives for different therapeutic targets. The review highlights the therapeutic significance of xanthones and offers support in the development of new xanthone derivatives as therapeutic agents. PMID:27111599

  2. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details. PMID:22247887

  3. Oxovanadium(IV) Compounds of cis-[VOCl(N-N){sub 2}]{sup +} (N-N = 4,4'- and 5,5'-dimethyl-2,2'-bipyridine); Crystal Structure and Biological Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nasser Ostad, S.; Tavajohi, Shohreh [Univ. of Medical Sciences, Tehran (Iran, Islamic Republic of); Masoomeh Emadi, S.; Amani, Vahid; Abedi, Anita [Islamic Azad Univ., Tehran (Iran, Islamic Republic of)

    2012-11-15

    Vanadium(IV) complexes in a general formula of cis-[VOX(N-N){sub 2}]{sup 0/+1}, (X=Cl., OH., SO{sub 4}{sup -2} and N-N = phen, bipy) have been reported. We considered the methyl-substituted bipyridine analogues, 4,4'-dimethyl-2,2'-bipyridine (4dmbpy) and 5,5'-dimethyl-2,2'-bipyridine (5dmbpy) as ligands since our last studies on cytotoxicity of oxovanadium(IV) exhibited that introduction of a methyl group into N-N ligands causes further enhanced cytotoxicity of the related complex. Totally, two new oxovanadium(IV), [VOCl(4dmbpy){sub 2}]·Cl·H{sub 2}O·C{sub 2}H{sub 5}OH (1) and [VOCl(5dmbpy){sub 2}]·Cl·H{sub 2}O·CH{sub 3}OH (2) were synthesized, proposing anticancer activity of the cationic part of the complexes, as ionic vanadium compounds show to increase membrane permeability with a potential for dose reduction.4 Both complexes were fully characterized by means of elemental analysis, IR and UV-Vis. spectroscopy as well as the X-ray diffraction method. Furthermore their cytotoxicity were assayed in three cell cultures, colorectal adenocarcinoma (Caco-2), colon carcinoma (HT-29) and breast ductal carcinoma (T47D) by means of MTT assay (MTT=3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide) and the results were compared with cisplatin, an anticancer drugs which shows limited activity on colon and breast cancers.

  4. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds

    Institute of Scientific and Technical Information of China (English)

    Andrzej B HENDRICH

    2006-01-01

    Flavonoids are found ubiquitously in higher plants and constitute an important component of the majority of peoples' daily diets. The biological activities of flavonoids cover a very broad spectrum, from anticancer and antibacterial activities through to inhibition of bone resorption. In the present paper, the interactions between flavonoids and lipid bilayers as well as biological membranes and their components are reviewed, with special emphasis on the structure-activity relationships and mechanisms underlying the biological activity of flavonoids.

  5. SYNTHESIS AND BIOLOGICAL ACTIVITY OF PHENOTHIAZINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Sinha Shweta

    2011-04-01

    Full Text Available Phenothiazines are heterocyclic molecules containing two benzene rings linked in a tricyclic system through nitrogen and sulfur atoms.Phenothiazine derivatives having amino alkyl side chain and these are connected to the nitrogen atom of heterocyclic unit playing crucial role in medicinal chemistry.From last few decades a considerable amount of attention has been focussed on synthesis of phenothiazines derivatives and screening them for different pharmacological activities. The investigation of substituted 10H-Phenothiazines has steadily strong growth because they exhibit a wide range of applications. These moieties are widely employed as antibacterial, antiviral, anti-inflammatory, anticancer, sedatives, tranquilizers agents etc. Slight change in substitution pattern in phenothiazine nucleus causes distinguishable difference in their biological activities. In this review we are discussing about synthesis and various biological activities of newly synthesized Phenothiazine derivatives.

  6. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    Science.gov (United States)

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif. PMID:26502774

  7. Hyperfine interaction measurements in biological compounds: the case of hydroxyapatite

    International Nuclear Information System (INIS)

    The use o nanoparticles in current medicine are under intense investigation. The possible advantages proposed by these systems are very impressive and the results may be quite schemer. In this scenario, the association of nanoparticles with radioactive materials (radionuclide) may be the most important step since the discovery of radioactive for nuclear medicine and radiopharmacy, especially for cancer targeting and therapy. The hyperfine interaction of the nuclear probe 111Cd in the Hydroxyapatite compounds has been investigated by perturbed angular correlation (PAC) spectroscopy in room temperature for the hydroxyapatite made in the temperatures of 90°C, 35°C and with Ho doped, both thermalized and not. The thermalized samples were heated to T= 1273 K for 6 h. The 111Cd was broadcast in the structure of the material by diffusion, closing in quartz tubes were heated – together with the radioactive PAC probe 111In/111Cd to T = 1073 K for 12 h. In not thermalized samples the PAC spectra indicate a distribution of frequency, but in the thermalized samples, the PAC spectra shows the presence of β-tri calcium phosphate in the structure of this kind of Hydroxyapatite. (author)

  8. Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity

    OpenAIRE

    Saeedeh Negin; Smith, Bryan A.; Alexandra Unger; W Matthew Leevy; Gokel, George W.

    2013-01-01

    Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range of in vitro assays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by th...

  9. Glycosides from Marine Sponges (Porifera, Demospongiae: Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    Directory of Open Access Journals (Sweden)

    Valentin A. Stonik

    2012-08-01

    Full Text Available Literature data about glycosides from sponges (Porifera, Demospongiae are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  10. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    OpenAIRE

    Valentin A. Stonik; Makarieva, Tatyana N.; Vladimir I. Kalinin; Krasokhin, Vladimir B.; Ivanchina, Natalia V.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  11. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    Science.gov (United States)

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  12. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  13. The ice nucleation activity of biological aerosols

    Science.gov (United States)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  14. Summary of diamino pyrazoles derived and study their biological activities

    International Nuclear Information System (INIS)

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN (1H, 13C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity while

  15. Biological activities of selected basidiomycetes from Yemen.

    Science.gov (United States)

    Al-Fatimi, M; Schröder, G; Kreisel, H; Lindequist, U

    2013-03-01

    In a previous paper we demonstrated the results of biological screening of Yemeni basidiomycetes. The present study was aimed to investigate the antimicrobial and the antioxidant activity of further basidiomycetes collected in Yemen. Dichloromethane, methanol and aqueous extracts of the fruiting bodies of 25 species were screened in vitro for their antibacterial activities against three Gram-positive bacteria (Staphyloccocus aureus, Bacillus subtilis, Micrococcus flavus) and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), against six human fungal pathogens (Candida albicans, Candida krusei, Aspergillus fumigatus, Mucor sp., Microsporum gypseum, Trichophyton mentagrophytes) and against one non human pathogenic fungus (Candida maltosa). The results indicated that 75 extracts exhibited activity against one or more of the bacteria. The methanol extracts of Agaricus cf. bernardii, Agrocybe pediades, Chlorophyllum molybdites, Coriolopsis polyzona, Ganoderma xylonoides, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata showed activity against all tested bacteria. The highest antibacterial activity was exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides and Trametes cingulata and Agaricus cf. bernardii, Agrocybe pediades, Coriolopsis polyzona, Pycnoporus sanguineus and Trametes lactinea. The methanol extracts of Chlorophyllum molybdites, Ganoderma xylonoides and Pycnoporus sanguineus showed considerable antifungal activities against the tested fungal strains. Strong antioxidative effects employing the DPPH assay were exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides, Hexagonia velutina, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata. Our previous and presented studies about 48 basidiomycetes collected in Yemen provide evidence that basidiomycetes from the Arabic region so far should attract more attention as potential source for new biologically active

  16. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  17. Biological activities of water-soluble fullerene derivatives

    Science.gov (United States)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  18. Biological activities of water-soluble fullerene derivatives

    International Nuclear Information System (INIS)

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  19. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  20. Litchi Flavonoids: Isolation, Identification and Biological Activity

    OpenAIRE

    Jiangrong Li; Yueming Jiang

    2007-01-01

    The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP) tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindi...

  1. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  2. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  3. Nitrogen-Containing Apigenin Analogs: Preparation and Biological Activity

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2012-12-01

    Full Text Available A series of nitrogen-containing apigenin analogs 4a–j was synthesized via Mannich reactions to develop anticancer, antibacterial, and antioxidant agents from plant-derived flavonoids. The chemical structures of these compounds were confirmed using 1H-NMR, 13C-NMR, and ESI-MS. The in vitro biological activities of the analogs were evaluated via assays of their antiproliferative, antibacterial, and antioxidant activities. The prepared apigenin analogs exhibited different antiproliferative activities against four human cancer cell lines, namely human cervical (HeLa, human hepatocellular liver (HepG2, human lung (A549, and human breast (MCF-7 cancer cells. Compound 4i showed the most favorable in vitro antiproliferative activity with IC50 values of 40, 40, 223, and 166 μg/mL against HeLa, HepG2, A549, and MCF-7, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity assay also showed that 4i had the most potent antioxidant activity, with the smallest IC50 value (334.8 μg/mL. The antibacterial activities of the analogs were determined using a two-fold serial dilution technique against four pathogenic bacteria, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. All the prepared apigenin analogs exhibited more potent activities than the parent apigenin. Compounds 4h and 4j, in particular, exhibited the best inhibitory activities against the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values of 3.91 and 1.95 μg/mL, respectively.

  4. Synthesis, characterization and biological evaluation of anti-cancer indolizine derivatives via inhibiting β-catenin activity and activating p53.

    Science.gov (United States)

    Moon, Seong-Hee; Jung, Youngeun; Kim, Seong Hwan; Kim, Ikyon

    2016-01-01

    Diversity-oriented construction of new indolizine scaffolds was accomplished by utilizing domino Knoevenagel condensation/intramolecular aldol cyclization. Biological evaluation revealed anticancer activity of these compounds through inhibition of β-catenin and activation of p53. PMID:26608553

  5. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  6. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  7. Novel triple reuptake inhibitors with low risk of CAD associated liabilities: design, synthesis and biological activities of 4-[(1S)-1-(3,4-dichlorophenyl)-2-methoxyethyl]piperidine and related compounds.

    Science.gov (United States)

    Ishichi, Yuji; Kimura, Eiji; Honda, Eiji; Yoshikawa, Masato; Nakahata, Takashi; Terao, Yasuko; Suzuki, Atsuko; Kawai, Takayuki; Arakawa, Yuuichi; Ohta, Hiroyuki; Kanzaki, Naoyuki; Nakagawa, Hideyuki; Terauchi, Jun

    2013-08-01

    A novel triple reuptake inhibitor with low potential of liabilities associated with cationic amphiphilic drug (CAD) was identified following an analysis of existing drugs. Low molecular weight (MW < ca. 300), low aromatic ring count (number = 1) and reduced lipophilicity (ClogP < 3.5) were hypothesized to be key factors to avoid the CAD associated liabilities (CYP2D6 inhibition, hERG inhibition and phospholipidosis). Based on the hypothesis, a series of piperidine compounds was designed with consideration of the common characteristic features of CNS drugs. Optimization of the side chain by adjusting overall lipophilicity suggested that incorporation of a methoxymethyl group could provide compounds with a balance of both potent reuptake inhibition and low liability potential. Compound (S)-3a showed a potent antidepressant-like effect in the mice tail suspension test (MED = 10 mg/kg, p.o.), proportional monoamine transporter occupancies and enhancement of monoamine concentrations in mouse prefrontal cortex. PMID:23769168

  8. Optimization of hypocrellin B derivative amphiphilicity and biological activity

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; XIE Jie; ZHANG LuYong; CHEN HongXia; GU Ying; ZHAO JingQuan

    2009-01-01

    To satisfy the dual requirements of the fluent transportation in blood and the affinity to the target tissues of vascular diseases, hypocrellin derivatives with optimized amphiphilicity are expected. In this work, 3-amino-1-propanesulfonic acid and 4-amino-1-butanesulfonic acid substituted hypocrellin B,named compounds 1 and 2, were designed, synthesized in high yields and characterized. Besides greatly strengthened red absorption, the maximum solubility of compound 2 in phosphate buffered saline (PBS) is 4.2 mg/mL which is just enough to prepare an aqueous solution for intravenous injection in clinically acceptable concentration, while the partition coefficient between n-octanol and PBS,5.6, benefits the cell-uptake and biological activity as well. Furthermore, EPR measurements reveal that the photosensitization activities of the two compounds to generate semiquinone anion radicals, superoxide anion radicals and singlet oxygen are a little bit higher than those of taurine substituted hypocrellin B (THB), but the photodynamic activities to human lung cancer A549 cells are several times that of THB, mainly due to increases in lipophilicity and cell-uptake.

  9. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits.

    Science.gov (United States)

    Savran, Ahmet; Zengin, Gokhan; Aktumsek, Abdurrahman; Mocan, Andrei; Glamoćlija, Jasmina; Ćirić, Ana; Soković, Marina

    2016-07-13

    The present study outlines a chemical characterization and further effects beneficial to health of edible Rumex scutatus and Pseudosempervivum sempervivum, in addition to presenting the antioxidant, enzyme inhibitory effects and antimicrobial properties of different extracts. The phenolic compounds composition of the extracts was assessed by RP-HPLC-DAD, outlining benzoic acid and rutin as major constituents in P. sempervivum and rutin and hesperidin in R. scutatus. Moreover, further biological effects were tested on key enzymes involved in diabetes mellitus, Alzheimer's disease and skin melanogenesis revealing an important tyrosinase inhibitory effect of Pseudosempervivum water extract. Moreover, both species possessed antimicrobial properties towards bacteria and fungi relevant to public health. Accordingly, we find that R. scutatus and P. sempervivum can be considered as novel functional foods because they are rich sources of biologically active compounds that provide health benefits. PMID:27364042

  10. Synthesis of N-(6-Arylbenzo[d]thiazole-2-acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach

    Directory of Open Access Journals (Sweden)

    Yasmeen Gull

    2016-02-01

    Full Text Available A new series of N-(6-arylbenzo[d]thiazol-2-ylacetamides were synthesized by C-C coupling methodology in the presence of Pd(0 using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolylbenzo[d]thiazol-2-ylacetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition.

  11. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  12. Potential therapeutic applications of microbial surface-active compounds

    Directory of Open Access Journals (Sweden)

    Letizia Fracchia

    2015-08-01

    Full Text Available Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies.

  13. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  14. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2009-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  15. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Science.gov (United States)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  16. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  17. Receiving of iodoinsulin with preserved biological activity

    International Nuclear Information System (INIS)

    The paper presents a method of receiving iodoinsulin with preserved biological activity. As a raw material recrystallized bovine insulin produced by ''Polfa'' was used. Chloramine T was used as an oxidizing agent in the iodize reaction. Insulin was marked with 125I or 127I in the rate of molar concentration of NaI and insulin 0.6. The obtained product contained about 0.3 of iodine atom per one insulin molecule. Specific radioactivity of the iodoinsulin was between 77 and 147 μCi/μg. Such an insulin was in over 95% precipitable with trichloroacetic acid. Its immunological reactivity varied from 89% to 100% while biological activity, determined with the consumption of glucose by the fatty tissue of epididymis of rat, was 92% +- 24% of the native insulin activity. Half-life time of 125I insulin in the rat blood circulation was determined. Curve of the isotope disappearance was biphasic. Half-life time of the first phase (shorter one) was 0.64 +- 0.2 minute while the longer phase 8.89 +- 2.16 minutes. (author)

  18. Reconstructing Causal Biological Networks through Active Learning.

    Science.gov (United States)

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  19. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  20. Target enhanced 2D similarity search by using explicit biological activity annotations and profiles

    OpenAIRE

    Yu, Xiang; Geer, Lewis Y.; Han, Lianyi; Bryant, Stephen H

    2015-01-01

    Background The enriched biological activity information of compounds in large and freely-accessible chemical databases like the PubChem Bioassay Database has become a powerful research resource for the scientific research community. Currently, 2D fingerprint based conventional similarity search (CSS) is the most common widely used approach for database screening, but it does not typically incorporate the relative importance of fingerprint bits to biological activity. Results In this study, a ...

  1. Biological activities of Morus celtidifolia leaf extracts.

    Science.gov (United States)

    Viveros-Valdez, Ezequiel; Oranday-Cárdenas, Azucena; Rivas-Morales, Catalina; Verde-Star, María Julia; Carranza-Rosales, Pilar

    2015-07-01

    The aims of this research were to examine the antibacterial, cytotoxic and antiradical/antioxidant activities of the organic extracts obtained from the leaves of the medicinal plant Morus celtidifolia (Family: Moraceae). To evaluate its antimicrobial properties, M. celtidifolia was tested against the bacteria of medical importance: Bacillus subtilis, Staphyloccocus aureus, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae and Enterobacter aerogenes. Cytotoxic activity was assessed by using the brine shrimp (Artemia salina) lethality assay and also by toxicity screening against human cancer cell lines: MCF-7 (human breast adenocarcinoma) and HeLa (cervix adenocarcinoma). The free radical-scavenging activity was determined by the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Results revealed that the hexanic extract has antibacterial activity only against Gram positive strains, while the methanolic extract showed better cytotoxic and antioxidant activities than the non- polar extract with a median lethal dose (LD₅₀) of 125μg/ml, 90μg/ml and 75μg/ml against A. salina, MCF-7 and HeLa cells respectively, and median effective concentration (EC₅₀) of 152μg/ml on radical scavenging assay. This is the first study reporting the biological activities of leaves of Morus celtidifolia. PMID:26142508

  2. Biological Activities of a Thai Luminescent Mushroom

    Directory of Open Access Journals (Sweden)

    Jiraporn BURAKORN

    2015-06-01

    Full Text Available Wild fruit bodies of luminescent mushrooms were collected from wood stumps over a period covering August to October 2011 in the Kosumpisai forest, Mahasarakham province, in the Northeast of Thailand. A study of the morphological and genetic characteristics of the luminescent mushroom suggested that it was Neonothopanus nimbi KS. The fruiting bodies and mycelium of Neonothopanus nimbi KS were assayed for their antimicrobial activities, antifungal activity, inhibitory activity against avian influenza H5N1 neuraminidase (NA, and anticancer activity, using organic solvent extracts. The results showed that only the methanol extract of mycelia was effective against Bacillus sphaericus, with the widest inhibition zone of 11.66±2.71 mm, but this was not effective against the other 3 bacteria (Pseudomonas aeruginosa, Serratia marcescens, and Escherichia coli. On the other hand, all of the fruit body extracts were inactive against all four bacteria. The ethylacetate extract of mycelia inhibited the NCI-H187 small lung cancer cell line, KB oral cavity cancer cell line, and the MCF7 breast cancer cell line, including Magnaporthe grisea and Curvularia lunata. The methanol extract of mycelia inhibited the KB oral cavity cell cancer cell line, Magnaporthe grisea, and Curvularia lunata at 96.66, 95.32 and 95.41 %, respectively. The results imply that polar extracts of mycelia are a resource of bioactive compounds, whereas extracts of fruit bodies have less inhibitory activity against cancer, phytopathogenic-fungi and H5N1 neuraminidase.

  3. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  4. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  5. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    Science.gov (United States)

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  6. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  7. Phytochemistry and biological activities of Phlomis species.

    Science.gov (United States)

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-01

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties. PMID:19563875

  8. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  9. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds from Allanblackia monticola and Symphonia globulifera.

    Science.gov (United States)

    Lenta, Bruno Ndjakou; Vonthron-Sénécheau, Catherine; Weniger, Bernard; Devkota, Krishna Prasad; Ngoupayo, Joseph; Kaiser, Marcel; Naz, Qamar; Choudhary, Muhammad Iqbal; Tsamo, Etienne; Sewald, Norbert

    2007-01-01

    In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and guttiferone F (4), along with three xanthones: allanxanthone A (5), xanthone V1 (6) and globulixanthone C (7) as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1) and F (4) showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 microM and 0.16 microM, respectively) comparable to that of the reference compound, miltefosine (0.46 microM). Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE) and butylcholinesterase (AChE). For AChE, the IC50 value (0.66 microM) of garcinol (2) was almost equal to that of the reference compound galanthamine (0.50 microM). Furthermore, guttiferone A (1) and guttiferone F (4) (IC50 = 2.77 and 3.50 microM, respectively) were more active than galanthamine (IC50 = 8.5) against BChE. PMID:17960072

  10. Lipoxygenase inhibitory activity of Cuspidaria pulchra and isolated compounds.

    Science.gov (United States)

    Alvarenga, Tavane A; Bertanha, Camila S; de Oliveira, Pollyanna F; Tavares, Denise C; Gimenez, Valéria M M; Silva, Márcio L A; Cunha, Wilson R; Januário, Ana H; Pauletti, Patrícia M

    2015-01-01

    This work evaluated the in vitro inhibitory activity of the crude ethanolic extract from the aerial parts of Cuspidaria pulchra (Cham.) L.G. Lohmann against 15-lipoxygenase (15-LOX). The bioassay-guided fractionation of the n-butanol fraction, which displayed the highest activity, led to the isolation of three compounds: caffeoylcalleryanin (1), verbascoside (2) and 6-hydroxyluteolin-7-O-β-glucoside (3). Assessment of the ability of the isolated compounds to inhibit 15-LOX revealed that compounds 1, 2 and 3 exerted strong 15-LOX inhibitory activity; IC50 values were 1.59, 1.76 and 2.35 μM respectively. The XTT assay showed that none of the isolated compounds seemed to be significantly toxic. PMID:25428032

  11. Litchi Flavonoids: Isolation, Identification and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2007-04-01

    Full Text Available The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindin-3-rutinside, cyanidin-3-glucoside, quercetin-3-rutinosde and quercetin-3-glucoside are identified as the important anthocyanins. Litchi flavanols and anthocyanins exhibit good potential antioxidant activity. The hydroxyl radical and superoxide anion scavenging activities of procyanidin B2 are greater than those of procyanidin B4 and epicatechin, while epicatechin has the highest α,α-diphenyl-β-picrylhydrazyl radical (DPPH· scavenging activity. In addition to the antioxidant activity, LFP extract displays a dose- and time-dependent inhibitory effect on human breast cancer, which could be attributed, in part, to its inhibition of proliferation and induction of apoptosis in cancer cells through upregulation and down-regulation of multiple genes. Furthermore, various anticancer activities are observed for epicatechin, procyanidin B2, procyanidin B4 and the ethyl acetate fraction of LFP tissue extracts. Procyanidin B4 and the ethyl acetate fraction show a stronger inhibitory effect on HELF than MCF-7 proliferation, while epicatechin and procyanidin B2 have lower cytotoxicities towards MCF-7 and HELF than paclitaxel. It is therefore suggested that flavonoids from LFP might be potentially useful components for functional foods and/or anti-breast cancer drugs.

