WorldWideScience

Sample records for biological uv oxidation

  1. Studies on urine treatment by biological purification using Azolla and UV photocatalytic oxidation

    Science.gov (United States)

    Liu, Xiaofeng; Chen, Min; Bian, Zuliang; Liu, Chung-Chu

    The amount of water consumed in space station operations is very large. In order to reduce the amount of water which must be resupplied from Earth, the space station needs to resolve the problems of water supply. For this reason, the recovery, regeneration and utilization of urine of astronauts are of key importance. Many investigations on this subject have been reported. Our research is based on biological absorption and, purification using UV photocatalytic oxidation techniques to achieve comprehensive treatment for urine. In the treatment apparatus we created, the urine solution is used as part of the nutrient solution for the biological components in our bioregenerative life support system. After being absorbed, the nutrients from the urine were then decomposed, metabolized and purified which creates a favorable condition for the follow-up oxidation treatment by UV photocatalytic oxidation. After these two processes, the treated urine solution reached Chinese national standards for drinking water quality (GB5749-1985).

  2. Treatment of Phenolic Wastewater by Combining UV-Fenton Oxidation with Biological Oxidation%UV-Fenton氧化-生化法联合处理含酚废水

    Institute of Scientific and Technical Information of China (English)

    刘琼玉; 刘君侠; 刘延湘

    2011-01-01

    Phenolic wastewater was treated by combined process of UV-Fenton oxidation-biological oxidation. Treatment efficiency of phenolic wastewater by single UV-Fenton oxidation,single biological oxidation and combined process were compared. Results indicated that effective degradation of coal-gas phenolic wastewater was observed by UV-Fenton process,but complete degradation of phenolic wastewater need to consume large numbers of H2O2 with high cost,which is uneconomical. Direct biological oxidation cannot efficient treat coal-gas phenolic wastewater due to low ratio of BODs/COD.UV-Fenton preoxidation is effective at enhancing biodegradability of coal-gas phenolic wastewater,and the biodegradability of wastewater enhanced obviously with increasing dosage of H2O2 in UV-Fenton preoxidation. When H2O2 was added only 21.6% of stoichiometric calculated quantities,COD would reduce from 1,306 mg/L to 121 mg/L and phenol reduced from 193.5 mg/L to 0.43 mg/L,both COD and phenol of coal-gas phenolic wastewater can satisfy national control standard by combined process of UV-Fenton oxidation-biological oxidation. Experimental results showed that 75% H2O2 were saved by combined process of UV-Fenton oxidation-biological oxidation, comparing with single UV-Fenton process.%采用UV-Fenton氧化-生化法联合处理煤气含酚废水,比较了单独UV-Fenton氧化法、单独生化法和UV-Fenton氧化-生化法联合工艺对煤气含酚废水的处理效果.结果表明,UV-Fenton氧化体系可有效降解含酚废水,但废水完全降解所需的H2O2用量大,处理成本高.煤气含酚废水的BOD5/COD比值较低,直接采用生化处理的效果不理想,通过UV-Fenton氧化预处理可明显提高煤气含酚废水的生物降解性,随着H2O2投加量的增加,废水的BOD5/COD比值逐渐增大,生物降解性明显增强.当UV/Fenton氧化过程H2O2用量为21.6%理论投加量时,采用UV-Fenton氧化-生化法联合工艺可使煤气含酚废水的COD由1306mg

  3. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E.; Thomalla, E.; Koepke, P. [Munich Univ. (Germany). Meteorological Inst.

    1995-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  4. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process

    International Nuclear Information System (INIS)

    Photocatalysis is a promising technology for treatment of gaseous waste; its disadvantages, however, include causing secondary pollution. Biofiltration has been known as an efficient technology for treatment volatile organic compounds (VOCs) at low cost of maintenance, and produces harmless by-products; its disadvantages, include large volume of bioreactor and slow adaptation to fluctuating concentrations in waste gas. A bench scale system integrated with a photocatalytic oxidation and a biofilter unit for the treatment of gases containing toluene was investigated. The integrated system can effectively oxidize toluene with high removal efficiency. The photocatalytic activity of N-TiO2/zeolite was evaluated by the decomposition of toluene in air under UV and visible light (VL) illumination. The N-TiO2/zeolite has more photocatalytic activity under complex light irradiation of UV and visible light for toluene removal than that of pure TiO2/zeolite under UV or visible light irradiation. N-TiO2/zeolite was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum analysis (XPS), Fourier transform infrared spectroscopy (FT-IR), and as-obtained products were identified by means of gas chromatography/mass spectrometry (GC/MS). Results revealed that the photocatalyst was porous and was high photoactive for mineralizing toluene. The high activity can be attributed to the results of the synergetic effects of strong UV and visible light absorption, surface hydroxyl groups. The photocatalytic degradation reaction of toluene with the N-TiO2/zeolite follows Langmuir-Hinshelwood kinetics. Toluene biodegradation rate matches enzymatic oxidation kinetics model.

  5. Monitoring biological aerosols using UV fluorescence

    Science.gov (United States)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  6. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    OpenAIRE

    Mahdi-Ahmed, M.; Chiron, Serge

    2014-01-01

    This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H2O2. In distilled water, the order of efficiency was UV/PDS>UV/PMS>UV/H2O2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H2O2 mainly because PMS decomposition into sulfate radical anion wa...

  7. Spatial interpolation of biologically effective UV radiation over Poland

    Science.gov (United States)

    Walawender, J.; Ustrnul, Z.

    2010-09-01

    The ultraviolet(UV) radiation plays an important role in the Earth-Atmosphere System. It has a positive influence on both human health and natural environment but it may also be very harmful if UV exposure exceeds "safe" limits. For that reason knowledge about spatial distribution of biologically effective UV doses seems to be crucial in minimization or complete elimination of the negative UV effects. The main purpose of this study is to find the most appropriate interpolation method in order to create reliable maps of the biologically effective UV radiation over Poland. As the broadband UV measurement network in Poland is very sparse, erythemaly weighted UV radiation data reconstructed from homogeneous global solar radiation records were used. UV reconstruction model was developed in Centre of Aerology (Institute of Meteorology and Water Management) within COST Action 726 - ‘Long term changes and climatology of UV radiation over Europe'. The model made it possible to reconstruct daily erythemal UV doses for 21 solar radiation measurement stations in the period 1985 - 2008. Mapping methodology included the following processing steps: exploratory spatial data analysis, verification of additional variables, selection and parameterization of interpolation model, accuracy assessment and cartographic visualization. Several different stochastic and deterministic interpolation methods along with various empirical semivariogram models were tested. Multiple regression analysis was performed in order to examine statistical relationship between UV radiation and additional environmental variables such as: elevation, latitude, stratospheric ozone content and cloud cover. The data were integrated, processed and visualized within GIS environment.

  8. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  9. Enhancing disinfection by advanced oxidation under UV irradiation in polyphosphate-containing wastewater flocs.

    Science.gov (United States)

    Azimi, Y; Allen, D G; Farnood, R R

    2014-05-01

    In this paper, the role of naturally occurring polyphosphate in enhancing the ultraviolet disinfection of wastewater flocs is examined. It was found that polyphosphate, which accumulates naturally within the wastewater flocs in the enhanced biological phosphorus removal process, is capable of producing hydroxyl radicals under UV irradiation and hence causing the photoreactive disinfection of microorganisms embedded within flocs. This phenomenon is likely responsible for the improved UV disinfection of the biological nutrient removal (BNR) effluent compared to that of conventional activated sludge effluent by as much as 1 log. A mathematical model is developed that combines the chemical disinfection by hydroxyl radical formation within flocs, together with the direct inactivation of microorganisms by UV irradiation. The proposed model is able to quantitatively explain the observed improvement in the UV disinfection of the BNR effluents. This study shows that the chemical composition of wastewater flocs could have a significant positive impact on their UV disinfection by inducing the production of oxidative species. PMID:24568787

  10. Low-level luminescence as a method of detecting the UV influence on biological systems

    Science.gov (United States)

    Mei, Wei-Ping; Popp, Fritz A.

    1995-02-01

    It is well known that low-level luminescence is correlated to many physiological and biological parameters, e.g. cell cycle, temperature, oxidation- and UV-stress. We report some new approaches on low-level luminescence measurements and UV influence on different biological systems. One example concerns yeast cultures, which show an increasing intensity of luminescence after UV-treatment with a maximum after 1.5 h. Investigations on normal human fibroblasts and keratinocytes display different longtime kinetics: The former show no changes of the luminescence in time, the latter an increase that reaches the maximum after 9 h. The time-dependent spectral measurement on xeroderma pigmentosum after UV-treatment displays a time-shift of the action-spectra shifting the maximum from 400 nm to 420 nm in 12 h. Some results on neutrophils reveals spectral UV influence on respiratory burst and the cellular repair system. The results on human skin display spectral changes of low-level luminescence after UV-treatment. These results provide a useful tool of analyzing UV influence on human skin.

  11. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi-Ahmed, Moussa; Chiron, Serge, E-mail: Serge.Chiron@msem.univ-montp2.fr

    2014-01-30

    Highlights: • UV/PMS more efficient than UV/H{sub 2}O{sub 2} for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H{sub 2}O{sub 2}. In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H{sub 2}O{sub 2} while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H{sub 2}O{sub 2} mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity.

  12. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater

    International Nuclear Information System (INIS)

    Highlights: • UV/PMS more efficient than UV/H2O2 for ciprofloxacin removal in wastewater. • PMS decomposition into sulfate radical was activated by bicarbonate ions. • CIP degradation pathways elucidation support sulfate radical attacks as a main route. • Sulfate radical generation allows for CIP antibacterial activity elimination. -- Abstract: This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254 nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H2O2. In distilled water, the order of efficiency was UV/PDS > UV/PMS > UV/H2O2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H2O2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60 min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography–high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity

  13. Integrity and Biological Activity of DNA after UV Exposure

    Science.gov (United States)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  14. The role of effluent nitrate in trace organic chemical oxidation during UV disinfection.

    Science.gov (United States)

    Keen, Olya S; Love, Nancy G; Linden, Karl G

    2012-10-15

    Most conventional biological treatment wastewater treatment plants (WWTPs) contain nitrate in the effluent. Nitrate undergoes photolysis when irradiated with ultraviolet (UV) light in the 200-240 and 300-325 nm wavelength range. In the process of nitrate photolysis, nitrite and hydroxyl radicals are produced. Medium pressure mercury lamps emitting a polychromatic UV spectrum including irradiation below 240 nm are becoming more common for wastewater disinfection. Therefore, nitrified effluent irradiated with polychromatic UV could effectively become a de facto advanced oxidation (hydroxyl radical) treatment process. UV-based advanced oxidation processes commonly rely on addition of hydrogen peroxide in the presence of UV irradiation for production of hydroxyl radicals. This study compares the steady-state concentration of hydroxyl radicals produced by nitrate contained in a conventional WWTP effluent to that produced by typical concentrations of hydrogen peroxide used for advanced oxidation treatment of water. The quantum yield of hydroxyl radical production from nitrate by all pathways was calculated to be 0.24 ± 0.03, and the quantum yield of hydroxyl radicals from nitrite was calculated to be 0.65 ± 0.06. A model was developed that would estimate production of hydroxyl radicals directly from nitrate and water quality parameters. In effluents with >5 mg-N/L of nitrate, the concentration of hydroxyl radicals is comparable to that produced by addition of 10 mg/L of H(2)O(2). Nitrifying wastewater treatment plants utilizing polychromatic UV systems at disinfection dose levels can be expected to achieve up to 30% degradation of some micropollutants by hydroxyl radical oxidation. Increasing UV fluence to levels used during advanced oxidation could achieve over 95% degradation of some compounds. PMID:22819875

  15. Biologically weighted measurement of UV radiation in space and on earth with the biofilm technique

    Science.gov (United States)

    Rettberg, P.; Horneck, G.

    Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.

  16. Effects of UV and microwave radiation on biological material

    International Nuclear Information System (INIS)

    For the present study, ten publications on the effect of UV radiation were analyzed. In vitro tests were carried out with one biological substance and seven different human or animal organs and biocytocultures. In vivo, three bacterial strains were irradiated and four irradiation experiments were carried out on mice. As to the effect of microwave radiation, eleven publications were analyzed. In vitro tests were carried out with one biological substance and three animal organs. In vivo, one bacterial strain was irradiated and eight irradiation experiments were carried out on different types of animals. The study's aim was to obtain a survey on biochemical changes of the organisms. Phenomenological changes were given only when the corresponding articles contained further investigation results. Behavioral changes were not taken into account. The results published by the authors of the original papers were compiled in a kind of dictionary. All relevant data are listed in a defined order. (orig.)

  17. Destruction of estrogenic activity in water using UV advanced oxidation

    International Nuclear Information System (INIS)

    The transformation of the steroidal Endocrine Disrupting Compounds (EDCs), 17-β-estradiol (E2) and 17-α-ethinyl estradiol (EE2) by direct UV photolysis and UV/H2O2 advanced oxidation was studied from the perspective of the removal of estrogenic activity associated with the compounds. First, experiments were performed to link the oxidation of E2 and EE2 with subsequent reduction in estrogenic activity. No statistically significant difference between removal rates was observed, implying that the oxidation products of E2 and EE2 are not as estrogenic (measured by the Yeast Estrogen Screen (YES)) as the parent compounds. Utilizing the YES, 90% removal of estrogenic activity of E2 and EE2 at environmentally relevant concentrations (∼ 3 μg L-1) was achieved using a combination of 5 mg L-1 H2O2 and a UV fluence of less than 350 mJ cm-2. Thus, these compounds, when considered at environmentally relevant levels, are significantly degraded at much lower UV fluences than previously thought. A steady state OH radical model was used to predict oxidation of EE2 in laboratory and natural waters

  18. Destruction of estrogenic activity in water using UV advanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeldt, Erik J. [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Chen, P.J. [Department of Civil and Environmental Engineering, and Integrated Toxicology Program, Nicolas School of Environment and Earth Science, Duke University (United States); Integrated Toxicology Program, Nicolas School of Environment and Earth Science, Duke University (United States); Kullman, Seth [Integrated Toxicology Program, Nicolas School of Environment and Earth Science, Duke University (United States); Linden, Karl G. [Department of Civil and Environmental Engineering, Duke University, Box 90287, 121 Hudson Hall Engineering Building, Durham, NC 27708-0287 (United States)]. E-mail: kglinden@duke.edu

    2007-05-01

    The transformation of the steroidal Endocrine Disrupting Compounds (EDCs), 17-{beta}-estradiol (E2) and 17-{alpha}-ethinyl estradiol (EE2) by direct UV photolysis and UV/H{sub 2}O{sub 2} advanced oxidation was studied from the perspective of the removal of estrogenic activity associated with the compounds. First, experiments were performed to link the oxidation of E2 and EE2 with subsequent reduction in estrogenic activity. No statistically significant difference between removal rates was observed, implying that the oxidation products of E2 and EE2 are not as estrogenic (measured by the Yeast Estrogen Screen (YES)) as the parent compounds. Utilizing the YES, 90% removal of estrogenic activity of E2 and EE2 at environmentally relevant concentrations ({approx} 3 {mu}g L{sup -1}) was achieved using a combination of 5 mg L{sup -1} H{sub 2}O{sub 2} and a UV fluence of less than 350 mJ cm{sup -2}. Thus, these compounds, when considered at environmentally relevant levels, are significantly degraded at much lower UV fluences than previously thought. A steady state OH radical model was used to predict oxidation of EE2 in laboratory and natural waters.

  19. Biological applications of graphene oxide

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. However, the lower water-solubility and the irreversible aggregation due to the strong π-π stacking hinder the wide application of graphene nanosheets in biomedical field. Thus, graphene oxide (GO), one derivative of graphene, has been used more frequently in the biological system owing to its relatively higher water solubility and biocompatibility. Recently, it has been demonstrated that nanomaterials with different functional groups on the surface can be used to bind the drug molecules with high affinity. GO has different functional groups such as H, OH and O on its surface; it can be a potential candidate as a drug carrier. The interactions of biomolecules and graphene like structures are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles spin polarized calculations within density functional theory to calculate effects of charging on DNA/RNA nucleobases on graphene oxide. It is shown that how modify structural and electronic properties of nucleobases on graphene oxide by applied charging.

  20. Studies of biological effects of fluoride stannous and UV short in Escherichia coli BH110

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da C, R., E-mail: rogercosta1@hotmail.com [Federal Institute of Education, Science and Technology of Goias, Campus Uruacu, Rua Formosa Qd 28 e 29, Loteamento Santana, 76400-000 Uruacu, Goias (Brazil)

    2015-10-15

    Full text: The amount of UV rays on the Earth's surface has increased due to depletion of the ozone layer, and this has worried society, since these radiation although not considered ionizing can cause damage to biological membrane and especially to DNA. The DNA has cell repair mechanisms that can work in lesions caused by electromagnetic radiation such as ultraviolet -short (UV C)and agents causing oxidative stress, such as tin salts. Among the repair mechanisms can highlight the adaptive repair, which consists of smaller doses to cells pre-exposure of an oxidizing agent, and when these cells are exposed to larger doses of the agent even if there is a reduction in mortality rate which leads to complete that repair mechanisms are activated in the pre-exposure reducing cell mortality. Several publications have shown the genotoxic effects of stannous salts such as stannous fluoride (SnF{sub 2}), which shows the importance of the study, since these salts are widely used in industry as components in toothpastes and mouthwashes. So we check whether pretreatment with UV C is able to induce adaptive response reducing the cytotoxic effects caused by exposure of the strains to SnF{sub 2}. We use a strain of Escherichia coli BH110 (BH110 E. coli) deficient in three genes (fpg, nfo and xth) involved in the excision repair bases. To verify the induction of adaptive response to strain BH110 was exposed to various doses of UV C and then treated with SnF{sub 2} a concentration of 110 u M. Our results showed that the LD10 of strain BH110 is 20 J/m{sup 2} and pre-treatment with UV C does not seem to induce adaptive repair in BH110 strains. (Author)

  1. Studies of biological effects of fluoride stannous and UV short in Escherichia coli BH110

    International Nuclear Information System (INIS)

    Full text: The amount of UV rays on the Earth's surface has increased due to depletion of the ozone layer, and this has worried society, since these radiation although not considered ionizing can cause damage to biological membrane and especially to DNA. The DNA has cell repair mechanisms that can work in lesions caused by electromagnetic radiation such as ultraviolet -short (UV C)and agents causing oxidative stress, such as tin salts. Among the repair mechanisms can highlight the adaptive repair, which consists of smaller doses to cells pre-exposure of an oxidizing agent, and when these cells are exposed to larger doses of the agent even if there is a reduction in mortality rate which leads to complete that repair mechanisms are activated in the pre-exposure reducing cell mortality. Several publications have shown the genotoxic effects of stannous salts such as stannous fluoride (SnF2), which shows the importance of the study, since these salts are widely used in industry as components in toothpastes and mouthwashes. So we check whether pretreatment with UV C is able to induce adaptive response reducing the cytotoxic effects caused by exposure of the strains to SnF2. We use a strain of Escherichia coli BH110 (BH110 E. coli) deficient in three genes (fpg, nfo and xth) involved in the excision repair bases. To verify the induction of adaptive response to strain BH110 was exposed to various doses of UV C and then treated with SnF2 a concentration of 110 u M. Our results showed that the LD10 of strain BH110 is 20 J/m2 and pre-treatment with UV C does not seem to induce adaptive repair in BH110 strains. (Author)

  2. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale.

    Science.gov (United States)

    Cédat, Bruno; de Brauer, Christine; Métivier, Hélène; Dumont, Nathalie; Tutundjan, Renaud

    2016-09-01

    In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs. PMID:27214348

  3. UV Irradiation Chlorine Dioxide Photocatalytic Oxidation of Simulated Fuchsine Wastewater by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Jie Liu; Chunlei Huai; Na Li; Xiaomei Wang; Laishun Shi

    2012-01-01

    The photocatalyst TiO2/SiO2 was prepared and used for chlorine dioxide photocatalytic oxidation of simulated fuchsine wastewater under UV irradiation. The removal efficiency of fuchsine treated by photocatalytic oxidation process is higher than that of chemical oxidation process. By using UV-Vis and online FTIR analysis technique, the intermediates during the degradation process were obtained. The benzene ring in fuchsine was degraded into quinone and carboxylic acid and finally changed into ...

  4. Biologically effective surface UV climatology at Rome and Aosta, Italy

    Science.gov (United States)

    Siani, Anna Maria; Modesti, Sarah; Casale, Giuseppe Rocco; Diemoz, Henri; Colosimo, Alfredo

    2013-05-01

    Given the beneficial and harmful effects of UV radiation on human health, our study aims to provide a characterization of erythemal and vitamin D dose rates at two Italian sites, Rome and Aosta, subject to quite different environmental conditions. Based on the respective UV climatologies, exposure times needed to induce erythema or vitamin D photoproduction are provided as a function of the UV index.

  5. Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes.

    Science.gov (United States)

    Sobolev, I

    2000-12-01

    Solar irradiance measurements from Ushuaia (Argentina) and Palmer and McMurdo Stations in Antarctica covering four seasons from mid-1993 through early 1997 have been analyzed and their variations compared with column ozone changes. UV irradiances were weighted for biological effectiveness using a published biological weighting function for dose-dependent inhibition of photosynthesis by phytoplankton from the Weddell Sea. All calculations involved integrated daily UV doses and visible exposures (weighted UV and unweighted visible irradiances, respectively). The results show that daily biologically effective total UV doses underwent large short-term variations at all three sites, with day-to-day increases up to 236% at Ushuaia, 285% at Palmer and 99% at McMurdo. Parallel changes in visible exposure indicated that the total UV changes were preponderantly due to variations in cloudiness. On a 12-month basis, daily biologically effective UV doses correlated strongly with visible exposures (R > or = 0.99). Anticorrelations of total UV with ozone, on the other hand, were poor (R > -0.11). The largest daily biologically effective UV doses, and their day-to-day increases, occurred as part of the normal variability related to cloud cover and were seldom associated with significant ozone depletion. UV dose/visible exposure ratios tended to reflect ozone depletion events somewhat more consistently than UV doses alone. With the Weddell Sea phytoplankton weighting function used in this study, antarctic ozone hole events were seldom readily discernible in the biologically effective UV record. The results suggest that, where the UV sensitivity of organisms was similar to that of the Weddell Sea phytoplankton, seasonal ozone depletion had no appreciable effect on annual primary productivity during the 1993-1997 period. Additional data on the geographical and seasonal variation of biological weighting functions are desirable for more comprehensive assessments of ozone depletion

  6. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  7. Administration with Bushenkangshuai Tang alleviates UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    Qi RUI; Qin LU; Dayong WANG

    2009-01-01

    During normal metabolism, oxidative bypro-ducts will inevitably generate and damage molecules thereby impairing their biological functions, including the is a traditional Chinese medicine widely used for clini-cally treating premature ovarian failure. In the present study, BT administration at high concentrations signifi-cantly increased lifespan, slowed aging-related decline, and delayed accumulation of aging-related cellular damage in wild-type Caenorhabditis elegans. BT admin-istration could further largely alleviate the aging defects induced by UV and oxidative stresses, and BT administra-tion at different concentrations could largely rescue the aging defects in mev-1 mutant animals. The protective effects of BT administration on aging process were at least partially dependent on the Ins/IGF-like signaling pathway. Moreover, BT administration at different concentrations obviously altered the expression patterns of antioxidant genes and suppressed the severe stress responses induced by UV and oxidative stresses, suggesting that BT-induced tolerance to UV or oxidative stress might result from reactive oxygen species scavenging. BT administration during development was not necessarily a requirement for UV and oxidative stress resistance, and the concentrations of administrated BT examined were not toxic for nematodes. Therefore, BT administration could effectively retrieve the aging defects induced by UV irradiation and oxidative stress in Caenorhabditis elegans.