  12. Results of activated sludge plants applying enhanced biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.; Pinto, M.; Neder, K.; Hoffmann, H.

    1989-02-01

    To stop the eutrophication in lakes and rivers, the input of nutrient and phosphorus compounds must be limited. The biological elimination of phosphorus describes a possibility, to reduce phosphorus in the biological stage of a treatment plant to a considerable extent. In this paper the process-system and the operation-results of a pilot plant and two municipal treatment plants are presented, where biological phosphorus reduction about 80% takes place without any constructional modifications.

  13. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Directory of Open Access Journals (Sweden)

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  14. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    Science.gov (United States)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  15. Inorganic sulfur–nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling

    OpenAIRE

    Miriam M. Cortese-Krott; Butler, Anthony R; Woollins, J. Derek; Feelisch, Martin

    2016-01-01

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S–N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical ...

  16. Degradation of Refractory Organic Compounds in Aqueous Wastes employing a combination of biological and chemical treatments

    OpenAIRE

    Chindris, Anuta

    2011-01-01

    In this study the removal of refractory organic compounds (ROCs) in Aqueous Wastes (AW) employing a combination of biological and chemical treatment were investigated at Department of Chemical Engineering and Materials Science, University of Cagliari, Italy and Department of Engineering, Oxford University, UK. The main objectives were to stimulate and optimise the degradation of ROCs with efficient removal of them in AW. This project is divided in two sections, a theoreti...

  17. Nitrogen compounds and polysaccharides changes during the biological ageing of sherry wines

    OpenAIRE

    Villamiel, Mar; Polo, María Carmen; Moreno-Arribas, M. Victoria

    2008-01-01

    Biologically aged sherry wines are elaborated by the so called "criadera" and "solera" system, which essentially involves development of the yeast on the wine surface forming a film velum for several years. In this work, a study on the changes that take place in polysaccharide and nitrogen compounds during the elaboration of sherry wines has been undertaken. The evolution of monosaccharides derived from polysaccharides as well as of amino acids and polypeptides have been investigated in wine ...

  18. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    OpenAIRE

    Bal-Ram Adhikari; Maduraiveeran Govindhan; Aicheng Chen

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based el...

  19. Biological Treatment of a Synthetic Dye Water and an Industrial Textile Wastewater Containing Azo Dye Compounds

    OpenAIRE

    Wallace, Trevor Haig

    2001-01-01

    In this research, the ability of anaerobic and aerobic biological sludges to reduce and stabilize azo dye compounds was studied. Synthetic dye solutions and an industrial textile wastewater were both treated using anaerobic and aerobic biomass, separately and in sequential step-treatment processes. The primary objective was to reduce the wastewater color to an intensity that complies with the Virginia Pollutant Discharge Elimination System (VPDES) permit level. This level is set at 300 Ame...

  20. Identification of Telomerase-activating Blends From Naturally Occurring Compounds.

    Science.gov (United States)

    Ait-Ghezala, Ghania; Hassan, Samira; Tweed, Miles; Paris, Daniel; Crynen, Gogce; Zakirova, Zuchra; Crynen, Stefan; Crawford, Fiona

    2016-06-01

    Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased

  1. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    OpenAIRE

    Ranga Rao Ambati; Siew-Moi Phang; Sarada Ravi; Ravishankar Gokare Aswathanarayana

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin ex...

  2. Synthesis, biological activities and structure-activity relationships for new avermectin analogues.

    Science.gov (United States)

    Zhang, Jian; Nan, Xiang; Yu, Hai-Tao; Cheng, Pi-Le; Zhang, Yan; Liu, Ying-Qian; Zhang, Shao-Yong; Hu, Guan-Fang; Liu, Huanxiang; Chen, An-Liang

    2016-10-01

    In an effort to discover new molecules with good insecticidal activities, more than 40 new avermectin derivatives were synthesized and evaluated for their biological activities against three species of arachnids, insects and nematodes, namely, Tetranychus Cinnabarinus, Aphis craccivora and Bursaphelenchus xylophilus. All the tested compounds showed potent inhibitory activities against three insect species. Notably, the majority of compounds exhibited high selectivity against T. cinnabarinus, some of which were much better in comparison with avermectin. Especially compounds 9j (LC50: 0.005 μM) and 16d (LC50: 0.002 μM) were 2.5- and 4.7-fold more active than avermectin (LC50: 0.013 μM), respectively, against T. cinnabarinus. Moreover, compounds 9b, 9d-f, 9h, 9j, 9l, 9n, 9p, 9r, 9v and 17d showed superior activities with LC50 values of 2.959-5.013 μM compared to that of 1 (LC50: 6.746 μM) against B. xylophilus. Meanwhile, the insecticidal activities of compounds 9f, 9g, 9h, and 9m against A. craccivora were 7-8 times better than that of avermectin, with LC50 values of 7.744, 5.634, 6.809, 7.939 and 52.234 μM, respectively. Furthermore, QSAR analysis showed that the molecular shape, size, connectivity degree and electronic distribution of avermectin analogues had substantial effects on insecticidal potency. These preliminary results provided useful insight in guiding further modifications of avermectin in the development of potential new insecticides. PMID:27318119

  3. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    Science.gov (United States)

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon. PMID:21929331

  4. Optimisation of Conditions for Extraction of Biologically Active Compounds from Common Bryophytes in Latvia / Latvijâ Augoðu Briofîtu Ekstrakcijas Apstâkïu Optimizâcijas Ietekme Uz Bioloìiski Aktîviem Sekundârajiem Metabolîtiem

    Directory of Open Access Journals (Sweden)

    Klaviòa Laura

    2015-12-01

    Full Text Available Bryophytes are the second largest taxonomic group in the plant kingdom. They contain a high number of biologically active compounds. Studies of their composition are important for understanding evolutionary processes in the plant kingdom. The aim of this study was to assess bryophyte secondary metabolite extraction options and to increase the yields of polyphenols and substances determining the free radical scavenging activity of bryophyte extracts. Similar studies have been conducted using higher plants as model organisms, but not using bryophytes. Comparison of five extraction methods (conventional, Soxhlet extraction, treatment with microwaves, ultrasound, and supercritical CO2 extraction and several solvents with differing polarity showed microwave-assisted extraction as the most promising approach to obtain highest yields of extractives. The main factors that contributed to the efficiency of extraction were type of solvent, temperature, and the solvent to bryophyte mass ratio. The extracts obtained from bryophytes had remarkable antioxidant activity, the extent of which depended on the extraction conditions and bryophyte species. The extraction conditions can be optimised, and the total polyphenol content can be increased by up to 50% in comparison with the conventional approach.

  5. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  6. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    Science.gov (United States)

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. PMID:27155370

  7. Nonexercise activity thermogenesis (NEAT): environment and biology.

    Science.gov (United States)

    Levine, James A

    2004-05-01

    Nonexercise activity thermogenesis (NEAT) is the energy expended for everything that is not sleeping, eating, or sports-like exercise. It includes the energy expended walking to work, typing, performing yard work, undertaking agricultural tasks, and fidgeting. NEAT can be measured by one of two approaches. The first is to measure or estimate total NEAT. Here, total daily energy expenditure is measured, and from it "basal metabolic rate-plus-thermic effect of food" is subtracted. The second is the factoral approach, whereby the components of NEAT are quantified, and total NEAT is calculated by summing these components. The amount of NEAT that humans perform represents the product of the amount and types of physical activities and the thermogenic cost of each activity. The factors that impact a human's NEAT are readily divisible into environmental factors, such as occupation or dwelling within a "concrete jungle," and biological factors such as weight, gender, and body composition. The combined impact of these factors explains the substantial variance in human NEAT. The variability in NEAT might be viewed as random, but human and animal data contradict this. It appears that changes in NEAT subtly accompany experimentally induced changes in energy balance and are important in the physiology of weight change. Inadequate modulation of NEAT plus a sedentary lifestyle may thus be important in obesity. It then becomes intriguing to dissect mechanistic studies that delineate how NEAT is regulated into neural, peripheral, and humoral factors. A scheme is described in this review in which NEAT corresponds to a carefully regulated "tank" of physical activity that is crucial for weight control. PMID:15102614

  8. Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation

    International Nuclear Information System (INIS)

    Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the extent of the exposure. However, the biokinetics and biological effects of nuclear fuel compounds have been investigated in a number of experimental studies using various cellular systems and laboratory animals. In this article, we review the biokinetic properties and effects of insoluble nuclear fuel compounds, with special reference to UO2, PuO2, and nonvolatile, long-lived β-emitters Zr, Nb, Ru, and Ce. First, the data on hot particles, including sources, dosimetry, and human exposure are discussed. Second, the biokinetics of insoluble nuclear fuel compounds in the gastrointestinal tract and respiratory tract are reviewed. Finally, short- and long-term biological effects of nonuniform α- and β-irradiation on the gastrointestinal tract, lungs, and skin are discussed. 191 refs., 1 fig., 3 tabs

  9. Antifungal Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

    Science.gov (United States)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper, ...

  10. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    OpenAIRE

    Ana O. de Souza; Fabio C. S. Galetti; Silva, Célio L.; Beatriz Bicalho; Márcia M. Parma; Sebastião F. Fonseca; Marsaioli, Anita J.; Angela C. L. B. Trindade; Rossimíriam P. Freitas Gil; Franciglauber S. Bezerra; Manoel Andrade-Neto; Oliveira, Maria C. F.

    2007-01-01

    Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihy...

  11. Structure-activity relationships of new antiviral compounds.

    OpenAIRE

    Bonina, L; Orzalesi, G; Merendino, R; Arena, A; Mastroeni, P

    1982-01-01

    In preliminary experiments, the compound 2-amino-5-(2-sulfamoylphenyl)-1,3,4-thiadiazole (G413) was shown to possess high activity against DNA viruses (herpes simplex viruses 1 and 2 and adenovirus 17) and RNA viruses (poliovirus 1, echovirus 2, and coxsackievirus B4). Experiments on the replicative cycle of poliovirus 1 and production of infectious RNA viruses demonstrate that this compound probably prevents assembly of virus particles by acting on structural proteins. In the present experim...

  12. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  13. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  14. Curcumin and Its Carbocyclic Analogs: Structure-Activity in Relation to Antioxidant and Selected Biological Properties

    Directory of Open Access Journals (Sweden)

    H. P. Vasantha Rupasinghe

    2013-05-01

    Full Text Available Curcumin is the major phenolic compound present in turmeric (Curcuma longa L.. Curcumin and 15 novel analogs were investigated for their antioxidant and selected biological activities. Strong relationships between the structure and evaluated activity revealed that the compounds with specific functional groups and carbon skeleton had specific biological profiles. Among the compounds tested, the derivatives (E-2-(3,4-dimethoxybenzylidene-5-((E-3-(3,4-dimethoxyphenylacryloylcyclopentanone (3e, and (E-2-(4-hydroxy-3-methoxybenzylidene-5-((E-3-(4-hydroxy-3-methoxyphenylacryloyl-cyclopentanone (3d and the parent compound curcumin exhibited the strongest free radical scavenging and antioxidant capacity. Concerning the other biological activities studied the compound (E-2-(4-hydroxy-3-methoxybenzylidene-5-((E-3-(4-hydroxy-3-methoxy-phenyl-acryloylcyclopentanone (3d was the most potent angiotensin converting enzyme (ACE inhibitor, while the derivatives (E-2-(4-hydroxybenzylidene-6-((E-3-(4-hydroxyphenylacryloylcyclohexanone (2b, (E-2-(3,4-dimethoxybenzylidene-6-((E-3-(3,4-dimethoxyphenylacryloylcyclohexanone (2e and (E-2-(3,4-dimethoxybenzylidene-5-((E-3-(3,4-dimethoxyphenylacryloylcyclopentanone (3e exhibited strong tyrosinase inhibition. Moreover, (E-2-(3,4-dimethoxybenzylidene-6-((E-3-(3,4-dimethoxyphenyl-acryloylcyclohexanone (2e was also found to be the strongest human HIV-1 protease inhibitor in vitro among the tested compounds. Cytotoxicity studies using normal human lung cells revealed that the novel curcumin as well as its carbocyclic analogs are not toxic.

  15. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  16. Biological activities of an extract from Cleome viscosa L. (Capparaceae).

    Science.gov (United States)

    Williams, L A D; Vasques, E; Reid, W; Porter, R; Kraus, W

    2003-10-01

    Electron micrograph examination of the leaf and stem surfaces of Cleome viscosa L (Family Capparaceae) revealed the presence of secretory glandular trichomes with club-cylinder and cylinder morphologies. In the present study, the leaves and stems of C. viscosa were extracted with hexane and the extract was evaluated for the following biological activities: anti-bacterial, anti-fungal, contact insecticidal and nematicidal. The extract was found to be a potent anti-bacterial agent according to the thin layer chromatography autobiographic assay. Activity-directed isolation studies of the anti-bacterially active compounds led to a 14-member ring cembranoid diterpene being identified as one of the effective agents. Minimum inhibitory concentration (MIC) values (microg/spot) of 5.0 microg/spot and 1.0 microg/spot were found for the diterpene on Bacillus subtilis (Gram-positive) and Pseudomonas fluorescens (Gram-negative), respectively. The diterpene did not inhibit the growth of the fungus Cladosporium cucumerinum. The extract demonstrated a pyrethroid type of contact insecticidal activity on adult Cylas formicarius elegantulus Summer (Coleoptera: Curculionidae). The extract also had high nematicidal activity with a percentage Abbott's value of 72.69 on the plant parasitic nematode Meloidogyne incognita Chitwood; however, the extract lost its potency upon subfractionation. PMID:14564407

  17. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento

    2012-01-01

    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  18. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: jmdavid@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia

    2012-07-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  19. [Oregano: properties, composition and biological activity].

    Science.gov (United States)

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  20. Biological and Nonbiological Antioxidant Activity of Some Essential Oils.

    Science.gov (United States)

    Pérez-Rosés, Renato; Risco, Ester; Vila, Roser; Peñalver, Pedro; Cañigueral, Salvador

    2016-06-15

    Fifteen essential oils, four essential oil fractions, and three pure compounds (thymol, carvacrol, and eugenol), characterized by gas chromatography and gas chromatography-mass spectrometry, were investigated for biological and nonbiological antioxidant activity. Clove oil and eugenol showed strong DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging activity (IC50 = 13.2 μg/mL and 11.7 μg/mL, respectively) and powerfully inhibited reactive oxygen species (ROS) production in human neutrophils stimulated by PMA (phorbol 12-myristate 13-acetate) (IC50 = 7.5 μg/mL and 1.6 μg/mL) or H2O2 (IC50 = 22.6 μg/mL and 27.1 μg/mL). Nutmeg, ginger, and palmarosa oils were also highly active on this test. Essential oils from clove and ginger, as well as eugenol, carvacrol, and bornyl acetate inhibited NO (nitric oxide) production (IC50 oils of clove, red thyme, and Spanish oregano, together with eugenol, thymol, and carvacrol showed the highest myeloperoxidase inhibitory activity. Isomers carvacrol and thymol displayed a disparate behavior in some tests. All in all, clove oil and eugenol offered the best antioxidant profile. PMID:27214068

  1. Biological activity of Serratia marcescens cytotoxin

    Directory of Open Access Journals (Sweden)

    G.V. Carbonell

    2003-03-01

    Full Text Available Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

  2. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study.

    Science.gov (United States)

    Siah, Maryam; Farzaei, Mohammad Hosein; Ashrafi-Kooshk, Mohammad Reza; Adibi, Hadi; Arab, Seyed Shahriar; Rashidi, Mohammad Reza; Khodarahmi, Reza

    2016-02-01

    Aldehyde oxidase (AO), a cytosolic molybdenum-containing hydroxylase, is predominantly active in liver and other tissues of mammalian species and involved in the metabolism of extensive range of aldehydes and nitrogen-containing compounds. A wide range of natural components including polyphenols are able to interfere with AO-catalyzed reactions. Polyphenols and flavonoids are one of the extensive secondary plant metabolites ubiquitously present in plants considered an important part of the human diet. The aim of the present study was to investigate inhibitory effect of selected phenolic compounds from three subclasses of aurone, flavanone and phenolic lactone compounds on the activity of AO, spectrophotometrically. AO enzyme was partially purified from liver of guinea pig. Then, inhibitory effects of 10 flavonoid compounds including 8 derivatives of 2-benzylidenebenzofuran-3(2H)-ones, as well as naringenin and ellagic acid on the activity of aldehyde oxidase were assessed compared with the specific inhibitor of AO, menadione. Among the phenolic compounds with inhibitory effects on the enzyme, ellagic acid (IC50=14.47μM) was the most potent agent with higher inhibitory action than menadione (IC50=31.84μM). The mechanisms by which flavonoid compounds inhibit AO activity have been also determined. The inhibitory process of the assessed compounds occurs via either a non-competitive or mixed mode. Although flavonoid compounds extensively present in the nature, mainly in dietary regimen, aurones with promising biological properties are not widely distributed in nature, so synthesis of aurone derivatives is of great importance. Additionally, aurones seem to provide a promising scaffold in medicinal chemistry for the skeleton of new developing drugs, so the results of the current study can be valuable in order to better understanding drug-food as well as drug-drug interaction and also appears to be worthwhile in drug development strategies. PMID:26722818

  3. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH2, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  4. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Theivendren Panneer Selvam

    2014-12-01

    Full Text Available A series of 1-(4-substitutedphenyl-3-phenyl-1H-pyrazole-4-carbaldehydes 4a–l have been synthesized and tested for their biological activities. Formation of the pyrazole derivatives was achieved by treating with Vilsmeier-Haack reagent. The newly synthesized compounds were evaluated for their anti-inflammatory and analgesic activities compared to Diclofenac sodium as standard drug. Compounds 4g, 4i and 4k exhibited the maximum anti-inflammatory and analgesic activities. The detailed synthesis, spectroscopic and toxicity data are reported.

  5. Synthesis and Broad-Spectrum Antiviral Activity of Some Novel Benzo-Heterocyclic Amine Compounds

    Directory of Open Access Journals (Sweden)

    Da-Jun Zhang

    2014-01-01

    Full Text Available A series of novel unsaturated five-membered benzo-heterocyclic amine derivatives were synthesized and assayed to determine their in vitro broad-spectrum antiviral activities. The biological results showed that most of our synthesized compounds exhibited potent broad-spectrum antiviral activity. Notably, compounds 3f (IC50 = 3.21–5.06 μM and 3g (IC50 = 0.71–34.87 μM showed potent activity towards both RNA viruses (influenza A, HCV and Cox B3 virus and a DNA virus (HBV at low micromolar concentrations. An SAR study showed that electron-withdrawing substituents located on the aromatic or heteroaromatic ring favored antiviral activity towards RNA viruses.

  6. Major Volatile Constituents and Biological Activities of Plant Chromolaena odorata (L. R.M. King & H. Rob

    Directory of Open Access Journals (Sweden)

    Joshi RK

    2016-03-01

    Full Text Available Chromolaena odorata (L. R.M. King & H. Rob. (Asteraceae is a perennial herb, and used in traditional medicine. C. odorata has lead to identification of several compounds especially in the essential oils from various plant parts, and in this article the major compounds are compiled. The biological activities of the various extracts and essential oils are also discussed in brief.

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Directory of Open Access Journals (Sweden)

    Hee Jae Shin

    2013-08-01

    Full Text Available Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed.

  8. Low intensity ultrasound stimulates biological activity of aerobic activated sludge

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; YAN Yixin; WANG Wenyan; YU Yongyong

    2007-01-01

    This work aims to explore a procedure to improve biological wastewater treatment efficiency using low intensity ultrasound.The aerobic activated sludge from a municipal wastewater treatment plant was used as the experimental material.Oxygen uptake rate(OUR)of the activated sludge (AS)was determined to indicate the changes of AS activity stimulated by ultrasound at 35 kHZ for 0-40 min with ultrasonic intensities of 0-1.2 W/cm2.The highest OUR was observed at the ultrasonic intensity of 0.3 W/cm2 and an irradiation period of 10 min;more than 15% increase was achieved immediately after sonication.More significantly,the AS activity stimulated by ultrasound could last 24 h after sonication,and the AS activity achieved its peak value within 8 h after sonication.or nearly 100% higher than the initial level after sonication.Therefore,to improve the wastewater treatment efficiency of bioreactors,ultrasound with an intensity of 0.3 W/cm2 could be employed to irradiate a part of the AS in the bioreactor for 10 min every 8 h.

  9. Water-soluble polymer carriers of biologically active compounds

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Říhová, Blanka; Jelínková, Markéta; Strohalm, Jiří; Plocová, Daniela; Šubr, Vladimír

    Tashkent: Gosudarstvennyj komitet po nayke i technike respubliky Uzbekistan , 1999. s. 14-16. [Polymer Science on the Threshold of 21st Century. 21.10.1999-24.10.1999, Tashkent] R&D Projects: GA ČR GV307/96/K226 Subject RIV: FR - Pharmacology ; Medidal Chemistry

  10. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    OpenAIRE

    Sreeja Sreekumar; Hima Sithul; Parvathy Muraleedharan; Juberiya Mohammed Azeez; Sreeja Sreeharshan

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibro...

  11. Update on project determining biologically active compounds in milk

    Science.gov (United States)

    The added health value of raw and pasteurized milk from organic and grass-fed herds is strongly debated because of limited, and often conflicting, scientific data. The Dairy & Functional Foods Research Unit, USDA-ARS-NAA, Wyndmoor, PA has an ongoing project to identify and compare the levels of bio...

  12. BIOLOGICAL ACTIVITY OF APPLE JUICE ENRICHED BY HERBAL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2015-02-01

    Full Text Available Herbal phytochemicals have recently become an attractive subject for scientists in many different research areas. The aim of this study was to determine antioxidant activity, total polyphenol and flavonoid content of apple juice enriched by water herbal extracts. Secondary was to evaluate sensory characteristic of enriched apple juice. It was found that applications of water herbal extracts to apple juice increase antioxidant activities, and also total polyphenol and flavonoid content with compare to pure apple juice. The highest biological activities were detected in apple juice with addition of lemon balm (14.42 mg TEAC/L; 84.38 mg TEAC/L; 50.88 mg GAE/L; 36.26 μg QE/L, oregano (14.92 mg TEAC/L; 79.97 mg TEAC/L; 50.51 mg GAE/L; 31.02 μg QE/L and salvia (8.40 mg TEAC/L; 30.40 mg TEAC/L; 23.33 mg GAE/L; 27.67 μg QE/L water extract. Sensorial analysis of samples showed, that enriched juices had better properties for evaluators with compared to pure juice. The aim of this study was also to mention the potential use of medicinal herbs in food industry, because plant bioactive compounds can play an important role in preventing cardiovascular diseases, cancers and reduction inflammatory action.

  13. Trienamine catalyzed asymmetric synthesis and biological investigation of a cytochalasin B-inspired compound collection.

    Science.gov (United States)

    Sellstedt, Magnus; Schwalfenberg, Melanie; Ziegler, Slava; Antonchick, Andrey P; Waldmann, Herbert

    2016-01-01

    Due to their enhanced metabolic needs many cancers need a sufficient supply of glucose, and novel inhibitors of glucose import are in high demand. Cytochalasin B (CB) is a potent natural glucose import inhibitor which also impairs the actin cytoskeleton leading to undesired toxicity. With a view to identifying selective glucose import inhibitors we have developed an enantioselective trienamine catalyzed synthesis of a CB-inspired compound collection. Biological analysis revealed that indeed actin impairment can be distinguished from glucose import inhibition and led to the identification of the first selective glucose import inhibitor based on the basic structural architecture of cytochalasin B. PMID:26606903

  14. Cyclopenta[c]phenanthrenes--chemistry and biological activity.

    Science.gov (United States)

    Brzuzan, Paweł; Góra, Maciej; Luczyński, Michał K; Woźny, Maciej

    2013-06-25

    Despite cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) having been detected in the environment, the ability of these compounds to induce cellular and tissue responses remains poorly characterized. In this review, we look at the chemistry and biological activity of the cyclopenta[c]phenanthrenes (CP[c]Phs) as potential chemicals of concern in the process of risk assessment. The first part of the review deals with the environmental occurrence and chemistry of CP-PAHs, focusing on available methods of CP[c]Ph chemical synthesis. The most interesting structural feature of the CP[c]Ph is the presence of a pseudo fjord-region constructed by the cyclopentane ring. This compound can be treated either as a structurally similar one to B[c]Ph, or as a phenanthrene skeleton with an electrodonating alkyl substituent in the bay-region of the molecule. The second thread, providing available data on the adverse effects of CP[c]Ph compounds on cells and tissues of living organisms, mainly fish, improves our understanding of these possible environmental hazards. The data show that CP[c]Ph is less potent at inducing CYP1A gene expression in rainbow trout than benzo[a]pyrene (B[a]P), a well-known Ah-receptor agonist. Interestingly, the CP[c]Ph dependent up-regulation of CYP1A mRNA is positively correlated with the incidences of clastogenic changes in rainbow trout erythrocytes. CP[c]Ph has, comparably to B[a]P, a potential to repress expression of tumor suppressor p53, in the head kidney of rainbow trout. Furthermore, estrogen responsive genes in fish liver, ERα and VTG, are not induced by CP[c]Ph, suggesting that the compound has no endocrine disrupting potential. However, some CP[c]Phs show mutagenic activity when investigated in the Ames test, and exhibit genotoxic properties in in vitro micronucleus assay. The above characteristics suggest that CP-PAHs are chemicals of concern for which potential pathways of exposure should be further identified. PMID:23628509

  15. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    Science.gov (United States)

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  16. Reconstructing Causal Biological Networks through Active Learning

    OpenAIRE

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are ...

  17. Phenolic Compounds and Antioxidant Activities of Liriope muscari

    OpenAIRE

    Shu Shan Du; Zhi Long Liu; Rui Chao Lin; Gang Li Wang; Jing Liu; Wen Jie Li; Xian Long Cheng

    2012-01-01

    Five phenolic compounds, namely N-trans-coumaroyltyramine (1), N-trans-feruloyltyramine (2), N-trans-feruloyloctopamine (3), 5,7-dihydroxy-8-methoxyflavone (4) and (3S)3,5,4′-trihydroxy-7-methoxy-6-methylhomoisoflavanone (5), were isolated from the fibrous roots of Liriope muscari (Liliaceae). Compounds 2–5 were isolated for the first time from the Liriope genus. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The structure-a...

  18. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    Science.gov (United States)

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure. PMID:18618404

  19. Resources and Biological Activities of Natural Polyphenols

    Directory of Open Access Journals (Sweden)

    An-Na Li

    2014-12-01

    Full Text Available The oxidative stress imposed by reactive oxygen species (ROS plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity.

  20. Synthesis and antitumor activity of natural compound aloe emodin derivatives.

    Science.gov (United States)

    Thimmegowda, Naraganahalli R; Park, Chanmi; Shwetha, Bettaswamigowda; Sakchaisri, Krisada; Liu, Kangdong; Hwang, Joonsung; Lee, Sangku; Jeong, Sook J; Soung, Nak K; Jang, Jae H; Ryoo, In-Ja; Ahn, Jong S; Erikson, Raymond L; Kim, Bo Y

    2015-05-01

    In this study, we have synthesized novel water soluble derivatives of natural compound aloe emodin 4(a-j) by coupling with various amino acid esters and substituted aromatic amines, in an attempt to improve the anticancer activity and to explore the structure-activity relationships. The structures of the compounds were determined by (1) H NMR and mass spectroscopy. Cell growth inhibition assays revealed that the aloe emodin derivatives 4d, 4f, and 4i effectively decreased the growth of HepG2 (human liver cancer cells) and NCI-H460 (human lung cancer cells) and some of the derivatives exhibited comparable antitumor activity against HeLa (Human epithelial carcinoma cells) and PC3 (prostate cancer cells) cell lines compared to that of the parent aloe emodin at low micromolar concentrations. PMID:25323822

  1. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  2. Activation and transfer of sulfate in biological systems (1960)

    International Nuclear Information System (INIS)

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author)

  3. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  4. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf.

    OpenAIRE

    Saeidnia, S.; A.R. Gohari; Shahverdi, A.R.; P Permeh; M. Nasiri; Mollazadeh, K.; F. Farahani

    2009-01-01

    Among marine organisms, algae are a large and diverse group of organisms from which a wide range of secondary metabolites have been isolated. A number of these compounds possess biological activity. In this study, we aim to evaluate the cytotoxic, antibacterial and antifungal activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis, collected from Persian Gulf. Ethyl acetate extracts of both algae showed a potent cytotoxic effect against Artemia salina nauplii (LC50 = 3 and ...

  5. Reactive DESI-MS imaging of biological tissues with dicationic ion-pairing compounds.

    Science.gov (United States)

    Lostun, Dragos; Perez, Consuelo J; Licence, Peter; Barrett, David A; Ifa, Demian R

    2015-03-17

    This work illustrates reactive desorption electrospray ionization mass spectrometry (DESI-MS) with a stable dication on biological tissues. Rat brain and zebra fish tissues were investigated with reactive DESI-MS in which the dictation forms a stable bond with biological tissue fatty acids and lipids. Tandem mass spectrometry (MS/MS) was used to characterize the dication (DC9) and to identify linked lipid-dication compounds formed. The fragment m/z 85 common to both DC9 fragmentation and DC9-lipid fragmentation was used to confirm that DC9 is indeed bonded with the lipids. Lipid signals in the range of m/z 250-350 and phosphoethanolamines (PE) m/z 700-800 observed in negative ion mode were also detected in positive ion mode with reactive DESI-MS with enhanced signal intensity. Reactive DESI-MS imaging in positive ion mode of rat brain and zebra fish tissues allowed enhanced detection of compounds commonly observed in the negative ion mode. PMID:25710577

  6. Synthesis of a new group of aliphatic hydrazide derivatives and the correlations between their molecular structure and biological activity.

    Science.gov (United States)

    Kostecka, Małgorzata

    2012-01-01

    In view of the growing demand for new compounds showing biological activity against pathogenic microorganisms, such as pathogenic and phytopathogenic fungi, the objective of this study was to synthesize a new group of aliphatic and aromatic derivatives of hydrazide. In consequence of the reactions observed during synthesis, the resulting compounds retained their linear structure. Their structure and lipophilicity, measured by high-performance liquid chromatography (HPLC), were analyzed. Correlations were determined between the compounds' molecular parameters and biological activity against Fusarium solani and Fusarium oxysporum fungi. The investigated compounds were also examined for their antifungal activity against Aspergillus fumigatus. The obtained results indicate that compounds with fluorine-containing substituents penetrate the cell structure more effectively and are characterized by higher antifungal potential than analogues with different substituents. PMID:22441334

  7. Leishmanicidal and Cholinesterase Inhibiting Activities of Phenolic Compounds from Allanblackia monticola and Symphonia globulifera

    Directory of Open Access Journals (Sweden)

    Norbert Sewald

    2007-07-01

    Full Text Available In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1, garcinol (2, cambogin (3 and guttiferone F (4, along with three xanthones: allanxanthone A (5, xanthone V1 (6 and globulixanthone C (7 as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1 and F (4 showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 μM and 0.16 μM, respectively comparable to that of the reference compound, miltefosine (0.46 μM. Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE and butylcholinesterase (AChE. For AChE, the IC50 value (0.66 μM of garcinol (2 was almost equal to that of the reference compound galanthamine (0.50 μM. Furthermore, guttiferone A (1 and guttiferone F (4 (IC50 = 2.77 and 3.50 μM, respectively were more active than galanthamine (IC50 = 8.5 against BChE.

  8. Synthesis and biological evaluation of novel compounds as potential modulators of cannabinoid signalling pathways

    OpenAIRE

    De Bank, Paul A

    2001-01-01

    Most of the biological effects of cannabis are due to the activation of specific cannabinoid receptors. To date, two such receptors have been discovered and are found predominantly in the central nervous system (the CB1 receptor) or the immune system (the CB2 receptor). Endogenous cannabinoid receptor ligands, the endocannabinoids, have also been isolated and the mechanisms of their synthesis and degradation postulated. By modulating the activation of cannabinoid receptors and endocannabinoid...

  9. Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity

    Directory of Open Access Journals (Sweden)

    Saeedeh Negin

    2013-01-01

    Full Text Available Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range of in vitro assays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by the disruption of ion homeostasis. The channel mechanism was verified in cells using membrane polarity sensitive dyes, as well as patch clamping studies. This body of work has provided a solid foundation with which hydraphiles have recently demonstrated acute biological toxicity in the muscle tissue of living mice, as measured by whole animal fluorescence imaging and histological studies. Here we review the critical structure-activity relationships in the hydraphile family of compounds and the in vitro and in cellulo experiments that have validated their channel behavior. This report culminates with a description of recently reported efforts in which these molecules have demonstrated activity in living mice.

  10. Two new compounds from Crataegus pinnatifida and their antithrombotic activities.

    Science.gov (United States)

    Zhou, Chen-Chen; Huang, Xiao-Xiao; Gao, Pin-Yi; Li, Fei-Fei; Li, Dian-Ming; Li, Ling-Zhi; Song, Shao-Jiang

    2014-01-01

    One new sesquiterpene, (1α,4aβ,8aα)-1-isopropanol-4a-methyl-8-methylenedecahydronaphthalene (1), with one new phenylpropanoid, threo-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol (2), along with four known phenylpropanoids were isolated from Crataegus pinnatifida. The structures of compounds 1 and 2 were elucidated on the basis of 1D, 2D NMR analyses, and HR-ESI-MS. The antithrombotic activity in vitro of all isolates was assayed, and only compound 1 exhibited potent antithrombotic activity by inhibiting platelet aggregation in rat plasma by 81.4% at 1 mg/ml. PMID:24161196

  11. Evaluation of toxicity to the biological treatment and removal of recalcitrant organic compounds from oil refineries wastewaters; Avaliacao da toxicidade ao tratamento biologico e remocao de compostos organicos recalcitrantes existentes em efluentes de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Barros Junior, Laerte M.; Macedo, Gorete R.; Bezerra, Marcio S.; Pereira, Franklin M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Schmidell, Willibaldo [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2004-07-01

    Oil industry waste water usually contains recalcitrant chemical compounds, like phenol, benzene, toluene, xylene, naphthalene and acenaphthene. The respirometry, determination of respiration rate of an active biomass, is an adequate methodology for quantification of aerobic activity biological. This study aims evaluate the inhibition effect of phenol in the oxidation capacity of an industrial sludge. This work also intends to study the phenol removal through biological and photochemical-biological processes. The respirometry was carried out with synthetic solution, using sludge from an oil processing industry. The phenol degradation experiments were carried out in an activated sludge unit and in a photochemical reactor. This work suggests the potential of photochemical-biological treatment use, in relation to the biological process with a no-acclimated sludge, in the removal of refractory organic compounds from oil industry wastewaters. The characterization of biomass using the respirometry methodology showed which is a useful tool in evaluation of phenol toxicity to biological treatment. (author)

  12. Olive mill wastewater anaerobically digested : phenolic compounds with antiradical activity

    OpenAIRE

    La Cara, Francesco; Ionata, Elena; Del Monaco, Giovanni; Marcolongo, Loredana; Gonçalves, Marta R.; Marques, I. P.

    2012-01-01

    The recovery of phenolic compounds, present in the olive fruits and its by-products, has been intensively studied by the antioxidant properties. Olive mill wastewater (OMW) is a phenolic-rich industrial effluent that can be advantageously valorized by the anaerobic digestion to the methane and agricultural fertilizer productions. The objective of this work was to evaluate the antiradical activity of OMW after anaerobic digestion in order to maximize the valorization of this type o...

  13. ANTIOXIDANT ACTIVITIES OF NATURAL PHENOLIC COMPOUNDS FROM ACACIA CONCURRENS BARK

    OpenAIRE

    Nimbekar, Tulsidas; Wanjari, Bhumesh; Patil, A. T.

    2010-01-01

    The present study showed that the ethanolic extracts from the bark of Acacia concurrens exhibited a strong antioxidant activity. Among all the fractions from ethanolic extracts of bark, the EtOAc soluble fraction exhibited the best antioxidant performance. Furthermore, the amounts of total phenolic compound were determined from the ethanolic extracts. Therefore, Acacia concurrens could be considered as a potential source of natural antioxidant.

  14. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  15. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    Science.gov (United States)

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  16. Relationship structure-antioxidant activity of hindered phenolic compounds

    OpenAIRE

    Weng, X. C.; Huang, Y.

    2014-01-01

    The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol ...

  17. SYNTHESIS AND BIOLOGICAL ACTIVITY OF AMIDE DERIVATIVES OF GINKGOLIDE A

    Institute of Scientific and Technical Information of China (English)

    LI-HONG HU; ZHONG-LIANG CHEN; YU-YUAN XIE

    2001-01-01

    Amide derivatives of ginkgolide A were prepared and evaluated for their in vitro ability to inhibit the PAF-induced aggregation of rabbit platelets. They showed less activities than their parent compound ginkgolide A.

  18. Biological effects of palytoxin-like compounds from Ostreopsis cf. ovata: a multibiomarkers approach with mussels Mytilus galloprovincialis.

    Science.gov (United States)

    Gorbi, S; Bocchetti, R; Binelli, A; Bacchiocchi, S; Orletti, R; Nanetti, L; Raffaelli, F; Vignini, A; Accoroni, S; Totti, C; Regoli, F

    2012-10-01

    Massive blooms of the harmful benthic dinoflagellate Ostreopsis cf. ovata are of growing environmental concern in the Mediterranean, having recently caused adverse effects on benthic invertebrates and also some intoxication episodes to humans. The toxicological potential of produced palytoxin-like compounds was investigated in the present study on a typical marine sentinel species, the mussel Mytilus galloprovincialis. Organisms were sampled during various phases of a O. cf. ovata bloom, in two differently impacted sites. The presence of the algal toxins was indirectly assessed in mussels tissues (mouse test and hemolysis neutralization assay), while biological and toxicological effects were evaluated through the measurement of osmoregulatory and neurotoxic alterations (Na(+)/K(+)-ATPase and acetylcholinesterase activities), oxidative stress responses (antioxidant defences and total oxyradical scavenging capacity), lipid peroxidation processes (level of malondialdehyde), peroxisomal proliferation, organelle dysfunctions (lysosomal membrane stability, accumulation of lipofuscin and neutral lipids), immunological impairment (granulocytes percentage). Obtained results demonstrated a significant accumulation of algal toxins in mussels exposed to O. cf. ovata. These organisms exhibited a marked inhibition of the Na(+)/K(+)-ATPase activity and alterations of immunological, lysosomal and neurotoxic responses. Markers of oxidative stress showed more limited variations suggesting that toxicity of the O. cf. ovata toxins is not primarily mediated by an over production of reactive oxygen species. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess biological alterations and toxicological events associated to blooms of O. cf. ovata in marine organisms. PMID:22704213

  19. ANTIMICROBIAL ACTIVITY OF DIFFERENT THIOSEMICARBAZONE COMPOUNDS AGAINST MICROBIAL PATHOGENS

    OpenAIRE

    Negi Parul; Nandy Subhangkar; Mahato Arun

    2012-01-01

    Thiosemicarbazone belongs to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety. They have been evaluated over the last 50 year as antiviral, antibacterial, antifungal, antimalarial, anticancer, leprosy, rheumatism, trypanosomiasis and coccidiodis. Thiosemicarbazones were prepared by simple process in which N4-thiosemicarbazone moiety was replaced by aliphatic, arylic and cyclic amines. Present study reported the anti-microbia...

  20. Relationship structure-antioxidant activity of hindered phenolic compounds

    Directory of Open Access Journals (Sweden)

    Weng, X. C.

    2014-12-01

    Full Text Available The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol also exhibits stronger activity than 2-tert-butyl-4- methoxyphenol. The methylene of 2,6-ditert-butyl-4-hydroxy-methylphenol can provide a hydrogen atom to active free radicals like a phenolic hydroxyl group does because it is greatly activated by both the aromatic ring and hydroxyl group. Five factors affect the antioxidant activities of the phenolic compounds: how stable the phenolic compound free radicals are after providing hydrogen atoms; how many hy drogen atoms each of the phenolic compounds can provide; how fast the phenolic compounds provide hydrogen atoms; how easily the phenolic compound free radicals can combine with more active free radicals, and whether or not a new antioxidant can form after the phenolic compound provides hydrogen atoms.La relación entre estructura y la actividad antioxidante de 21 compuestos fenólicos con impedimentos estéricos fue investigado mediante ensayos con Rancimat y DPPH·. El 3-terc-butil-5-metilbenceno-1,2-diol es el antioxidante más potente en los ensayos mediante Rancimat pero no mediante ensayos con DPPH·, porque sus dos grupos hidroxilo tienen una fuerte sinergia estérica. El 2,6-Di-terc-butil-4-hidroxi-metil-fenol mostró una actividad antioxidante tan fuerte como el 2,6-di-ter-butil-4-metoxifenol en ensayos con manteca de cerdo. El 2,6-di-terc-butil-4-hidroxi-metilfenol también mostró una actividad más fuerte que el 2-terc-butil-4-metoxifenol. El grupo metileno del 2,6-di-ter-butil-4-hidroxi

  1. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major.