  8. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and

  9. UV-Enhanced NaClO Oxidation of Nitric Oxide from Simulated Flue Gas

    Directory of Open Access Journals (Sweden)

    Shao-long Yang

    2016-01-01

    Full Text Available A wet de-NOx technique based on an UV-enhanced NaClO oxidation process was investigated for simulated flue gas of a diesel engine using a bench-scale reaction chamber. The effects of UV irradiation time, initial pH value, and available chlorine concentration of NaClO solution were studied, respectively. The results showed that when the UV irradiation time was 17.5 min and the initial pH value of NaClO solution was 6, NO removal efficiency of UV/NaClO solution was increased by 19.6% compared with that of NaClO solution. Meanwhile, when the available chlorine concentration of NaClO solution decreased from 0.1 wt% to 0.05 wt%, the enhancement in NO removal efficiency of UV/NaClO solution increased from 19.6% to 24%, compared with that of NaClO solution. The reaction pathways of NaClO solution photolysis and NO removal by UV/NaClO process were preliminarily discussed. The results suggested that HOCl might be the most active species that released many UV-induced photooxidants through photolysis reactions, which played an important role in NO removal process.

  10. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    Science.gov (United States)

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  11. ETCHING OF WRINKLED GRAPHENE OXIDE FILMS IN NOBLE GAS ATMOSPHERE UNDER UV IRRADIATION

    OpenAIRE

    ALEKSENSKII A.E.; VUL S.P.; DIDEIKIN A.T.; Sakharov, V. I.; SERENKOV I.T.; RABCHINSKII M.K.; AFROSIMOV V.V.

    2016-01-01

    We have studied the process of UV reduction of wrinkled grahpene oxide films, deposited on silicon substrate from ethanol suspension. In order to avoid destruction of graphene oxide via ozone formation from ambient air, samples were protected by argon atmosphere during UV irradiation. Using the analysis of back scattering spectra for medium energy ions, we have found that the UV irradiation mediated reduction process produced significantly decreased carbon content on the substrate surface. Th...

  12. Nitric Oxide: Role in Human Biology

    OpenAIRE

    Nikhil Omer; Ankur Rohilla; Seema Rohilla; Ashok Kushnoor

    2012-01-01

    Nitric oxide (NO), a free radical, possesses various modulatory effects on biological systems. NO is synthesized from L-arginine by converting it to L-citrulline via nitric oxide synthase (NOS) enzymes. Moreover, various precursors of NO have been reported that include arginine, citruline, arginine alphaketoglutarate (A-AKG) and arginineketoisocaproate (A-KIC). NO possess various direct and indirect effects that broadly affect various tissues and organ systems inside the body. The present rev...

  13. Biological dosimeter for UV-radiation and alpha particles, based on DNA damages

    International Nuclear Information System (INIS)

    A bioluminescence method for determination of biologically relevant (DNA damaging) doses of UV-radiation and alpha particles is developed. The method is based on bacterial luminescence as a bio-marker regulated by the SOS system. Cultures of E. coli cells transformed with the plasmid pPSL1 which carries the lux gene under control of the col promotor, an SOS-controlling gene, is used. The lux gene encode the enzyme luciferase which takes part in the reaction, resulting in the emission of a visible light at 490 nm. The light output is measured by photomultiplier and one channel analyzer. SOS-response kinetic curves of bacteria, UV-irradiated and treated with alpha particles, are obtained. An assessment of the risk from solar UV-radiation is made. The method has the sensitivity required to be used as biological UV-dosimeter (author)

  14. Deep-UV solid state light sources in the tactical biological sensor

    Science.gov (United States)

    Cabalo, Jerry; De Lucia, Marla; Narayanan, Fiona; Poldmae, Aime; Sickenberger, David

    2006-05-01

    A number of strategies to meet the need for a small and inexpensive biosensor that mitigates military and civilian vulnerabilities to biological weapons are currently being pursued. Among them is UV induced biological fluorescence. UV induced biofluorescence is a potentially successful strategy because it involves no chemical consumables and it is an "on-line" detection method where particles can be interrogated without impaction onto a substrate or into a liquid. Indeed, there are already existing fluorescence based sensors already in place, yet these are limited by the cost and power consumption of the laser based UV excitation sources. Fortunately, inexpensive and low power solid state UV sources arising from the Defense Advanced Research Projects Agency's (DARPA) Semiconductor UV Optical Sources (SUVOS) project have become commercially available in wavelengths capable of exciting aromatic amino acids (e.g. tryptophan) and metabolic products (e.g. NADH). The TAC-Bio Sensor is capable of exploiting either source wavelength and will ultimately include both source wavelengths within a single sensor. Initial work with the deep UV sources involves the correct optical filtering for the devices. The primary emission from both the 280 nm and 340 nm devices occurs at the design wavelength and is about 20 nm FWHM, however, there is a tail extending to the longer wavelengths that interferes with the fluorescence signal. A system of optical filters that sufficiently removes the long wavelength component from the UV source is designed and tested for the deep UV sources. Ongoing work with the sensor has confirmed that sensitivity to small biological particles is enhanced with the deeper wavelengths. When the 340 nm sources are placed in the TAC-Bio, it is capable of detecting 4 micron diameter Bacillus globigii (BG, Dugway, washed 4X) spore agglomerates. The deep UV sources show an improvement in signal to noise of 2, permitting the detection of 3 micron diameter BG

  15. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    International Nuclear Information System (INIS)

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  16. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  17. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60o N. A large depletion of 50% over Scandinavia (60o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  18. Novel photocatalysis oxidation system UV/Fe2+/air to degrade 4-CP wastewater

    Institute of Scientific and Technical Information of China (English)

    DU Yingxun; ZHOU Minghua; LEI Lecheng

    2005-01-01

    This paper reported the degradation of 4-CP wastewater by a novel photocatalysis oxidation system--UV/Fe2+/air system, in which air was used as a cheap oxidant that reacted with the excitation state of organics to form H2O2 under the UV light. The formed H2O2 reacted with the added ferrous ion to form Fenton reaction and led to the quick degradation of organic pollutants. It was found that 4-CP could be completely removed within 40 min. The degradation of 4-CP in the UV/Fe2+/air system was superior to the conventional UV/Fenton system (the initial concentration of H2O2 was 22 mg-L-1). UV/Fe2+/air is an effective and cheap method for treatment of the organics that can be excited by UV light.

  19. The UV-irradiated mouse as a model for testing biological response modifiers

    International Nuclear Information System (INIS)

    In addition to inducing primary cancers of the skin, ultraviolet (UV) radiation produces specific impairments in the immune system that contribute to the growth and pathogenesis of these skin cancers. The cellular basis for the immunological alterations induced in mice by UV radiation has been studied and characterized over the past ten years. It is now possible to make use of this system to study the activity and mode of action of biological response modifiers. The advantages of this system are that it employs primary hosts, which may respond quite differently from normal animals bearing a transplanted tumor, it closely parallels several specific situations relevant to human cancer, and it may be useful in establishing the mechanism of action of certain agents. Studies in which biological response modifiers have been used in conjunction with the UV carcinogenesis model are reviewed. (Auth.)

  20. The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium.

    Directory of Open Access Journals (Sweden)

    Yan Gao

    Full Text Available Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO titanium samples were pretreated with UVA light (peak wavelength of 360 nm or UVC light (peak wavelength of 250 nm for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF. These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation.

  1. Effect of UV radiation on the growth and breakdown voltage of anodic oxide films on niobium

    International Nuclear Information System (INIS)

    Formation rates of anodic Nb2O5 films grown under galvanostatic conditions decrease in the presence of UV radiation, unlike those grown in the absence of UV radiation. This may be due to the development of a positive space charge near the solution/oxide interface which is responsible for an increase in electronic current in the film during its formation. Value of breakdown voltage also increases in the presence of UV radiations. The effect of current density and resistivity of the solution upon the breakdown voltage, both in the presence and absence of UV radiation, is discussed in terms of Ikonopisov theory of breakdown voltage. (author). 19 refs., 6 figs

  2. Biologically formed hollow cuprous oxide microspheres

    International Nuclear Information System (INIS)

    Hollow cuprous oxide (Cu2O) microspheres with a diameter of ca. 1.8 μm are prepared by using yeast as template. The possible mechanism for the formation of the hollow Cu2O spheres is revealed. The biotemplated sample is investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) absorption spectra. The sample consists of the crystalline Cu2O microspheres with diameters of about 59.5 nm and lattice parameter of 4.264 A. The observed optical band gap of the product indicates that the blue-shift effect occurs, which is attributed to the hollow Cu2O microspheres.

  3. UV-Shielding and Catalytic Characteristics of Nanoscale Zinc-Cerium Oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fine particles of zinc-cerium oxides (ZCO) used as an ultraviolet filter were prepared via combustion synthesis route. The catalytic activity, UV-shielding performance, surface modification and application of ZCO in polyester varnish were discussed in detail. The experimental results indicate that the photo-catalytic activity of ZCO is much smaller than these of ZnO and TiO2; the oxidation catalytic activity of ZCO is far lower than that of CeO2; the ZCO has shown excellent ultraviolet absorption in the range of UV;addition modified ZCO (MZCO) into polyester will enhance the UV-shielding capability of polyester.

  4. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  5. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  6. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    OpenAIRE

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdere...

  7. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  8. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    International Nuclear Information System (INIS)

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved

  9. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  10. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  11. Oxidative mechanisms in toxicity of low-intensity near-UV light in Salmonella typhimurium

    International Nuclear Information System (INIS)

    The exposure of Salmonella typhimurium to environmentally relevant near-UV light stress has been studied by the use of a low-intensity, broad-band light source. The exposure of cells to such a light source rapidly induced a growth delay; after continuous exposure for 3 to 4 h, cells began to die at a rapid rate. The oxidative defense regulon controlled by the oxyR gene was involved in protecting cells from being killed by near-UV light. This killing may be potentiated by the overexpression of near-UV-absorbing proteins. These result are consistent with near-UV toxicity involving the absorption of light by endogenous photosensitizers, leading to the production of active oxygen species. The authors have shown, however, that one such species, H2O2 is not a major photoproduct involved in killing by near-UV light. Strains lacking alkyl hydroperoxide reductase were more sensitive to near-UV light, indicating that such hydroperoxides may be photoproducts. Near-UV exposure induced sensitivity to high salt levels, indicating that membranes may be a target of near-UV toxicity and a possible source of alkyl hydroperoxides. The demonstration of the inactivation of the heme-containing protein catalase indicates that direct destruction of UV-absorbing macromolecules could be another factor in near-UV toxicity. Cells which have been exposed to near-UV light for long, but sublethal, periods of time (up to 4 h can recover and resume growth if the UV exposure is stopped but become progressively more sensitive to further stresses, such as H2O2

  12. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions

    International Nuclear Information System (INIS)

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O3 and O3/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O3 combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O3/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O3/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O3/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated

  13. Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation

    OpenAIRE

    FRANCOIS-HEUDE, Alexandre; Richaud, Emmanuel; DESNOUX, Eric; Colin, Xavier

    2014-01-01

    International audience A criterion based on the energy absorbed by photosensitive species was proposed to describe the contribution of UV-light to the initiation of the polypropylene photothermal oxidation whatever the light source. The calculation of this energy was performed using the widely accepted quantum theory. The criterion was then introduced in two different types of analytical models commonly used to describe the combined effects of UV light and temperature on induction time, na...

  14. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    OpenAIRE

    Janis Ya-Xian Zhan; Xiu-Fen Wang; Yu-Hong Liu; Zhen-Biao Zhang; Lan Wang; Jian-Nan Chen; Song Huang; Hui-Fang Zeng; Xiao-Ping Lai

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and ...

  15. Surface modification of the polyethyleneimine layer on silicone oxide film via UV radiation

    International Nuclear Information System (INIS)

    We herein report a novel method of employing 254 nm of UV radiation (UV) for the modification of a polyethyleneimine (PEI) layer on silicone oxide film. In this study, a PEI layer composed of a 50 mM sodium carbonate solution (pH 8.2) was formed on the surface of a silicone oxide film with spontaneous adsorption. Then, thin film of PEI was patterned by UV radiation. To determine the effect of the UV radiation, fluorescence microscopy, X-ray electron spectroscopy (XPS), and Fourier Transform Infrared spectroscopy (FT-IR) analyses were performed. These results indicated that UV radiation could cause changes in the surface characteristics of the PEI layer. Subsequently, FT-IR analysis showed changes in the chemical composition of the PEI exposed to UV radiation, such as the disappearance of the amine. Based on these results, we can conclude that UV radiation could be used to eliminate the amine group selectively and that this technique could be applied to create a pattern on the surface of a PEI layer.

  16. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    Science.gov (United States)

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. PMID:22000058

  17. Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); Maydannik, Philipp; Seppänen, Tarja; Cameron, David C. [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); Johansson, Petri; Kotkamo, Sami; Kuusipalo, Jurkka [Paper Converting and Packaging Technology, Tampere University of Technology, Tampere (Finland)

    2013-10-01

    Titanium oxide layers were deposited onto a BOPP film by atomic layer deposition in order to prevent UV degradation of the film. The coatings were deposited in a low-temperature process at 80 °C by using tetrakis(dimethylamido)titanium and ozone as titanium and oxygen precursors, respectively. UV block characteristics of the coatings and their effect on the polymer were measured by using UV–vis and IR spectrometry, and differential scanning calorimetry. According to the results, the coatings provided a considerable decrease in the photodegradation of the BOPP film during UV exposure. IR spectra showed that during a 6-week UV exposure, a 67 nm titanium oxide coating was able to almost completely prevent the formation of photodegradation products in the film. The mechanical properties of the film were also protected by the coating, but as opposed to what the IR study suggested they were still somewhat compromised by the UV light. After a 6-week exposure, the tensile strength and elongation at break of the 67 nm titanium oxide coated film decreased to half of the values measured before the treatment. This should be compared to the complete degradation suffered by the uncoated base sheet already after only 4 weeks of treatment. The results show that nanometre scale inorganic films deposited by ALD show a promising performance as effective UV protection for BOPP substrates.

  18. Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating

    International Nuclear Information System (INIS)

    Titanium oxide layers were deposited onto a BOPP film by atomic layer deposition in order to prevent UV degradation of the film. The coatings were deposited in a low-temperature process at 80 °C by using tetrakis(dimethylamido)titanium and ozone as titanium and oxygen precursors, respectively. UV block characteristics of the coatings and their effect on the polymer were measured by using UV–vis and IR spectrometry, and differential scanning calorimetry. According to the results, the coatings provided a considerable decrease in the photodegradation of the BOPP film during UV exposure. IR spectra showed that during a 6-week UV exposure, a 67 nm titanium oxide coating was able to almost completely prevent the formation of photodegradation products in the film. The mechanical properties of the film were also protected by the coating, but as opposed to what the IR study suggested they were still somewhat compromised by the UV light. After a 6-week exposure, the tensile strength and elongation at break of the 67 nm titanium oxide coated film decreased to half of the values measured before the treatment. This should be compared to the complete degradation suffered by the uncoated base sheet already after only 4 weeks of treatment. The results show that nanometre scale inorganic films deposited by ALD show a promising performance as effective UV protection for BOPP substrates.

  19. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. PMID:22150399

  20. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.

    Science.gov (United States)

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2015-06-01

    This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. PMID:25889275

  1. The influence of urban area opacity on biologically active UV-B irradiance

    Science.gov (United States)

    Chubarova, Nataly; Rozental', Victor

    2013-04-01

    The study of UV irradiance changes in urban area is an essential problem due to the significant effect of UV irradiance on human health which can be positive (vitamin D synthesis) and negative (erythema, skin cancer, eye damage). According to the results of several experiments within the Moscow megacity we studied the effects of urban area opacity on the different types of biologically active UV-B irradiance on the base of a specially developed mobile photometric complex snd additional measurements of the urban opacity by Nikon Fisheye Converter FC-E8. We analyzed both the level of erythemally-active irradiance and the UV eye damaging radiation using the broadband UVB-1 YES pyranometer calibrated against ultraviolet spectroradiometer Bentham DTM-300 of the Medical University of Innsbruck (courtesy of Dr. M.Blumthaler). In order to estimate the effects of the urban opacity the measurements were normalized on similar measurements at the Meteorological Observatory of Moscow State University with zero opacity. This ratio is defined as an urban radiative transmittance (URT). Different atmospheric conditions were considered. In cloudy conditions the effect of opacity on URT is much less than that in conditions when the sun disk is open from clouds. We revealed some spectral features in transmittance of biologically active UV-B irradiance which is characterized by higher URT variations in overcast cloudy conditions due to more intensive scattering and smaller direct solar radiation component. In the absence of cloudiness the effect of opacity was studied for open and screening solar disk conditions. We obtained much higher URT in UVB spectral region compared with that for total solar irradiance for screening solar disk conditions with a significant URT dependence on the opacity only in UVB spectral region. No URT dependence was obtained for total solar irradiance in these conditions. Some model calculations were fulfilled to match the experimental results.

  2. Protein-repellent silicon nitride surfaces: UV-induced formation of oligoethylene oxide monolayers.

    Science.gov (United States)

    Rosso, Michel; Nguyen, Ai T; de Jong, Ed; Baggerman, Jacob; Paulusse, Jos M J; Giesbers, Marcel; Fokkink, Remko G; Norde, Willem; Schroën, Karin; van Rijn, Cees J M; Zuilhof, Han

    2011-03-01

    The grafting of polymers and oligomers of ethylene oxide onto surfaces is widely used to prevent nonspecific adsorption of biological material on sensors and membrane surfaces. In this report, we show for the first time the robust covalent attachment of short oligoethylene oxide-terminated alkenes (CH(3)O(CH(2)CH(2)O)(3)(CH(2))(11)-(CH═CH(2)) [EO(3)] and CH(3)O(CH(2)CH(2)O)(6)(CH(2))(11)-(CH═CH(2)) [EO(6)]) from the reaction of alkenes onto silicon-rich silicon nitride surfaces at room temperature using UV light. Reflectometry is used to monitor in situ the nonspecific adsorption of bovine serum albumin (BSA) and fibrinogen (FIB) onto oligoethylene oxide coated silicon-rich silicon nitride surfaces (EO(n)-Si(x)N(4), x > 3) in comparison with plasma-oxidized silicon-rich silicon nitride surfaces (SiO(y)-Si(x)N(4)) and hexadecane-coated Si(x)N(4) surfaces (C(16)-Si(x)N(4)). A significant reduction in protein adsorption on EO(n)-Si(x)N(4) surfaces was achieved, adsorption onto EO(3)-Si(x)N(4) and EO(6)-Si(x)N(4) were 0.22 mg m(-2) and 0.08 mg m(-2), respectively. The performance of the obtained EO(3) and EO(6) layers is comparable to those of similar, highly protein-repellent monolayers formed on gold and silver surfaces. EO(6)-Si(x)N(4) surfaces prevented significantly the adsorption of BSA (0.08 mg m(-2)). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity and static water contact angle measurements were employed to characterize the modified surfaces. In addition, the stability of EO(6)-Si(x)N(4) surfaces in phosphate-buffered saline solution (PBS) and alkaline condition (pH 10) was studied. Prolonged exposure of the surfaces to PBS solution for 1 week or alkaline condition for 2 h resulted in only minor degradation of the ethylene oxide moieties and no oxidation of the Si(x)N(4) substrates was observed. Highly stable antifouling coatings on Si(x)N(4) surfaces significantly broaden the application potential of silicon

  3. XRD and UV-vis results of Tungstein oxide thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    In the experiment, using a simple, economical, chemical bath method for depositing tungstein oxide films, electrochromic tungstein oxide thin films were prepared from an aqueous solution of Na2WO4H2O and diethyl sulfate at boiling temperature on ITO coated glass substrate. The techniques such as X-ray and UV-VIS-spectroscopy diffraction were used for the characterization of the films. According to the results of X-ray and UV-VIS, WOx thin film is very promising material for electrochromic applications and this is simply and economically produced by chemical bath method

  4. Evaluation of O{sub 3}UV e H{sub 2}O{sub 2}/UV processes combined with biological activated carbon for reuse refinery waste water; Avaliacao dos processos O{sub 3}UV e H{sub 2}O{sub 2}/UV combinados com carvao ativado granulado com biofilme para reuso de efluentes de refinaria

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Bianca Miguel de; Dezotti, Marcia [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil); Cerqueira, Ana Claudia Figueiras Pereira de [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento

    2012-07-01

    The treatment of refinery wastewater by advanced oxidation processes (AOP) coupled with biological activated carbon (BAC) was investigated aiming to generate water for reuse. The Gabriel Passos Refinery wastewater was previously treated in a membrane bioreactor, but still presented a high TOC content (30 mg/L) which may cause biofouling in the subsequent process of reverse osmosis. O3/UV and H2O2/UV processes were employed to oxidize the organic matter and BAC process to remove the residual organic matter from the AOP effluent. AOP promoted oxidation of recalcitrant organic matter as observed by drops on the treated wastewater absorbance and TOC values. BAC filters reached a TOC removal of 65% after 84 days of operation, while GAC filters were saturated after 28 days. Inoculated sand filters were also tested at different flow rates to compare with BAC filters. Low TOC values were achieved by the combined treatment, reaching values around 5 mg/L and allowing water reuse. BAC filters showed to be quite efficient for removal of organic compounds found in biologically treated oil refinery wastewater. (author)

  5. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  6. UV and electron-assisted oxidation of Al and Ru

    NARCIS (Netherlands)

    Ernst, M.A.

    2009-01-01

    To ensure a continuing miniaturization in the semiconductor industry, new technologies need to be developed to define ever smaller patterns on the silicon substrates. One of these emerging technologies is extreme ultraviolet (EUV) lithography. Unfortunately, EUV light causes oxidation of the optical

  7. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    Science.gov (United States)

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation. PMID:26733013

  8. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji, E-mail: nozaki@ee.uec.ac.jp [Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu-shi, Tokyo 182-8585 (Japan)

    2015-09-07

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10{sup 16 }cm{sup −3}, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C{sup −2}–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO{sub 2} formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO{sub 2} interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO{sub 2} interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found

  9. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    International Nuclear Information System (INIS)

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 1016 cm−3, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C−2–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO2 formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO2 interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO2 interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found to be rich in oxygen and deficient in

  10. In-situ investigation of graphene oxide under UV irradiation: Evolution of work function

    Directory of Open Access Journals (Sweden)

    Jun Li

    2015-06-01

    Full Text Available Using in-situ Kelvin probe force microscopy (KPFM to measure surface potential, we investigated the time-dependent work function evolution of solution-processed graphene oxide (GO under ultraviolet (UV irradiation. We found that the work function of GO exposed in UV shows a notable decrease with increasing irradiation time, which is proposed to be attributed to the gradual disappearance of oxygen-containing functional groups in GO during the UV-induced reduction reaction process. Fourier transform infrared spectrum and Raman spectrum were used to confirm the reduction of GO under UV irradiation. Our study would give an insight into understanding the transformation of GO’s electronic structures during the reduction process.

  11. In-situ investigation of graphene oxide under UV irradiation: Evolution of work function

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Qi, Xiang; Hao, Guolin; Ren, Long; Zhong, Jianxin, E-mail: jxzhong@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Hunan 411105 (China)

    2015-06-15

    Using in-situ Kelvin probe force microscopy (KPFM) to measure surface potential, we investigated the time-dependent work function evolution of solution-processed graphene oxide (GO) under ultraviolet (UV) irradiation. We found that the work function of GO exposed in UV shows a notable decrease with increasing irradiation time, which is proposed to be attributed to the gradual disappearance of oxygen-containing functional groups in GO during the UV-induced reduction reaction process. Fourier transform infrared spectrum and Raman spectrum were used to confirm the reduction of GO under UV irradiation. Our study would give an insight into understanding the transformation of GO’s electronic structures during the reduction process.