    Science.gov (United States)

    Iniguez, Eva A; Perez, Andrea; Maldonado, Rosa A; Skouta, Rachid

    2015-11-15

    Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods ((1)H, (13)C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50=3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50=28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells. PMID:26410073

  2. Analysis of biological and chemical compounds by remote spectroscopy using IR TeX glass fibers

    Science.gov (United States)

    Le Foulgoc, Karine; Le Neindre, Lydia; Guimond, Yann; Ma, Hong Li; Zhang, Xhang H.; Lucas, Jacques

    1995-09-01

    The TeX glasses are attracting much attention as materials for low loss mid-IR optical fibers and are consequently good candidates for thermal imaging, laser power delivery, and more recently remote sensing. The TeX glass fiber, transmitting in a wide optical window, has a minimum attenuation in the 9-10 micrometers region. Fibers with an attenuation of less than 0.5 dB/m have been repeatly obtained. These fibers are coated with a UV curable or thermal plastic, in order to improve their mechanical properites. The IR remote spectroscopy using TeX fibers is one of the most promising applications. This technology allows to perform in situ, real-time, and on-line analysis of chemical and biological compounds. The study of industrial processes such as fermentations has been performed by this method, based on the use of these IR TeX fibers.

  3. Electrochemical screening of biomembrane-active compounds in water

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health

  4. Electrochemical screening of biomembrane-active compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamadi, Shahrzad, E-mail: cmsm@leeds.ac.uk; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-02-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health.

  5. Biological Activities of a Thai Luminescent Mushroom

    OpenAIRE

    Jiraporn BURAKORN; Trong Binh NGUEYN; Rueankeaw PRAPHRUET

    2015-01-01

    Wild fruit bodies of luminescent mushrooms were collected from wood stumps over a period covering August to October 2011 in the Kosumpisai forest, Mahasarakham province, in the Northeast of Thailand. A study of the morphological and genetic characteristics of the luminescent mushroom suggested that it was Neonothopanus nimbi KS. The fruiting bodies and mycelium of Neonothopanus nimbi KS were assayed for their antimicrobial activities, antifungal activity, inhibitory activity against avian inf...

  6. Biologically active secondary metabolites from marine cyanobacteria

    OpenAIRE

    Nunnery, Joshawna K.; Mevers, Emily; Gerwick, William H

    2010-01-01

    Marine cyanobacteria are a rich source of complex bioactive secondary metabolites which derive from mixed biosynthetic pathways. Recently, several marine cyanobacterial natural products have garnered much attention due to their intriguing structures and exciting anti-proliferative or cancer cell toxic activities. Several other recently discovered secondary metabolites exhibit insightful neurotoxic activities whereas others are showing pronounced anti-inflammatory activity. A number of anti-in...

  7. Biological Role of Anions (Sulfate, Nitrate , Oxalate and Acetate) on the Antibacterial Properties of Cobalt (II) and Nickel(II) Complexes With Pyrazinedicarboxaimide Derived, Furanyl and Thienyl Compounds

    OpenAIRE

    Chohan, Zahid H.; Praveen, M.

    1999-01-01

    A number of biologically active complexes of cobalt(II) and nickel(II) with pyrazinedicarboxaimido derived thienyl and furanyl compounds having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesized and characterized on the basis of their physical, spectral and analytical data. In order to evaluate the role of anions on their antibacterial properties, these ligands and their synthesized metal complexes with various anions have been screene...

  8. Plant-Derived Compounds with Potential Sedative and Anxiolytic Activities

    Directory of Open Access Journals (Sweden)

    Theresa Ibibia Edewor-Kuponiyi

    2013-07-01

    Full Text Available A wide variety of active phytochemicals such as flavonoids, alkaloids, saponins, etc., have been isolated and identified in different plants. Pharmacological and chemical investigations of medicinal plants have provided important advances in therapeutic approach to several pathologies as well as extremely useful tools for the theoretical study of physiology and pharmacology. With increased use of herbal medicine, medicinal plants are receiving more attention from the scientific and pharmaceutical communities. Several compounds have been isolated and evaluated for their sedative and anxiolytic properties. Although most of the reported works are more of academic interest and very few find entry at clinical trials; one is hopeful that as more discoveries of sedative and anxiolytic compounds from plants are made, it will lead to generation of more effective drugs.

  9. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  10. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ana O. de [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Bioquimica e Biofisica]. E-mail: olivia@butantan.gov.br; Galetti, Fabio C.S.; Silva, Celio L. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Bioquimica e Imunologia] (and others)

    2007-07-01

    Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 {mu}mol/L. Dihydrocurvularin was moderately effective with a MIC of 40 {mu}mol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 {mu}mol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively. (author)

  11. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  12. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  13. Screening for antiviral activities of isolated compounds from essential oils.

    Science.gov (United States)

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  14. Anti-cancer activity of compounds from Cassia garrettiana heartwood

    Directory of Open Access Journals (Sweden)

    Supreeya Yuenyongsawad

    2014-04-01

    Full Text Available The ethanol extract of Cassia garrettiana heartwood showed marked inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB cells. Therefore, its extract and compounds were investigated for their anticancer effect using the Sulforhodamine B (SRB assay. The ethanol extract of C. garrettiana heartwood was separated to give five compounds which are chrysophanol (1, piceatannol (2, aloe-emodin (3, emodin (4 and cassigarol E (5. Of the tested samples, chrysophanol (1 showed the highest anti-cancer activity against KB cells (IC50 = 0.045 g/mL, aloe emodin (3 was the most active against HT-29 (IC50 = 0.29 g/mL, emodin (4 was against HeLa cells (IC50 = 0.82 g/mL, and cassigarol E (5 was active against MCF-7 (IC50 = 0.021 g/mL, whereas piceatannol (2 was inactive in all tested cell lines. This is the first report of anti-cancer effect against HT-29, HeLa, MCF-7 and KB cells of C. garrettiana heartwood.

  15. Studies on the antioxidant activities of some new chromone compounds.

    Science.gov (United States)

    Kładna, Aleksandra; Berczyński, Paweł; Piechowska, Teresa; Kruk, Irena; Aboul-Enein, Hassan Y; Ceylan-Unlusoy, Meltem; Verspohl, Eugen J; Ertan, Rahmiye

    2014-11-01

    Recent reviews evidence that the naturally occurring compounds containing the chromone skeleton exhibit antiradical activities, providing protection against oxidative stress. The antioxidant activities of 13 new synthesized chromonyl-2,4-thiazolidinediones, chromonyl-2,4-imidazolidinediones and chromonyl-2-thioxoimidzolidine-4-ones were evaluated using in vitro antioxidant assays, including superoxide anion radical (O2(-•)), hydroxyl radical (HO(•)), 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH(•)) scavenging capacity and total antioxidant capacity ferric ion reducing activity. Superoxide anion radical was produced using potassium superoxide/18-crown-6-ether dissolved in dimethylsulfoxide, and the Fenton-like reaction (Fe(II) + H2O2) was a generator of hydroxyl radicals. Chemiluminescence, spectrophotometry, electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin trap were the measurement techniques. The results showed that the majority of the chromone derivatives tested showed a strong scavenging effect towards free radicals, similar to the chemiluminescence reaction with superoxide anion radical with a high activity, inhibition of the DMPO-OOH radical EPR signal (24-58%), the DMPO-OH radical EPR signal (4-75%) and DPPH radical EPR signal (6-100%) at 1 mmol/L. Several of the examined compounds exhibited the high reduction potentials. The results obtained show that the new synthesized chromone derivatives may directly scavenger reactive oxygen species and thus may play a protective role against oxidative damage. PMID:24482260

  16. Comparative molecular modelling of biologically active sterols

    Science.gov (United States)

    Baran, Mariusz; Mazerski, Jan

    2015-04-01

    Membrane sterols are targets for a clinically important antifungal agent - amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction of amphotericin B with ergosterol as compared with cholesterol. The compounds studied were chosen on the basis of structural features characteristic for cholesterol and ergosterol and on available experimental data on the ability to form complexes with the antibiotic. Statistical analysis of the data obtained has been performed. The results show similarity of the conformational spaces occupied by all the sterols tested. This suggests that the conformational differences of sterol molecules are not the major feature responsible for the differential sterol - drug affinity.

  17. Anti-allergic activity of compounds from Kaempferia parviflora.

    Science.gov (United States)

    Tewtrakul, Supinya; Subhadhirasakul, Sanan; Kummee, Sopa

    2008-02-28

    Kaempferia parviflora is one of the plants in the Zingiberaceae family, locally known in Thai as kra-chai-dam. In Thai traditional medicine, the decoction of Kaempferia parviflora powder with alcohol has been reported to cure allergy, asthma, impotence, gout, diarrhea, dysentery, peptic ulcer and diabetes. Therefore, the present study aimed to investigate anti-allergic substances from this plant. Bioassay-guided fractionation led to the isolation of seven methoxyflavone derivatives (1-7) from Kaempferia parviflora extract and they were identified on the basis of spectroscopic methods. Among the compounds tested, 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5) possessed the highest anti-allergic activity against antigen-induced beta-hexosaminidase release as a marker of degranulation in RBL-2H3 cells with an IC(50) value of 8.0 microM, followed by 5-hydroxy-7-methoxyflavone (2, IC(50)=20.6 microM) and 5-hydroxy-7,4'-dimethoxyflavone (4, IC(50)=26.0 microM), whereas others showed moderate activities (IC(50)=37.5-66.5 microM). Structure-activity trends of 7-methoxyflavone derivatives on anti-allergic activity can be summarized as follows: (1) substitution with vicinal methoxyl groups at positions 3' and 4' conferred higher activity than only one methoxylation, (2) methoxylation at position 3 reduced activity and (3) methoxylation at position 5 showed higher activity than hydroxylation. Compounds 2, 4 and 5 were also determined for their mechanisms on ionomycin-induced beta-hexosaminidase release. The results indicated that the mechanism on inhibition of cell degranulation of compounds 2 and 5 mainly involve the inhibition of Ca(2+) influx to the cells, whereas that of 4 may be partly due to this inhibition. In regards to the active constituents for anti-allergic activity of Kaempferia parviflora, 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5), 5-hydroxy-7-methoxyflavone (2) and 5-hydroxy-7,4'-dimethoxyflavone (4) are responsible for anti-allergic effect of this plant. The

  18. Synthesis, Characterization and Biological Studies of New Phenyltin(IV) Dithiocarbamate Compounds

    International Nuclear Information System (INIS)

    Nine chlorophenyl tin(IV) dithiocarbamate compounds of general formula PhSnCl[S2CNR'R'']2 (R' = CH3, C2H5, C7H7 and R' = C2H5, C6H11, iC3H7, C7H7) were prepared in one pot reaction of various secondary amine, carbon disulphide and phenyltin(1V) trichloride with the ratio of 2:2:1. These compounds have been characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, 1H, 13C NMR spectroscopy as well as single crystal X-ray crystallography. Data from X-ray crystallography showed that (C6H5)SnCl[S2CN(C2H5)(iC3H7)]2 is six coordinated bonded with two chelating dithiocarbamate ligands in bidentate fashion, methyl-C and chloride atom thus form a distorted octahedral geometry. Five selected compounds, (C6H5)SnCl[S2CN(CH3)(C2H5)]2, (C6H5)SnCl[S2CN(CH3)(C6H11)]2, (C6H5)SnCl[S2CN(C2H5)(iC3H7)]2, (C6H5)SnCl[S2CN(C7H7)(iC3H7)]2 and (C6H5)SnCl[S2CN(C7H7)2]2 were screened for anticancer activity against Chang liver cells. These compounds were demonstrated no cytotoxic effect for all concentrations under the condition of the study with no IC50 value. The minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) determinations for these five compounds used Escherichia coli and Pseudomonas aeruginosa as Gram negative bacteria together with Staphylococcus aureus and Staphylococcus epidermis as Gram positive bacteria. Compound (C6H5)SnCl[S2CN(CH3)(C2H5)]2 was the most active compared to the other compounds by having the lowest MIC values of 1.25 mg/ mL and MBC value of 5.0 mg/ mL against E. Coli and S. Aureus bacteria. Compounds (C6H5)SnCl[S2CN(C7H7)(iC3H7)]2 and (C6H5)SnCl[S2CN(C7H7)2]2 that having a benzyl group showed their MIC and MBC values slightly higher compared to the other compounds againts certain bacteria indicating their low antibacterial activities. (author)

  19. Synthesis and Biological Evaluation of Novel 3-Alkylpyridine Marine Alkaloid Analogs with Promising Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Alessandra Mirtes Marques Neves Gonçalves

    2014-07-01

    Full Text Available Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents.

  20. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades.

    Science.gov (United States)

    Bahrami, Yadollah; Franco, Christopher M M

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  1. Comparison of the Biological Impacts of the Fluoride Compounds by Graphical Risk Visualization Map Technique.

    Science.gov (United States)

    Usuda, Kan; Kono, Rei; Ueno, Takaaki; Ito, Yuichi; Dote, Tomotaro; Yokoyama, Hirotaka; Kono, Koichi; Tamaki, Junko

    2015-09-01

    Various fluoride compounds are widely used in industry. The present risk assessment study was conducted using a series of inorganic binary fluorides of the type XFn, where X(n) = Na(+), K(+), Li(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Al(3+), Nd(3+), La(3+), Ce(3+), Sm(3+), Gd(3+), Y(3+), Yb(2+), and Zn(2+). The aqueous solutions of these salts were orally administrated to 16 experimental groups (one for each of the salts tested). The levels of fluoride, N-acetyl-β-D-glucosaminidase in cumulative 24-h urine samples and creatinine clearance were measured to assess possible acute renal damages. The levels of fluoride, alanine aminotransferase, and aspartate aminotransferase were also determined in serum samples to assess possible acute hepatic damages. The results reveal that sodium fluoride (NaF), potassium fluoride (KF), and zinc fluoride tetrahydrate (ZnF2 (.)4H2O) can carry the fluoride ion into the bloodstream and that it is excreted via urine more readily than the other compounds tested. These fluorides were assigned the highest risk impact factor. Most of the rare earth fluorides are insoluble in water while those groups 2 and 13 of the periodic table are slightly soluble, so that they do not have a significant negative risk. These findings suggest that the biological impact of fluoride depends on the accompanying counter ion and its solubility. The risk map obtained in the present study shows that the graphical visualization map technique employed is a valuable new tool to assess the toxicological risk of chemical compounds. PMID:25749926

  2. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    OpenAIRE

    Oee-Sook Park; Jae-Chul Jung

    2009-01-01

    The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  3. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Oee-Sook Park

    2009-11-01

    Full Text Available The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  4. BIOLOGICALLY ACTIVE SUBSTANCES OF LAVANDULA X INTERMEDIA EMERIC EX LOISEL (LAMIACEAE)

    OpenAIRE

    A. E. Paliy; V. D. Rabotyagov

    2016-01-01

    Data about qualitative and quantitative composition of biologically active substances (volatile and phenolic compounds) in water- ethanol extract of Lavandula x intermedia Emeric ex Loisel (Lamiaceae) cv. ‘Bora’ bred in Nikitsky Botanical Garden are presented in the article. Concentration of volatile compounds in Lavandin extract was 398 mg/dm3 and 51 components were identified. Main volatiles in Lavandin cv. «Bora» extract were linalyl acetate (36,9%) and linalool (33,5%). Content of phenoli...

  5. Anti-Inflammatory Activity of Different Agave Plants and the Compound Cantalasaponin-1

    Directory of Open Access Journals (Sweden)

    Jaime Tortoriello

    2013-07-01

    Full Text Available Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants’ leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1 through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.

  6. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    Science.gov (United States)

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. PMID:26581489

  7. Synthesis, algal inhibition activities and QSAR studies of novel gramine compounds containing ester functional groups

    Institute of Scientific and Technical Information of China (English)

    LI Xia; YU Liangmin; JIANG Xiaohui; XIA Shuwei; ZHAO Haizhou

    2009-01-01

    2,5,6-Tribromo-l-methylgramine (TBG), isolated from bryozoan Zoobotryon pellucidum was shown to be very efficient in preventing recruitment of larval settlement. In order to improve the compatibility of TBG and its analogues with other ingredients in antifouling paints, structural modification of TBG was focused mainly on halogen substitution and N-substitution. Two halogen-substitute gramines and their derivatives which contain ester functional groups at N-position of gramines were synthesized. Algal inhibition activities of the synthesized compounds against algae Nitzschia closterium were evaluated and the Median Effective Concentration (EC50) range was 1.06-6.74 μg ml-1. Compounds that had a long chain ester group exhibited extremely high antifouling activity. Quantitive Structure Activity Relationship (QSAR) studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors and biological activity of the synthesized compounds. The results show that the toxicity (log (1/EC50)) is correlated well with the partition coefficient log P. Thus, these products have potential function as antifouling agents.

  8. PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF FAGONIA INDICA

    Directory of Open Access Journals (Sweden)

    Goyal Manoj

    2012-06-01

    Full Text Available Fagonia Indica (family Zygophyllaceae is a small spiny under-shrub, mostly found in the deserts of Asia and Africa. It is widely used is Ayurvedic system of medicine to treat vitiated conditions since this plant was antioxidant, analgesic, anti-inflammatory, antimicrobial, astringent, febrifuge and prophylactic against small-pox agents.There are reports providing scientific evidences for antimicrobial, analgesic, anti-inflammatory, and antioxidant activities of this plant. These activities were attributed to the presence of a variety of active ingredients including triterpenoidal saponins , flavonol glycosides, ursolic and oleanolic acids either alone or with their derivatives. A comprehensive account of the morphology, photochemical constituents, ethanobotanical uses and pharmacological activities reported are included in this review for exploring the immense medicinal potential of this plant.

  9. Biological Activity of Curcuminoids Isolated from Curcuma longa

    OpenAIRE

    Simay Çıkrıkçı; Erkan Mozioğlu; Hasibe Yılmaz

    2008-01-01

    Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  10. Phytochemicals and Their Biological Activities of Plants in Tagetes L.

    Institute of Scientific and Technical Information of China (English)

    XU Li-wei; CHEN Juan; QI Huan-yang; SHI Yan-ping

    2012-01-01

    Tagetes L.,the genus in the family Asteraceae,consists of about 30 species spread in South and Middle America as well as Mexico.More than one hundred secondary metabolites have been obtained in phytochemical investigation on the species,some of which have potent biological activities.The advances in phytochemical studies and biological activities of the plants in Tagetes L.from 1925 to 2011 are summarized in this paper.

  11. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    Directory of Open Access Journals (Sweden)

    Ranga Rao Ambati

    2014-01-01

    Full Text Available There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  12. Saponins from Swartzia langsdorffii: biological activities

    OpenAIRE

    2003-01-01

    The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and...

  13. PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF FAGONIA INDICA

    OpenAIRE

    Goyal Manoj; Pareek Anil; Batra Nikhil; Nagori Badri Prakash

    2012-01-01

    Fagonia Indica (family Zygophyllaceae) is a small spiny under-shrub, mostly found in the deserts of Asia and Africa. It is widely used is Ayurvedic system of medicine to treat vitiated conditions since this plant was antioxidant, analgesic, anti-inflammatory, antimicrobial, astringent, febrifuge and prophylactic against small-pox agents.There are reports providing scientific evidences for antimicrobial, analgesic, anti-inflammatory, and antioxidant activities of this plant. These activities w...

  14. Syntheses and biological activities of 13-substituted avermectin aglycons.

    Science.gov (United States)

    Mrozik, H; Linn, B O; Eskola, P; Lusi, A; Matzuk, A; Preiser, F A; Ostlind, D A; Schaeffer, J M; Fisher, M H

    1989-02-01

    The reactions of sulfonate esters of the allylic/homoallylic 13-alcohol of 5-O-(tert-butyldimethylsilyl)-22,23-dihydroavermectin B1a aglycon (1a) were investigated. Nucleophilic substitution gave 13 beta-chloro and 13 beta-iodo derivatives, while solvolytic reaction conditions yielded 13 alpha-methoxy, 13 alpha-fluoro, and 13 alpha-chloro products. A mixture of 13 alpha- and 13 beta-fluorides was obtained upon reaction with DAST. The 13 beta-iodide gave, upon elimination with lutidine, the 8(9),10(11),12(13),14(15)-tetraene. The 13 beta-alcohol and the rearranged 15-ol 13(14)-ene and 15-amino 13(14)-ene derivatives were obtained by substitution via the allylic carbonium ion. MEM ethers 11 and 12 of the two epimeric 13-ols were prepared by alkylation with MEM chloride. In contrast, methylation of 1a with MeI and Ag2O in CH2Cl2 occurred exclusively at the tertiary 7-hydroxy group and not at the secondary 13 alpha-ol. Oxidation of the allylic alcohol 1a proceeded under Swern conditions but not with MnO2 to the 13-oxo aglycon, which was reduced by NaBH4 exclusively to the natural 13 alpha-ol, while reductive amination with NaCNBH3-NH4OAc gave the 13 alpha-amine. The methoxime derivative was obtained in the form of the two geometric isomers. Anthelmintic activities against the sheep nematode Trichostrongylus colubriformis, miticidal activities against the two-spotted spider mite (Tetranychus urticae), and insecticidal activities against the southern armyworm (Spodoptera eridania) as well as the binding constants to a free living nematode (Caenorhabditis elegans) derived receptor assay were obtained and compared to avermectin B1a, 22,23-dihydroavermectin B1a, and the 13-deoxy-22,23-dihydroavermectin B1 aglycon related to the milbemycins. None of the newly prepared derivatives exceeded the potency of the three reference compounds. Lipophilic 13-substituents such as halogen, alkoxy, and methoxime retained high biological activities in all assays, while the more polar

  15. Synthesis of a New Group of Aliphatic Hydrazide Derivatives and the Correlations between Their Molecular Structure and Biological Activity

    Directory of Open Access Journals (Sweden)

    Małgorzata Kostecka

    2012-03-01

    Full Text Available In view of the growing demand for new compounds showing biological activity against pathogenic microorganisms, such as pathogenic and phytopathogenic fungi, the objective of this study was to synthesize a new group of aliphatic and aromatic derivatives of hydrazide. In consequence of the reactions observed during synthesis, the resulting compounds retained their linear structure. Their structure and lipophilicity, measured by high-performance liquid chromatography (HPLC, were analyzed. Correlations were determined between the compounds’ molecular parameters and biological activity against Fusarium solani and Fusarium oxysporum fungi. The investigated compounds were also examined for their antifungal activity against Aspergillus fumigatus. The obtained results indicate that compounds with fluorine-containing substituents penetrate the cell structure more effectively and are characterized by higher antifungal potential than analogues with different substituents.

  16. Eugenol biologic activity in immunosuppressed rat females with Candida albicans genital infection: histocytological changes

    OpenAIRE

    Romeo Teodor CRISTINA; Obistioiu, Diana; Dumitrescu, Eugenia; NICHITA, ILEANA; Muselin, Florin; Brezovan, Diana; CERNEA, MIHAI SORIN

    2015-01-01

    From our prior studies concerning eugenol's biologic activity we observed the very good in vitro antifungal efficiency of this natural compound. Those positive results generated the need to supplement the available information with a comparative in vivo animal model. In this context, our current study was proposed to ascertain and compare the effects of eugenol with nystatin with a placebo control group (saline solution) by evaluating the cytohistological alterations in immunosuppressed ...

  17. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    OpenAIRE

    Bianca Ivanescu; Anca Miron; Andreia Corciova

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analges...

  18. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    OpenAIRE

    Manggau Marianti; Taher Muhammad; Sahidin; Ardiansyah

    2011-01-01

    Three terpenoids, including two diterpenes (curcusone B and jatrophone) and a triterpene (stigmasterol) have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLC)technique with silica gel as an adsorben and s...

  19. Biology-oriented synthesis of a withanolide-inspired compound collection reveals novel modulators of hedgehog signaling.

    Science.gov (United States)

    Švenda, Jakub; Sheremet, Michael; Kremer, Lea; Maier, Lukáš; Bauer, Jonathan O; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    Biology-oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans-hydrindane dehydro-δ-lactone motif defines the characteristic scaffold of the steroid-like withanolides, a plant-derived natural product class with a diverse pattern of bioactivity. A withanolide-inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell-based assays that monitored biological signal-transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened. PMID:25736574

  20. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  1. Production of N-13 labeled compounds with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  2. From 'omics to otoliths: responses of an estuarine fish to endocrine disrupting compounds across biological scales.

    Science.gov (United States)

    Brander, Susanne M; Connon, Richard E; He, Guochun; Hobbs, James A; Smalling, Kelly L; Teh, Swee J; White, J Wilson; Werner, Inge; Denison, Michael S; Cherr, Gary N

    2013-01-01

    Endocrine disrupting chemicals (EDCs) cause physiological abnormalities and population decline in fishes. However, few studies have linked environmental EDC exposures with responses at multiple tiers of the biological hierarchy, including population-level effects. To this end, we undertook a four-tiered investigation in the impacted San Francisco Bay estuary with the Mississippi silverside (Menidia audens), a small pelagic fish. This approach demonstrated links between different EDC sources and fish responses at different levels of biological organization. First we determined that water from a study site primarily impacted by ranch run-off had only estrogenic activity in vitro, while water sampled from a site receiving a combination of urban, limited ranch run-off, and treated wastewater effluent had both estrogenic and androgenic activity. Secondly, at the molecular level we found that fish had higher mRNA levels for estrogen-responsive genes at the site where only estrogenic activity was detected but relatively lower expression levels where both estrogenic and androgenic EDCs were detected. Thirdly, at the organism level, males at the site exposed to both estrogens and androgens had significantly lower mean gonadal somatic indices, significantly higher incidence of severe testicular necrosis and altered somatic growth relative to the site where only estrogens were detected. Finally, at the population level, the sex ratio was significantly skewed towards males at the site with measured androgenic and estrogenic activity. Our results suggest that mixtures of androgenic and estrogenic EDCs have antagonistic and potentially additive effects depending on the biological scale being assessed, and that mixtures containing androgens and estrogens may produce unexpected effects. In summary, evaluating EDC response at multiple tiers is necessary to determine the source of disruption (lowest scale, i.e. cell line) and what the ecological impact will be (largest scale, i

  3. Synthesis of N-(6-Arylbenzo[d]thiazole-2-acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach.

    Science.gov (United States)

    Gull, Yasmeen; Rasool, Nasir; Noreen, Mnaza; Altaf, Ataf Ali; Musharraf, Syed Ghulam; Zubair, Muhammad; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; DeFeo, Vincenzo; Zia-Ul-Haq, Muhammad

    2016-01-01

    A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolyl)benzo[d]thiazol-2-yl)acetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition. PMID:26927044

  4. New Conjugated Benzothiazole-N-oxides: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Pavlína Foltínová

    2009-12-01

    Full Text Available Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol – type condensation reactions between 2-methylbenzothiazole–N-oxide and para-substituted benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull molecule properties. Four compounds were tested against various bacterial strains as well as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared analogous benzothiazolium salts, only weak activity was recorded.

  5. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  6. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity.

    Science.gov (United States)

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  7. The Biological Activities of Troponoids and Their Use in Agriculture A Review

    Directory of Open Access Journals (Sweden)

    Saniewski Marian

    2014-09-01

    Full Text Available Chemical compounds containing the tropone structure (2,4,6-cycloheptatrien-1-one, in their molecule, called troponoids, characterized by a seven-membered ring, are distributed in some plants, bacteria and fungi, although they are relatively rare. ß-Thujaplicin (2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one, also known as hinokitiol, is a natural compound found in several plants of the Cupressaceae family. Besides hinokitiol, related compounds were identified in Cupressaceae trees. It has been demonstrated that hinokitiol and its derivatives have various biological effects, such as antibacterial, antifungal, insecticidal, antimalarial, antitumor, anti-ischemic, iron chelating and the inhibitory activity against polyphenol oxidase activity. Activity similar to ß-thujaplicin has tropolone and its derivatives, which are not present nature. Due to the high scientific and practical interest, synthetic ß-thujaplicin and other troponoids have been produced for many years. In this review, the major biological effects of troponoids, mostly ß-thujaplicin and tropolone, on tyrosinase and polyphenol oxidase activity, ethylene production, antibacterial, antifungal and insecticidal activities, and biotransformation of ß-thujaplicin by cultured plant cells are presented. Accumulation of ß-thujaplicin and related troponoids has been shown in cell cultures of Cupressus lusitanica and other species of Cupressaceae. The biosynthetic pathway of the troponoids in plants, bacteria and fungi has been also briefly described.

  8. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds

    Directory of Open Access Journals (Sweden)

    A.C. Pereira

    2011-09-01

    Full Text Available During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP production, which in turn leads to protein kinase G (PKG activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

  9. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds.

    Science.gov (United States)

    Pereira, A C; Paulo, M; Araújo, A V; Rodrigues, G J; Bendhack, L M

    2011-09-01

    During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca(2+) signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described. PMID:21755266

  10. Naturally Produced Defensive Alkenal Compounds Activate TRPA1.

    Science.gov (United States)

    Blair, Nathaniel T; Philipson, Benjamin I; Richards, Paige M; Doerner, Julia F; Segura, Abraham; Silver, Wayne L; Clapham, David E

    2016-05-01

    (E)-2-alkenals are aldehydes containing an unsaturated bond between the alpha and beta carbons. 2-alkenals are produced by many organisms for defense against predators and secretions containing (E)-2-alkenals cause predators to stop attacking and allow the prey to escape. Chemical ecologists have described many alkenal compounds with 3-20 carbons common, having varied positions of double bonds and substitutions. How do these defensive alkenals act to deter predators? We have tested the effects of (E)-2-alkenals with 6-12 carbons on transient receptor potential channels (TRP) commonly found in sensory neurons. We find that (E)-2-alkenals activate transient receptor potential ankyrin subtype 1 (TRPA1) at low concentrations-EC50s 10-100 µM (in 0 added Ca(2+) external solutions). Other TRP channels were either weakly activated (TRPV1, TRPV3) or insensitive (TRPV2, TRPV4, TRPM8). (E)-2-alkenals may activate TRPA1 by modifying cysteine side chains. However, target cysteines include others beyond the 3 in the amino-terminus implicated in activation, as a channel with cysteines at 621, 641, 665 mutated to serine responded robustly. Related chemicals, including the aldehydes hexanal and decanal, and (E)-2-hexen-1-ol also activated TRPA1, but with weaker potency. Rat trigeminal nerve recordings and behavioral experiments showed (E)-2-hexenal was aversive. Our results suggest that TRPA1 is likely a major target of these commonly used defensive chemicals. PMID:26843529

  11. Saponins from Swartzia langsdorffii: biological activities

    Directory of Open Access Journals (Sweden)

    Magalhães Aderbal Farias

    2003-01-01

    Full Text Available The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2 were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3- beta-D-glucuronopyranosyl-(1->3]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3-beta-D-glucuronopyranosyl-(1 ->3]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including ¹H-¹H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.

  12. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.;

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  13. Structure–activity relationships of 44 halogenated compounds for iodotyrosine deiodinase-inhibitory activity

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the possible influence of halogenated compounds on thyroid hormone metabolism via inhibition of iodotyrosine deiodinase (IYD) activity. The structure-activity relationships of 44 halogenated compounds for IYD-inhibitory activity were examined in vitro using microsomes of HEK-293 T cells expressing recombinant human IYD. The compounds examined were 17 polychlorinated biphenyls (PCBs), 15 polybrominated diphenyl ethers (PBDEs), two agrichemicals, five antiparasitics, two pharmaceuticals and three food colorants. Among them, 25 halogenated phenolic compounds inhibited IYD activity at the concentration of 1 × 10−4 M or 6 × 10−4 M. Rose bengal was the most potent inhibitor, followed by erythrosine B, phloxine B, benzbromarone, 4′-hydroxy-2,2′,4-tribromodiphenyl ether, 4-hydroxy-2,3′,3,4′-tetrabromodiphenyl ether, 4-hydroxy-2′,3,4′,5,6′-pentachlorobiphenyl, 4′-hydroxy-2,2′,4,5′-tetrabromodiphenyl ether, triclosan, and 4-hydroxy-2,2′,3,4′,5-pentabromodiphenyl ether. However, among PCBs and PBDEs without a hydroxyl group, including their methoxylated metabolites, none inhibited IYD activity. These results suggest that halogenated compounds may disturb thyroid hormone homeostasis via inhibition of IYD, and that the structural requirements for IYD-inhibitory activity include halogen atom and hydroxyl group substitution on a phenyl ring

  14. [Biological function of some elements and their compounds. IV. Silicon, silicon acids, silicones].

    Science.gov (United States)

    Puzanowska-Tarasiewicz, Helena; Kuźmicka, Ludmiła; Tarasiewicz, Mirosław

    2009-11-01

    The review is devoted for the occurance, meaning of silicon and their compounds, especially silicon acids and silicones. Silicon participates in biosynthesis of collagen, the basic component of connective tissue. It strengthens and makes the walls of blood vessels more flexible, diminishes capillaries permeability, accelerates healing processes, has a sebostatic activity, strengthens hair and nails. This element has a beneficial effect on phosphorylation of proteins saccharides, and nucleotides. It is also essential for the formation of cytoskeleton and other cellular structures of mechanical or supportive function. Silicon is an initial substrate for obtaining silicones. These are synthetic polymers, in which silicon atoms are bound by oxygen bridges. They are used in almost all kinds of products due to their most convenient physical and chemical properties: moistening and film-forming, giving liquid form increasing solubility. Silicon acids form colloid gel, silica gel, with absorptive abilities, like active carbon. PMID:19999810

  15. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF POLYKETONES

    Institute of Scientific and Technical Information of China (English)

    Ismail A.Alkskas; Altaher M.Alhubge; Faizul Azam

    2013-01-01

    Polyketone resins have been prepared by the Friedel-Crafts polymerization of dithiophenylidenecyclopentanone (Ⅰ),dithiophenylidenecyclohexanone (Ⅱ) and dithiophenylideneacetone (Ⅲ) with adipoyl,sebacoyl and terephthaloyl dichlorides using boron trifluoride as catalyst and carbon disulphide as solvent.Polymers were characterized with IR,1H-NMR,and the results showed the presence of carbonyl of ketonic groups in the main chain.The polyketones have inherent viscosities of 0.40-0.70 dL/g.All the polymers are semicrystalline and most of them are partially soluble in most common organic solvents but freely soluble in aprotic solvents.The temperatures of 50% weight loss are as high as 185℃ to 280℃ in air,indicating that these aromatic polyketones have excellent thermal stability.All the polyketones were tested for their antimicrobial activity against bacteria and fungi.

  16. SECONDARY METABOLITES OF OCIMUM GRATISSIMUM AND THEIR BIOLOGICAL ACTIVITIES

    OpenAIRE

    Deeptanjali Sahoo; Ajay Kumar

    2013-01-01

    Ocimum gratissimum synthesizes and accumulates a variety of secondary metabolites. Some of the biologically active secondary metabolites such as eugenol, thymol, methyl cinnamate and geraniol are responsible for the antimicrobial activity of the well-known plant of this species and substantiate the claim in traditional system of medicine. The present review summarizes the information available on the secondary metabolites isolated from Ocimum gratissimum.

  17. Bioproduction, Antimicrobial and Antioxidant Activities of Compounds from Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Danielli M.M. Dantas

    2015-09-01

    Full Text Available Various crude extract preparations (ethanol, methanol, buthanol, acetone, DMSO and water from the green alga Chlorella vulgaris were examined for Antioxidant activity, Phytochemical screening and Antimicrobial properties. In vitro free radical quenching and total antioxidant activity of extracts were investigated with 1, 1-diphenyl-2- picryl hydrazyl (DPPH, and compared with cathequin and Gallic acid as positive controls. In most cases, results showed a significant association between the antioxidant potency and the total phenolics content. The aqueous extract showed both the highest antioxidant activity for inhibition scavenging (68.5% and highest phenolic content (3.45 mg/ mL. Antimicrobial activities were carried out using disc diffusion assays and the broth dilution method against Gram-positive and Gram-negative bacteria. Results demonstrated activity between the aqueous extract and most specimens (Proteus mirabilis, Klebsiella pneumoniae, Salmonella enteretidis, Bacillus subtilis and Escherichia coli. These results suggest that the aqueous crude extract of C. vulgaris could be considered as a biological antioxidant and antimicrobial agent, and a valuable tool for the biotechnology field.

  18. Photo-activated biological processes as quantum measurements

    CERN Document Server

    Imamoglu, Atac

    2014-01-01

    We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.

  19. Biological models for active vision: Towards a unified architecture

    OpenAIRE

    Terzic K.; Lobato D.; Saleiro M.; Martins J; Farrajota M.; Rodrigues J.M.F.; Du Buf J.M.H.

    2013-01-01

    Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction,optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiments from our ongoing work, where our system leverages a combination of algorithms to ...

  20. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater

    International Nuclear Information System (INIS)

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were − 46.9 kJ mol−1, − 1.19 kJ mol−1 and − 161.36 J K−1 mol−1 respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH0 indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10−2 min−1. Highlights: ► Degradation on phenolic syntan using immobilized activated carbon as catalyst. ► Bacillus sp. immobilized cell reactor removed all refractory organic loads. ► The removal mechanism is due to co-metabolism between carbon and organisms. ► The organics are completely metabolized rather than adsorption.

  1. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G., E-mail: ganesansekaran@gmail.com [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Karthikeyan, S. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247 667 (India); Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Boopathy, R.; Maharaja, P. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India)

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 Degree-Sign C and at particle size 300 {mu}m. Enthalpy, free energy and entropy of immobilization were - 46.9 kJ mol{sup -1}, - 1.19 kJ mol{sup -1} and - 161.36 J K{sup -1} mol{sup -1} respectively at pH 7.0, temperature 20 Degree-Sign C and particle size 300 {mu}m. Higher values of {Delta}H{sup 0} indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 Multiplication-Sign 10{sup -2} min{sup -1}. Highlights: Black-Right-Pointing-Pointer Degradation on phenolic syntan using immobilized activated carbon as catalyst. Black-Right-Pointing-Pointer Bacillus sp. immobilized cell reactor removed all refractory organic loads. Black-Right-Pointing-Pointer The removal mechanism is due to co-metabolism between carbon and organisms. Black-Right-Pointing-Pointer The organics are completely metabolized rather than adsorption.

  2. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Nagendra K Kaushik; Neha Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

    2014-07-01

    Several pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five’ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  3. Enhanced chemical and biological activities of a newly biosynthesized eugenol glycoconjugate, eugenol α-D-glucopyranoside.

    Science.gov (United States)

    Zhang, Peng; Zhang, Erli; Xiao, Min; Chen, Chang; Xu, Weijian

    2013-02-01

    Eugenol, the essential component (over 90 %) of clove oil from Eugenia caryophyllata Thunb. (Myrtaceae), is a phenolic compound well known for its versatile pharmacological actions, including analgesic, local anesthetic, anti-inflammatory, antimicrobial, antitumor, and hair-growing effects. However, the application of eugenol is greatly limited mainly because of its unwanted physicochemical properties, such as low solubility, liability to sublimation, and pungent odor. Since glycosylation has been suggested to improve the physicochemical and biological properties of the parental compound, we have previously developed a novel and efficient way to biosynthesize highly purified eugenol α-D-glucopyranoside (α-EG). In light of the widely acknowledged importance of pure eugenol and the potential superiority of the glycosylation, it is crucial to further explore and compare the physicochemical and biological properties of these two phenolic compounds. In this study, we demonstrate that glucosylation is a promising method for modification of phenolic compound, and that α-EG is superior over its parent eugenol, in all of the tested aspects, including physicochemical properties, antioxidation activity, and antimicrobial and antitumor activities. These results strongly suggest that α-EG, as a novel prodrug, may serve as a useful probe and potential therapeutic drug in both fundamental research and clinical application in the coming future. PMID:22923067

  4. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    Directory of Open Access Journals (Sweden)

    Lakshmi Kanta Kanthal

    2014-01-01

    Full Text Available Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae. Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co. Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance.

  5. Biological activity of diterpenoids isolated from Anatolian Lamiaceae Plants

    Directory of Open Access Journals (Sweden)

    Gülaçtı Topçu

    2007-05-01

    Full Text Available In this study, antibacterial, antifungal, antimycobacterial, cytotoxic, antitumor, cardiovascular, antifeedant, insecticidal, antileishmanial and some other single activities of diterpenoids and norditerpenoids isolated from Turkish Lamiaceae plants, are reviewed. The diterpenoids were isolated from species of Salvia, Sideritis, and Ballota species growing in Anatolia. Fifty abietanes, ten kaurenes, seven pimaranes, six labdanes with their biological activities were reported. While twenty five diterpenoids showed antibacterial activity, eight of which showed activity against fungi. The most cytotoxic one was found to be taxodione (44 isolated from species of Salvia. Antifeedant, insecticidal and insect repellent activity of kaurenes, antimycobacterial activity and cardioactivity of abietanes and norabietanes together with labdanes were also reported.

  6. Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE Fruits

    Directory of Open Access Journals (Sweden)

    Tunde Jurikova

    2012-12-01

    Full Text Available Chinese hawthorn (Crataegus pinnatifida Bge. fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid—active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  7. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits.

    Science.gov (United States)

    Jurikova, Tunde; Sochor, Jiri; Rop, Otakar; Mlcek, Jiri; Balla, Stefan; Szekeres, Ladislav; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Chinese hawthorn (Crataegus pinnatifida Bge.) fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid)--active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties. PMID:23222867

  8. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  9. Contribution to the study of the biological properties of compounds labeled with radio-chromium 51Cr

    International Nuclear Information System (INIS)

    Among the radioisotopes commonly used in biology and medicine which are controlled Individually in the Radioelement Departement of the Saclay Nuclear Research Centre before being sent to the users, the author has chosen chromium 51 incorporated in inorganic salts or in organic substrates for a study of the biological properties of the compounds. In the first part, he has compared the pathways followed by the radioactive sodium chromate and chromic chloride mixed with blood or given to the whole animal, the object being to determine whether a reduction of hexavalent chromium occurs, both in vitro and in vivo. In the second part, the author has tried to show the validity of using, various substrates labeled with chromium 51, red cells, haemoglobin, plasma proteins and cytochrome c. The results obtained have contributed to underline the interest of using such compounds for biological applications. (author)

  10. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    OpenAIRE

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdere...