  12. In-situ investigation of graphene oxide under UV irradiation: Evolution of work function

    International Nuclear Information System (INIS)

    Using in-situ Kelvin probe force microscopy (KPFM) to measure surface potential, we investigated the time-dependent work function evolution of solution-processed graphene oxide (GO) under ultraviolet (UV) irradiation. We found that the work function of GO exposed in UV shows a notable decrease with increasing irradiation time, which is proposed to be attributed to the gradual disappearance of oxygen-containing functional groups in GO during the UV-induced reduction reaction process. Fourier transform infrared spectrum and Raman spectrum were used to confirm the reduction of GO under UV irradiation. Our study would give an insight into understanding the transformation of GO’s electronic structures during the reduction process

  13. UV-B-induced Oxidative Damage and Protective Role of Exopolysaccharides in Desert Cyanobacterium Microcoleus vaginatus

    Institute of Scientific and Technical Information of China (English)

    Lan-Zhou Chen; Gao-Hong Wang; Song Hong; An Liu; Cheng Li; Yong-Ding Liu

    2009-01-01

    UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.

  14. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    Science.gov (United States)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2), (CoO),(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  15. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  16. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water.

    Science.gov (United States)

    Wols, B A; Hofman-Caris, C H M

    2012-06-01

    Emerging organic contaminants (pharmaceutical compounds, personal care products, pesticides, hormones, surfactants, fire retardants, fuel additives etc.) are increasingly found in water sources and therefore need to be controlled by water treatment technology. UV advanced oxidation technologies are often used as an effective barrier against organic contaminants. The combined operation of direct photolysis and reaction with hydroxyl radicals ensures good results for a wide range of contaminants. In this review, an overview is provided of the photochemical reaction parameters (quantum yield, molar absorption, OH radical reaction rate constant) of more than 100 organic micropollutants. These parameters allow for a prediction of organic contaminant removal by UV advanced oxidation systems. An example of contaminant degradation is elaborated for a simplified UV/H(2)O(2) system. PMID:22483836

  17. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2012-01-01

    and the UV/H2O2-treatment were investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals and steroid estrogens. Treatment experiments were performed in a flow through set...

  18. Remote Detection of Biological Particles and Chemical Plumes Using UV Fluorescence Lidar

    Science.gov (United States)

    Tiee, J. J.; Hof, D. E.; Karl, R. R.; Martinez, R. J.; Quick, C. R.; Cooper, D. I.; Eichinger, W. E.; Holtkamp, D. B.

    1992-01-01

    A lidar system based on ultraviolet (UV) laser induced fluorescence (LIF) was developed for the remote detection of atmospherically dispersed biological particles and chemical vapors. This UV fluorescence lidar has many potential applications for monitoring environmental pollution, industrial waste emission, agricultural insect control, illicit chemical processing, and military defense operations. The general goal of this work is to investigate the research issues associated with the long range detection and identification of chemicals, e.g. aromatic solvents and chemical precursors, and biological materials, e.g. bacillus thuringiensis (BT) and bacillus globiggi (BG). In the detection of biological particulates, we are particularly interested in extending the detection range of an existing solar-blind 248-nm lidar system. We are investigating the use of longer excitation laser wavelengths (i.e. lambda greater than 280-nm to have more favorable atmospheric light transmission characteristics) for improving detection range to better than 10 km. In the detection of chemical plumes, our main research objectives are to determine how accurately and sensitively a chemical plume can be located at range, and how well spectrally the chemical species can be measured to allow their identification.

  19. UV radiation: a promising tool in the synthesisof multicomponent nano-oxides

    Czech Academy of Sciences Publication Activity Database

    Čuba, V.; Procházková, L.; Bárta, J.; Vondrášková, A.; Pavelková, T.; Mihóková, Eva; Jarý, Vítězslav; Nikl, Martin

    2014-01-01

    Roč. 16, č. 11 (2014), "2686-1"-"2686-7". ISSN 1388-0764 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : nanoscintillators * band-gap engineering * UV radiation radioluminescence * zinc oxide * synthetic garnets * composite nanoparticles Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.184, year: 2014

  20. Reduction of the Casimir force from indium tin oxide film by UV treatment.

    Science.gov (United States)

    Chang, C-C; Banishev, A A; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2011-08-26

    A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope in high vacuum. The experimental results are compared with theory and a hypothetical explanation for the observed phenomenon is proposed. PMID:21929216

  1. Reduction of the Casimir force from indium tin oxide film by UV treatment

    CERN Document Server

    Chang, C C; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2011-01-01

    A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide (ITO) sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope (AFM) in high vacuum. The experimental results are compared with theory, and a hypothetical explanation for the observed phenomenon is proposed.

  2. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    Science.gov (United States)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  3. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David

    2013-10-20

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  4. Evaluation of UV/H(2)O(2) treatment for the oxidation of pharmaceuticals in wastewater.

    Science.gov (United States)

    Rosario-Ortiz, Fernando L; Wert, Eric C; Snyder, Shane A

    2010-03-01

    Advanced oxidation treatment using low pressure UV light coupled with hydrogen peroxide (UV/H(2)O(2)) was evaluated for the oxidation of six pharmaceuticals in three wastewater effluents. The removal of these six pharmaceuticals (meprobamate, carbamazepine, dilantin, atenolol, primidone and trimethoprim) varied between no observed removal and >90%. The role of the water quality (i.e., alkalinity, nitrite, and specifically effluent organic matter (EfOM)) on hydroxyl radical (OH) exposure was evaluated and used to explain the differences in pharmaceutical removal between the three wastewaters. Results indicated that the efficacy of UV/H(2)O(2) treatment for the removal of pharmaceuticals from wastewater was a function of not only the concentration of EfOM but also its inherent reactivity towards OH. The removal of pharmaceuticals also correlated with reductions in ultraviolet absorbance at 254nm (UV(254)), which offers utilities a surrogate to assess pharmaceutical removal efficiency during UV/H(2)O(2) treatment. PMID:19931113

  5. Enhanced sensing response of oxidized graphene formed by UV irradiation in water

    International Nuclear Information System (INIS)

    A small amount of defects (less than 0.01%) were introduced into graphene by irradiating it with ultraviolet (UV) light in water. The chemisorbed oxygen species caused a limited amount of degradation in the charge carrier mobility, while the physisorbed water molecules caused both a reduction in the mobility and hole doping. The oxidation was nonuniform, owing to variations in the potential caused by the metal contacts. Raman spectroscopy measurements revealed that UV irradiation in water promoted mild oxidation of graphene’s basal plane, which enhanced the electrical sensing response of the adsorption of water molecules. The enhanced electrical response was achieved by the high binding energy of the water molecules at the oxidized sites and the near-zero Dirac point voltage, easily obtained by desorbing the physisorbed water molecules. (paper)

  6. Treatment of Remazol Brilliant Blue Dye Effluent by Advanced Photo Oxidation Process in TiO2/UV and H2O2/UV reactors

    Directory of Open Access Journals (Sweden)

    M. Verma

    2008-01-01

    Full Text Available Advanced oxidation processes involving TiO2/UV and H2O2/UV were evaluated for their potential use in decolorization of textile dye effluents. A coil photo reactor, consisting of UV radiation source and a spiral coil coated with TiO2, was used to treat synthetic effluent of Remazol Brilliant Blue dye. The TiO2 coating was performed using the sol-gel technique. The effects of UV radiation, TiO2 coatings and dye concentration were studied and the results were compared to dye treatment involving H2O2. The maximum dye removal efficiencies were 7.3, 12.2 and 12.5 % for uncoated, single coat and dual coat of TiO2, respectively. The decolorization efficiency was inversely related to dye concentration of the effluent. The treatments with UV only, TiO2 only, UV+TiO2, H2O2 only and UV+H2O2 resulted in color reduction of 7.6, 2.3, 12.5, 4.1 and 99.9 % respectively. The maximum decolorization occurred in ≤ 100 min in all cases. The temperature varied from 29.2 to 54.7°C for UV+TiO2 treatment and no change in reactor temperature was observed when UV was not used.

  7. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Janis Ya-Xian Zhan

    2016-01-01

    Full Text Available Andrographolide sodium bisulfate (ASB, a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  8. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes.

    Science.gov (United States)

    Goslan, Emma H; Gurses, Filiz; Banks, Jenny; Parsons, Simon A

    2006-11-01

    A comparison of four treatment technologies for reduction of natural organic matter (NOM) in a reservoir water was made. The work presented here is a laboratory based evaluation of NOM treatment by UV-C photolysis, UV/H(2)O(2), Fenton's reagent (FR) and photo-Fenton's reagent (PFR). The work investigated ways of reducing the organic load on water treatment works (WTWs) with a view to treating 'in-reservoir' or 'in-pipe' before the water reaches the WTW. The efficiency of each process in terms of NOM removal was determined by measuring UV absorbance at 254 nm (UV(254)) and dissolved organic carbon (DOC). In terms of DOC reduction PFR was the most effective (88% removal after 1 min) however there were interferences when measuring UV(254) which was reduced to a lesser extent (31% after 1 min). In the literature, pH 3 is reported to be the optimal pH for oxidation with FR but here the reduction of UV(254) and DOC was found to be insensitive to pH in the range 3-7. The treatment that was identified as the most effective in terms of NOM reduction and cost effectiveness was PFR. PMID:16765416

  9. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation.

    Science.gov (United States)

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  10. UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation.

    Science.gov (United States)

    Zoschke, Kristin; Dietrich, Norman; Börnick, Hilmar; Worch, Eckhard

    2012-10-15

    The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O(3) yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m(-3) and without the risk of the formation of nitrite or bromate above the maximum contaminant level. PMID:22858230

  11. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A.

    Science.gov (United States)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Raveton, Muriel; Reynaud, Stéphane

    2013-09-15

    Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes. PMID:23911355

  12. Vitamin C affects the antioxidative/oxidative status in rats irradiated with ultraviolet (UV) and infrared (IR) light

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2006-01-01

    /oxidative status. UV and IR radiation promoted oxidative DNA degradation in rat livers and supplementation with ascorbic acid strengthened the prooxidative effects on DNA oxidation in rats irradiated with UV or IR light. Vitamin C also increased the tiobarbituric acid reactive substances (TBARS) concentration in...... rats from all groups except UV+IR-irradiated. The combined UV+IR light, corresponding to solar radiation, had no negative effects on redox homeostasis in rats. Furthermore, L-ascorbic acid showed antioxidative properties by increasing the concentration of Total Antioxidative State (TAS) in plasma......Four grups of twenty growing Wistar rats were irradiated with either UV, IR, UV+IR light or were not irradiated (control). Ten rats from each group received a diet supplemented with 0.6% of L-ascorbic acid. The effects of the mega-dose of vitamin C were evaluated by changes in the antioxidative...

  13. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  14. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    OpenAIRE

    Bertrand Faure, German Salazar-Alvarez, Anwar Ahniyaz, Irune Villaluenga, Gemma Berriozabal, Yolanda R De Miguel and Lennart Bergström

    2013-01-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration...

  15. UV-assisted rapid thermal annealing for solution-processed zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    An ultraviolet (UV)-assisted thermal annealing (TA) method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thin-film transistors (TFTs). Conventional thermal treatment of zinc hydroxide solution, which was carried out at 150 °C for 60 min in air, produced ZnO materials. Electrical properties of the TFTs employing thermally-annealed ZnO films were reproduced in the transistors fabricated using a simultaneous thermal treatment combined with UV irradiation at 150 °C for 3 min in air. These results demonstrate that the UV-assisted TA method can expedite the decomposition of precursor materials, contributing to rapid crystallization into thin films. (paper)

  16. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    Science.gov (United States)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  17. Biological Effects of the Great Oxidation Event

    Science.gov (United States)

    Schopf, J.

    2012-12-01

    Fossil evidence of photoautotrophy, documented in Precambrian sediments by stromatolites, stromatolitic microfossils, and carbon isotopic data consistent with autotrophic CO2-fixation, extends to ~3,500 Ma. Such data, however, are insufficient to establish the time of origin of O2-producing (cyanobacterial) photosynthesis from its anoxygenic, photosynthetic bacterial, evolutionary precursor. The oldest (Paleoarchean) stromatolites may have been formed by anoxygenic photoautotrophs, rather than the cyanobacteria that dominate Proterozoic and modern stromatolites. Unlike the cyanobacteria of Proterozoic microbial assemblages, the filamentous and coccoidal microfossils of Archean deposits may represent remnants of non-O2-producing prokaryotes. And although the chemistry of Archean organic matter shows it to be biogenic, its carbon isotopic composition is insufficient to differentiate between oxygenic and anoxygenic sources. Though it is well established that Earth's ecosystem has been based on autotrophy since its early stages and that O2-producing photosynthesis evolved earlier, perhaps much earlier, than the increase of atmospheric oxygen in the ~2,450 and ~2,320 Ma Great Oxidation Event (GOE), the time of origin of oxygenic photoautotrophy has yet to be established. Recent findings suggest that Earth's ecosystem responded more or less immediately to the GOE. The increase of atmospheric oxygen markedly affected ocean water chemistry, most notably by increasing the availability of biologically usable oxygen (which enabled the development of obligate aerobes, such as eukaryotes), and of nitrate, sulfate and hydrogen sulfide (the increase of H2S being a result of microbial reduction of sulfate), the three reactants that power the anaerobic basis of sulfur-cycling microbial sulfuretums. Fossil evidence of the earliest eukaryotes (widely accepted to date from ~1800 Ma and, arguably, ~2200 Ma) fit this scenario, but the most telling example of life's response to the GOE

  18. Superhydrophobicity and enhanced UV stability in vertically standing indium oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Kavita; Mehta, B.R.; Singh, J.P., E-mail: jpsingh@physics.iitd.ac.in

    2015-08-15

    Highlights: • Our results show the effect of nanorods alignment on contact angle. • Vertically standing indium oxide nanorods show superhydrophobic nature. • We examine the effect of solid fraction on the observed contact angle. • Wetting properties are also studied upon UV irradiation. • Vertically standing indium oxide nanorods show higher UV sustainability. - Abstract: Here, we report the emergence of superhydrophobic wetting behavior and enhanced UV stability of indium oxide (IO) nanorods due to their vertical alignment. Both randomly distributed and vertically aligned IO nanorods were synthesized via chemical vapor deposition (CVD) method. Our results reveal that the static water contact angle (θ) shows a significant dependence on the alignment of the nanorods. The randomly distributed IO nanorods shows θ value of 133.7° ± 6.8° whereas for vertically aligned IO nanorods θ was found to be 159.3° ± 4.8°. Interestingly, continuous UV light illumination for 30 min exhibited the change in contact angle (Δθ) of about 41° for vertically aligned IO nanorods whereas randomly distributed IO nanorods become hydrophilic with a dramatic change in θ value of 108°. The superhydrophobicity of vertically aligned IO nanorods and their enhanced UV stability were discussed by comparing the effective solid fraction at solid-liquid interface and the reactivity of surface crystallographic planes. The superhydrophobic surface of aligned vertically standing IO nanorods along with its resistance against photoinduced wetting transition make them suitable for electronic devices with reduced surface discharge even at relatively high humidity level.

  19. Superhydrophobic polyimide films with high thermal endurance via UV photo-oxidation

    Directory of Open Access Journals (Sweden)

    L. X. Song

    2014-08-01

    Full Text Available UV photo-oxidation was first applied to fabricate superhydrophobic polyimide (PI films in combination with fluoroalkylsilane (FAS modification. During prolonged UV irradiation, commercial flat PI films evolved to form unique micro/nanostructures. Meanwhile, the root mean square (RMS surface roughness increased from 1.74 to 53.70 nm, leading to a gradual increase of WCA from 105.1 to 159.2° after FAS treatment. After 72 h of UV radiation exposure, the micro/nano-structured and FAS-modified PI films exhibited superhydrophobicity with water contact angle (WCA larger than 150° and sliding angle (SA less than 5°. The superhydrophobicity remained even after annealing at 350°C, which enabled stable utilization under elevated temperature. Stable micro/nanostructures and chemical bonding of FAS were found to contribute to the high thermal endurance. Moreover, the formation mechanism of the superhydrophobic PI films was investigated. The proposed UV photo-oxidation method provides a new route for the industrial fabrication of thermally stable superhydrophobic PI films.

  20. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC. PMID:26452660

  1. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation

    Science.gov (United States)

    Rokhsat, Eliza; Akhavan, Omid

    2016-05-01

    Graphene oxide (GO) sheets with a low concentration (∼1 wt%) were deposited on surface of hydrothermally synthesized ZnO nanorod films. The deposited films were heat treated at 450 °C in order to achieve suitable GO/ZnO hybrid thin films for photocatalytic purposes. The photocatalytic activity of the nanocomposite films was investigated based on degradation of methylene blue (MB) dye which is a typical pollutant model. The GO/ZnO hybrid thin films could degrade higher MB (∼90%) than the bare ZnO nanorods (which showed only ∼75% degradation) after 450 min UV irradiation. A further significant improvement (resulting in a nearly complete degradation of MB) was achieved by exposing the GO/ZnO films to UV irradiation. The improvement was assigned to UV-assisted photocatalytic reduction of GO sheets and separation of photoexcited electron-hole pairs of ZnO by the UV-treated GO sheets. These results highlight application of UV treatment in improving the photocatalytic activity of GO-containing ZnO nanostructures.

  2. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  3. Radiation chemical oxidation of propen under the influence of UV- and gamma radiation

    International Nuclear Information System (INIS)

    The oxidation of propen is studied in the liquid state under the influence of electromagnetic radiation using hydrogenperoxide, organic hydroperoxides and oxygen. In this investigation propen oxide is of main interest. The study of systems with oxygen is based on the concept that the formation of hydroperoxide from organic oxygen compounds is enhanced by irradiation, thus favouring an in situ method for expoxidation with hydroperoxides. The influence of UV-radiation from high and low pressure mercury discharge lamps and 60Co gamma radiation has been studied as well as the effect of solvents and catalysers, which are resolved in the system. (orig./WBU)

  4. Mechanisms and biological impact of DNA repair pathways for UV and γ-ray-induced damage

    International Nuclear Information System (INIS)

    Nature has equipped all living systems with an intricate network of DNA repair pathways, to cope with damage induced by genotoxic agents (such as UV light, γ-rays and numerous chemicals). These pathways ensure genome stability and prevent carcinogenesis. Examples of multi-step damage repair processes are: nucleotide excision repair (NER, for removal of a wide variety of lesions, including UV) and recombination repair (for elimination of the very genotoxic radiation-induced double strand breaks). The NER pathway is understood in great detail and is associated with three human syndromes characterized by marked sun sensitivity: xeroderma pigmentosum (XP), cockayne syndrome (CS) and tricho-thio-dystrophy (TTD), XP patients show an over 1000 x increased risk of skin cancer, in contrast to CS and TTD. At least 25 proteins re involved some are also implicated in other cellular processes, explaining puzzling features associated with defects in these genes. NER-deficient mouse mutants have been generated, that permit evaluation of the biological impact of this process. Recombination repair is much less understood. However, recently a number of genes has been cloned based on sequence homology with yeast genes and mouse mutants are being generated. These will be invaluable to investigate e.g. radioresistance and radiation-induced tumorigenesis and for radiotherapy. (author)

  5. Degradation of benzalkonium chloride coupling photochemical advanced oxidation technologies with biological processes

    International Nuclear Information System (INIS)

    The combination of Advanced Oxidation Technologies (AOTs) and biological processes can be visualized as a very successful technological option for treatment of effluents, because it combines high oxidizing technologies with a conventional, low-cost and well-established treatment technology.Photochemical AOTs, like UV-C with or without H2O2, photo-Fenton (PF, UV/H2O2/Fe(II-III)) and UV/TiO2 heterogeneous photo catalysis involve the generation and use of powerful oxidizing species, mainly the hydroxyl radical.In almost all AOTs, it is possible to use sunlight. Benzalkonium chloride (dodecyldimetylbencylammonium chloride, BKC) is a widely used surfactant, which has many industrial applications.Due to its antibacterial effect, it cannot be eliminated from effluents by a biological treatment, and the complexity of its chemical structure makes necessary the use of drastic oxidizing treatments to achieve complete mineralization and to avoid the formation of byproducts even more toxic than the initial compound.In this study, different alternatives for BKC treatment using photochemical AOTs followed by bio catalytic techniques are presented.Three AOTs were tested: a) UV-C (254 nm, germicide lamp) with and without H2O2, b) PF (366 nm), c) UV/TiO2 (254 and 366 nm). PF at a 15:1:1 H2O2total/BKC0/Fe0 molar ratio at 55 degree C was the most efficient treatment in order to decrease the tensioactivity and the total organic carbon of the solution . The biocatalysis was studied in a reactor fitted with a biofilm of microorganisms coming from a sludge-water treatment plant. To evaluate the maximal BKC concentration that could be allowed to ingress to the biological reactor after the AOT treatment, the toxicity of solutions of different BKC concentrations was analyzed. The study of the relevant parameters of both processes and their combination allowed to establish the preliminary conditions for optimizing the pollutant degradation

  6. Dependence of biologically active UV radiation on the atmospheric ozone in 2000 - 2001 over Stara Zagora, Bulgaria

    International Nuclear Information System (INIS)

    This study investigates how the changes in simultaneously measured ozone columns influence the biologically active UV irradiance. Spectral ground-based measurements of direct solar ultraviolet radiation performed at Stara Zagora (42oN, 25oE), Bulgaria in 2000 - 2001 are used in conjunction with the total ozone content to investigate the relation to the biologically active UV radiation, depending on the solar zenith angle (SZA) and the ozone. The device measures the direct solar radiation in the range 290 - 360 nm at 1 nm resolution. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval between 290 and 330 nm of the UV solar spectrum weighted with an action spectrum, typical of each effect. For estimation of the sensitivity of biological doses to the atmospheric ozone we calculate the radiation amplification factor (RAF) defined as the percentage increase in the column amount of the atmospheric ozone. The biological doses increase significantly with the decrease of the SZA. The doses of SZA=20o are about three times larger than doses at SZA=50o. The RAF derived from our spectral measurements shows an increase of RAF along with the decreasing ozone. For example, the ozone reduction by 1% increases the erythemal dose by about 2%. (authors)

  7. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...... symbionts (mycorrhiza) or in the biomass of microbes in the soil of the root zone. However, the composition of the soil microbial community was different in the soils under ambient and reduced UV radiation after three treatment years. These results provide new insight into the negative impact of current UV...

  8. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth. PMID:27027418

  9. Mismatch oxidation assay: detection of DNA mutations using a standard UV/Vis microplate reader.

    Science.gov (United States)

    Tabone, Tania; Sallmann, Georgina; Cotton, Richard G H

    2009-01-01

    Simple, low-cost mutation detection assays that are suitable for low-throughput analysis are essential for diagnostic applications where the causative mutation may be different in every family. The mismatch oxidation assay is a simple optical absorbance assay to detect nucleotide substitutions, insertions, and deletions in heteroduplex DNA. The method relies on detecting the oxidative modification products of mismatched thymine and cytosine bases by potassium permanganate as it is reduced to manganese dioxide. This approach, unlike other methods commonly used to detect sequence variants, does not require costly labeled probes or primers, toxic chemicals, or a time-consuming electrophoretic separation step. The oxidation rate, and hence the presence of a sequence variant, is detected by measuring the formation of the potassium permanganate reduction product (hypomanganate diester), which absorbs at the 420-nm visible wavelength, using a standard UV/vis microplate reader. PMID:19768598

  10. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  11. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Becheri, Alessio; Duerr, Maximilian; Lo Nostro, Pierandrea, E-mail: pln@csgi.unifi.it; Baglioni, Piero [University of Florence, Department of Chemistry and CSGI (Italy)

    2008-04-15

    We report the synthesis and characterization of nanosized zinc oxide particles and their application on cotton and wool fabrics for UV shielding. The nanoparticles were produced in different conditions of temperature (90 or 150 deg. C) and reacting medium (water or 1,2-ethanediol). A high temperature was necessary to obtain small monodispersed particles. Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray powder diffractometry (XRD) were used to characterize the nanoparticles composition, their shape, size and crystallinity. The specific surface area of the dry powders was also determined. ZnO nanoparticles were then applied to cotton and wool samples to impart sunscreen activity to the treated textiles. The effectiveness of the treatment was assessed through UV-Vis spectrophotometry and the calculation of the ultraviolet protection factor (UPF). Physical tests (tensile strength and elongation) were performed on the fabrics before and after the treatment with ZnO nanoparticles.

  12. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers

    International Nuclear Information System (INIS)

    We report the synthesis and characterization of nanosized zinc oxide particles and their application on cotton and wool fabrics for UV shielding. The nanoparticles were produced in different conditions of temperature (90 or 150 deg. C) and reacting medium (water or 1,2-ethanediol). A high temperature was necessary to obtain small monodispersed particles. Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray powder diffractometry (XRD) were used to characterize the nanoparticles composition, their shape, size and crystallinity. The specific surface area of the dry powders was also determined. ZnO nanoparticles were then applied to cotton and wool samples to impart sunscreen activity to the treated textiles. The effectiveness of the treatment was assessed through UV-Vis spectrophotometry and the calculation of the ultraviolet protection factor (UPF). Physical tests (tensile strength and elongation) were performed on the fabrics before and after the treatment with ZnO nanoparticles

  13. UV-induced mutagenesis of oxidation activity of ferrous ion of Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An excellent strain named T. f6 was isolated and screened, the dose and other condition for the UV-induced mutagenesis were studied and the richened positive mutant m+ T. f6 was applied in the column leaching of copper-contain ing sulfides. The results show that T. f6 is characterized by rapid oxidation of ferrous ion and cupric sulfide, high tolerance of toxic ion and short generation time. The best mutagenic effectiveness can be obtained under the dose of low kill rate of UV and low temperature treatment, under which the best richened m+ T. f6 can be shortened 1.4h. It was shown by the column leaching of copper that the leaching rate can be enhanced by at least 11% compared with the original one by the mutants.

  14. Nitric oxide methods in seed biology

    Science.gov (United States)

    Nitric oxide (NO) is a gaseous, free radical that is involved in many aspects of plant growth, development, and responses to the environment. Compelling evidence points to a central role for NO in the loss of seed dormancy. NO is highly reactive, toxic at high concentrations, and unstable. Methods f...

  15. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process

    OpenAIRE

    Bragg, Stefanie A.; Armstrong, Kristie C.; Xue, Zi-Ling

    2012-01-01

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H2O2 and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high CH2O2,t = 0, the reaction is zeroth order with respect to CH2O2 and first order with respect to Cblood....

  16. Effect of UV light on biological activity of tyrosinase in buffer solution

    International Nuclear Information System (INIS)

    It has been reported previously that the UV irradiation of mushroom tyrosinase resulted in a logarithmic loss of biological activity due to the conformational changes in the enzyme molecule. The purpose of the present study was to investigate the factors influencing the radiosensitivity of enzymatic activity. A similar rate of the catalytic activity loss at different pH supported the attribution to the conformational change of the enzyme molecule but not to the active site damage. The presence of potassium chloride and the absence of oxygen resulted in only a little protection against enzyme photoinactivation. Activity survival curve as a function of radiation dose at a higher enzyme concentration showed to have a shoulder which indicate the mutual protection of the enzyme molecules. Copper (II) protected the loss in catalytic activity of enzyme on irradiation. This was explained in terms of scavenging of the hydrated electron by copper (II). Therefore, it was concluded that photoinactivation of this enzyme was mainly due to conformational changes caused by the damage of constitutional aromatic amino acid residues but also partially due to inactivation of copper of enzyme with hydrated electron. (author)

  17. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity.

    Science.gov (United States)

    Girigoswami, Koyeli; Viswanathan, Meenakshi; Murugesan, Ramachandran; Girigoswami, Agnishwar

    2015-11-01

    Zinc oxide (ZnO) is explicitly used in sunscreens and cosmetic products; however, its effect in vivo is toxic in some cases. The UV blocking efficacy of ZnO nanoparticles is lost due to photocatalysis. To isolate a lower toxic species of sunblockers, ZnO nanoparticles were synthesized and coated with chitosan - a natural polymer (ZnO-CTS) and polyethylene glycol (PEG) - a synthetic polymer (ZnO-PEG). Coating with CTS and PEG circumvented the photocatalytic activity, increased the stability and improved the UV absorption efficacy. The effect of ZnO, ZnO-CTS and ZnO-PEG nanoparticles in vivo on zebrafish embryo revealed lower deposition of ZnO-CTS and ZnO-PEG nanoparticles atop the eggs compared to ZnO. The survival of zebrafish embryos was always found to be higher in case of ZnO-CTS with respect to ZnO-treated ones. PEG coating exhibited better UV attenuation, but, in vivo it induced delayed hatching. Thus, one of the reasons for better survival could be attributed to lower aggregation of ZnO-CTS nanoparticles atop eggs thereby facilitating the breathing of embryos. PMID:26249620

  18. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether.

    Science.gov (United States)

    Gulyas, Holger; Argáez, Angel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF approximately 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  19. UV assisted photoelectrocatalytic oxidation of phthalic acid using spray deposited Al doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, M.A.; Shinde, S.S.; Hunge, Y.M.; Mohite, V.S.; Kumbhar, S.S.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H., E-mail: chbhosale@gmail.com

    2014-10-25

    Highlights: • Nanostructured undoped and AZO thin films prepared by chemical spray pyrolysis. • Effect of Al doping on the structural, morphological and photoluminance properties. • Photocatalytic degradation of phthalic acid under UV light illumination. • Reaction kinetics and mineralization of phthalic acid. - Abstract: Undoped and Al doped ZnO (AZO) thin films are successfully prepared by spray pyrolysis technique at optimised substrate temperature of 400 °C onto amorphous and F:SnO{sub 2} coated glass substrates. Effect of Al doping on structural, morphological and optical properties of ZnO thin films is studied. Deposited films are polycrystalline with a hexagonal (wurtzite) crystal structure having (0 0 2) preferred orientation. The PEC characterization shows that, short circuit current (I{sub sc}) and open circuit voltage (V{sub oc}) are (I{sub sc} = 0.38 mA and V{sub oc} = 421 mV) relatively higher at the 3 at.% Al doping. SEM images show deposited thin films are compact and uniform with seed like grains. All films exhibit average transmittance of about 82% in the visible region and a sharp absorption onset at 375 nm corresponding to 3.3 eV. The photocatalytic activities of the large surface area (64 cm{sup 2}) Al-doped ZnO photocatalyst samples were evaluated by photoelectrocatalytic degradation of phthalic acid under UV light irradiation. The results show that the 3 at.% AZO thin film photocatalyst exhibited degradation of phthalic acid up to about 45% within 3 h with significant reduction in COD and TOC values.

  20. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO2:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO2:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO2 nanoparticles under similar illumination conditions

  1. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  2. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high...

  3. Analysis of thermal effect on transparent conductive oxide thin films ablated by UV laser

    International Nuclear Information System (INIS)

    Transparent conductive oxide thin films are applied to many computer, communication and consumer electronics products including thin film transistor liquid crystal displays, organic light emitting diodes, solar cells, mobile phones, and digital cameras. The laser direct write patterning of the indium tin oxide (ITO) thin film processing technique produces a heat affected zone that has an enormous effect on the electro-optical efficiency of transparent conductive oxide films. This is because direct laser writing patterning in thermal machining process can create debris and micro-cracks in the substrate. Therefore, this study establishes the ultraviolet (UV) laser ablation of temperature model on the polycarbonate and soda-lime glass substrates using the finite element analysis software ANSYS, and measures the temperature field based on the laser micro-patterning process. The meshing model determines the structure of the pre-processors and parameters were set with ANSYS parameter design language. This study also simulates the Gaussian distribution laser irradiation on the pre-processor structure. A UV laser processing system made micro-patterning on ITO thin films to analyze which conditions damaged the substrates. Comparing the simulation and experiment results reveals the minimum laser ablation threshold of the ITO thin films with the melting and vaporization temperatures. Simulation results show that the temperature distribution on PC and soda-lime glass substrates after laser irradiation of 1.05 μs with a laser output power of 0.07 W produces temperatures of approximately 52 oC, 54 oC and 345oCand 205 oC at the laser output power of 0.46 W. The experiment results show that the patterning region is similar to the simulation results, and the lower laser power does not damage the substrates.

  4. UV-treated graphene oxide as anode interfacial layers for P3HT : PCBM solar cells

    Science.gov (United States)

    Cheng, Cheng-En; Tsai, Cheng-Wei; Pei, Zingway; Lin, Tsung-Wu; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2015-06-01

    Solution-processable graphene oxide (GO) ultrathin films were introduced as anode interfacial layers (AILs) for polymer solar cells (PSCs). The photovoltaic performance of PSCs containing thermal- and UV-treated GO was comparable to that of PSCs with conventional poly(3,4-ethyledioxythiphene):poly(styrenesulfonate) AILs. UV treatment induced the surface activation of GO; an increase in the work function of UV-treated GO improved the energy band alignment at the GO/poly(3-hexylthiophene) interface, which accounted for the efficient hole collection and photovoltaic performance of PSCs with treated GO.

  5. UV-treated graphene oxide as anode interfacial layers for P3HT : PCBM solar cells

    International Nuclear Information System (INIS)

    Solution-processable graphene oxide (GO) ultrathin films were introduced as anode interfacial layers (AILs) for polymer solar cells (PSCs). The photovoltaic performance of PSCs containing thermal- and UV-treated GO was comparable to that of PSCs with conventional poly(3,4-ethyledioxythiphene):poly(styrenesulfonate) AILs. UV treatment induced the surface activation of GO; an increase in the work function of UV-treated GO improved the energy band alignment at the GO/poly(3-hexylthiophene) interface, which accounted for the efficient hole collection and photovoltaic performance of PSCs with treated GO. (paper)

  6. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C., E-mail: christian.koehler@tudor.lu [Public Research Centre Henri Tudor/Resource Centre for Environmental Technologies, 66 rue de Luxembourg, BP 144, L-4002 Esch-sur-Alzette (Luxembourg); Venditti, S.; Igos, E.; Klepiszewski, K.; Benetto, E.; Cornelissen, A. [Public Research Centre Henri Tudor/Resource Centre for Environmental Technologies, 66 rue de Luxembourg, BP 144, L-4002 Esch-sur-Alzette (Luxembourg)

    2012-11-15

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H{sub 2}O{sub 2} to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H{sub 2}O{sub 2} as AOP. The 'conventional' cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process.

  7. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment

    International Nuclear Information System (INIS)

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H2O2 to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC–MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H2O2 as AOP. The “conventional” cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process.

  8. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment.

    Science.gov (United States)

    Köhler, C; Venditti, S; Igos, E; Klepiszewski, K; Benetto, E; Cornelissen, A

    2012-11-15

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H2O2 to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H2O2 as AOP. The "conventional" cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process. PMID:22748974

  9. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  10. DEMONSTRATION OF HETEROARYLMETHANE OXIDATION IN A BENZIMIDAZOLE DERIVATIVE WITH THE USE OF UV SPECTROPHOTOMETRY AND X-RAY DIFFRACTION

    OpenAIRE

    Amal Haoudi; Mohamed Benchidmi; Youssef Kandri Rodi; Khalid Attar; Frédéric Capet; Christian Rolando; El Mokhtar Essassi

    2012-01-01

    In this work, we present the synthesis of a copper complex of 1-benzyl-2-[(5-methyl-isoxazol-3-yl)methyl]-benzimidazole, by using simultaneously UV spectrophotometry and X-ray diffraction. It has been possible for us to highlight an original oxidation of benzylbenzimidazole group in such complex leading to ketone. A kinetic study carried out by UV spectrophotometry shows well that the oxidation reaction proceeds according to the first-order kinetic law: K = 9.4×10-4 s-1 and t½ = 12.4 min.

  11. Enhanced electrochemical oxidation of phenol by introducing ferric ions and UV radiation

    Institute of Scientific and Technical Information of China (English)

    MAO Xuhui; WEI Lin; HONG Song; ZHU Hua; LIN An; GAN Fuxing

    2008-01-01

    The mineralization of phenol in aerated electrochemical oxidation has been investigated. The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution containing ferric or ferrous ions; moreover,the reinforcement of cathodic Fenton process on the total organic carbon (TOC) removal rate of phenol is quite distinct. Among the metallic ions investigated, the ferric ion is the best catalyst for the electrochemical mineralization of phenol at initial pH 2.0, and the optimal concentration range is from 50 to 200 mg/L. The favorable pH range and supporting electrolyte (Na2SO4) concentration for mineralization of phenol in solution containing ferrous ions are 1.8-2.3 and below 0.10 mol/L, respectively. UV radiation can improve the TOC removal rate of phenol, but the enhanced effect varies in different solutions. In the solution containing ferric ions, an equal sum or synergetic effect can be observed. The optimal effect of electrolysis system under UV radiation is achieved in the solution containing 50 mg/L Fe3+ with a final removal percentage of 81.3%.

  12. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Al Rashidi, M.

    2014-05-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  13. UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration

    Science.gov (United States)

    Chong, J. Y.; Aba, N. F. D.; Wang, B.; Mattevi, C.; Li, K.

    2015-11-01

    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m-2 h-1 bar-1 for water, and 0.14 to 7.5 L m-2 h-1 bar-1 for acetone, with an unchanged low molecular weight cut off (~250 Da).

  14. Bromate formation from bromide oxidation by the UV/persulfate process.

    Science.gov (United States)

    Fang, Jing-Yun; Shang, Chii

    2012-08-21

    Bromate formation from bromide oxidation by the UV/persulfate process was investigated, along with changes in pH, persulfate dosages, and bromide concentrations in ultrapure water and in bromide-spiked real water. In general, the bromate formation increased with increasing persulfate dosage and bromide concentration. The bromate formation was initiated and primarily driven by sulfate radicals (SO(4)(•-)) and involved the formation of hypobromous acid/hypobromite (HOBr/OBr(-)) as an intermediate and bromate as the final product. Under the test conditions, the rate of the first step driven by SO(4)(•-) is slower than that of the second step. Direct UV photolysis of HOBr/OBr(-) to form bromate and the photolysis of bromate are insignificant. The bromate formation was similar for pH 4-7 but decreased over 90% with increasing pH from 7 to above 9. Less bromate was formed in the real water sample than in ultrapure water, which was primarily attributable to the presence of natural organic matter that reacts with bromine atoms, HOBr/OBr(-) and SO(4)(•-). The extent of bromate formation and degradation of micropollutants are nevertheless coupled processes unless intermediate bromine species are consumed by NOM in real water. PMID:22831804

  15. Fenton Process Coupled to Ultrasound and UV Light Irradiation for the Oxidation of a Model Pollutant

    Directory of Open Access Journals (Sweden)

    Karen E. Barrera-Salgado

    2016-01-01

    Full Text Available The Fenton process coupled to photosonolysis (UV light and Us, using Fe2O3 catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50. Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3 catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.

  16. Several Rules for Treating Phenol Wastewater via Oxidation by O3/UV-formed Radicals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The treatment of phenol wastewater with an ultraviolet source and an oxone generator by introducing salicylic acid as the capturer is described. The presence of HO·during the phenol degradation has been proved. The impacts of factors such as acidity and reaction time on the HO· formation are also discussed. The results demonstrate that HO· generated from ozone/UV oxidation under a basic condition is the immediate cause of phenol degradation. At room temperature and a pH value of 9.93, the degradation of phenol occurs rapidly within 0.5 min and the removal of phenol(100 mg/L) is above 98.5% within 15 min; in the meantime, the pH value declines gradually with the degradation of phenol. A discussion about the formation and the transformation of the intermediate products during phenol degradation is included.

  17. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    Directory of Open Access Journals (Sweden)

    Bertrand Faure, German Salazar-Alvarez, Anwar Ahniyaz, Irune Villaluenga, Gemma Berriozabal, Yolanda R De Miguel and Lennart Bergström

    2013-01-01

    Full Text Available This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  18. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    Science.gov (United States)

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R.; Bergström, Lennart

    2013-04-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  19. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    International Nuclear Information System (INIS)

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed. (topical review)

  20. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm2) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  1. Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts

    Science.gov (United States)

    Wu, Qi; Su, Nana; Zhang, Xiaoyan; Liu, Yuanyuan; Cui, Jin; Liang, Yongchao

    2016-01-01

    The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway. PMID:27404993

  2. Characterization of biologically effective UV radiation at mid-latitudes sites: innovative method for the calculation of the human vitamin D exposure

    OpenAIRE

    Modesti, Sarah

    2012-01-01

    The Italian territory has the potential for receiving high solar ultraviolet (UV) doses during most of the year. This may represent a serious hazard for human health as UV radiation is responsible for skin cancer: Italy is in the third place, after Australia and USA, for melanoma occurrences. It ought to be remember that UV radiation has well-established beneficial effects on the skin, most notably the synthesis of vitamin D3. However a climatological characterization of biologically effecti...

  3. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics.

    Science.gov (United States)

    Santoro, Domenico; Raisee, Mehrdad; Moghaddami, Mostafa; Ducoste, Joel; Sasges, Micheal; Liberti, Lorenzo; Notarnicola, Michele

    2010-08-15

    Advanced Oxidation Processes (AOPs) promoted by ultraviolet light are innovative and potentially cost-effective solutions for treating persistent pollutants recalcitrant to conventional water and wastewater treatment. While several studies have been performed during the past decade to improve the fundamental understanding of the UV-H(2)O(2) AOP and its kinetic modeling, Computational Fluid Dynamics (CFD) has only recently emerged as a powerful tool that allows a deeper understanding of complex photochemical processes in environmental and reactor engineering applications. In this paper, a comprehensive kinetic model of UV-H(2)O(2) AOP was coupled with the Reynolds averaged Navier-Stokes (RANS) equations using CFD to predict the oxidation of tributyl phosphate (TBP) and tri(2-chloroethtyl) phosphate (TCEP) in two different photoreactors: a parallel- and a cross-flow UV device employing a UV lamp emitting primarily 253.7 nm radiation. CFD simulations, obtained for both turbulent and laminar flow regimes and compared with experimental data over a wide range of UV doses, enabled the spatial visualization of hydrogen peroxide and hydroxyl radical distributions in the photoreactor. The annular photoreactor displayed consistently better oxidation performance than the cross-flow system due to the absence of recirculation zones, as confirmed by the hydroxyl radical dose distributions. Notably, such discrepancy was found to be strongly dependent on and directly correlated with the hydroxyl radical rate constant becoming relevant for conditions approaching diffusion-controlled reaction regimes (k(C,OH) > 10(9) M(-1) s(-1)). PMID:20704221

  4. Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination.

    Science.gov (United States)

    Fouda, A N; El Basaty, A B; Eid, E A

    2016-12-01

    Convective assembly technique which is a simple and scalable method was used for coating uniform graphene oxide (GO) nanosheets on zinc oxide (ZnO) thin films. Upon UV irradiation, an enhancement in the on-off ratio was observed after functionalizing ZnO films by GO nanosheets. The calculations of on-off ratio, the device responsivity, and the external quantum efficiency were investigated and implied that the GO layer provides a stable pathway for electron transport. Structural investigations of the assembled GO and the heterostructure of GO on ZnO were performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The covered GO layer has a wide continuous area, with wrinkles and folds at the edges. In addition, the phonon lattice vibrations were investigated by Raman analysis. For GO and the heterostructure, a little change in the ratio between the D-band and G-band was found which means that no additional defects were formed within the heterostructure. PMID:26754939

  5. VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS).

    Science.gov (United States)

    Li, Mengkai; Qiang, Zhimin; Hou, Pin; Bolton, James R; Qu, Jiuhui; Li, Peng; Wang, Chen

    2016-06-01

    Vacuum ultraviolet (VUV) and ultraviolet (UV)/chlorine processes are regarded as two of many advanced oxidation processes (AOPs). Because of the similar cost of VUV/UV and UV lamps, a combination of VUV and UV/chlorine (i.e., VUV/UV/chlorine) may enhance the removal of organic pollutants in water but without any additional power input. In this paper, a mini-fluidic VUV/UV photoreaction system (MVPS) was developed for bench-scale experiments, which could emit both VUV (185 nm) and UV (254 nm) or solely UV beams with a nearly identical UV photon fluence. The photon fluence rates of UV and VUV output by the MVPS were determined to be 8.88 × 10(-4) and 4.93 × 10(-5) einstein m(-2) s(-1), respectively. The VUV/UV/chlorine process exhibited a strong enhancement concerning the degradation of methylene blue (MB, a model organic pollutant) as compared to the total performance of the VUV/UV and UV/chlorine processes, although the photon fluence of the VUV only accounted for 5.6% of that of the UV. An acidic pH favored MB degradation by the VUV/UV/chlorine process. The synergistic mechanism of the VUV/UV/chlorine process was mainly ascribed to the effective use of (•)OH for pollutant removal through formation of longer-lived secondary radicals (e.g., (•)OCl). This study demonstrates that the new VUV/UV/chlorine process, as an enhanced AOP, can be applied as a highly effective and energy-saving technology for small-scale water and wastewater treatment. PMID:27187747

  6. UV-initiated formation of noble metal nanoparticles on zinc oxide quantum dots

    International Nuclear Information System (INIS)

    Full text: Quantum dots (nanosized semiconductor particles) are a relatively new phenomenon. They exhibit unusual properties as a result of spatial electron confinement within the particles, including an increased band gap energy and blue-shifted fluorescence. Quantum dots and nanoparticles have attracted a lot of academic and industrial interest because of their special properties, including small size and potential as catalysts, 'tunable' fluorescence, and potential use in biomedical applications. Still, there are many properties of quantum dots that need further investigation if they are to be fully utilised. The interaction between nanosized noble metal colloids and zinc oxide quantum dots (Q-ZnO) under UV-irradiation provides valuable information about the electronic structure of Q-ZnO. In a sample containing Q-ZnO and Pt6+, Au+ or Ag+, electrons from excited Q-ZnO were transferred to the metal ions, and consequently, metal particles were reduced onto the Q-ZnO particles. The processes that occur can be followed spectroscopically. The results will be discussed during the presentation. A Transmission Electron Microscope image of a 3nm zinc oxide quantum dot, with lattice planes clearly visible is presented

  7. Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation.

    Science.gov (United States)

    Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng

    2016-01-01

    Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface. PMID:26194238

  8. Photometric study of the apparent UV-light absorption by some biological buffers

    Czech Academy of Sciences Publication Activity Database

    Krčmová, M.; Vespalec, Radim

    2005-01-01

    Roč. 99, č. 14 (2005), s587-s589. ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : UV light * Good buffers Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  9. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  10. UV/H2O2,UV/O3,UV/H2O2/O3催化处理城市固体垃圾填埋渗出物%UV-Catalytic Treatment of Municipal Solid-Waste Landfill Leachate with Hydrogen Peroxide and Ozone Oxidation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The performance of UV/H2O2, UV/O3, and UV/H2O2/O3 oxidation systems for the treatment of municipal solid-waste landfill leachate was investigated. Main objective of the experiment was to remove total organic carbon (TOC), non-biodegradable organic compounds (NBDOC) and color. In UV/H2O2 oxidation experiment,with the increase of H2O2 dosage, removal efficiencies of TOC and color along with the ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the system H2O2 alone. In UV/H2O2 oxidation, under the optimum condition H2O2 (0.2 time),removal efficiencies of TOC and color were 78.9% and 95.5%, respectively, and BOD/COD ratio was significantly increased from 0.112 to 0.366. In UV/O3 oxidation, with the increase of O3 dosage, removal efficiencies of TOC and color along with BOD/COD ratio of the effluent were increased and a better performance was obtained than the system O3 alone. Under the optimum condition UV/O3 (50 mg.min-1), removal efficiencies of TOC and color were 61.0% and 87.2%, respectively, and BOD/COD ratio was significantly increased from 0.112 to 0.323. In UV/H2O2/O3 system, color removal and BOD/COD ratio were improved further and TOC removal efficiency was found to be 30.4% higher than the system UV/O3 without H2O2.