  11. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    Science.gov (United States)

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants. PMID:22318745

  12. Structure and antibacterial activity of new layered perovskite compounds

    Institute of Scientific and Technical Information of China (English)

    TAN Shao-zao; ZHANG Li-ling; XIA Liao-yuan; LIU Ying-liang; LI Du-xin

    2007-01-01

    New layered perovskite compounds, AgxNa2-xLa2Ti3O10 (x=0.2, 0.3 and 0.5) were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution and characterized by energy dispersive X-ray analysis(EDX), X-ray diffractometry(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The ion-exchange processes were optimized, and the antibacterial activity, light permanency and water-resistance were evaluated. Surprisedly, no significant changes in crystal structure of Na2La2Ti3O10 are found by the exchange of silver ions. The Ag0.3Na1.7La2Ti3O10 particles conglomerate obviously with irregular shape and size. Ag0.3Na1.7La2Ti3O10, possessing the minimum inhibitory concentrations(MICs) against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) of 180 mg/L and 240 mg/L, has high antibacterial activity, good light permanency and water-resistance. The ionic state silver in AgxNa2-xLa2Ti3O10 is the antibacterial active component.

  13. Activity-Guided Isolation of Antioxidant Compounds from Rhizophora apiculata

    Directory of Open Access Journals (Sweden)

    Hongbin Xiao

    2012-09-01

    Full Text Available Rhizophora apiculata (R. apiculata contains an abundance of biologically active compounds due its special salt-tolerant living surroundings. In this study, the total phenolic content and antioxidant activities of various extract and fractions of stem of R. apiculata were investigated. Results indicated that butanol fraction possesses the highest total phenolic content (181.84 mg/g GAE/g dry extract with strongest antioxidant abilities. Following in vitro antioxidant activity-guided phytochemical separation procedures, lyoniresinol-3α-O-β-arabinopyranoside (1, lyoniresinol-3α-O-β-rhamnoside (2, and afzelechin-3-O-L-rhamno-pyranoside (3 were separated from the butanol fraction. These compounds showed more noticeable antioxidant activity than a BHT standard in the DPPH, ABTS and hydroxyl radical scavenging assays. HPLC analysis results showed that among different plant parts, the highest content of 13 was located in the bark (0.068%, 0.066% and 0.011%, respectively. The results imply that the R. apiculata might be a potential source of natural antioxidants and 13 are antioxidant ingredients in R. apiculata.

  14. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  15. Hop pellets as an interesting source of antioxidant active compounds

    Directory of Open Access Journals (Sweden)

    Andrea Holubková

    2013-02-01

    Full Text Available Hop is a plant used by humankind for thousands of years. This plant is one of the main and indispensable raw materials for the beer production. It is used for various dishes preparation in the cuisine. Hop is also used to inhibit bacterial contamination. The hop extracts are used for its sedative, antiseptic and antioxidant properties in medicine, as a part of many phytopharmaceuticals. The present paper have focused on the extraction of polyphenolic compounds from 4 samples of hop pellets varieties of Aurora, Saaz, Lublin and Saphir, on the analyzing of bioactive substances (polyphenolics and flavonoids in prepared extracts and on the determination of antioxidant activity.  The highest content of polyphenolic substances was determined in the sample Lublin (153.06 mg gallic acid (GAE/g and Saaz (151.87 mg GAE/g. The amount of flavonoids in the samples  was descending order Saaz > Saphir > Aurora > Lublin. Hops, as plant, is known by high content of antioxidant active substances. Antioxidant activity was determined using three independent spectrofotometric methods, radical scavenging assays using 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical and ferric reducing antioxidant power (FRAP. The sample Aurora showed the highest ability to scavenge of ABTS radical cation. Antioxidant activity continued to decline in a row Saphir> Lublin> Saaz. The same trend was also observed by using the FRAP assay. The most effective DPPH radical scavengering activity had the sample Saaz a Saphir (p>0.05.doi:10.5219/270 Normal 0 21 false false false SK X-NONE X-NONE

  16. PHYTO-BIOLOGICAL TESTING OF SOME FLAVONOID COMPOUNDS OF VEGETAL ORIGIN Note 3. PHYTO-BIOLOGICAL TESTING OF SOME FLAVONOID COMPOUNDS-BASED PRODUCTS

    OpenAIRE

    Ruxandra Cretu; Elvira Gille; Doina Danila; Florin Floria; Roxana Mihailescu

    2006-01-01

    . Some flavonoid compounds- based products were tested in order to evaluate the possible phytotoxic and cytogenetic effects. The tests were done on Triticum aestivum L. (Dropia cultivar). We have analized the following parameters: the germination percent, root and stem growth, fresh and dry weight of root and stem and fresh/dried mass ratio respectively, ana- telophasis frequency from root meristem with chromosomal aberrations. These products includ vegetal extracts of Medica...

  17. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  18. Synthesis and Biological Activity Evaluation of Schiff Bases of 5-Acyl-1,2,4-Triazine

    International Nuclear Information System (INIS)

    A simple and general method has been developed for the synthesis of various Schiff bases (oximes, hydrazones, semicarbazones and thiosemicarbazones) derived from 5-acyl-1,2,4-triazines. Some of the new synthesized Schiff bases were tested for biological activity but only oximes 2a-c shown poor antiviral activity. The oxime derivatives of 5-acyl-3-methylsulfanyl-1,2,4-triazine were tested with pea-seedling diamine oxidase as the enzyme is known to be inhibited by oxime compounds. However, only weak non-competitive inhibitory effects were observed (Ki of 10 /sup -2/ M). (author)

  19. Chemical constituents and biological activities of Garcinia cowa Roxb.

    Directory of Open Access Journals (Sweden)

    Thunwadee Ritthiwigrom

    2013-06-01

    Full Text Available Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  20. Chemical constituents and biological activities of Garcinia cowa Roxb.

    OpenAIRE

    Thunwadee Ritthiwigrom

    2013-01-01

    Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  1. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Manggau Marianti

    2011-11-01

    Full Text Available Three terpenoids, including two diterpenes (curcusone B and jatrophone and a triterpene (stigmasterol have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLCtechnique with silica gel as an adsorben and some solvents as eluents. The compound structures were determined byspectroscopic methodes i.e. UV-vis, FTIR, NMR (1-D, 2-D and were then compared based on their spectroscopic datawith similiar data from literatures. The biological properties of these compounds were evaluated against four strains ofbacteria (Acetobacter sp., Eschericia coli, Staphylococcus aureus, and Streptococcus sp., 4 strains of fungi (Aspergilusniger, Penicillium sp. (grey, Penicillium sp. (white and Rhizopus sp. and murine leukemia P-388 cells. The resultsshowed that cytotoxic property of curcusone B towards murine leukemia P-388 cells is better than jatrophone andstigmasterol which are IC50 = 0.57 μg/mL (1.93 μM for curcusone B and IC50 > 100 μg/mL for jatrophone andstigmasterol. Meanwhile, activities against bacteria, jatrophone is better than curcusone B and stigmasterol. Jatrophoneis the most active against S. aureus (bacteria with growth inhibition zone 36 mm and A.niger (fungi is 44 mm. Furtherstudy indicated that jatrophone was bacteriostatic against S. aureus.

  2. Potential Amoebicidal Activity of Hydrazone Derivatives: Synthesis, Characterization, Electrochemical Behavior, Theoretical Study and Evaluation of the Biological Activity

    Directory of Open Access Journals (Sweden)

    Yanis Toledano-Magaña

    2015-05-01

    Full Text Available Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM. Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.

  3. Synthesis of Novel Biologically Active s-Triazolo[3,4-b]-1,3,4-thiadiazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    SUN,Yi-Feng

    2004-01-01

    @@ Heterocycles bearing a symmetrical triazole or 1,3,4-thiadiazole ring system are reported to show a broad spectrum of biological activities.[1,2] The 1,2,4-triazole nucleus has been recently incorporated into a wide variety of therapeutically interesting drugs including H1/H2 histamine receptor blockers, cholinesterase active agents, CNS stimulants, antianxiety and sedatives[3] Coumarins are nowadays an important group of organic compounds that used as bactericides, fungicides,anti-inflammatory, anticoagulant, anti-HIV and antitumour agents.[4,5] Keeping in view the biological importance of the above mentioned heterocyclic compounds and in continuation of our search for biologically active nitrogen and sulphur heterocycles, a series of s-triazolo[3,4-b]-1,3,4-thiadiazole derivatives was synthesized.

  4. Bioassay-Directed Isolation of Active Compounds with Antiyeast Activity from a Cassia fistula Seed Extract

    Directory of Open Access Journals (Sweden)

    Subramanion L. Jothy

    2011-09-01

    Full Text Available Background and objective: Cassia fistula L belongs to the family Leguminosae, and it is one of the most popular herbal products in tropical countries. C. fistula seeds have been used as a herbal medicine and have pharmacological activity which includes anti-bacterial, anti-fungal, and antioxidant properties. The goal of this study was to identify compounds from C. fistula seeds which are responsible for anti-Candida albicans activity using bioassay-directed isolation. Results: The preliminary phytochemical screening of the plant seed revealed the presence of anthraquinones, flavonoids, saponins, tannins and terpenoids. The isolation of active compounds was carried out in four steps: multiple extractions, fractionation using column chromatography and purification using preparative thin-layer chromatography (TLC and liquid chromatography/mass spectrometry (LC/MS. The structure of separated compounds was determined on the basis of mass spectrometry data. One compound was identified is roseanone. Conclusions: The MS analysis on the active fraction from seed extract of C. fistula confirmed the presence of roseanone with antiyeast activity.

  5. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    OpenAIRE

    Ehsan Karimi; Ehsan Oskoueian; Rudi Hendra; Norhani Abdullah

    2011-01-01

    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and f...

  6. The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity

    OpenAIRE

    More, Vijaykumar

    2014-01-01

    2010 - 2011 The thesis entitled “The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity" is divided into three chapters. The title of the thesis clearly reflects the importance of nitrogen heterocycles compounds: in fact they are extremely pivotal structural motifs responsible for eliciting various biological activities in natural products and synthetic medicines. This has attracted the medicinal chemists towards the synth...

  7. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  8. PHYTO-BIOLOGICAL TESTING OF SOME FLAVONOID COMPOUNDS OF VEGETAL ORIGIN Note 3. PHYTO-BIOLOGICAL TESTING OF SOME FLAVONOID COMPOUNDS-BASED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Ruxandra Cretu

    2006-08-01

    Full Text Available . Some flavonoid compounds- based products were tested in order to evaluate the possible phytotoxic and cytogenetic effects. The tests were done on Triticum aestivum L. (Dropia cultivar. We have analized the following parameters: the germination percent, root and stem growth, fresh and dry weight of root and stem and fresh/dried mass ratio respectively, ana- telophasis frequency from root meristem with chromosomal aberrations. These products includ vegetal extracts of Medicago herba, Glycine semen and Trifolii rubri flos and other vegetal powders.

  9. Salen, reduced salen and N-alkylated salen type compounds: Spectral characterization, theoretical investigation and biological studies

    Science.gov (United States)

    Jeslin Kanaga Inba, P.; Annaraj, B.; Thalamuthu, S.; Neelakantan, M. A.

    2013-03-01

    Salen [2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(6-methoxyphenol)], reduced salen [(2,2'-[propane-1,3-diylbis(iminomethylene))]bis(6-methoxyphenol)] and N-alkylated salen [diethyl-2,2'-(propane-1,3-diylbis((2-hydroxy-3-methoxybenzyl) azanediyl))diacetate] compounds have been synthesized and characterized by IR, 1H NMR, 13C NMR and UV-vis. spectroscopy. Molecular geometry of the title compounds in the ground state has been optimized by density functional method (B3LYP) with 6-31G basis set. Vibrational frequencies of the compounds were computed and compared with the experimental values. Tautomeric stability study of salen inferred that the enolimine form is more stable than its ketoenamine form in gas phase. The spectral behavior of salen in polar and nonpolar solvents was examined demonstrate the positive solvatochromism. The synthesized compounds have been studied with respect to their binding to calf thymus DNA showed that there were interactions between the compounds and DNA through a groove binding mode. Furthermore, the DNA cleavage activity of the compounds has been investigated by gel electrophoresis. The antioxidant properties of compounds were evaluated by DPPH method. The N-alkylated compound has a higher DPPH free radical scavenging activity. The antimicrobial activity was investigated on various gram positive and gram negative bacteria.

  10. Compounds produced by two robust Bacillus amyloliquefaciens biocontrol strains involved in antimicrobial activity and plant-growth promotion

    OpenAIRE

    Magno-Pérez, Maria Concepción; Hierrezuelo, Jesús; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2015-01-01

    Several members of the Bacillus genus are potential candidates to be used as biological control agents to combat pests or plant diseases. The bacterial attributes associated to Bacillus behaviour are mainly: the production of antimicrobial compounds, the plant-growth promotion capability and the induction of systemic resistance in plant host. In previous works, we have demonstrated this multifaceted biocontrol activity of B. amyloliquefaciens CECT8237 (UMAF6639) and CECT8238 (UMAF6614) strain...

  11. Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni molinae Turcz.) Fruits. Assessment of Antioxidant and Antibacterial Activity

    OpenAIRE

    Junqueira-Gonçalves, Maria; Yáñez, Lina; Morales, Carolina; Navarro, Muriel; Contreras, Rodrigo A.; Zúñiga, Gustavo

    2015-01-01

    Berry fruit consumption has become important in the promotion of human health, mainly due to their phenolic compounds, which have been associated with protection against different pathologies, as well as antimicrobial and other biological activities. Consequently, there has been a growing interest in identifying natural antioxidants and antimicrobials from these plants. This study aimed to characterize the phenolic chemical composition and anthocyanin profile of murta (Ugni molinae Turcz.) fr...

  12. Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast Kloeckera apiculata and its active compounds

    OpenAIRE

    Liu, Pu; Chen, Kai; Li, Guofeng; Yang, Xiaoping; Long, Chao-an

    2016-01-01

    Background The yeast Kloeckera apiculata strain 34–9 is an antagonist that shows biological control activity against the postharvest fungal pathogens of citrus. An antifungal compound, 2-phenylethanol (PEA), has been identified from the extract of K. apiculata. To better understand the molecular processes underlying the response of citrus fruit tissue to K. apiculata, the extract and PEA, microarray analyses were performed on navel oranges using an Affymetrix Citrus GeneChip. Results As many ...

  13. Kinetic Characterization by Respirometry of Volatile OrganicCompound-Degrading Biofilms from Gas-Phase Biological Filters

    OpenAIRE

    Gonzalez Sanchez, A.; Arellano Garcia, L.; Bonilla Blancas, W.; Baquerizo, G.; Hernandez, S.; Gabriel, D.; Revah, S.

    2014-01-01

    A novel heterogeneous respirometer for in situ assessment of the biological activity and mass transport phenomena of biofilm developed on packing materials of gas-phase biological filters is presented. The flexible respirometer configuration allows reproducing the operational features of biofilters and biotrickling filters to obtain reliable diagnoses of the bioreactor performance. A batch-operating mode was chosen for the biological assessment in which dynamic concentrations of oxygen, pollu...

  14. The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma.

    Science.gov (United States)

    Lu, Yue; Cai, Shuangfan; Nie, Jia; Li, Yangyang; Shi, Guochao; Hao, Jimin; Fu, Wenwei; Tan, Hongsheng; Chen, Shilin; Li, Bin; Xu, Hongxi

    2016-01-15

    Mast cells play an important role in allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. The genus Garcinia of the family Guttiferae is well known as a prolific source of polycyclic polyprenylated acylphloroglucinols and bioactive prenylated xanthones, which exhibit various biological activities including antibacterial, antifungal, anti-inflammatory, antioxidant, and cytotoxic effects. Nujiangexanthone A (N7) is a novel compound isolated from the leaves of Garcinia nujiangensis. In this paper, we sought to determine the anti-allergic and anti-inflammation activity of N7 in vivo and its mechanism in vitro. We found N7 suppressed IgE/Ag induced mast cell activiation, including degranulation and production of cytokines and eicosanoids, through inhibiting Src kinase activity and Syk dependent pathways. N7 inhibited histamine release, prostaglandin D2 and leukotriene C4 generation in mast cell dependent passive cutaneous anaphylaxis animal model. We also found N7 inhibited the IL-4, IL-5, IL-13 and IgE levels in ovalbumin-induced asthma model. Histological studies demonstrated that N7 substantially inhibited OVA-induced cellular infiltration and increased mucus production in the lung tissue. Our study reveals the anti-allergic function of N7, thereby suggesting the utility of this compound as a possible novel agent for preventing mast cell-related immediate and delayed allergic diseases. PMID:26571438

  15. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds

    Science.gov (United States)

    Sadasivam, K.; Kumaresan, R.

    2011-03-01

    The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.

  16. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Directory of Open Access Journals (Sweden)

    Nadia Dekdouk

    2015-01-01

    Full Text Available Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  17. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds.

    Science.gov (United States)

    Ali, Muhammad Irshad; Rauf, Muhammad Khawar; Badshah, Amin; Kumar, Ish; Forsyth, Craig M; Junk, Peter C; Kedzierski, Lukasz; Andrews, Philip C

    2013-12-28

    In seeking new drugs for the treatment of the parasitic disease Leishmaniasis, an extensive range of organometallic antimony(v) dicarboxylates of the form [SbR3(O2CR')2] have been synthesised, characterised and evaluated. The organometallic moieties (R) in the complexes vary in being Ph, tolyl (o, m or p), or benzyl. The carboxylates are predominantly substituted benzoates with some compounds incorporating acetato or cinnamato ligands. The crystal structures of [Sb(p-Tol)3(O2CC6H2-3,4,5-(OMe)3)2]·0.5PhMe and [SbPh3(m-CH3C6H4CH2CO2)2] were determined and shown to adopt a typical trigonal pyramidal geometry, being monomeric with a five coordinate Sb centre. In total, the biological activity of 26 Sb(v) compounds was assessed against the Leishmania major parasite, and also human fibroblast skin cells to give a measure of general toxicity. Of these, 11 compounds (predominantly substituted benzoates with m- or p-tolyl ligands) proved to be highly effective against the parasite amastigotes at concentrations of 0.5-3.5 μM, while being non-toxic towards the mammalian cells at levels below 25 μM, making them highly promising drug candidates. PMID:24077559

  18. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    OpenAIRE

    Linfeng Xu; Yuanzhi Lao; Yanhui Zhao; Jian Qin; Wenwei Fu; Yingjia Zhang; Hongxi Xu

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode o...

  19. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    Science.gov (United States)

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  20. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M; Seidelin, J B; Heegaard, Niels Henrik Helweg

    2000-01-01

    Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder, be dis...

  1. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  2. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity

    OpenAIRE

    Kozarski Maja S.; Klaus Anita S.; Nikšić Miomir P.; van Griensven Leo J.L.D.; Vrvić Miroslav M.; Jakovljević Dragica M.

    2014-01-01

    Fungal polysaccharides attract a lot of attention due to their multiple challenging biological properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypolipidemic and immunomodulatory and immune-stimulatory activities, which all together make them suitable for application in many quite distinctive areas, such as food industry, biomedicine, cosmetology, agriculture, environmental protection and waste water management. This article pr...

  3. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    Science.gov (United States)

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  4. Obtaining of biologically active substances from dandelion (Taraxacum officinale Wigg.)

    OpenAIRE

    Яблонська, К.М.; Національний авіаційний університет; Косоголова, Л. О.; Національний авіаційний університет; Мосюк, Л. І.; Національний авіаційний університет

    2015-01-01

    An aqueous extracts of dandelion (Taraxacum oficinale Wigg.) for the needs of diet. The optimum conditions for extraction of biologically active substances dandelion, namely the ratio of raw materials: extractant 1:20, extraction time – 30 minutes, the temperature – 55 °C. Extraction was carried out with distilled water.

  5. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  6. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  7. Solar Energy Education. Renewable energy activities for biology

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  8. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as indica

  9. Biological Activities and Phytochemical Profiles of Extracts from Different Parts of Bamboo (Phyllostachys pubescens

    Directory of Open Access Journals (Sweden)

    Akinobu Tanaka

    2014-06-01

    Full Text Available Besides being a useful building material, bamboo also is a potential source of bioactive substances. Although some studies have been performed to examine its use in terms of the biological activity, only certain parts of bamboo, especially the leaves or shoots, have been studied. Comprehensive and comparative studies among different parts of bamboo would contribute to a better understanding and application of this knowledge. In this study, the biological activities of ethanol and water extracts from the leaves, branches, outer culm, inner culm, knots, rhizomes and roots of Phyllostachys pubescens, the major species of bamboo in Japan, were comparatively evaluated. The phytochemical profiles of these extracts were tentatively determined by liquid chromatography-mass spectrometry (LC-MS analysis. The results showed that extracts from different parts of bamboo had different chemical compositions and different antioxidative, antibacterial and antiallergic activities, as well as on on melanin biosynthesis. Outer culm and inner culm were found to be the most important sources of active compounds. 8-C-Glucosylapigenin, luteolin derivatives and chlorogenic acid were the most probable compounds responsible for the anti-allergy activity of these bamboo extracts. Our study suggests the potential use of bamboo as a functional ingredient in cosmetics or other health-related products.

  10. Assessment of aroma active compounds in unconventional fruit types

    OpenAIRE

    Krchňavá, Petra

    2012-01-01

    This bachelor’s thesis deals with the determination of aroma compounds in selected drinks produced from chokeberry (Aronia melanocarpa). The theoretical part is focused on the description of this plant, its chemical composition, properties, influence on the human body and possibility of utilization and processing. In the experimental part the aroma compounds in samples of sirup and liqueur from chokeberry were identified and quantified. . The aroma compounds were extracted by solid-phase micr...

  11. The Antibacterial Activity of Compounds Isolated from Oakmoss against Legionella pneumophila and Other Legionella spp.

    OpenAIRE

    野村, 陽恵; 一色, 恭徳; Sakuda, Keisuke; 佐久間, 克也; 近藤, 誠一

    2012-01-01

    Oakmoss is a natural fragrance ingredient exhibiting highly specific, potent antibacterial activity against Legionella pneumophila, a causative agent of severe water-bone pneumonia. In the present study, the antibacterial activity of individual compounds isolated from oakmoss was investigated against L. pneumophila and other Legionella spp. A total of 18 known compounds and two minor novel compounds (i.e., 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate (compound 9) and 8-(2,4-dihydro...

  12. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    Science.gov (United States)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  13. Salicin derivatives from Salix glandulosa and their biological activities.

    Science.gov (United States)

    Kim, Chung Sub; Subedi, Lalita; Park, Kyoung Jin; Kim, Sun Yeou; Choi, Sang Un; Kim, Ki Hyun; Lee, Kang Ro

    2015-10-01

    Two new salicin derivatives, saliglandin (1) and 6'-O-(Z)-p-coumaroylsalicin (2), along with fourteen known analogues (3-16) were isolated from the twigs of Salix glandulosa Seemen. The structures of 1-16 were characterized by the use of NMR methods ((1)H and (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC), chemical hydrolysis, and GC/MS. The full NMR data assignment of the known compounds 6, 13, and 14 are reported for the first time. Isolated compounds were evaluated for their nitric oxide (NO) inhibitory efficacy in lipopolysaccharide (LPS)-activated microglial cell (BV-2). Compounds 2, 5, 8-16 significantly inhibited NO production, compound 11 being the most efficacious (IC50 13.57 μM) respectively. Moreover, compound 16 dramatically increased the nerve growth factor (NGF) production (165.24 ± 11.1%) in C6 glioma cells. Taken together, these results revealed that salicin derivatives from Salix glandulosa might have potent effect as anti-neuroinflammatory agents. PMID:26344424

  14. Bioassay-Directed Isolation of Active Compounds with Antiyeast Activity from a Cassia fistula Seed Extract

    OpenAIRE

    Subramanion L. Jothy; Sreenivasan Sasidharan; Lai Ngit Shin; Lachimanan Yoga Latha; Yee Ling Lau; Yeng Chen; Zuraini Zakaria

    2011-01-01

    Background and objective: Cassia fistula L belongs to the family Leguminosae, and it is one of the most popular herbal products in tropical countries. C. fistula seeds have been used as a herbal medicine and have pharmacological activity which includes anti-bacterial, anti-fungal, and antioxidant properties. The goal of this study was to identify compounds from C. fistula seeds which are responsible for anti-Candida albicans activity using bioassay-directed isolation. Results: The preliminary...

  15. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis.

    Science.gov (United States)

    Ivanescu, Bianca; Miron, Anca; Corciova, Andreia

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation. PMID:26495156

  16. Development of Analyses of Biological Steroids Using Chromatography--Special Reference to Vitamin D Compounds and Neurosteroids--

    Institute of Scientific and Technical Information of China (English)

    Kazutake Shimada; Tatsuya Higashi; Kuniko Mitamura

    2003-01-01

    Steroids comprise a large group of natural substances that must frequently be monitored in various biological materials. Due to the metabolic versatility of steroid molecules, extremely complex mixtures are often encountered, necessitating the use of a chromatographic procedure prior to measurement. In this article we present our work, that is, the development of analyses of biological steroids (especially vitamin D compounds and neurosteroids) using gas chromatography/mass spectrometry, high-performance liquid chromatography (including inclusion chromatography using cyclodextrin) and liquid chromatography/mass spectrometry.

  17. Chemical and structural features influencing the biological activity of curcumin.

    Science.gov (United States)

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  18. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.

    Science.gov (United States)

    Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru

    2016-07-01

    Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions. PMID:27188776

  19. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Linfeng Xu

    2015-01-01

    Full Text Available Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity.

  20. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  1. Reactions of 3-formylchromone with active methylene and methyl compounds and some subsequent reactions of the resulting condensation products.

    Science.gov (United States)

    Gasparová, Renata; Lácová, Margita

    2005-01-01

    This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the gamma-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted. PMID:18007363

  2. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  3. Biological Role of Anions (Sulfate, Nitrate , Oxalate and Acetate) on the Antibacterial Properties of Cobalt (II) and Nickel(II) Complexes With Pyrazinedicarboxaimide Derived, Furanyl and Thienyl Compounds.

    Science.gov (United States)

    Chohan, Z H; Praveen, M

    1999-01-01

    A number of biologically active complexes of cobalt(II) and nickel(II) with pyrazinedicarboxaimido derived thienyl and furanyl compounds having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesized and characterized on the basis of their physical, spectral and analytical data. In order to evaluate the role of anions on their antibacterial properties, these ligands and their synthesized metal complexes with various anions have been screened against bacterial species Escherichia coil,Pseudomonas aeruginosa and Staphylococcus aureus. The title studies have proved a definitive role of anions in increasing the antibacterial properties. PMID:18475887

  4. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  5. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity

    Directory of Open Access Journals (Sweden)

    Kozarski Maja S.

    2014-01-01

    Full Text Available Fungal polysaccharides attract a lot of attention due to their multiple challenging biological properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypolipidemic and immunomodulatory and immune-stimulatory activities, which all together make them suitable for application in many quite distinctive areas, such as food industry, biomedicine, cosmetology, agriculture, environmental protection and waste water management. This article presents results with respect to biological properties, structure and procedures related to the isolation and activation of polysaccharides of higher fungi. It is considered and presented along with a review of the critical antioxidative activity and possible influence of the structural composition of polysaccharide extracts (isolated from these higher fungi upon their antioxidative properties.

  6. Isolation of biologically active constituents from Moringa peregrina (Forssk. Fiori. (family: Moringaceae growing in Egypt

    Directory of Open Access Journals (Sweden)

    Taha S El-Alfy

    2011-01-01

    Full Text Available Background: Moringa peregrina is a wild plant that grown in the eastern desert mountains in Egypt. Although, this plant is native to Egypt, no details studies were traced on its chemical composition and biological activity. Materials and Methods: The different fractions of the ethanolic extract of the dried aerial parts of the plants were subjected to fractionation and purification on various silica and sephadex columns for the isolation of the major compounds which were tested for there anticancer activity. The aqueous and ethanolic extract as well as its different fractions were tested for antihyperglycemic effect on Streptozitocin-induced diabetes in rats. Results: Investigation of the different fractions of the ethanolic extract of the aerial parts of M. peregrina yielded lupeol acetate (1, β-amyrin (2, α-amyrin (3, β-sitosterol (4, β-sitosterol-3-O-glucoside (5, apigenin (6, rhamnetin (7, neochlorogenic acid (10, rhamnetin-3-O-rutinoside (12, and 6-methoxy-acacetin-8-C-β-glucoside (13 which were isolated for the first time from the plant. Compound (13 was isolated for the first time from genus Moringa. In addition, quercetin (8, chryseriol-7-O-rhamnoside (9 and quercetin-3-O-rutinoside (11 were also isolated. Identification has been established by spectral data (UV, MS, IR, 1H, 1H -1H COSY, and 13C-NMR. The major isolated compounds were found to have valuable cytotoxic activities against breast (MCF 7 and colon (HCT 116 cancer cell lines and their activities were comparable to the reference drug doxorubicin. On the other hand, the aqueous and ethanolic extracts as well as the n-hexane fraction were found to have potent antihyperglycemic effect on Streptozitocin-induced diabetes in rats. Conclusion: The Egyptian plant M. peregrina is rich in biologically active ingredients which showed potent cytotoxic activity and also its ethanolic extraxt exert a significant antihyperglycemic effect.

  7. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  8. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    Science.gov (United States)

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  9. The structure, occurrence and biological activity of ellagitannins: a general review

    Directory of Open Access Journals (Sweden)

    Lidia Lipińska

    2014-09-01

    Full Text Available The present paper deals with the structure, occurrence and biological activity of ellagitannins. Ellagitannins belong to the class of hydrolysable tannins, they are esters of hexahydroxydiphenoic acid and monosaccharide (most commonly glucose. Ellagitannins are slowly hydrolysed in the digestive tract, releasing the ellagic acid molecule. Their chemical structure determines physical and chemical properties and biological activity. Ellagitannins occur naturally in some fruits (pomegranate, strawberry, blackberry, raspberry, nuts (walnuts, almonds, and seeds. They form a diverse group of bioactive polyphenols with anti-infl ammatory, anticancer, antioxidant and antimicrobial (antibacterial, antifungal and antiviral activity. Furthermore, they improve the health of blood vessels. The paper discusses the metabolism and bioavailability of ellagitannins and ellagic acid. Ellagitannins are metabolized in the gastrointestinal tract by intestinal microbiota. They are stable in the stomach and undergo neither hydrolysis to free ellagic acid nor degradation. In turn, ellagic acid can be absorbed in the stomach. This paper shows the role of cancer cell lines in the studies of ellagitannins and ellagic acid metabolism. The biological activity of these compounds is broad and thus the focus is on their antimicrobial, anti-inflammatory and antitumor properties. Ellagitannins exhibit antimicrobial activity against fungi, viruses, and importantly, bacteria, including antibiotic-resistant strains such as methicillinresistant Staphylococcus aureus.

  10. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  11. WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications

    Directory of Open Access Journals (Sweden)

    Zhu Qian

    2010-08-01

    Full Text Available Abstract Background In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine for Non-obvious Drug Information that attempts to find non-obvious relationships between a query compound and scholarly publications, biological properties, genes and diseases using multiple information sources. Results We have created an aggregate web service that takes a query compound as input, calls multiple web services for computation and database search, and returns an XML file that aggregates this information. We have also developed a client application that provides an easy-to-use interface to this web service. Both the service and client are publicly available. Conclusions Initial testing indicates this tool is useful in identifying potential biological applications of compounds that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We encourage feedback on the tool to help us refine it further. We are now developing further tools based on this model.

  12. Glutarimides: Biological activity, general synthetic methods and physicochemical properties

    Directory of Open Access Journals (Sweden)

    Popović-Đorđević Jelena B.

    2015-01-01

    Full Text Available Glutarimides, 2,6-dioxopiperidines are compounds that rarely occur in natural sources, but so far isolated ones exert widespread pharmacological activities, which makes them valuable as potential pharmacotherapeutics. Glutarimides act as androgen receptor antagonists, anti-inflammatory, anxiolytics, antibacterials, and tumor suppressing agents. Some synthetic glutarimide derivatives are already in use as immunosuppressive and sedative (e.g., thalidomide or anxiolytics (buspirone drugs. The wide applicability of this class of compounds, justify the interest of scientists to explore new pathways for its syntheses. General methods for synthesis of six-membered imide ring, are presented in this paper. These methods include: a reaction of dicarboxylic acids with ammonia or primary amine, b reactions of cyclization: amido-acids, diamides, dinitriles, nitrilo-acids, amido-nitriles, amido-esters, amidoacyl-chlorides or diacyl-chlorides, c adition of carbon-monoxide on a,b-unsaturated amides, d oxidation reactions, e Michael adition of active methylen compounds on methacrylamide or conjugated amides. Some of the described methods are used for closing glutarimide ring in syntheses of farmacological active compounds sesbanimide and aldose reductase inhibitors (ARI. Analyses of the geometry, as well as, the spectroscopic analyses (NMR and FT-IR of some glutarimides are presented because of their broad spectrum of pharmacological activity. To elucidate structures of glutarimides, geometrical parameters of newly synthesized tert-pentyl-1-benzyl-4-methyl-glutarimide-3-carboxylate (PBMG are analyzed and compared with the experimental data from X-ray analysis for glutarimide. Moreover, molecular electrostatic potential (MEP surface which is plotted over the optimized geometry to elucidate the reactivity of PBMG molecule is analyzed. The electronic properties of glutarimide derivatives are explained on the example of thalidomide. The Frontier Molecular Orbital

  13. Compounds and methods for the production of long chain hydrocarbons from biological sources

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Cameron; Silks, Louis A; Sutton, Andrew D; Wu, Ruilian; Schlaf, Marcel; Waldie, Fraser; West, Ryan; Collias, Dimitris Ioannis

    2016-08-23

    The present invention is directed to the preparation of oxygenated, unsaturated hydrocarbon compounds, such as derivatives of furfural or hydroxymethyl furfural produced by aldol condensation with a ketone or a ketoester, as well as methods of deoxidatively reducing those compounds with hydrogen under acidic conditions to provide saturated hydrocarbons useful as fuels.

  14. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    Science.gov (United States)

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  15. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones.

    Science.gov (United States)

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo; Waser, Mario; Massa, Antonio

    2015-01-01

    New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  16. BIOLOGICAL VALUE OF PUNY FRUITS RELATED TO THEIR ANTIRADICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. BALOGHOVÁ

    2013-12-01

    Full Text Available All analysed species of puny fruits (red currant (Ribes rubrum L variant Jonkheervan Tets, white currant (Ribes vulgare L. variant Blanka, black currant (Ribesnigrum L. variant Eva, blueberry (Vaccinium myrtilis variant Berkeley, elderberry(Sambucus nigra L. variant Sambo, hawthorn (Crataegus oxyacantha, mulberry(Morus nigra L. genotypes M152 and M047 are natural sources of anthocyanpigments and vitamin C with a high antiradical activity. Due to the fact that thehighest antiradical activity is not accompanied by the highest content of anthocyansand vitamin C in puny fruits, we suppose that the antiradical activity of plantmaterials is also connected with the presence of other compounds with antioxidantand antiradical activity. From our results follows that all studied puny fruits with ahigh antiradical activity increase the antioxidant value of human nutrition and alsoits prophylactic and medicinal effect.

  17. BIOLOGICAL VALUE OF PUNY FRUITS RELATED TO THEIR ANTIRADICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    PAULOVICSOVÁ B.

    2007-05-01

    Full Text Available All analysed species of puny fruits (red currant (Ribes rubrum L variant Jonkheervan Tets, white currant (Ribes vulgare L. variant Blanka, black currant (Ribesnigrum L. variant Eva, blueberry (Vaccinium myrtilis variant Berkeley, elderberry(Sambucus nigra L. variant Sambo, hawthorn (Crataegus oxyacantha, mulberry(Morus nigra L. genotypes M152 and M047 are natural sources of anthocyanpigments and vitamin C with a high antiradical activity. Due to the fact that thehighest antiradical activity is not accompanied by the highest content of anthocyansand vitamin C in puny fruits, we suppose that the antiradical activity of plantmaterials is also connected with the presence of other compounds with antioxidantand antiradical activity. From our results follows that all studied puny fruits with ahigh antiradical activity increase the antioxidant value of human nutrition and alsoits prophylactic and medicinal effect.

  18. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration.

    Science.gov (United States)

    Reungoat, J; Macova, M; Escher, B I; Carswell, S; Mueller, J F; Keller, J

    2010-01-01

    Pharmaceutical compounds are found in secondary treated effluents up to microg L(-1) levels and therefore discharged into surface waters. Since the long term effects of these compounds on the environment and human health are, to date, largely unknown, implementation of advanced treatment of wastewaters is envisaged to reduce their discharge. This is of particular relevance where surface waters are used as drinking water sources and when considering indirect potable reuse. This study aimed at assessing the removal of organic micropollutants and the concurrent reduction of their biological activity in a full scale reclamation plant treating secondary effluent. The treatment consists of 6 stages: denitrification, pre-ozonation, coagulation/flocculation/dissolved air flotation and filtration (DAFF), main ozonation, activated carbon filtration and final ozonation for disinfection. For that purpose, representative 24-hour composite samples were collected after each stage. The occurrence of 85 compounds was monitored by LC/MS-MS. A battery of 6 bioassays was also used as a complementary tool to evaluate non-specific toxicity and 5 specific toxic modes of action. Results show that, among the 54 micropollutants quantified in the influent water, 50 were removed to below their limit of quantification representing more than 90% of concentration reduction. Biological activity was reduced, depending on the specific response that was assessed, from a minimum of 62% (AhR response) to more than 99% (estrogenicity). The key processes responsible for the plant's performances were the coagulation/flocculation/DAFF, main ozonation and activated carbon filtration. The effect of these 3 processes varied from one compound or bioassay to another but their combination was almost totally responsible for the overall observed reduction. Bioassays yielded complementary information, e.g. estrogenic compounds were not detected in the secondary effluent by chemical analysis, but the samples had an

  19. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    Science.gov (United States)

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  20. Syntheses and In Vitro Biological Activity of Some Derivatives of C-9154 Antibiotic

    Directory of Open Access Journals (Sweden)

    Isaac Asusheyi Bello

    2012-01-01

    Full Text Available In our continued attempts at designing new antibiotics based on the structure of the C-9154 antibiotic, to simultaneously improve activity and lower toxicity, an analogue to the C-9154 antibiotic and six derivatives of this analogue were synthesized. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were synthesized using a two-step reaction which involved an additional reaction between benzyl amine and maleic anhydride and then conversion of the terminal carboxylic acid functional group to an ester functional group using a thionyl chloride mediated esterification reaction. The compounds were fully characterized using Infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogues as was anticipated with minimum inhibitory concentration in the range 0.625–5 μg/mL. The analogue had minimum inhibitory concentration in the range 2.5–10 μg/mL. These values are significantly better than that obtained for the original C-9154 antibiotic which had activity in the range 10–>100 μg/mL.

  1. Synthesis, Dimeric Crystal Structure, and Biological Activities of N-(4-Methyl-6-oxo-1,6-dihydro-pyrimidin-2-yl)-N-(2-trifluoromethyl-phenyl)-guanidine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The title compound, N-(4-methyl-6-oxo-1,6-dihydro-pyrimidin-2-yl)-N′-(2-trifluoromethyl-phenyl)-guanidine, was synthesized and its structure was confirmed by using IR, MS, 1H NMR, and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test showed that the synthesized compound has a weak herbicidal activity.

  2. Design, Synthesis and Biological Evaluation of 1,4-Disubstituted-3,4-dihydroisoquinoline Compounds as New Tubulin Polymerization Inhibitors

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2015-05-01

    Full Text Available A series of 1,4-disubstituted-3,4-dihydroisoquinoline derivatives designed as tubulin polymerization inhibitors were synthesized. Their cytotoxic activities against the CEM leukemia cell line were evaluated. Most of them displayed moderate cytotoxic activities, and compounds 21 and 32 showed good activities with IC50 of 4.10 and 0.64 μM, respectively. The most potent compound 32 was further confirmed to be able to inhibit tubulin polymerization, and its hypothetical binding mode with tubulin was obtained by molecular docking.

  3. Synthesis and biological activity of nifuroxazide and analogs. II.

    Science.gov (United States)

    Tavares, L C; Chisté, J J; Santos, M G; Penna, T C

    1999-09-01

    Nifuroxazyde and six analogs were synthesized by varying the substitute from the para-position of the benzenic ring and the heteroatom of the heterocyclic ring. The MIC of seven resultant compounds was determined by serial dilutions, testing the ATCC 25923 strain of Staphylococcus aureus. A significant increase in the anti-microbial activity of thyophenic analogs, as compared with furanic and pyrrholic analogs, was observed. In addition, unlike the cyano and hydroxyl groups, the acetyl group promoted anti-microbial activity. PMID:10622109

  4. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf.

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2009-01-01

    Full Text Available Among marine organisms, algae are a large and diverse group of organisms from which a wide range of secondary metabolites have been isolated. A number of these compounds possess biological activity. In this study, we aim to evaluate the cytotoxic, antibacterial and antifungal activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis, collected from Persian Gulf. Ethyl acetate extracts of both algae showed a potent cytotoxic effect against Artemia salina nauplii (LC50 = 3 and 4 μg.ml−1, respectively. Aqueous methanol (50% extracts were also effective. None of the methanol and aqueous methanol extracts of the algae showed antifungal and antibacterial activity against Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger by the Broth-dilution method. Only the ethyl acetate extracts exhibited antibacterial activity (MIC = 2 μg.ml−1 on S. aureus. In conclusion, G. salicornia and H. flagelliformis could be a promising source of cytotoxic components.

  5. Development of Methods for the Hot Synthesis of S35-Labelled Biologically Active Substances

    International Nuclear Information System (INIS)

    It was found in investigations with model systems that sulphur-35 recoil atoms are capable of entering atom and atom-group substitution reactions through interaction with cyclic and heterocyclic compounds, as well as by way of the C-C bond. We therefore considered that it would be interesting to use the specific properties of hot sulphur atoms for the synthesis of labelled biologically active compounds. We selected 4-methyl-5β-hydroxyethyl thiazole (an intermediate product of vitamin B1 synthesis), triethylenimine thiophosphoramide and amino acids (methionine, norvaline and norleucine) for investigation. Binary systems containing the compounds enumerated above, as well as CCI4 or HCl (donors of hot S35 atoms) were investigated. Irradiation was carried out in an IRT-1000 reactor channel at a thermal neutron flux of 1011-1012 n/cm2 * s. The S35 recoil atoms, formed by the reaction Cl35 (n, p) S35 with a recoil energy of 16 keV, interact with the thiazole giving thiazole-S35. The yield of labelled product is highly dependent on the composition of the system, reaching a maximum of 20-25%. The addition of benzene (acceptor of the excitation energy) increases the yield of product, the maximum yield being reached when the ratio of CCl4, thiazole and benzene is 1:1:1. When the mixture of triethylenimine thiophosphoramide and CCl4 is irradiated, an initial product labelled with S35 and P32 is obtained, the P32 being formed by the reactions Cl35(n, α)P32, S32 and P31(n, γ)P32. Methionine-S35 is obtained by irradiating methionine and HCl in an aqueous solution. The labelled product formed is usually diluted by a carrier, although it is possible to obtain compounds without a carrier by selecting the initial compounds appropriately. Thus, by irradiating systems of norvaline-HCl and norleucine-HCl one obtains methionine-S35 without a carrier, due to the entry of S35 by way of the C-C bond into the norvaline molecule or the substitution of the CH2 group in the norleucine. In

  6. Antitumoral Activity Of Nitric Oxide-Releasing Compounds

    Directory of Open Access Journals (Sweden)

    Magdalena Klink

    2015-08-01

    Conclusions: The obtained results show that both NO donors demonstrated a wide range of action on both ovarian cancer cell lines. Therefore, they have a high potential of being a supporting compounds in the cancer therapies.