  11. Effect of organic molecular weight on mineralization and energy consumption of humic acid by H2O2/UV oxidation.

    Science.gov (United States)

    Yen, Hsing Yuan; Kang, Shyh Fang

    2016-09-01

    In this study, the effect of molecular weights (MWs) on mineralization, energy consumption, kinetic reaction, and trihalomethane formation potential (THMFP) of humic acid was evaluated by the process of H2O2/UV oxidation. Three ranges of MWs of 100 k-10 kDa (sample A), 10 k-1 kDa (sample B), and less than 1 kDa (sample C) were investigated. The results showed that the reaction constant k increased with either increased UV intensity or increased H2O2 dose; the order of k was kA > kB > kC, for all UV intensities from 16 to 64 W and H2O2 dose from 25 to 100 mg L(-1). In terms of EEO and EEM, the energy consumption decreased as the H2O2 dose increased with the descending order of sample C > sample B > sample A. The three samples had an initial dissolved organic carbon (DOC) of 20 mg L(-1) with the related values of THMFP of 325, 359, and 468 μg L(-1) for samples A, B, and C, respectively. After H2O2/UV oxidation, the combination of a higher UV power with a shorter time was a better treatment condition for samples A and B as residual DOC and THMFP were smaller. PMID:26824686

  12. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    OpenAIRE

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; Santos, Luciana Urbano dos

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ=254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number ...

  13. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics.

    Science.gov (United States)

    Shaheen, Th I; El-Naggar, Mehrez E; Abdelgawad, Abdelrahman M; Hebeish, A

    2016-02-01

    Herein we represent a new discovery based on amine material called hexamethyltriethylene tetramine (HMTETA). We have observed that when an aqueous solution of Zn(NO3)·6H2O was added to aqueous solution of HMTETA followed by shaking for a time, the colorless solution was converted to milky color under the alkaline medium provided by HMTETA prior to formation of uniform zinc oxide nanoparticles (ZnO NPs). The latter are in situ formed within the cotton fabrics without the support of capping or other stabilizing agents. Obviously, then, the new made of formation of ZnO NPs speaks of a single-stage process where cotton fabric is immersed in a prepared solution of the new precursors through which binding of ZnO NPs into the textile fabrics takes place. Textile fabrics are, indeed, used as a template, which is capable of maintaining the size and surface distribution of the as-synthesized nanoparticles in a uniform domain. It is also likely that nanoparticles is confined inside the fibril and microfibrils of the cotton fibers. World-class facilities have been employed to follow up the synthesis of ZnO NPs, their characterization and their application to confer, in particular, high durable antibacterial and UV protective function on cotton fabrics. PMID:26546870

  14. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  15. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    Science.gov (United States)

    Neale, P. J.; Pritchard, A. L.; Ihnacik, R.

    2013-12-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis-irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria, Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m-2 s-1 PAR) and two temperatures (20 °C and 26 °C). The model was fit using photosynthesis measured in a polychromatic incubator with 12 long-pass filter configurations with 50% wavelength cutoffs ranging from 291 to 408 nm, giving an effective wavelength range of 280-400 nm. Examination of photosynthetic response vs weighted exposure revealed that repair rate progressively increases at low exposure but reaches a maximum rate above a threshold exposure ("Emax"). Adding Emax as a parameter to the BWF/P-E model provided a significantly better fit to Synechococcus data than the existing "E" or "T" models. Sensitivity to UV inhibition varied with growth conditions for both strains, but this was mediated mainly by variations in Emax for WH8102 while both the BWF and Emax changed for WH7803. Higher growth temperature was associated with a considerable reduction in sensitivity, consistent with an important role of repair in regulating sensitivity to UV. Based on nominal water column conditions (noon, solstice, 23° latitude, "blue" water), the BWFEmax/P-E model estimates that UV + PAR exposure inhibits Synechococcus photosynthesis from 77-91% at 1 m, and integrated productivity to 150 m 15-27% relative to predicted rates in the absence of inhibition.

  16. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    Science.gov (United States)

    Neale, P. J.; Pritchard, A. L.; Ihnacik, R.

    2014-05-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis-irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m-2 s-1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a polychromatic incubator with 12 long-pass filter configurations with 50% wavelength cutoffs ranging from 291 to 408 nm, giving an effective wavelength range of 280-400 nm. Examination of photosynthetic response vs. weighted exposure revealed that repair rate progressively increases at low exposure but reaches a maximum rate above a threshold exposure ("Emax"). Adding Emax as a parameter to the BWF/P-E model provided a significantly better fit to Synechococcus data than the existing "E" or "T" models. Sensitivity to UV inhibition varied with growth conditions for both strains, but this was mediated mainly by variations in Emax for WH8102 while both the BWF and Emax changed for WH7803. Higher growth temperature was associated with a considerable reduction in sensitivity, consistent with an important role of repair in regulating sensitivity to UV. Based on nominal water column conditions (noon, solstice, 23° latitude, "blue" water), the BWFEmax/P-E model estimates that UV + PAR exposure inhibits Synechococcus photosynthesis from 78 to 91% at 1 m, and integrated productivity to 150 m 17-29% relative to predicted rates in the absence of inhibition.

  17. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  18. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Yu, Hye-Weon; Anumol, Tarun; Park, Minkyu; Pepper, Ian; Scheideler, Jens; Snyder, Shane A

    2015-09-15

    A combination of surrogate parameters and indicator compounds were measured to predict the removal efficiency of trace organic compounds (TOrCs) using low pressure (LP)-UV/H2O2 advanced oxidation process (AOP), engaged with online sensor-based monitoring system. Thirty-nine TOrCs were evaluated in two distinct secondary wastewater effluents in terms of estimated photochemical reactivity, as a function of the rate constants of UV direct photolysis (kUV) and hydroxyl radical (OH) oxidation (kOH). The selected eighteen TOrCs were classified into three groups that served as indicator compounds: Group 1 for photo-susceptible TOrCs but with minor degradation by OH oxidation (diclofenac, fluoxetine, iohexol, iopamidol, iopromide, simazine and sulfamethoxazole); Group 2 for TOrCs susceptible to both direct photolysis and OH oxidation (benzotriazole, diphenhydramine, ibuprofen, naproxen and sucralose); and Group 3 for photo-resistant TOrCs showing dominant degradation by OH oxidation (atenolol, carbamazepine, DEET, gemfibrozil, primidone and trimethoprim). The results indicate that TOC (optical-based measurement), UVA254 or UVT254 (UV absorbance or transmittance at 254 nm), and total fluorescence can all be used as suitable on-line organic surrogate parameters to predict the attenuation of TOrCs. Furthermore, the automated real-time monitoring via on-line surrogate sensors and equipped with the developed degradation profiles between sensor response and a group of TOrCs removal can provide a diagnostic tool for process control during advanced treatment of reclaimed waters. PMID:26074188

  19. Inaccuracies of nitric oxide measurement methods in biological media

    OpenAIRE

    Hunter, Rebecca A.; Storm, Wesley L.; Coneski, Peter N.; Schoenfisch, Mark H.

    2013-01-01

    Despite growing reports on the biological action of nitric oxide (NO) as a function of NO payload, the validity of such work is often questionable due to the manner in which NO is measured and/or the solution composition in which NO is quantified. To highlight the importance of measurement technique for a given sample type, NO produced from a small molecule NO donor (N-diazeniumdiolated l-proline, PROLI/NO) and a NO-releasing xerogel film were quantified in a number of physiological buffers a...

  20. Biological manganese oxidation by Pseudomonas putida in trickling filters.

    Science.gov (United States)

    McKee, Kyle P; Vance, Cherish C; Karthikeyan, Raghupathy

    2016-06-01

    Biological oxidation has been researched as a viable alternative for treating waters with high manganese (Mn) concentrations, typically found in mine drainage or in some geological formations. In this study, laboratory-scale trickling filters were constructed to compare the Mn removal efficiency between filters inoculated with the Mn oxidizing bacteria, Pseudomonas putida, and filters without inoculation. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida after startup times of only 48 h. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One-dimensional advective-dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Based on the experimental transport parameters obtained, the model predicted that a filter depth of only 16 cm is needed to reduce influent concentration of 10 mg L(-1) to 0.05 mg L(-1). PMID:26943637

  1. Advanced Oxidation of the Endosulfan and Profenofos in Aqueous Solution Using UV/H2O22 Process

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available Degradation of two pesticides, endosulfan and profenofos, was investigated in aqueous solution using a combination of ultraviolet (UV light and hydrogen peroxide (H2O2. Photochemical experiments based on the L9 (34 three-level orthogonal array of the Taguchi method with four control factors including initial pesticide concentrations (10, 15 and 20 mg/l, UV irradiation times (30, 60 and 90 min, pH (5, 6.5 and 8 and H2O2 (0.1, 0.01 and 0.05 M were conducted. The endosulfan and profenofos were analyzed using gas chromatography with electron capture detector (ECD and gas chromatography with mass spectrometry (GC-MS respectively. Under the optimum conditions, 96.5% of the endosulfan and 98.5% of the profenofos were removed in about 90 min. The study also showed that the oxidation rate was enhanced more during the UV/H2O2 process in comparison to direct photolysis. The results of our study suggested that the concentration of 0.1 molar H2O2 and 10 ppm of pesticide in the solution at pH 8 with 90 min UV irradiation time were the optimal conditions for the photochemical degradation of two pesticides. The photochemical degradation with UV/H2O2 can be an efficient method to remove the endosulfan and profenofos from aqueous solution.

  2. The role of plasma lipid photo-oxidation in the decrease of the aggregation of platelets under UV irradiation

    International Nuclear Information System (INIS)

    Change of platelet aggregation dependent on blood plasma under irradiation of plasma enriched with platelets and serium (1) as well as the role of peroxide photooxidation on non-saturated fatty acids (2) have been studied. Based on the obtained data it is concluded that peroxide photooxidation and stimulation of dark oxidation of their lipids under UV-radiation effect on blood plasma or serium. Products of these reactions weaken aggregation of platelets suspended in serum (plasma). Platelets destroy products of peroxide oxidation of plasma lipids, and as a result aggregation of cells is gradually reduced under incubation of platelet and plasma mixture irradiatted in darkness. It is supposed that photooxidation of blood lipids produces curative properties to blood under UV-radiation

  3. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    Science.gov (United States)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  4. UV inactivation of enzymes in supramolecular complexes of biological membranes. The phenomenon of photochemical allotropy

    International Nuclear Information System (INIS)

    The photosensitivity of erythrocyte acetylcholinesterase (AChE) is different in its free and membrane-bound states. The modification of the structure of membraneous lipids by phospholipases A2, C and D or by cholesterol depletion is accompanied by a change in AChE photosensitivity. UV light was demonstrated to induce cooperative structural transitions in the erythrocyte membrane. This follows from the data obtained by circular dichroism and solubilization in detergents. In contrast to free AChE, UV light acts on the membraneous enzyme as a mixed inhibitor (simultaneous change in Vsub(max) and Ksub(m)). The anomalous behaviour of membrane-bound enzyme, termed the phenomenon of photochemical allotropy, is associated with a modification of the structure within the microenvironment of the residual AChE. The phenomenon depends on membrane integrity, and disappears after treatment of erythrocyte ghosts with ultrasound, trypsin, phospholipases and neuraminidase and remains unchanged in cholesterol-depleted membranes. The nature and localization of events responsible for this phenomenon are discussed. (author)

  5. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Science.gov (United States)

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  6. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    Science.gov (United States)

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  7. Photo-Oxidation Products of Skin Surface Squalene Mediate Metabolic and Inflammatory Responses to Solar UV in Human Keratinocytes

    OpenAIRE

    Kostyuk, Vladimir; Potapovich, Alla; Stancato, Andrea; De Luca, Chiara; Lulli, Daniela; Pastore, Saveria; Korkina, Liudmila

    2012-01-01

    The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were ...

  8. Photo catalytic Oxidation of Carbon Monoxide over NiO/SnO2 Nano composites under UV Irradiation

    International Nuclear Information System (INIS)

    The NiO/SnO2 nano composites have been prepared by the simple coprecipitation method and further characterized by the XRD, SEM, TEM, UV-Vis, and BET. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nano sized particles with rutile-type phase (tetragonal SnO2) for Ni contents below 10 mol%. Only above 10 mol% Ni, the formation of a second NiO-related phase has been determined. The particle size is in the range from 12 to 6 nm. It decreases with increasing amounts of doping NiO. The morphology of NiO-doped SnO2 nanocrystalline powders is spherical, and the distribution of particle size is uniform, as seen from transmission electron microscopy (TEM). The photo catalytic oxidation of CO over NiO/SnO2 photo catalyst has been investigated under UV irradiation. Effects of NiO loading on SnO2, photo catalyst loading, and reaction time on photo catalytic oxidation of CO have been systematically studied. Compared with pure SnO2, the 33.3 mol% NiO/SnO2 composite exhibited approximately twenty fold enhancement of photo catalytic oxidation of CO. Our results provide a method for pollutants removal. Due to simple preparation, high photo catalytic oxidation of CO, and low cost, the NiO/SnO2 photo catalyst will find wide application in the coming future of photo catalytic oxidation of CO

  9. Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yarosh, Daniel B

    2002-11-30

    The goal of DNA repair enzyme therapy is the same as that for gene therapy: to rescue a defective proteome/genome by introducing a substitute protein/DNA. The danger of inadequate DNA repair is highlighted in the genetic disease xeroderma pigmentosum. These patients are hypersensitive to sunlight and develop multiple cutaneous neoplasms very early in life. The bacterial DNA repair enzyme T4 endonuclease V was shown over 25 years ago to be capable of reversing the defective repair in xeroderma pigmentosum cells. This enzyme, packaged in an engineered delivery vehicle, has been shown to traverse the stratum corneum, reach the nuclei of living cells of the skin, and enhance the repair of UV-induced cyclobutane pyrimidine dimers (CPD). In such a system, changes in DNA repair, mutagenesis, and cell signaling can be studied without manipulation of the genome.

  10. Determination of Effective Parameters on Removal of Organic Materials from Pharmaceutical Industry Wastewater by Advanced Oxidation Process (H2O2/UV)

    OpenAIRE

    Esmaeil Azizi; Mehdi Ghayebzadeh; Abdollah Dargahi; Lida Hemati; Masoumeh Beikmohammadi; Kiomars Sharafi

    2016-01-01

    Background & Aims of the Study: Pharmaceutical wastewater is one of the major complex and toxic industrial effluents that contain little or no biodegradable organic matters. Materials & Methods: In this study, H2O2/UV base advance oxidation process (AOP) was used to remove organic materials from pharmaceutical industry effluent. Experiments were conducted for the chemical oxygen demand (COD) removal using medium pressure mercury vapor UV lamp coupled with hydrogen peroxide (H2O2/UV). ...

  11. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation

    International Nuclear Information System (INIS)

    The effectiveness of advanced oxidation processes in a batch and a flow reactor was investigated for the remediation of hydrocarbon pollution in the groundwater underlying a petrochemical industrial site. The main organic contaminants present in the groundwater were MTBE, benzene, alkyl-benzenes and alkyl-naphthalenes. Experimental results with a batch reactor showed that for all the organic contaminants the removal efficiency order is UV/TiO2 ∼ UV/H2O2 > UV (medium-pressure) in a synthetic aqueous solution, compared to UV/H2O2 > UV (medium-pressure) > UV/TiO2 for the real polluted groundwater. The much lower performance of UV/TiO2 with respect to UV/H2O2 was inferred to the matrix of the groundwater, i.e. the salt content, as well as the organic and particulate matter. In fact, it is likely that the salts and dissolved organic matter quench the superoxide anion O2·- and hydroxyl radicals just formed at the surface of the TiO2 catalyst. MTBE was the hardest compound to remove with each of the investigated treatments. UV and UV/TiO2 treatments were not able to reach a residual concentration of 10 μg/L (set by Italian legislation) even after 180 min. As for the UV/H2O2 process, only the MTBE degradation rate resulted affected by the initial H2O2 concentration, while for other compounds a complete removal was obtained within 20 min even with the lowest H2O2 concentration used (0.13 g/L). Only after 120 min of treatment, with an initial H2O2 concentration of 0.13 g/L, did the residual MTBE concentration fall below the above reported maximum admissible concentration. Instead, by using an initial concentration of 2 g/L a residual concentration lower than 5 μg/L was obtained after just 30 min of reaction. The UV/H2O2 process was also investigated with a flow reactor. Results showed that it was more efficient than the batch reactor for removing MTBE, in terms of reaction time and initial H2O2 concentration required. This is consistent with the higher power of the UV

  12. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation.

    Science.gov (United States)

    Mascolo, Giuseppe; Ciannarella, Ruggero; Balest, Lydia; Lopez, Antonio

    2008-04-15

    The effectiveness of advanced oxidation processes in a batch and a flow reactor was investigated for the remediation of hydrocarbon pollution in the groundwater underlying a petrochemical industrial site. The main organic contaminants present in the groundwater were MTBE, benzene, alkyl-benzenes and alkyl-naphthalenes. Experimental results with a batch reactor showed that for all the organic contaminants the removal efficiency order is UV/TiO2 approximately UV/H2O2>UV (medium-pressure) in a synthetic aqueous solution, compared to UV/H2O2>UV (medium-pressure)>UV/TiO2 for the real polluted groundwater. The much lower performance of UV/TiO2 with respect to UV/H2O2 was inferred to the matrix of the groundwater, i.e. the salt content, as well as the organic and particulate matter. In fact, it is likely that the salts and dissolved organic matter quench the superoxide anion O2(-) and hydroxyl radicals just formed at the surface of the TiO2 catalyst. MTBE was the hardest compound to remove with each of the investigated treatments. UV and UV/TiO2 treatments were not able to reach a residual concentration of 10 microg/L (set by Italian legislation) even after 180 min. As for the UV/H2O2 process, only the MTBE degradation rate resulted affected by the initial H2O2 concentration, while for other compounds a complete removal was obtained within 20 min even with the lowest H2O2 concentration used (0.13 g/L). Only after 120 min of treatment, with an initial H2O2 concentration of 0.13 g/L, did the residual MTBE concentration fall below the above reported maximum admissible concentration. Instead, by using an initial concentration of 2g/L a residual concentration lower than 5 microg/L was obtained after just 30 min of reaction. The UV/H2O2 process was also investigated with a flow reactor. Results showed that it was more efficient than the batch reactor for removing MTBE, in terms of reaction time and initial H2O2 concentration required. This is consistent with the higher power of

  13. Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 Advanced Oxidation Process.

    Science.gov (United States)

    Shu, Zengquan; Bolton, James R; Belosevic, Miodrag; El Din, Mohamed Gamal

    2013-05-15

    A medium-pressure (MP) ultraviolet (UV) process has been applied to investigate the direct UV photolysis and UV/H2O2 oxidation of selected model micropollutants (naproxen, carbamazepine, diclofenac, gemfibrozil, ibuprofen, caffeine, 2,4-D, 2,4-DCP, and mecoprop). The quantum yields were found to be between 0.0010 and 0.13 at pH = 7. In the MP UV/H2O2 oxidation, the pseudo first-order rate constants for the selected compounds were found to be dependent on their initial concentrations (at mg/L levels) and on the H2O2 concentration. The UV doses required for 50% and 90% removal at various H2O2 levels varied widely among the compounds tested. Second-order rate constants (ranging from 4.1 × 10(9) to 1.4 × 10(10) M(-1) s(-1)) for the reaction between the selected compounds and hydroxyl radicals were determined using a competition-kinetics approach, where para-chlorobenzoic acid (pCBA) was chosen as the reference compound. Further, as an evaluation of electrical energy efficiency, the Figure-of-Merit, Electrical Energy per Order (EEO) was determined for the selected compounds using a batch reactor at 25 and 50 mg/L H2O2 concentrations. The electrical energy (in kWh) required to reduce a pollutant concentration by 90% ranged from 1.3 to 7.1 kWh m(-3). PMID:23517874

  14. Improvement in performance of solution-processed indium-zinc-tin oxide thin-film transistors by UV/O3 treatment on zirconium oxide gate insulator

    Science.gov (United States)

    Naik, Bukke Ravindra; Avis, Christophe; Delwar Hossain Chowdhury, Md; Kim, Taehun; Lin, Tengda; Jang, Jin

    2016-03-01

    We studied solution-processed amorphous indium-zinc-tin oxide (a-IZTO) thin-film transistors (TFTs) with spin-coated zirconium oxide (ZrOx) as the gate insulator. The ZrOx gate insulator was used without and with UV/O3 treatment. The TFTs with an untreated ZrOx gate dielectric showed a saturation mobility (μsat) of 0.91 ± 0.29 cm2 V-1 s-1, a threshold voltage (Vth) of 0.28 ± 0.36 V, a subthreshold swing (SS) of 199 ± 37.17 mV/dec, and a current ratio (ION/IOFF) of ˜107. The TFTs with a UV/O3-treated ZrOx gate insulator exhibited μsat of 2.65 ± 0.43 cm2 V-1 s-1, Vth of 0.44 ± 0.35 V, SS of 133 ± 24.81 mV/dec, and ION/IOFF of ˜108. Hysteresis was 0.32 V in the untreated TFTs and was eliminated by UV/O3 treatment. Also, the leakage current decreased significantly when the IZTO TFT was coated onto a UV/O3-treated ZrOx gate insulator.

  15. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    Science.gov (United States)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste

  16. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir Kostyuk

    Full Text Available UNLABELLED: The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL or to primary cultures of normal human epidermal keratinocytes (NHEK. The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq, and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE, and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ. FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin.

  17. Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques

    International Nuclear Information System (INIS)

    The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with NH2OH · HCl, and oxidized to Pu(IV) and Pu(VI) with NaNO2 and HCIO4 , respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with NH2OH · HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 nm and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-V is absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  18. Nanocrystalline Mg-doped Zinc Oxide Scintillator for UV detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA uses detectors for a broad range of wavelengths from UV to gamma for applications in astrophysics, earth science, heliophysics, and planetary science. Mg-doped...

  19. Decolorization of Remazol Brilliant Blue Dye Effluent by Advanced Photo Oxidation Process (H2O2/UV system

    Directory of Open Access Journals (Sweden)

    A. S. Mahmoud

    2007-01-01

    Full Text Available Advanced photo oxidation processes hold great promise for the improved treatment of textile dye effluent. In this study, the effectiveness of a H2O2/UV system for the decolorization of remazol brilliant blue effluent was investigated by examining the optimum conditions for dye removal in two reactors (coil and conventional. The results showed that the coil reactor had a higher temperature profile than the conventional reactor. When the dye was fed into the reactors at 25˚C, UV radiation alone was not effective as the decolorization efficiency of the conventional reactor varied from 0.0 to 12.3%, while that of the coil reactor varied from 0.0 to 7.3%, depending on the residence time used. The effect of UV radiation at 100˚C was also negligible as the maximum decolorization efficiencies were 4.0 and 3.7% for the conventional and the coil reactors, respectively. Increasing the concentration of H2O2 increased decolorization efficiencies of both UV reactors. Dye decolorization also increased with residence time. More than 93% color removal of remazol brilliant blue dye was achieved with a residence time of 56 min and 100% decolorization achieved in 65 min using a H2O2 concentration of 12.50 mL Lˉ1.

  20. Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation

    International Nuclear Information System (INIS)

    Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size (reff = 10-100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30-400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between reff = 40-80 nm

  1. Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN

    Science.gov (United States)

    Morgan, Andrew

    Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.