  7. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nils Hoem

    2012-11-01

    Full Text Available The biological activities of omega-3 fatty acids (n-3 FAs have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs versus ethyl esters or phospholipids (PLs. New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.

  8. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  10. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  11. Design,synthesis and antifungal activities in vitro of novel tetralin compounds

    Institute of Scientific and Technical Information of China (English)

    Hui Tang; You Jun Zhou; Yao Wu Li; Jia Guo Lv; Can Hui Zheng; Jun Chen; Ju Zhu

    2008-01-01

    Novel chiral tetralin compounds were designed and synthesized, and their antifungal activities in vitro were tested. The results showed that all of target compounds had potent antifungal activities, and were stronger than that of control compounds tetrahydroisoquinolines. The binding model of lead molecules in the active site of CYP51 of Candida albicans showed that lead compound specifically interacted with the amino acids residues in the active site, without binding with the heme of CYP51, which was different from azole antifungal drugs. The present study might afford a novel lead molecule to develop non-azole CYP51 inhibitors of fungi.

  12. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  13. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  14. A Facile Synthesis of Arylazonicotinates for Dyeing Polyester Fabrics under Microwave Irradiation and Their Biological Activity Profiles

    Directory of Open Access Journals (Sweden)

    Saleh M. Al-Mousawi

    2012-09-01

    Full Text Available A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a–e and 9a–c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a–e with active methylene nitriles 3a–d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  15. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    OpenAIRE

    Julian Ihssen; Mark Schubert; Linda Thöny-Meyer; Michael Richter

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of ...

  16. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

    OpenAIRE

    Le, Thi Hong Van; Lee, Seo Young; Kim, Tae Ryong; Kim, Jae Young; Kwon, Sung Won; NGUYEN, NGOC KHOI; Park, Jeong Hill; Nguyen, Minh Duc

    2013-01-01

    Background This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods Samples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies. Results Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenos...

  17. Simaroubaceae family: botany, chemical composition and biological activities

    OpenAIRE

    Iasmine A.B.S. Alves; Henrique M. Miranda; Luiz A. L. Soares; Karina P. Randau

    2014-01-01

    The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicid...

  18. Electronic structure and biological activity: Barbiturates vs. thiobarbiturates

    Science.gov (United States)

    Novak, Igor; Kovač, Branka

    2010-06-01

    The electronic structure of the derivatives of thiobarbituric acid: 1,3-diethyl-2-thiobarbituric acid ( I) and 1,3-dibutyl-2-thiobarbituric acid ( II) has been investigated by HeI and HeII UV photoelectron spectroscopy (UPS) and quantum chemical calculations. We discuss their electronic structures and compare them with barbituric acid. We also relate the difference in electronic structure between barbituric and thiobarbituric acids to difference in biological activity of their derivatives.

  19. Chemistry and Biological Activities of Flavonoids: An Overview

    OpenAIRE

    Shashank Kumar; Pandey, Abhay K

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about...

  20. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    OpenAIRE

    Katherine D McMahon; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria kn...

  1. Biological activity of selected essential oils of the Lamiaceae family

    OpenAIRE

    Havlová, Kateřina

    2013-01-01

    The Lamiaceae family (the mints) is one of the large groups of plants. These herbs are important for their biological active substances, such as essential oils, tannins, bitter principles, etc. The properties of selected plants from this family are used in many industries. Many of them have been used long due to their medicinal properties and simultaneously they form an indispensable part of many products used for cosmetic purposes. The important ingredients are first of all essential oils, w...

  2. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  3. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    Science.gov (United States)

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. PMID:26692250

  4. Biological Activities and Phytochemicals of Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Habsah Abdul Kadir

    2013-08-01

    Full Text Available Swietenia macrophylla King (Meliaceae is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.

  5. Biological activities and phytochemicals of Swietenia macrophylla King.

    Science.gov (United States)

    Moghadamtousi, Soheil Zorofchian; Goh, Bey Hing; Chan, Chim Kei; Shabab, Tara; Kadir, Habsah Abdul

    2013-01-01

    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance. PMID:23999722

  6. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    Science.gov (United States)

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity. PMID:27344252

  7. Integrity and Biological Activity of DNA after UV Exposure

    Science.gov (United States)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  8. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    Science.gov (United States)

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  9. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities

    Directory of Open Access Journals (Sweden)

    Yu-Bo Zhang

    2015-11-01

    Full Text Available Three new phenolic compounds 1–3 and twenty known ones 4–23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin.

  10. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  11. Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds.

    OpenAIRE

    Callahan, H L; Kelley, C; Pereira, T.; Grogl, M

    1996-01-01

    Trifluralin, a dinitroaniline microtubule inhibitor currently in use as an herbicide, has been shown to inhibit the proliferation of Plasmodium falciparum, Trypanosoma brucei, and several species of Leishmania, in vitro. As a topical formulation, trifluralin is also effective in vivo (in BALB/c mice) against Leishmania major and Leishmania mexicana. Although trifluralin and other dinitroaniline herbicides show significant activity as antiparasitic compounds, disputed indications of potential ...

  12. Withanolides: Biologically Active Constituents in the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Khan, Shahid A; Khan, Sher B; Shah, Zarbad; Asiri, Abdullah M

    2016-01-01

    The use of natural products in drug discovery and development have an important history. Several therapeutic agents have been investigated during the biological screenings of natural compounds. It is well documented that plants are possibly the core of novel substances that led to the discovery of new, novel, and effective therapeutic agents. Therefore, in the last few decades, scientists were thoroughly attempting for the search of benevolent drugs to protect mankind from various diseases and discomforts. The diverse chemical structures of natural products are the key element of their success in modern drug discovery. Cholinesterase enzyme inhibitors (ChEI) are chemicals which inhibit the splitting of cholinesterase enzymes (acetylcholinesterase and butyrylcholinesterase). Acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) are two types of cholinesterase enzymes that have been identified in vertebrates that are responsible for Alzheimer's disease and related dementia. Withanolides are affective plant secondary metabolites which inhibit acetylcholinesterase and butyrylcholinesterase enzyme and thus possibly will be the future drug for Alzheimer's disease. By viewing the importance of natural products in drug discovery and development, we present here, the importance of withanolides in the treatment of Alzheimer's disease. In this article, we also describe the classification and structural characterization of withanolides. This review comprises of 114 compounds. PMID:26527154

  13. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization. PMID:26004708

  14. Solid state structural and theoretical investigations of a biologically active chalcone

    Science.gov (United States)

    Abbas, Asghar; Gökce, Halil; Bahceli, Semiha; Bolte, Michael; Naseer, Muhammad Moazzam

    2016-05-01

    The computational methods are presently emerging as an efficient and reliable tool for predicting structural properties of biologically important compounds. In the present manuscript, the solid state structural and theoretical investigations of a biologically active chalcone i-e (E)-3-(4-(hexyloxy)phenyl)-1-phenylprop-2-en-1-one (6c) have been reported. The solid state structure of 6c was measured by X-ray crystallographic technique whereas the optimized molecular geometry, vibrational frequencies, the simulated UV-vis spectra (in gas and in methanol solvent), 1H and 13C NMR chemical shift (in gas and in chloroform solvent) values, HOMO-LUMO analysis, the molecular electrostatic potential (MEP) surface and thermodynamic parameters were calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The results of the theoretical investigations were found to be in good agreement with experimental data.

  15. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)

  16. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48V and 62Zn. (author)

  17. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. PMID:27035890

  18. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania.

    Science.gov (United States)

    Kaškonienė, Vilma; Maruška, Audrius; Akuņeca, Ieva; Stankevičius, Mantas; Ragažinskienė, Ona; Bartkuvienė, Violeta; Kornyšova, Olga; Briedis, Vitalis; Ugenskienė, Rasa

    2016-06-01

    Since biological activity of medicinal plants is dependent on cultivation area, climatic conditions, developmental stage, genetic modifications and other factors, it is important to study flora present in different growing sites and geographical zones. This study was focused on screening of antioxidant activity of C. angustifolium harvested in six different locations in Lithuania. The total contents of phenolic compounds, flavonoids and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were evaluated by spectrophotometric methods. A correlation between radical scavenging activity and total phenolic compounds content was observed (correlation coefficient 0.98). HPLC with online post-column DPPH radical scavenging reaction detection was used for the separation of extracts. Oenothein B, rutin and one unidentified compound were predominant. Volatile compounds were analysed using solid-phase microextraction coupled with gas chromatography-mass spectrometry. Based on the analysis of volatiles, all samples were classified into two chemotypes: (I) with predominant α- and β-caryophyllenes and (II) with predominant anethole. PMID:26222982

  19. NATURAL POLYACETYLENE COMPOUNDS

    OpenAIRE

    D. A. Konovalov

    2014-01-01

    Polyacetylenes (polyynes) are compounds which contain two or more triple bonds in its structure. About 2 000 different polyacetylenes and biogenetically related substances were identified in 24 families of higher plants. However, most of these compounds were found in seven families of flowering plants: Apiaceae (Umbelliferae), Araliaceae, Asteraceae (Compositae), Campanulaceae, Olacaceae, Pittosporaceae and Santalaceae. Polyacetylenes are relatively unstable, chemically and biologically activ...

  20. Effects of polyhydroxy compounds on beetle antifreeze protein activity

    Science.gov (United States)

    Amornwittawat, Natapol; Wang, Sen; Banatlao, Joseph; Chung, Melody; Velasco, Efrain; Duman, John G.; Wen, Xin

    2016-01-01

    Antifreeze proteins (AFPs) noncolligatively depress the nonequilibrium freezing point of a solution and produce a difference between the melting and freezing points termed thermal hysteresis (TH). Some low-molecular-mass solutes can affect the TH values. The TH enhancement effects of selected polyhydroxy compounds including polyols and carbohydrates on an AFP from the beetle Dendroides canadensis were systematically investigated using differential scanning calorimetry (DSC). The number of hydroxyl groups dominates the molar enhancement effectiveness of polyhydroxy compounds having one to five hydroxyl groups. However, the above rule does not apply for polyhydroxy compounds having more than five hydroxyl groups. The most efficient polyhydroxy enhancer identified is trehalose. In a combination of enhancers the strongest enhancer plays the major role in determining the TH enhancement. Mechanistic insights into identification of highly efficient AFP enhancers are discussed. PMID:19038370

  1. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  2. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  3. Environmental and biological monitoring of volatile organic compounds in the workplace.

    Science.gov (United States)

    Caro, J; Gallego, M

    2009-10-01

    The exposure of workers to volatile organic compounds (VOCs) in the workplace has been evaluated in four different occupations, namely: house painters, varnishing workers, car painters and petrol station workers. The study was carried out by analyzing the ambient air within the workers' breathing zone as well as the alveolar air of these workers, which was selected as the biomarker of exposure. Twenty six VOCs were measured in the air samples. Nearly all target VOCs were found in the ambient air of the workplaces assessed, usually involving in the most abundant compounds, toluene, o-xylene and N-butyl acetate, concentrations between 60 and 51,110 microg m(-3). The same VOCs were found in the alveolar air of workers after their work shift, at concentrations whose amount depended on the compound and occupation involved. Toluene, at concentrations between 90 and 29,840 microg m(-3), o-xylene, between 30 and 12,285 microg m(-3), and N-butyl acetate, between 10 and 8045 microg m(-3), were also the most abundant compounds found in the alveolar air of workers after exposure. The post-work concentrations of VOCs in alveolar air correlated significantly with ambient air concentrations, obtaining correlation coefficients over 0.9 for the compounds studied. Furthermore, a general trend towards greater absorption of benzene derivatives by the human body (the average percentage of absorption is 50%) than that of esters (average percentage of 20%) has been observed in the data obtained throughout the study. PMID:19635627

  4. The effects of neuroleptic and tricyclic compounds on BKCa channel activity in rat isolated cortical neurones

    OpenAIRE

    Lee, K.; McKenna, F; Rowe, I C M; Ashford, M.L.J.

    1997-01-01

    The actions of several neuroleptic and tricyclic compounds were examined on the large conductance Ca2+-activated K+ (BKCa) channel present in neurones isolated from the rat motor cortex.Classical neuroleptic compounds including chlorpromazine and haloperidol applied to the intracellular surface of inside-out patches produced a concentration-dependent reduction in BKCa channel activity. Similar effects were observed when these compounds were applied to the extracellular surface of outside-out ...

  5. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Codruţa Soica

    2014-04-01

    Full Text Available Oleanolic and ursolic acids are natural triterpenic compounds with pentacyclic cholesterol-like structures which gives them very low water solubility, a significant disadvantage in terms of bioavailability. We previously reported the synthesis of inclusion complexes between these acids and cyclodextrins, as well as their in vivo evaluation on chemically induced skin cancer experimental models. In this study the synergistic activity of the acid mixture included inside hydroxypropyl-gamma-cyclodextrin (HPGCD was monitored using in vitro tests and in vivo skin cancer models. The coefficient of drug interaction (CDI was used to characterize the interactions as synergism, additivity or antagonism. Our results revealed an increased antitumor activity for the mixture of the two triterpenic acids, both single and in complex with cyclodextrin, thus proving their complementary biologic activities.

  6. Recent insights into the biological activities and drug delivery systems of tanshinones.

    Science.gov (United States)

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. PMID:26792989

  7. Synthesis and biological activities of some benzimidazolone derivatives

    Directory of Open Access Journals (Sweden)

    B K Karale

    2015-01-01

    Full Text Available The reaction of 5-nitrobenzimidazolone with phenoxyethyl bromide in presence of potassium carbonate in dimethyl formamide obtained 6-nitro-1,3-bis(2-phenoxyethyl-1,3-dihydro-2H-benzimidazol-2-one. It was reduced using stannous chloride to get 6-amino -1,3-bis(2-phenoxyethyl-1, 3-dihydro-2H-benzimidazol -2-one, which was further treated with aromatic sulphonyl chloride to obtain benzimidazolone derivatives, 6a-k. These compounds were tested for antibacterial, antituberculosis and antifungal activity. Most of them have shown very good activity against some gram positive and gram negative microorganisms and fungal strains. Some of them have shown moderate activity against Mycobacterium tuberculosis.

  8. Perceived causality influences brain activity evoked by biological motion.

    Science.gov (United States)

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  9. Ion exchange defines the biological activity of titanate nanotubes.

    Science.gov (United States)

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells. PMID:26972521

  10. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  11. Bone-inducing Activity of Biological Piezoelectric Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium riobate (LNK) ceramic of which the ratio of HA/ LNK was 1: 10 and 5:5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7,14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF,the thickest apatite crystal on the negatively charged surfaces increased to 3.337μm. The novel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.

  12. European activities in space radiation biology and exobiology

    Energy Technology Data Exchange (ETDEWEB)

    Horneck, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1996-12-31

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  13. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities

    Directory of Open Access Journals (Sweden)

    Mireille Fouillaud

    2016-03-01

    Full Text Available Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.

  14. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities.

    Science.gov (United States)

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-04-01

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances. PMID:27023571

  15. A new method for calculating the activity of stable compound from binary phase diagram

    Institute of Scientific and Technical Information of China (English)

    CHEN Dengfu; DONG Lingyan; BAI Chenguang; LIU Qingcai; WANG Chuanjun

    2006-01-01

    A new method to calculate the activity of a stable compound in a binary phase diagram was presented and dis cussed. According to the formula for calculating activity from the binary phase diagram, the equilibrium constant can be calculated through the mass action principle after the activities of two pure components were computed respectively. Based on that, the activity of a stable compound can be easily obtained at last. The activity of the stable compound InSb is calculated in the In-Sb binary system by using this method. The result is well consistent with another calculation value.

  16. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    Science.gov (United States)

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  17. Application of Genetic Programming in Predicting Infinite Dilution Activity Coefficients of Organic Compounds in Water

    Institute of Scientific and Technical Information of China (English)

    Yi Lin CAO; Huan Ying LI

    2003-01-01

    In this paper, we calculated 37 structural descriptors of 174 organic compounds. The154 molecules were used to derive quantitative structure-infinite dilution activity coefficientrelationship by genetic programming, the other 20 compounds were used to test the model. Theresult showed that molecular partition property and three-dimensional structural descriptors havesignificant influence on the infinite dilution activity coefficients.

  18. Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni molinae Turcz. Fruits. Assessment of Antioxidant and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Maria Paula Junqueira-Gonçalves

    2015-03-01

    Full Text Available Berry fruit consumption has become important in the promotion of human health, mainly due to their phenolic compounds, which have been associated with protection against different pathologies, as well as antimicrobial and other biological activities. Consequently, there has been a growing interest in identifying natural antioxidants and antimicrobials from these plants. This study aimed to characterize the phenolic chemical composition and anthocyanin profile of murta (Ugni molinae Turcz. fruit, and to evaluate the antioxidant and antimicrobial activity of its extracts (ethanolic and methanolic. LC/MS of the ethanolic extracts showed the presence of three major compounds: caffeic acid 3-glu, quercetin-3-glu and quercetin, while in the methanolic acid extract they were cyanidin-3-glucoside, pelargonidin-3-arabinose and delphinidin-3-glucoside. The antioxidant activity of ethanolic extracts (DPPH· and ORAC assays was higher than that of methanol acid extracts or purified anthocynins. Furthermore, the methanol acid extract showed an inhibitory activity against the bacteria E. coli and S. typhi similar to that of standard antibiotics. The results suggest that the antioxidant activity of the ethanolic extract is regulated by the high content of phenolic compounds and the fruit’s characteristic color is due to the content of pelargonidin-3-arabinose and delphinidin-3-glucoside. The obtained results demonstrated the appreciable antioxidant and antibacterial activities, providing opportunities to explore murta extracts as biopreservatives.

  19. Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity.

    Science.gov (United States)

    Junqueira-Gonçalves, Maria Paula; Yáñez, Lina; Morales, Carolina; Navarro, Muriel; A Contreras, Rodrigo; Zúñiga, Gustavo E

    2015-01-01

    Berry fruit consumption has become important in the promotion of human health, mainly due to their phenolic compounds, which have been associated with protection against different pathologies, as well as antimicrobial and other biological activities. Consequently, there has been a growing interest in identifying natural antioxidants and antimicrobials from these plants. This study aimed to characterize the phenolic chemical composition and anthocyanin profile of murta (Ugni molinae Turcz.) fruit, and to evaluate the antioxidant and antimicrobial activity of its extracts (ethanolic and methanolic). LC/MS of the ethanolic extracts showed the presence of three major compounds: caffeic acid 3-glu, quercetin-3-glu and quercetin, while in the methanolic acid extract they were cyanidin-3-glucoside, pelargonidin-3-arabinose and delphinidin-3-glucoside. The antioxidant activity of ethanolic extracts (DPPH· and ORAC assays) was higher than that of methanol acid extracts or purified anthocynins. Furthermore, the methanol acid extract showed an inhibitory activity against the bacteria E. coli and S. typhi similar to that of standard antibiotics. The results suggest that the antioxidant activity of the ethanolic extract is regulated by the high content of phenolic compounds and the fruit's characteristic color is due to the content of pelargonidin-3-arabinose and delphinidin-3-glucoside. The obtained results demonstrated the appreciable antioxidant and antibacterial activities, providing opportunities to explore murta extracts as biopreservatives. PMID:25838172

  20. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus.

    Science.gov (United States)

    Ma, Lishuai; Chen, Haixia; Dong, Peng; Lu, Xueming

    2013-08-15

    Mushroom Inonotus obliquus (I. obliquus) has been used as functional food and traditional Chinese herbs for long time. An efficient method for bioassay-guided preparative isolation was used for identifying the anti-inflammatory and anticancer constituents in I. obliquus. The petroleum ether and ethyl acetate fractions were found to have significant inhibition effects on NO production and NF-κB luciferase activity in macrophage RAW 264.7 cells and cytotoxicity against human prostatic carcinoma cell PC3 and breast carcinoma cell MDA-MB-231. Six main constituents were isolated from these two fractions and they were identified as lanosterol (1), 3β-hydroxy-8,24-dien-21-al (2), ergosterol (3), inotodiol (4), ergosterol peroxide (5) and trametenolic acid (6). Compound ergosterol, ergosterol peroxide and trametenolic acid showed anti-inflammatory activities and ergosterol peroxide and trametenolic acid showed obviously cytotoxicity on human prostatic carcinoma cell PC3 and breast carcinoma MDA-MB-231 cell. The results obtained in this work might contribute to understanding the biological activity of mushroom I. obliquus for food and drug application. PMID:23561137