  2. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix

    International Nuclear Information System (INIS)

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H2O2), and the combined UV/H2O2 processes. Effects of initial EDC concentration, H2O2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H2O2, and UV/H2O2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H2O2 oxidation process, UV/H2O2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H2O2 oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H2O2 oxidation. High dosage of H2O2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm−2, and H2O2 dosage = 0.5 mol L−1, the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H2O2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. - Highlights: • UV/H2O2 is effective in removing EDCs

  3. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H{sub 2}O{sub 2}, and UV/H{sub 2}O{sub 2} oxidation processes: Effects of reaction conditions and sludge matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai; Li, Yongmei, E-mail: liyongmei@tongji.edu.cn

    2014-09-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H{sub 2}O{sub 2}), and the combined UV/H{sub 2}O{sub 2} processes. Effects of initial EDC concentration, H{sub 2}O{sub 2} dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H{sub 2}O{sub 2}, and UV/H{sub 2}O{sub 2} treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H{sub 2}O{sub 2} oxidation process, UV/H{sub 2}O{sub 2} treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H{sub 2}O{sub 2} oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H{sub 2}O{sub 2} oxidation. High dosage of H{sub 2}O{sub 2} and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm{sup −2}, and H{sub 2}O{sub 2} dosage = 0.5 mol L{sup −1}, the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H{sub 2}O{sub 2} oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis

  4. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    International Nuclear Information System (INIS)

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation

  5. Rethinking the Paleoproterozoic Great Oxidation Event: A Biological Perspective

    CERN Document Server

    Grula, John W

    2012-01-01

    Competing geophysical/geochemical hypotheses for how Earth's surface became oxygenated - organic carbon burial, hydrogen escape to space, and changes in the redox state of volcanic gases - are examined and a more biologically-based hypothesis is offered in response. It is argued that organic carbon burial is of minor importance to the accumulation of oxygen in a mainly anoxic world where aerobic respiration is not globally significant. Thus, for the Great Oxidation Event (GOE) ~ 2.4 Gyr ago, an increasing flux of O2 due to its production by an expanding population of cyanobacteria is parameterized as the primary source of O2. Various factors would have constrained cyanobacterial proliferation and O2 production during most of the Archean and therefore a long delay between the appearance of cyanobacteria and oxygenation of the atmosphere is to be expected. Destruction of O2 via CH4 oxidation in the atmosphere was a major O2 sink during the Archean, and the GOE is explained to a significant extent by a large dec...

  6. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.;

    2012-01-01

    nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the lowest ClO2 level (0.5mg/L). In the low COD effluent, more than half of the APIs were oxidized at 5mg/L Cl......Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  7. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.

  8. UV-B辐射对极地雪藻Chlamydomonas nivalis的生物学效应%Biological Effect of UV-B Radiation on Chlamydomonas nivalis

    Institute of Scientific and Technical Information of China (English)

    耿予欢; 李国基; 李琳; 魏东

    2006-01-01

    采用不同剂量的UV-B辐射极地雪藻,测定了致死率、色素含量、蛋白质和总脂含量以及自由基清除活性的变化.结果表明,UV-B辐射对极地雪藻具有一定的致死效应,UV-B辐射后雪藻细胞的叶绿素和类胡萝卜素含量增加,虾青素含量也显著提高.UV-B辐射后,极地雪藻基本生化成分的含量发生了较为明显的变化:蛋白质含量随辐射时间的延长而逐渐降低,总脂含量则逐步增加.经UV-B辐射培养以后,极地雪藻在有机溶剂系统中的自由基清除活性有所提高.

  9. Nanoporous silicon-based surface patterns fabricated by UV laser interference techniques for biological applications

    Science.gov (United States)

    Recio-Sánchez, G.; Peláez, R. J.; Vega, F.; Martín-Palma, R. J.

    2016-06-01

    The fabrication of selectively functionalized micropatterns based on nanostructured porous silicon (nanoPS) by phase mask ultraviolet laser interference is presented here. This single-step process constitutes a flexible method for the fabrication of surface patterns with tailored properties. These surface patterns consist of alternate regions of almost untransformed nanoPS and areas where nanoPS is transformed into Si nanoparticles (Si NPs) as a result of the laser irradiation process. The size of the transformed areas as well as the diameter of the Si NPs can be straightforwardly tailored by controlling the main fabrications parameters including the porosity of the nanoPS layers, the laser interference period areas, and laser fluence. The surface patterns have been found to be appropriate candidates for the development of selectively-functionalized surfaces for biological applications mainly due to the biocompatibility of the untransformed nanoPS regions.

  10. The application of semiconductor based UV sources for the detection and classification of biological material

    Science.gov (United States)

    Kaliszewski, Miron; Włodarski, Maksymilian; Bombalska, Aneta; Kwaśny, Mirosław; Mularczyk-Oliwa, Monika; Młyńczak, Jarosław; Kopczyński, Krzysztof

    2013-01-01

    Fluorescence analysis of dry samples of biological origin like pollens, fungi, flours and proteins was presented. In the laboratory study presentenced here two fluorescence methods using semiconductor light sources were applied. Firstly, laser induced fluorescence emission (LIF) spectra of the samples were recorded under 266 and 375 nm excitation. The second technique covered fluorescence decay (FD) at 280 and 340 nm excitation. Hierarchical Cluster Analysis (HCA) of acquired spectra and decays was performed. Both LIF and FD showed that single wavelength excitation 266 and 280 nm, respectively allow distinguishing of pollens from other samples. Combining data of both excitation wavelengths, for LIF and FD, respectively, resulted in substantial improvement of data classification for groups according to the samples origin.

  11. Antioxidant activity for spice oils (1) anti oxidative stability of thyme and caraway oil extracts under UV-irradiation

    International Nuclear Information System (INIS)

    The anti oxidative activity for some spice essential oils have been investigated using thiocyanate method and compared with common natural antioxidant. The antioxidant activity for nine spice oils has been measured at 500 ppm after 13 days. The most potent one was the lemon grass (99.8), followed by orange peel, thyme, and caraway. The activities for these four oils were higher than that for Alpha-tocopherol (87.7%). Petitgrain, and geranium oils have marched activity but less than that for Alpha-tocopherol. No obvious has been found for citronella. fennel, and cardamon oils. The aqueous, butanoic, methanolic and hexanoic extracts for thyme and caraway oil exhibit effective anti oxidative activities under UV irradiation (254 nm) for 6 and 10 hr compared with that for alpha-tocopherol. The anti oxidative effect of thyme and caraway oil extracts were found to be strong and stable towards UV-irradiation, and equal to that for Alpha-tocopherol. Thyme's aqueous and caraway's hexanal extracts were the most potent extracts under the same conditions

  12. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  13. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  14. PHOTOCHEMICAL OXIDATION OF REACTIVE BLUE 19 DYE (RB19 IN TEXTILE WASTEWATER BY UV/K2S2O8 PROCESS

    Directory of Open Access Journals (Sweden)

    A. Rezaee, M. T. Ghaneian, A. Khavanin, S. J. Hashemian, Gh. Moussavi

    2008-04-01

    Full Text Available In textile industry, advanced oxidation processes are used for degrading and removing color from dye baths which allow wastewater reuse. In this study, photochemical oxidation processes (UV-A/K2S2O8, UV-C/K2S2O8 and chemical oxidation process (dark/K2S2O8, were investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19 dye from synthetic textile wastewater. The effects of operating parameters such as potassium persulphate dosage, pH, reaction time and UV source, on decolorization have been evaluated. The results of direct chemical oxidation showed that 50% of the dye was been removed using K2S2O8 in dark condition after 5h reaction time and photochemical oxidation showed that UV-C irradiation is more effective than UV-A for RB19 dye removal. The RB19 solution was completely decolorized under optimal potassium persulphate dosage of 5mmol/L and low-pressure mercury UV-C lamps (15w in less than 30min. UV/K2S2O8 experiments showed higher color removal performance under acidic conditions (pH=3, and in this condition with 5mmol/L of potassium persulphate, 78.5% COD has been removed after 3h irradiation time. The decolorization rate fitted to pseudo-first order kinetics with respect of dye concentration. The reaction rate constants for photochemical degradation of RB19 were 0.014 and 0.237 for UV-A/K2S2O8 and UV-C/K2S2O8 processes respectively.

  15. Photocatalytic Degradation of p-Cresol by Zinc Oxide under UV Irradiation

    OpenAIRE

    Nor Azah Yusof; Yadollah Abdollahi; Abdul Halim Abdullah; Zulkarnain Zainal

    2011-01-01

    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO ...

  16. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation.

    Science.gov (United States)

    Michael-Kordatou, I; Iacovou, M; Frontistis, Z; Hapeshi, E; Dionysiou, D D; Fatta-Kassinos, D

    2015-11-15

    This study evaluates the feasibility of UV-C-driven advanced oxidation process induced by sulfate radicals SO4(.)- in degrading erythromycin (ERY) in secondary treated wastewater. The results revealed that 10 mg L(-1) of sodium persulfate (SPS) can result in rapid and complete antibiotic degradation within 90 min of irradiation, while ERY decay exhibited a pseudo-first-order kinetics pattern under the different experimental conditions applied. ERY degradation rate was strongly affected by the chemical composition of the aqueous matrix and it decreased in the order of: ultrapure water (kapp = 0.55 min(-1)) > bottled water (kapp = 0.26 min(-1)) > humic acid solution (kapp = 0.05 min(-1)) > wastewater effluents (kapp = 0.03 min(-1)). Inherent pH conditions (i.e. pH 8) yielded an increased ERY degradation rate, compared to that observed at pH 3 and 5. The contribution of hydroxyl and sulfate radicals (HO. and SO4(.)-) on ERY degradation was found to be ca. 37% and 63%, respectively. Seven transformation products (TPs) were tentatively elucidated during ERY oxidation, with the 14-membered lactone ring of the ERY molecule being intact in all cases. The observed phytotoxicity against the tested plant species can potentially be attributed to the dissolved effluent organic matter (dEfOM) present in wastewater effluents and its associated-oxidation products and not to the TPs generated from the oxidation of ERY. This study evidences the potential use of the UV-C/SPS process in producing a final treated effluent with lower phytotoxicity (wastewater. Finally, under the optimum experimental conditions, the UV-C/SPS process resulted in total inactivation of ERY-resistant Escherichia coli within 90 min. PMID:26360228

  17. Study of CO adsorption on the surface of yttrium, erbium and holmium oxides using UV and visible reflection spectra

    International Nuclear Information System (INIS)

    Surface compounds formed during CO adsorption on Y2O3, Er2O3 and Ho2O3 were studied by the method of diffusE reflection spectroscopy in UV and visible ranges. It is ascertained thar CO adsorption at 300 K on the surface of oxides trained at 1073 K is accompanied by the appearance in the spectra of the bands 340, 380 and 450 nm, which are referred to dioxoketenes (C2O3)2-, croconates (CO)52- and rhodizonates (CO)62- respectively

  18. UV Bandpass Optical Filter for Microspectometers

    OpenAIRE

    Correia, J. H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in the range 230-280 nm, with a transmittance higher than 80%. Such a device is extremely suitable for optical detection of biological molecules with optical absorption or/and fluorescence in the UV sp...

  19. Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: Possible involvement of phenolic compounds and antioxidative enzymes

    International Nuclear Information System (INIS)

    L.) seedlings were irradiated or not irradiated with UV-B for several days in environment-controlled growth chambers. The first leaves irradiated with UV-B were retarded in growth but simultaneously acquired a remarkably high tolerance to oxidative stress, as induced by paraquat treatment, compared with the non-irradiated leaves. This enhanced tolerance was observed within 1d after the start of UV-B irradiation and was maintained during the 12 d period of UV-B treatment. The effects of UV-B on several antioxidative enzymes were examined, and activities of superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase, but not of glutathione reductase, were found to be enhanced. However, activation of these enzymes occurred only from 6 d after the start of irradiation. In contrast, accumulation of phenolic compounds was observed within 1d after the start of UV-B irradiation. HPLC analysis of phenolic compounds showed the distinct enhancement of a substance, which may have antioxidative properties in cucumber seedlings irradiated with UV-B. On the basis of these results, we conclude that not only antioxidative enzymes but also other factors in cucumber seedlings irradiated with UV-B, such as phenolic compounds, may participate in the enhanced tolerance to oxidative stress

  20. PHOTOCHEMICAL OXIDATION OF REACTIVE BLUE 19 DYE (RB19) IN TEXTILE WASTEWATER BY UV/K2S2O8 PROCESS

    OpenAIRE

    A. Rezaee, M. T. Ghaneian, A. Khavanin, S. J. Hashemian, Gh. Moussavi

    2008-01-01

    In textile industry, advanced oxidation processes are used for degrading and removing color from dye baths which allow wastewater reuse. In this study, photochemical oxidation processes (UV-A/K2S2O8, UV-C/K2S2O8) and chemical oxidation process (dark/K2S2O8), were investigated in a laboratory scale photoreactor for decolorization of the Reactive blue 19 (RB19) dye from synthetic textile wastewater. The effects of operating parameters such as potassium persulphate dosage, pH, reaction time and ...

  1. [Nitric Oxide in Modulation of Crystallogenic Propeties of Biological Fluid].

    Science.gov (United States)

    Martusevich, A K; Kovaleva, L K; Davyduk, A V

    2016-01-01

    The aim of this work was a comparative analysis of the influence of different NO forms on dehydration structurization of human blood serum. Blood specimens from 15 healthy people were treated by NO-containing gas flow (800 and 80 ppm) generated with the "Plazon" unit, experimental NO-generator (20, 50, 75 and 100 ppm) and by water solution of thiol-containing dinitrosyl iron complexes (3 mM/L). The influence of blood sodium on blood serum crystallization in original and NO-treated blood specimens was estimated. It was found, that the effect of NO on crystallogenic properties of blood serum depends directly on its concentration and form (free or bound), as well as on the presence of reactive oxygen species in gas flow. The most pronounced stimulating effect was observed for the bound form of NO--dinitrosyl iron complexes with glutathione ligands. Low NO concentrations modulated crystallogenic properties of blood serum and the most optimal stimulating action was demonstrated in gas flow containing 20 ppm nitric oxide. In contrast, high NO concentration (800 ppm) inhibited the crystallogenic activity of biological fluid with multiply increasing of structural elements destruction leading to the formation of an additional belt in marginal zone of dehydrated specimens. PMID:27192838

  2. Deciphering The Complex Biological Interactions Of Nitric Oxide In Cancer

    Directory of Open Access Journals (Sweden)

    S. Perwez Hussain

    2015-08-01

    Full Text Available NO• is a free radical and is involved in a number of critical physiological processes including vasodilation, neurotransmission, immune regulation and inflammation. There are convincing evidence suggesting a role of NO• in the development and progression of different cancer types. However, the role of NO• in tumorigenesis is highly complex and both pro- and anti-neoplastic functions have been reported, which largely depends on the amount of NO•, cell types, cellular microenvironment, its interaction with other reactive species and presence of metals. An interesting interaction occurs between NO• and p53 tumor suppressor, in which NO•-induced DNA damage causes the stabilization and accumulation of p53, which in turn, transrepresses inducible nitric oxide synthase (NOS2 in a negative feedback loop. In chronic inflammatory diseases, for example ulcerative colitis, NO• induces p53 stabilization and the initiation of DNA-damage response pathway, and also generation of p53 mutation and subsequent clonal selection of p53 mutant cells. Genetic deletion of NOS2 in p53-deficient mice can either suppress or enhance lymphomagenesis depending on the inflammatory microenvironment. These findings highlight the importance of understanding the complex biological interaction of NO• in the context of the molecular makeup of each individual cancer to design NO•-targeted treatment strategies.

  3. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Persano, Luana [NNL, National Nanotechnology Laboratory of CNR-Istituto Nanoscienze, Universita del Salento, via Arnesano, I-73100 Lecce (Italy); Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE (Italy); Del Carro, Pompilio [NNL, National Nanotechnology Laboratory of CNR-Istituto Nanoscienze, Universita del Salento, via Arnesano, I-73100 Lecce (Italy); Pisignano, Dario [NNL, National Nanotechnology Laboratory of CNR-Istituto Nanoscienze, Universita del Salento, via Arnesano, I-73100 Lecce (Italy); Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE (Italy); Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Universita del Salento, via Arnesano, I-73100 Lecce (Italy)

    2012-04-09

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can be exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.

  4. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    International Nuclear Information System (INIS)

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can be exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.

  5. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    OpenAIRE

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2014-01-01

    Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidativ...

  6. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    OpenAIRE

    Gerardo Pulido-Reyes; Ismael Rodea-Palomares; Soumen Das; Tamil Selvan Sakthivel; Francisco Leganes; Roberto Rosal; Sudipta Seal; Francisca Fernández-Piñas

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main drive...

  7. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor

    International Nuclear Information System (INIS)

    Photocatalytic decolorization of azo-dye Orange II in water has been examined in an external UV light irradiation slurry photoreactor using zinc oxide (ZnO) as a semiconductor photocatalyst. The effects of process parameters such as light intensity, initial dye concentration, photocatalyst loading and initial solution pH on the decolorization rate of Orange II have been systematically investigated. A two-stage photocatalytic decolorization of Orange II, the first stage of fast decolorization rate and the subsequent second stage of rather slow decolorization rate, was found. The efficiency of decolorization of Orange II increased as initial Orange II concentration decreased and UV light intensity increased. There was the optimal ZnO concentration being around 1000 mg L-1. The optimal pH was around 7.7, which was at the natural pH of the dye solution. The effect of aeration rate on the decolorization of Orange II has been also investigated and the enhancement of decolorization of Orange II with increasing aeration rate was found. By using a model for the light intensity profile in the external UV light irradiation slurry photoreactor, the simulation model for the decolorization of Orange II with ZnO photocatalyst has been developed. The proposed model in which the slow decolorization in the second stage as well as the initial fast decolorization is also taken into account could simulate the experimental results for UV light irradiation satisfactorily. The proposed simulation model in which the change of light intensity with time due to the decolorization of Orange II and the light scatter due to solid photocatalysts are considered will be very useful for practical engineering design of the slurry photoreactor of wastewater including textile dyes

  8. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  9. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  10. Photocatalytic Degradation of p-Cresol by Zinc Oxide under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Nor Azah Yusof

    2011-12-01

    Full Text Available Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC. The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6–9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.

  11. Plasmonics in the UV range with Rhodium nanocubes

    Science.gov (United States)

    Zhang, X.; Gutiérrez, Y.; Li, P.; Barreda, Á. I.; Watson, A. M.; Alcaraz de la Osa, R.; Finkelstein, G.; González, F.; Ortiz, D.; Saiz, J. M.; Sanz, J. M.; Everitt, H. O.; Liu, J.; Moreno, F.

    2016-04-01

    Plasmonics in the UV-range constitutes a new challenge due to the increasing demand to detect, identify and destroy biological toxins, enhance biological imaging, and characterize semiconductor devices at the nanometer scale. Silver and aluminum have an efficient plasmonic performance in the near UV region, but oxidation reduces its performance in this range. Recent studies point out rhodium as one of the most promising metals for this purpose: it has a good plasmonic response in the UV and, as gold in the visible, it presents a low tendency to oxidation. Moreover, its easy fabrication through chemical means and its potential for photocatalytic applications, makes this material very attractive for building plasmonic tools in the UV. In this work, we will show an overview of our recent collaborative research with rhodium nanocubes (NC) for Plasmonics in the UV.

  12. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  13. The oxidation of PET track-etched membranes by hydrogen peroxide as an effective method to increase efficiency of UV-induced graft polymerization

    OpenAIRE

    Il'ya Korolkov; Abzal Taltenov; Anastassiya Mashentseva; Olgun Guven

    2015-01-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first im...

  14. Oxidation by-products and ecotoxicity assessment during the photodegradation of fenofibric acid in aqueous solution with UV and UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Javier [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Agueera, Ana; Mar Gomez-Ramos, Maria del [Department of Analytical Chemistry, University of Almeria, E-04010 Almeria (Spain); Fernandez Alba, Amadeo R. [Department of Analytical Chemistry, University of Almeria, E-04010 Almeria (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain); Garcia-Calvo, Eloy [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain); Rosal, Roberto, E-mail: roberto.rosal@uah.es [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain)

    2011-10-30

    Highlights: {yields} UV and UV/H{sub 2}O{sub 2} photolysis of fenofibric acid. {yields} Identification of reaction intermediates using exact mass measurements. {yields} UV/H{sub 2}O{sub 2} removed toxicity towards Pseudokirchneriella subcapitata. {yields} Irradiated samples contain a number of chlorinated products. - Abstract: The degradation of an aqueous solution of fenofibric acid was investigated using ultraviolet (UV) photolysis and UV/H{sub 2}O{sub 2} with a low-pressure mercury lamp. We obtained quantum yields at different temperatures and the rate constant for the reaction of fenofibric acid with hydroxyl radicals. The maximum radical exposure per fluence ratio obtained was 1.4 x 10{sup -10} M L{sup -1} mW{sup -1}. Several reaction intermediates were detected by means of exact mass measurements performed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-ESI-QTOF-MS). UV and UV/H{sub 2}O{sub 2} pathways involve the decarboxylation of fenofibric acid to 4-chloro-4'-(1-hydroxy-1-methylethyl)benzophenone and other minor products, predominantly chlorinated aromatics. We detected several intermediates from reactions with hydroxyl radicals and some lower molecular weight products from the scission of the carbonyl carbon-to-aromatic-carbon bond. We recorded high toxicity in UV irradiated samples for the growth of Pseudokirchneriella subcapitata even after the total depletion of fenofibric acid; this was probably due to the presence of chlorinated aromatics. A degree of toxicity reappeared in highly irradiated UV/H{sub 2}O{sub 2} samples, probably because of the formation of ring-opening products. The degree of mineralization was closely related to that of dechlorination and reached values of over 50% after 3-4 min before stabilizing thereafter.

  15. Impact of salinity on organic matter and nitrogen removal from a municipal wastewater RO concentrate using biologically activated carbon coupled with UV/H2O2.

    Science.gov (United States)

    Pradhan, Shovana; Fan, Linhua; Roddick, Felicity A; Shahsavari, Esmaeil; Ball, Andrew S

    2016-05-01

    The concentrate streams generated from reverse osmosis (RO)-based municipal wastewater reclamation processes contain organic substances and nutrients at elevated concentrations, posing environmental and health risks on their disposal to confined receiving environments such as bays. The impact of salinity (TDS at 7, 10 and 16 g/L) of a RO concentrate (ROC) on the treatment efficiency of a biological activated carbon (BAC) system after pre-oxidation with UV/H2O2 was characterised in terms of removal of organic matter and nitrogen species, and the bacterial communities. Organic matter removal was comparable for the ROC over the tested salinity range, with 45-49% of DOC and 70-74% of UVA254 removed by the combined treatment. However, removal in total nitrogen (TN) was considerably higher for the ROC at the high salinity (TDS ∼ 16 mg/L) compared with the low (∼7 g/L) and medium salinity (∼10 g/L). Effective nitrification with high ammonium removal (>90%) was achieved at all salinity levels, whereas greater denitrification (39%) was obtained at high salinity than low (23%) and medium salinity (27%) which might suggest that the bacterial communities contributing to the greater denitrification were more halotolerant. Microbiological characterisation using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and culture based techniques showed that diversified bacterial communities were present in the BAC system as evident from different 16S rDNA. The major bacterial groups residing on the BAC media belonged to Bacillus (Firmicutes), Pseudomonas (γ-Proteobacteria), and Rhodococcus (Actinobacteria) for all salinity levels, confirming that these microbial communities could be responsible for carbon and nitrogen removal at the different salinity levels. This has implications in understanding the effectiveness and robustness of the BAC system over the salinity range of the ROC and so would be useful for optimising the treatment efficiency of

  16. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems.

    Science.gov (United States)

    Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D

    2016-01-25

    Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies. PMID:26658700

  17. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.

    Science.gov (United States)

    Rosenfeldt, Erik J; Linden, Karl G; Canonica, Silvio; von Gunten, Urs

    2006-12-01

    Comparison of advanced oxidation processes (AOPs) can be difficult due to physical and chemical differences in the fundamental processes used to produce OH radicals. This study compares the ability of several AOPs, including ozone, ozone+H2O2, low pressure UV (LP)+H2O2, and medium pressure UV (MP)+H2O2 in terms of energy required to produce OH radicals. Bench scale OH radical formation data was generated for each AOP using para-chlorobenzoic acid (pCBA) as an OH radical probe compound in three waters, Lake Greifensee water, Lake Zurich water, and a simulated groundwater. Ozone-based AOPs were found to be more energy efficient than the UV/H2O2 process at all H2O2 levels, and the addition of H2O2 in equimolar concentration resulted in 35% greater energy consumption over the ozone only process. Interestingly, the relatively high UV/AOP operational costs were due almost exclusively to the cost of hydrogen peroxide while the UV portion of the UV/AOP process typically accounted for less than 10 percent of the UV/AOP cost and was always less than the ozone energy cost. As the *OH radical exposure increased, the energy gap between UV/H2O2 AOP and ozone processes decreased, becoming negligible in some water quality scenarios. PMID:17078993

  18. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    International Nuclear Information System (INIS)

    Highlights: ► In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. ► The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. ► We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO3H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  19. Photoluminescence of hexagonal boron nitride: effect of surface oxidation under UV-laser irradiation

    CERN Document Server

    Museur, Luc; Petitet, Jean-Pierre; Michel, Jean Pierre; Kanaev, Andrei V

    2008-01-01

    We report on the UV laser induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation of the surface under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono (VN), or multiple (m-VN with m = 2 or 3) nitrogen vacancies. A structured fluorescence band between 300 nm and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to VN vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ~400 nm assigned to m-VN vacancies; further irradiation breaks more B-N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation o...

  20. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  1. Uv - b irradiation effects on biological activities and cytological behavior of sainfoin (onobrychis viciifolia scop.) grown in vivo and in vitro

    International Nuclear Information System (INIS)

    To investigate the feasibility of UV-B irradiation (312 nm), seeds of Onobrychis viciifolia were exposed to five different intensities for determining the effectiveness of cellular behavior, nutritional constituents and biological activities in In vivo and In vitro growth cultures. The atomic spectroscopy analysis confirmed that concentrations of two macronutrients (P and N) improved after UV-B exposure as compared with control plants. Near infrared radiation conducted on both In vivo and In vitro plants showed significant differences on dry matter digestibility (DMD) and crude fiber (CF). Flavonoid and phenolic compounds were increased in both growth cultures by 40 percentage intensity of UV-B irradiation, although In vitro plants had the higher compounds than intact plants. Increasing the UV-B irradiation intensity was also found to yield positive effect on anthocyanin. Observations on cellular behavior such as determination of nuclear and cell areas, mitotic index and chromosomal aberrations were proven to be essential in deducing the effectiveness of UV-B irradiation to induce somaclonal variation in sainfoin. (author)

  2. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    Science.gov (United States)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  3. Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1(O2).

    Science.gov (United States)

    Gomes, Maria C; Silva, Sandrina; Faustino, Maria A F; Neves, Maria G P M S; Almeida, Adelaide; Cavaleiro, José A S; Tomé, João P C; Cunha, Ângela

    2013-02-01

    Antimicrobial photodynamic inactivation is becoming a promising alternative to control microbial pathogens. The combination of positively charged groups and carbohydrate moieties with porphyrin derivatives results in increased cell recognition and water solubility, which improves cell membrane penetration. However, the nature of the oxidative damage and the cellular targets of photodamage are still not clearly identified. This work reports the use of four cationic galactoporphyrins as PSs against two environmental bacteria, Micrococcus sp. and Pseudomonas sp., resistant to oxidative stress induced by UV-B exposure. The effect of (1)O(2) generated during the PDI assays on oxidation of cellular lipids and proteins was also assessed. PDI experiments with Micrococcus sp. and Pseudomonas sp. were conducted with 0.5 and 5.0 μmol L(-1) of photosensitiser, respectively, under white light at a fluence rate of 150 mW cm(-2) during 15 min. The most effective compounds against Gram (+) bacteria were PSs 3a, 5a and 6a leading to ≈8.0 log of photoinactivation while PSs 3a and 6a caused the highest inactivation (≈6.0 log and 5.3 log) of the Gram (-) strain. The adsorption to cellular material and (1)O(2) generation capacity of the PS molecule were determinant factors for these inactivation profiles. The occurrence of protein carbonylation and lipid peroxidation supports the hypothesis that antibacterial PDI is triggered by damage of external cell structures such as the cell wall and membrane. PMID:22972197

  4. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H2O2/UV and O3.

    Science.gov (United States)

    Wang, Y Z; Yedeler, A; Kettrup, A

    2001-07-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants. PMID:11590760

  5. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Science.gov (United States)

    Li, Yuan; Cai, Xiaojiao; Guo, Jingwei; Zhou, Shimin; Na, Ping

    2015-01-01

    A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N2 adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO2 in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M-OH) played an important role in the adsorption of As(III)

  6. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Science.gov (United States)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-10-01

    This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of sbnd SO3H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  7. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Science.gov (United States)

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. PMID:26686073

  8. In-situ monitoring of biologically active solar UV-B radiation: a new biosensor of vitamin D synthetic capacity

    Science.gov (United States)

    Terenetskaya, Irina P.; Gvozdovskyy, I. A.

    2001-06-01

    The new biosensor of vitamin D synthetic capacity of solar/artificial UV-B radiation is based on liquid crystal with provitamin D dopant. Nematic liquid crystals (LC-805, ZLI-1695) are converted into induced cholesteric phase using photosensitive steroid biomolecules of provitamin D3 (7- dehydrocholesterol). During UV exposure remarkable decrease in the number of the Cano-Grandjean stripes has been observed in the wedge-like cell as a result of UV initiated photoisomerization of provitamin D3 that changed helical twisting power of the dopant molecules.

  9. Effect of exogenous nitric oxide on antioxidant system of Taxus chinensis var. mairei under UV-B stress%外源NO对UV-B胁迫下红豆杉抗氧化系统的影响

    Institute of Scientific and Technical Information of China (English)

    李德文; 李美兰; 于景华; 祖元刚

    2012-01-01

    为探讨一氧化氮(nitric oxide,NO)对紫外线-B( UV-B)辐射胁迫下植物抗氧化系统的影响,以盆栽5年生南方红豆杉(Taxus chinensis var.mairei)幼苗为材料,硝普钠(sodium nitroprusside,SNP)为外源NO供体,设置CK(对照)、SNP(+0.1 mmol·L-1SNP)、UV-B(+4.22 kJ·m-2·d-1 UV-B)及UV-B+ SNP(+0.1 mmol·L-1 SNP+4.22 kJ·m-2·d-1UV-B)4个处理,研究外源NO对UV-B胁迫下南方红豆杉幼苗针叶过氧化氢(H2O2)含量、脂质过氧化程度及抗氧化物质含量的影响.结果表明:UV-B胁迫显著提高了南方红豆杉针叶H2O2及MDA含量(P<0.05),施加外源NO降低UV-B胁迫下针叶H2O2及MDA含量,提高紫杉醇、类黄酮及类胡萝卜素等抗氧化物质含量(P<0.05);各处理对抗氧化酶活性影响不同,SNP处理显著提高针叶中CAT和POD活性(P<0.05),UV-B和SNP+UV-B处理均提高针叶中POD活性,降低CAT活性和APX活性(P<0.05).本研究证实,外源NO可提高UV-B胁迫下植物抗氧化酶活性和抗氧化物质含量,降低其H2O2含量及脂质过氧化程度,从而在一定程度上缓解UV-B胁迫对植物的伤害.%In order to approach the effect of nitric oxide ( NO) on the plant antioxidant system under the stress of UV-B radiation, a pot experiment with 5-year old Taxus chinensis var. mairei seedlings was conducted to study the effect of sodium nitroprusside (SNP) as an exogenous NO donor on" the seedlings leaf antioxidant system under elevated UV-B radiation. Four treatments, i. e. , CK (control) , SNP (+ 0..1 mmol · L-1 of SNP) , UV-B ( +4.22 kJ·m-2 · d-1 UV-B), and UV-B+SNP ( + 0. 1 mmol · L-1 of SNP + 4. 22 kJ · m- · d-1 UV-B) , were installed, and the leaf hydrogen peroxide ( H2 O2) , malondialdehyde ( MD A ) , and antioxidant concentrations were measured. Elevated UV-B radiation increased the leaf H2O2 and MDA concentrations significantly (P<0.05) , while exogenous NO addition decreased the H2O2 and MDA concentrations and increased the taxol, flavonoids

  10. Poly(ethylene oxide) Solubilization in Reverse Microemulsion: Conductivity and UV-Vis Spectra Studies

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of poly (ethylene oxide) (PEO) on the w/o microemulsion is studied. The addition of PEO induces a decrease of attractive interaction between droplets in reverse microemulsion. Due to the absence of interaction between cationic surfactant and neutral polymer, the polymer molecules are forced into the interior of water core, avoiding the interfacial region.

  11. Fate of citalopram during water treatment with O3, ClO2, UV and fenton oxidation

    DEFF Research Database (Denmark)

    Hörsing, Maritha; Kosjek, Tina; Andersen, Henrik Rasmus;

    2012-01-01

    In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a...... resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative...

  12. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Science.gov (United States)

    2012-01-01

    In the present study, the decolorization and degradation of Reactive Black 5 (RB5) azo dye was investigated by biological, photocatalytic (UV/TiO2) and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2). COD (chemical oxygen demand) was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L). With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings) was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5), absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings. PMID:23369285

  13. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Narjes Jafari

    2012-12-01

    Full Text Available In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes.Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation ofthe aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand wasnot detectable after complete decolorization of 50 mg/L RB5 solution. However,photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 hillumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely,biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60 % COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  14. Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2 -Tio2/Uv

    Directory of Open Access Journals (Sweden)

    Jafari Narjes

    2012-12-01

    Full Text Available Abstract In the present study, the decolorization and degradation of Reactive Black 5 (RB5 azo dye was investigated by biological, photocatalytic (UV/TiO2 and combined processes. Application of Candida tropicalis JKS2 in treatment of the synthetic medium containing RB5 indicated complete decolorization of the dye with 200 mg/L in less than 24 h. Degradation of the aromatic rings, resulting from the destruction of the dye, did not occur during the biological treatment. Mineralization of 50 mg/L RB5 solution was obtained after 80 min by photocatalytic process (in presence of 0.2 g/L TiO2. COD (chemical oxygen demand was not detectable after complete decolorization of 50 mg/L RB5 solution. However, photocatalytic process was not effective in the removal of the dye at high concentrations (≥200 mg/L. With 200 mg/L concentration, 74.9% of decolorization was achieved after 4 h illumination under photocatalytic process and the absorbance peak in UV region (attributed to aromatic rings was not completely removed. A two-step treatment process, namely, biological treatment by yeast followed by photocatalytic degradation, was also assessed. In the combined process (with 200 mg/L RB5, absorbance peak in UV region significantly disappeared after 2 h illumination and about 60% COD removal was achieved in the biological step. It is suggested that the combined process is more effective than the biological and photocatalytic treatments in the remediation of aromatic rings.

  15. Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation.

    Science.gov (United States)

    Nagel-Hassemer, Maria Eliza; Carvalho-Pinto, Catia Regina S; Matias, William Gerson; Lapolli, Flávio Rubens

    2011-12-01

    This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent. PMID:22439575

  16. UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production

    OpenAIRE

    Wood, Simon R.; Berwick, Marianne; Ley, Ronald D.; Walter, Ronald B.; Setlow, Richard B.; Timmins, Graham S.

    2006-01-01

    Controversy continues both as to which wavelengths of sunlight cause melanoma and the mechanisms by which these different wavelengths act. Direct absorption of UVB by DNA is central in albino animal models, but melanin-pigmented models have shown major contributions by wavelengths longer than UVB that are thought to be mediated by photosensitized oxidant production. The only model for which the action spectrum of melanoma causation is known is a genetically melanoma-susceptible specific cross...

  17. Arsenic Transformation Predisposes Human Skin Keratinocytes To UV-induced DNA Damage Yet Enhances Their Survival Apparently by Diminishing Oxidant Response

    OpenAIRE

    Sun, Yang(Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China); Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark o...

  18. Determination of Nitric Oxide-Derived Nitrite and Nitrate in Biological Samples by HPLC Coupled to Nitrite Oxidation

    OpenAIRE

    Wu, Anguo; Duan, Tingting; Tang, Dan; Xu, Youhua; Feng, Liang; Zheng, Zhaoguang; Zhu, Jiaxiao; Wang, Rushang; Zhu, Quan

    2013-01-01

    Nitrite and nitrate are main stable products of nitric oxide, a pivotal cellular signaling molecule, in biological fluids. Therefore, accurate measurement of the two ions is profoundly important. Nitrite is difficult to be determined for a larger number of interferences and unstable in the presence of oxygen. In this paper, a simple, cost-effective and accurate HPLC method for the determination of nitrite and nitrate was developed. On the basis of the reaction that nitrite is oxidized rapidly...

  19. New Conjugated Benzothiazole-N-oxides: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Pavlína Foltínová

    2009-12-01

    Full Text Available Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol – type condensation reactions between 2-methylbenzothiazole–N-oxide and para-substituted benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull molecule properties. Four compounds were tested against various bacterial strains as well as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared analogous benzothiazolium salts, only weak activity was recorded.

  20. Introduction to Oxidative Stress in Biomedical and Biological Research

    OpenAIRE

    Michael Breitenbach; Peter Eckl

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field.

  1. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    OpenAIRE

    Nelson, Bryant C.; Monique E. Johnson; Walker, Marlon L.; Riley, Kathryn R.; Christopher M. Sims

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where o...

  2. Facile fabrication of ZnO nanowire-based UV sensors by focused ion beam micromachining and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ye, Chi-Chao; Chen, Yi-Pei [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Yu, Hua-Zhong [Department of Chemistry and 4D Labs, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada)

    2013-10-01

    ZnO nanowire UV sensors were fabricated by using focused ion beam micromachining and thermal oxidation of metallic zinc microstructures. A metallic zinc “micro-strip” was first deposited by thermal evaporation with the aid of a shadow mask on SiO{sub 2}/Si substrate. A 3-μm wide “trench” was cut across the metallic strip by focused ion beam; the subsequent thermal oxidation at 450 °C results in the growth of single crystalline [110] ZnO nanowires across the trench. The ZnO nanowire sensor was completed by patterning silver ohmic contacts on the two ends of the metallic strip. Our photoluminescence (PL) spectroscopic studies show that the room temperature emission of the ZnO nanowire is due to the recombination of free exciton and free to bound transition, while at 10 K, the PL is dominated by the recombination of surface excitons. Irradiated at 300 nm, the rise time, decay time and normalized photoconductive gain of the ZnO sensor were determined to be 200 ms, 400 ms and 3 × 10{sup −6} m{sup 2}V{sup −1}, respectively. The fast sensor response is due to the high crystalline quality of the nanowire, which facilitates a rapid equilibrium of absorption and desorption of molecular oxygen on the surface.

  3. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  4. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest

    Directory of Open Access Journals (Sweden)

    Yasui Akira

    2005-10-01

    Full Text Available Abstract Background UV-induced damage can induce apoptosis or trigger DNA repair mechanisms. Minor DNA damage is thought to halt the cell cycle to allow effective repair, while more severe damage can induce an apoptotic program. Of the two major types of UV-induced DNA lesions, it has been reported that repair of CPD, but not 6-4PP, abrogates mutation. To address whether the two major forms of UV-induced DNA damage, can induce differential biological effects, NER-deficient cells containing either CPD photolyase or 6-4 PP photolyase were exposed to UV and examined for alterations in cell cycle and apoptosis. In addition, pTpT, a molecular mimic of CPD was tested in vitro and in vivo for the ability to induce cell death and cell cycle alterations. Methods NER-deficient XPA cells were stably transfected with CPD-photolyase or 6-4PP photolyase to specifically repair only CPD or only 6-4PP. After 300 J/m2 UVB exposure photoreactivation light (PR, UVA 60 kJ/m2 was provided for photolyase activation and DNA repair. Apoptosis was monitored 24 hours later by flow cytometric analysis of DNA content, using sub-G1 staining to indicate apoptotic cells. To confirm the effects observed with CPD lesions, the molecular mimic of CPD, pTpT, was also tested in vitro and in vivo for its effect on cell cycle and apoptosis. Results The specific repair of 6-4PP lesions after UVB exposure resulted in a dramatic reduction in apoptosis. These findings suggested that 6-4PP lesions may be the primary inducer of UVB-induced apoptosis. Repair of CPD lesions (despite their relative abundance in the UV-damaged cell had little effect on the induction of apoptosis. Supporting these findings, the molecular mimic of CPD, (dinucleotide pTpT could mimic the effects of UVB on cell cycle arrest, but were ineffective to induce apoptosis. Conclusion The primary response of the cell to UV-induced 6-4PP lesions is to trigger an apoptotic program whereas the response of the cell to CPD

  5. Study of reactive blue 171 dye degradation in hybrid system of UV/H2O2 & SBAR

    Directory of Open Access Journals (Sweden)

    leila Moradi Pasand

    2014-03-01

    Conclusion: According to the results, because of complexity of dye structure, biological system was not able to remove the dye as efficient as hybrid system of advanced oxidation processes UV/H2O2 with SBAR.

  6. High quality reduced graphene oxide flakes by fast kinetically controlled and clean indirect UV-induced radical reduction

    Science.gov (United States)

    Flyunt, Roman; Knolle, Wolfgang; Kahnt, Axel; Halbig, Christian E.; Lotnyk, Andriy; Häupl, Tilmann; Prager, Andrea; Eigler, Siegfried; Abel, Bernd

    2016-03-01

    This work highlights a surprisingly simple and kinetically controlled highly efficient indirect method for the production of high quality reduced graphene oxide (rGO) flakes via UV irradiation of aqueous dispersions of graphene oxide (GO), in which the GO is not excited directly. While the direct photoexcitation of aqueous GO (when GO is the only light-absorbing component) takes several hours of reaction time at ambient temperature (4 h) leading only to a partial GO reduction, the addition of small amounts of isopropanol and acetone (2% and 1%) leads to a dramatically shortened reaction time by more than two orders of magnitude (2 min) and a very efficient and soft reduction of graphene oxide. This method avoids the formation of non-volatile species and in turn contamination of the produced rGO and it is based on the highly efficient generation of reducing carbon centered isopropanol radicals via the reaction of triplet acetone with isopropanol. While the direct photolysis of GO dispersions easily leads to degradation of the carbon lattice of GO and thus to a relatively low electric conductivity of the films of flakes, our indirect photoreduction of GO instead largely avoids the formation of defects, keeping the carbon lattice intact. Mechanisms of the direct and indirect photoreduction of GO have been elucidated and compared. Raman spectroscopy, XPS and conductivity measurements prove the efficiency of the indirect photoreduction in comparison with the state-of-the-art reduction method for GO (hydriodic acid/trifluoroacetic acid). The rapid reduction times and water solvent containing only small amounts of isopropanol and acetone may allow easy process up-scaling for technical applications and low-energy consumption.This work highlights a surprisingly simple and kinetically controlled highly efficient indirect method for the production of high quality reduced graphene oxide (rGO) flakes via UV irradiation of aqueous dispersions of graphene oxide (GO), in which the

  7. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters

    Science.gov (United States)

    Sigaev, Vladimir N.; Golubev, Nikita V.; Ignat'eva, Elena S.; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga2O3 nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga2O3. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga2O3 single-crystals and tailored by the nanocrystal size.Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV

  8. Role of biologically assisted pyrrhotite oxidation in acid mine drainage

    International Nuclear Information System (INIS)

    Water contaminated by acidic mine drainage (AMD) from base metal tailings and waste rock is a serious environmental problem. Previous studies have focused on pyrite as the principal acid producing mineral. In this work, the significance of pyrrhotite (Fe1-xS) oxidation, both chemical and biochemical, on the acid generation process is discussed. Chemical and biochemical kinetic studies of pyrrhotite oxidation were conducted in pneumatically mixed, internal split flow reactors. Controlling variables included the specific surface area, temperature, pH, partial pressure of oxygen, and co-oxidation with pyrite. Bacterial oxidations, using Thiobacillus ferrooxidans as inoculant. included the inherent metabolic rate and cell sorption equilibria on the ore surface. Mathematical models were derived to couple the kinetics with oxygen mass transfer. The mass transport model combined mechanisms based on the shrinking radius (fine particles) and the shrinking reactive front (massive sulfides) concepts. The objective of the research was the application of fundamental kinetic and physical data to field conditions for simulating both the rate of mineral oxidation and simulating pore water quality

  9. High quality reduced graphene oxide flakes by fast kinetically controlled and clean indirect UV-induced radical reduction.

    Science.gov (United States)

    Flyunt, Roman; Knolle, Wolfgang; Kahnt, Axel; Halbig, Christian E; Lotnyk, Andriy; Häupl, Tilmann; Prager, Andrea; Eigler, Siegfried; Abel, Bernd

    2016-04-14

    This work highlights a surprisingly simple and kinetically controlled highly efficient indirect method for the production of high quality reduced graphene oxide (rGO) flakes via UV irradiation of aqueous dispersions of graphene oxide (GO), in which the GO is not excited directly. While the direct photoexcitation of aqueous GO (when GO is the only light-absorbing component) takes several hours of reaction time at ambient temperature (4 h) leading only to a partial GO reduction, the addition of small amounts of isopropanol and acetone (2% and 1%) leads to a dramatically shortened reaction time by more than two orders of magnitude (2 min) and a very efficient and soft reduction of graphene oxide. This method avoids the formation of non-volatile species and in turn contamination of the produced rGO and it is based on the highly efficient generation of reducing carbon centered isopropanol radicals via the reaction of triplet acetone with isopropanol. While the direct photolysis of GO dispersions easily leads to degradation of the carbon lattice of GO and thus to a relatively low electric conductivity of the films of flakes, our indirect photoreduction of GO instead largely avoids the formation of defects, keeping the carbon lattice intact. Mechanisms of the direct and indirect photoreduction of GO have been elucidated and compared. Raman spectroscopy, XPS and conductivity measurements prove the efficiency of the indirect photoreduction in comparison with the state-of-the-art reduction method for GO (hydriodic acid/trifluoroacetic acid). The rapid reduction times and water solvent containing only small amounts of isopropanol and acetone may allow easy process up-scaling for technical applications and low-energy consumption. PMID:26984451

  10. Electrode patterning and annealing processes of aluminum-doped zinc oxide thin films using a UV laser system

    Science.gov (United States)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau

    2013-01-01

    This study presents the hybrid processing (patterning and annealing) of aluminum-doped zinc oxide (AZO) films in a one-step process using a diode-pumped-solid-state (DPSS) ultraviolet (UV) laser system. The focused laser beam had a diameter of 30 μm and the positive defocused laser beam had a diameter of 1 mm. Both beams were adjusted using a UV laser-processing system. AZO films were deposited on Corning Eagle 2000® optical glass sheets with a thickness of 0.7 mm using a sputtering method. The deposited films were approximately 200 nm. The optoelectronic properties of machined (patterning and annealing) AZO films depend on the laser pulse frequency and galvanometer scanning speed. The surface morphology, roughness, optical transmittance, and resistivity of the films after the laser patterning and annealing processes were measured using a three-dimensional confocal laser scanning microscope, a field emission scanning electron microscope (FE-SEM), a spectrophotometer, and a four-point probe instrument, respectively. Experimental results indicate that the ablation depth increased as the pulse repetition frequency increased. The ablation depth also decreased as the galvanometric scanning speed increased. The transmittance spectra of the film changes slightly after laser annealing, and the average transmittance in the visible region is approximately 83%. All resistivity values of laser-patterned and annealed AZO films decreased significantly. The structural properties grain size was calculated firm the X-ray diffraction (XRD) spectra using the Scherrer equation that increased from 7.4 nm to 12 nm as the annealing scanning speed decreased from 800 mm/s to 400 mm/s. The root mean square (RMS) values of annealed AZO films treated with a laser scanning speed of 500 mm/s with a pulse repetition frequency of 40 kHz, 55 kHz, and 70 kHz were 1.1 nm, 1.2 nm, and 1.8 nm, respectively.

  11. Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation

    Science.gov (United States)

    Arslan-Alaton, Idil; Olmez-Hanci, Tugba; Genç, Bora; Dursun, Duygu

    2013-01-01

    This study explored the potential use of a sulfate radical (SO·−4)-based photochemical oxidation process to treat the commercial nonionic surfactant octylphenol polyethoxylate (OPPE) Triton™ X-45. For this purpose, the effect of initial S2O2−8 (0–5.0 mM) and OPPE (10–100 mg/L) concentrations on OPPE and its organic carbon content (TOC) removal were investigated at an initial reaction pH of 6.5. Results indicated that very fast OPPE degradation (100%) accompanied with high TOC abatement rates (90%) could be achieved for 10 and 20 mg/L aqueous OPPE at elevated S2O2−8 concentrations (≥2.5 mM). S2O2−8/UV-C treatment was still capable of complete OPPE removal up to an initial concentration of 40 mg/L in the presence of 2.5 mM S2O2−8. On the other hand, TOC removal efficiencies dropped down to only 40% under the same reaction conditions. S2O2−8/UV-C oxidation of OPPE was also compared with the relatively well-known and established H2O2/UV-C oxidation process. Treatment results showed that the performance of S2O2−8/UV-C was comparable to that of H2O2/UV-C oxidation for the degradation and mineralization of OPPE. In order to elucidate the relative reactivity and selectivity of SO·−4 and HO·, bimolecular reaction rate coefficients of OPPE with SO·−4 and HO· were determined by employing competition kinetics with aqueous phenol (47 μM) selected as the reference compound. The pseudo-first-order abatement rate coefficient obtained for OPPE during S2O2−8/UV-C oxidation (0.044 min−1) was found to be significantly lower than that calculated for phenol (0.397 min−1). In the case of H2O2/UV-C oxidation however, similar pseudo-first-order abatement rate coefficients were obtained for both OPPE (0.087 min−1) and phenol (0.140 min−1). From the kinetic study, second-order reaction rate coefficients for OPPE with SO·−4 and HO· were determined as 9.8 × 108 M−1 s−1 and 4.1 × 109 M−1 s−1, respectively. The kinetic study also revealed

  12. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter;

    2008-01-01

    In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting in...... accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... analysis. Furthermore, the effect of varying air load and water exchange was investigated. Absence of NOB in many filters was explained by the inhibitory effect of Free Ammonia (FA). When first established, NOB induced a self-perpetuating effect through oxidation of nitrite which allowed increased AOB...

  13. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

    Science.gov (United States)

    Baek, Beomyeol; Lee, Su Hee; Lim, Hye-Won

    2016-01-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  14. The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides

    Directory of Open Access Journals (Sweden)

    Hadnađev-Kostić Milica S.

    2012-01-01

    Full Text Available Layered double hydroxides (LDHs have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH and thermal treated samples powder X-ray diffraction (XRD, scanning electron microscopy (SEM, electron dispersive spectroscopy (EDS, nitrogen adsorption-desorption were used. The decomposition of azodye, methylene blue was chosen as photocatalytic test reaction. The study showed that the ZnAl mixed oxide obtained by thermal decomposition of ZnAl LDH has stable activity in the broader UV light irradiation range characterizing the selected region. Photocatalytic activity could be mainly attributed to the ZnO phase, detected both in LDH and thermally treated samples. The study showed that the ZnAl mixed oxide obtained by the calcination of ZnAl LDH has a stable activity within the measured UV light irradiation range; whereas the parent ZnAl LDH catalyst did not perform satisfactory when low UV irradiation intensity is implied.

  15. Iodine Oxide Thermite Reactions: Physical and Biological Effects

    Science.gov (United States)

    Russell, Rod; Pantoya, Michelle; Bless, Stephan; Clark, William

    2009-06-01

    We investigated the potential for some thermite-like material reactions to kill bacteria spores. Iodine oxides and silver oxides react vigorously with metals like aluminum, tantalum, and neodymium. These reactions theoretically produce temperatures as high as 8000K, leading to vaporization of the reactants, producing very hot iodine and/or silver gases. We performed a series of computations and experiments to characterize these reactions under both quasi-static and ballistic impact conditions. Criteria for impact reaction were established. Measurements of temperature and pressure changes and chemical evolution will be reported. Basic combustion characterizations of these reactions, such as thermal equilibrium analysis and reaction propagation rates as well as ignition sensitivity, will be discussed. Additionally, testing protocols were developed to characterize the biocidal effects of these reactive materials on B. subtilis spores. The evidence from these tests indicates that these reactions produce heat, pressure, and highly biocidal gases.

  16. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium – the contribution of the oxidation effect

    Directory of Open Access Journals (Sweden)

    Wurihan

    2015-05-01

    Full Text Available Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  17. Oxidation of methane by a biological dicopper centre.

    Science.gov (United States)

    Balasubramanian, Ramakrishnan; Smith, Stephen M; Rawat, Swati; Yatsunyk, Liliya A; Stemmler, Timothy L; Rosenzweig, Amy C

    2010-05-01

    Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol. Current processes to activate the strong C-H bond (104 kcal mol(-1)) in methane require high temperatures, are costly and inefficient, and produce waste. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst. There are two types of MMO. Soluble MMO (sMMO) is expressed by several strains of methanotroph under copper-limited conditions and oxidizes methane with a well-characterized catalytic di-iron centre. Particulate MMO (pMMO) is an integral membrane metalloenzyme produced by all methanotrophs and is composed of three subunits, pmoA, pmoB and pmoC, arranged in a trimeric alpha(3)beta(3)gamma(3) complex. Despite 20 years of research and the availability of two crystal structures, the metal composition and location of the pMMO metal active site are not known. Here we show that pMMO activity is dependent on copper, not iron, and that the copper active site is located in the soluble domains of the pmoB subunit rather than within the membrane. Recombinant soluble fragments of pmoB (spmoB) bind copper and have propylene and methane oxidation activities. Disruption of each copper centre in spmoB by mutagenesis indicates that the active site is a dicopper centre. These findings help resolve the pMMO controversy and provide a promising new approach to developing environmentally friendly C-H oxidation catalysts. PMID:20410881

  18. Biological behavior of mixed sodium and plutonium oxide aerosols

    International Nuclear Information System (INIS)

    New risks from sodium cooled fast breeders are due to solubilization of plutonium dioxide by sodium oxides. The resulting chemical forms of higher valency stage are more transportable than PuO2. Bone burden is about 100 times as high as observed with PuO2. Diffusion is fast, therapy must be started within 6 h. DTPA is still effective, however chelation efficiency is lower than in the case of Pu IV-DTPA chelation

  19. Oxidation of methane by a biological dicopper center

    OpenAIRE

    Balasubramanian, Ramakrishnan; Smith, Stephen M.; Rawat, Swati; Yatsunyk, Liliya A.; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2010-01-01

    Vast world reserves of methane gas are underutilized as a feedstock for production of liquid fuels and chemicals due to the lack of economical and sustainable strategies for selective oxidation to methanol1. Current processes to activate the strong C–H bond (104 kcal/mol) in methane require high temperatures, are costly and inefficient, and produce waste2. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs...

  20. Planar square spiral inductor generated through indium-tin oxide film removal by using UV laser ablation

    Science.gov (United States)

    Yang, Ching-Ching; Hung, Min-Wei; Tsai, Hsin-Yi; Chuang, Wen-Ning; Huang, Kuo-Cheng

    2016-04-01

    Induction efficiency is the evaluation index for measuring the induced voltage of a wireless-sensing module, and this index is affected by the electric properties, shape, number, and position of inductances. In this study, indium-tin oxide with a thickness of 30 nm was coated on a glass substrate to fabricate a planar square spiral inductor (PSSI), and patterns were then ablated using a UV laser with a wavelength of 355 nm. Single and array patterns with different dimensions were designed to investigate the variation of induction efficiency. The results indicated that the 3 × 3 PSSI array ablated at a frequency of 100 kHz and that a scanning speed of 1000 mm/s had the highest induction efficiency of 6.4 %, which was 2.4 % higher than that of PSSIs that ablated at other processing parameters. The induction efficiency could be enhanced, but the uniformity of sensing decreased as the array number decreased, and the highest induction efficiency of 10 % and highest variation of 7.2 % were caused by position deviation, which was obtained from a single pattern. In addition, the induction efficiency of 3.2 % was obtained from the 4 × 4 array pattern, and the variation caused by the position was controlled to less than 0.8 %. The results showed the specific relationship among the dimensions, number of patterns, and induction efficiency. The designed inductances can be applied to micro wireless-sensing modules in the future.

  1. The oxidation of PET track-etched membranes by hydrogen peroxide as an effective method to increase efficiency of UV-induced graft polymerization

    Directory of Open Access Journals (Sweden)

    Il'ya Korolkov

    2015-12-01

    Full Text Available In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate (PET TeMs oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid (PAA chains inside the membrane nanochannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  2. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    OpenAIRE

    Hey, G.; Grabic, R.; Ledin, A.; la Cour Jansen, J; Andersen, H R

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the l...

  3. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.

    Science.gov (United States)

    Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-12-15

    Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. PMID:25269106

  4. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  5. Improved biological performance of magnesium by micro-arc oxidation.

    Science.gov (United States)

    Ma, W H; Liu, Y J; Wang, W; Zhang, Y Z

    2015-03-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  6. Biological degradation of partially oxidated constituents of stabilized sapropel; Biologischer Abbau teiloxidierter Inhaltsstoffe stabilisierter Faulschlaemme

    Energy Technology Data Exchange (ETDEWEB)

    Scheminski, A.; Krull, R.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik

    1999-07-01

    Partial oxidation of sapropel with ozone destroys the cell walls of microorganisms in sludge and releases the cell constituents. Substances that are not biologically degraded because of the size or structure of their molecules are transformed into smaller, water-soluble and biologically degradable fractions by the reaction with ozone. The experiments aim to render the partially oxidated sewage sludge constituents highly biologically degradable using a minimum of oxidation agents. For the experiments described, stabilized sapropels with low biological activity are used. Hence the ozone is mainly used for the partial oxidation of recalcitrant constituents. (orig.) [German] Durch partielle Oxidation von Faulschlaemmen mit Ozon werden die Zellwaende der Mikroorganismen im Schlamm zerstoert und die Zellinhaltsstoffe freigesetzt. Dabei werden Substanzen, die aufgrund ihrer Molekuelgroesse oder -struktur biologisch nicht abgebaut werden, durch die Reaktion mit Ozon in kleinere, wasserloesliche und biologisch abbaubare Bruchstuecke ueberfuehrt. Ziel der Versuche ist es, durch den Einsatz moeglichst geringer Mengen an Oxidationsmitteln eine hohe biologische Abbaubarkeit der teiloxidierten Klaerschlamminhaltsstoffe zu erreichen. Fuer die hier vorgestellten Experimente wurden stabilisierte Faulschlaemme mit geringer biologischer Aktivitaet eingesetzt. Dadurch wird das Ozon vorwiegend zur Teiloxidation recalcitranter Inhaltsstoffe genutzt. (orig.)

  7. Electrochemical Oxidation Using BDD Anodes Combined with Biological Aerated Filter for Biotreated Coking Wastewater Treatment

    OpenAIRE

    Wang, C.R.; Hou, Z. F.; M. R. Zhang; J. Qi; Wang, J.

    2015-01-01

    Coking wastewater is characterized by poor biodegradability and high microorganism toxicity. Thus, it is difficult to meet Grade I of Integrated Wastewater Discharge Standard of China by biological treatment technology; specifically, COD cannot meet above standard due to containing refractory organics. A novel coupling reactor, electrochemical oxidation using BDD anodes and biological aerated filter (BAF), has been developed for carbon and nitrogen removal from biotreated coking wastewater, f...

  8. Influence of Lipid Oxidization on Structures and Functions of Biological Membranes

    OpenAIRE

    Korytowski, Agatha Anna

    2016-01-01

    The primary aim of this thesis is to clarify how the structures and functions of biological membranes are influenced by the oxidative damage mediated by free radicals. As a precisely defined model systems, artificially reconstituted lipid membranes (Langmuir monolayers, vesicles, supported membranes, multilamellar membranes) incorporating two oxidized phospholipids bearing aldehyde or carboxyl groups at the end of truncated sn-2 acyl chains were fabricated. By the combination of various exper...

  9. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates.

    Science.gov (United States)

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2014-01-01

    Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates-RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80%) and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton's reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals. PMID:25436152

  10. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  11. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    International Nuclear Information System (INIS)

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD5 and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  12. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 — Comparison of transformation products, ready biodegradability and toxicity

    International Nuclear Information System (INIS)

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe2+/H2O2 process was optimized varying the pH, Fe2+ and H2O2 concentrations by means of the Box–Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe2+/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. - Highlights: • Full primary elimination of 5-FU was achieved in all the treatments. • None of the processes were able to fully mineralize 5-FU. • Six transformation products (TPs) were identified during

  13. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} — Comparison of transformation products, ready biodegradability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbeck, Carlos Alexandre, E-mail: lutterbeck@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); Wilde, Marcelo Luís, E-mail: wilde@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Baginska, Ewelina, E-mail: ewelina.baginska@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Leder, Christoph, E-mail: cleder@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Machado, Ênio Leandro, E-mail: enio@unisc.br [Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); and others

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2}. Prescreening experiments varying the H{sub 2}O{sub 2} and TiO{sub 2} concentrations were performed in order to set the best catalyst concentrations in the UV/H{sub 2}O{sub 2} and UV/TiO{sub 2} experiments, whereas the UV/Fe{sup 2+}/H{sub 2}O{sub 2} process was optimized varying the pH, Fe{sup 2+} and H{sub 2}O{sub 2} concentrations by means of the Box–Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H{sub 2}O{sub 2} treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H{sub 2}O{sub 2} treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. - Highlights: • Full primary elimination of 5-FU was

  14. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation

    International Nuclear Information System (INIS)

    The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H2O2 in the presence of filtered ultraviolet (UV) irradiation (UV/H2O2) to generate wavelengths above 295 nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H2O2 was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295 nm filtered UV irradiation (without H2O2), while MS2 was very resistant. Addition of H2O2 at 25 mg/l in the presence of filtered UV irradiation over a 15 min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H2O2 was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation

  15. Comparison of UV/hydrogen peroxide, potassium ferrate(VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW).

    Science.gov (United States)

    Wang, Chengjin; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Singh, Arvinder; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-01

    The efficiency of three different oxidation processes, UV/H2O2 oxidation, ferrate(VI) oxidation, and ozonation with and without hydroxyl radical (OH) scavenger tert-butyl alcohol (TBA) on the removal of organic compounds from oil sands process-affected water (OSPW) was investigated and compared. The removal of aromatics and naphthenic acids (NAs) was explored by synchronous fluorescence spectra (SFS), ion mobility spectra (IMS), proton and carbon nuclear magnetic resonance ((1)H and (13)C NMR), and ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC TOF-MS). UV/H2O2 oxidation occurred through radical reaction and photolysis, transforming one-ring, two-ring, and three-ring fluorescing aromatics simultaneously and achieving 42.4% of classical NAs removal at 2.0 mM H2O2 and 950 mJ/cm(2) UV dose provided with medium pressure mercury lamp. Ferrate(VI) oxidation exhibited high selectivity, preferentially removing two-ring and three-ring fluorescing aromatics, sulfur-containing NAs (NAs + S), and NAs with high carbon and high hydrogen deficiency. At 2.0 mM Fe(VI), 46.7% of classical NAs was removed. Ozonation achieved almost complete removal of fluorescing aromatics, NAs + S, and classical NAs (NAs with two oxygen atoms) at the dose of 2.0 mM O3. Both molecular ozone reaction and OH reaction were important pathways in transforming the organics in OSPW as supported by ozonation performance with and without TBA. (1)H NMR analyses further confirmed the removal of aromatics and NAs both qualitatively and quantitatively. All the three oxidation processes reduced the acute toxicity towards Vibrio fischeri and on goldfish primary kidney macrophages (PKMs), with ozonation being the most efficient. PMID:27232992

  16. The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides

    OpenAIRE

    Hadnađev-Kostić Milica S.; Vulić Tatjana J.; Zorić Dmitar B.; Marinković-Nedučin Radmila P.

    2012-01-01

    Layered double hydroxides (LDHs) have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH...

  17. Metabolic oxidative stress in cancer biology and therapy

    International Nuclear Information System (INIS)

    Cancer cells (relative to normal cells) exhibit increased glycolysis and pentose cycle activity. These metabolic alterations were thought to arise from damage to the respiratory mechanism and cancer cells were thought to compensate for this defect by increasing glycolysis (Science 132:309). In addition to its role in ATP production, glucose metabolism results in the formation of pyruvate and NADPH which both play an integral role in peroxide detoxification (Ann. NY Acad. Sci. 899:349). Recently, cancer cells have been shown to have enhanced susceptibility to glucose deprivation-induced oxidative stress, relative to normal cells, that is mediated by reactive oxygen species (ROS; Biochem.J. 418:29-37). These results support the hypothesis that cancer cells may have a defect in mitochondrial respiration leading to increased steady-state levels of ROS (i.e., O2 and H2O2) and glucose metabolism may be increased to provide reducing equivalents to compensate for this defect. The application of these findings to developing new combined modality cancer therapy protocols will be discussed. (author)

  18. In-situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; ZHAO Zhen; XU ChunMing; DUAN AiJun; JIANG GuiYuan; GAO JinSen; LIN WenYong; WACHS Israel E.

    2008-01-01

    UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vana- dium oxide catalysts. The real time reaction status of soot combustion over these catalysts was de-tected by in-situ UV-Raman spectroscopy. The results indicate that TiO= undergoes a crystalline phase transformation from anatase to futile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported va-nadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen com-plexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the pro-duction of SOC.

  19. Novel Insights into the Electrochemical Detection of Nitric Oxide in Biological Systems

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Hrbáč, J.; Kuchta, R.; Kadlec, J.; Kubala, Lukáš

    2014-01-01

    Roč. 60, č. 1 (2014), s. 8-12. ISSN 0015-5500 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GP13-40882P Institutional support: RVO:68081707 Keywords : nitric oxide * electrochemical detector * biological systems Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  20. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.

    2016-01-01

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S, thiol

  1. Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration

    NARCIS (Netherlands)

    Beek, van C.G.E.M.; Hiemstra, T.; Hofs, B.; Nederlof, M.M.; Paassen, van J.A.M.; Reijnen, G.K.

    2012-01-01

    Homogeneous, heterogeneous and biological oxidation may precipitate iron(II) as iron(III) hydroxides. In this paper we evaluate the conditions under which each of these processes is dominant in rapid sand filtration (RSF). It is demonstrated that in the presence of iron(III) hydroxide precipitates h

  2. Abundance of iron-oxidizing thiobacilli and biological sulfur oxidation potential from soil impacted by coal and coal refuse piles

    International Nuclear Information System (INIS)

    A study was conducted to assess the abundance of iron-oxidizing bacteria and biological sulfur oxidation potential from soil impacted by coal and coal refuse from two coal-burning electric power facilities located at the US Department of Energy's Savannah River Site (Aiken, S.C.) and the South Carolina Electric and Gas Site at Beech Island, S.C. Significantly higher most probable number (MPN) counts of iron-oxidizing bacteria were obtained from samples collected at the confluence of a coal storage runoff containment basin, a coal reject (refuse) pile, and an adjacent wetland at the Savannah River Site. Significant differences in pH, sulfate-S, ferrous- and ferric-iron were also obtained between sampling locations. No significant differences in ferric/ferrous ratios were determined. These ratios however, exceeded a value of 2.0 when sample pH values were less than 4.5. Under optimal conditions, biological thiosulfate-S oxidation potentials (in vitro) showed a 4- to 7-day lag in the appearance of sulfate-S, and a final pH (after twenty-four days of perfusion) of 1.97 to 3.90. These results indicate that contamination of subsurface water by acidic leachate derived from thionic bacterial activity will occur if coal and coal refuse piles are not confined by an impermeable surface or containment facility. 19 refs., 2 figs., 7 tabs

  3. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  4. Degradation of antipyrine by UV, UV/H2O2 and UV/PS

    International Nuclear Information System (INIS)

    Highlights: • The antipyrine decomposition exhibited a pseudo-first-order kinetics pattern well. • The kobs with irradiance or oxidant dosage presented a linear relationship well. • The kobs exhibit an exponential trend as a function of [AP]0 for three systems. • UV/H2O2 behaved best at pH 2.5–10, while UV/PS behaved best at pH 10.0–11.5. • Cost for chemicals was firstly taken into account in calculation of the EE/O values. -- Abstract: Degradation of antipyrine (AP) in water by three UV-based photolysis processes (i.e., direct UV, UV/H2O2, UV/persulfate (UV/PS)) was studied. For all the oxidation processes, the AP decomposition exhibited a pseudo-first-order kinetics pattern. Generally, UV/H2O2 and UV/PS significantly improved the degradation rate relevant to UV treatment alone. The pseudo-first-order degradation rate constants (kobs) were, to different degrees, affected by initial AP concentration, oxidant dose, pH, UV irradiation intensity, and co-existing chemicals such as humic acid, chloride, bicarbonate, carbonate and nitrate. The three oxidation processes followed the order in terms of treatment costs: UV/PS > UV > UV/H2O2 if the energy and chemical costs are considered. Finally, the AP degradation pathways in the UV/H2O2 and UV/PS processes are proposed. Results demonstrated that UV/H2O2 and UV/PS are potential alternatives to control water pollution caused by emerging contaminants such as AP

  5. Supported Zinc Oxide Photocatalyst for Decolorization and Mineralization of Orange G Dye Wastewater under UV365 Irradiation

    OpenAIRE

    Ming-Chin Chang; Hung-Yee Shu; Tien-Hsin Tseng; Hsin-Wen Hsu

    2013-01-01

    To solve the environmental challenge of textile wastewater, a UV/ZnO photocatalytic system was proposed. The objective of this study was to prepare a photocatalytic system by utilizing both cold cathode fluorescent light (CCFL) UV irradiation and steel mesh supported ZnO nanoparticles in a closed reactor for the degradation of azo dye C.I. Orange G (OG). Various operating parameters such as reaction time, preparation temperature, mixing speed, ZnO dosage, UV intensity, pH, initial dye concent...

  6. Effects from climatic changes and increased UV radiation. How is this dealt with in the research program on biologic variety

    International Nuclear Information System (INIS)

    The aim of the project is to widen the knowledge on a sustainable use of biological resources and conservation of the particularity and versatility of the nature. The ecosystems natural composition, function and dynamics will be investigated as well as human impacts on these ecosystems. Analysis of the reasons for the threats and the efficiency of various dispositions will be carried out. The main areas of the program are: 1) Biological diversity, composition, function and dynamics. 2) Effects of damage in habitats. 3) Introductions of strange species and genotypes, including genetically modified organisms. 4) Management of the versatility. Currently the program has 9 projects

  7. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.

    Science.gov (United States)

    Moilanen, Johanna; Karonen, Maarit; Tähtinen, Petri; Jacquet, Rémi; Quideau, Stéphane; Salminen, Juha-Pekka

    2016-05-01

    Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high. PMID:26899362

  8. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration

    International Nuclear Information System (INIS)

    Semiconductor quantum dots (QDs) hold some advantages over conventional organic fluorescent dyes. Due to these advantages, they are becoming increasingly popular in the field of bioimaging. However, recent work suggests that cadmium based QDs affect cellular activity. As a substitute for cadmium based QDs, we have developed photoluminescent stable silicon quantum dots (Si-QDs) with a passive-oxidation technique. Si-QDs (size: 6.5 ± 1.5 nm) emit green light, and they have been used as biological labels for living cell imaging. In order to determine the minimum concentration for cytotoxicity, we investigated the response of HeLa cells. We have shown that the toxicity of Si-QDs was not observed at 112 μg ml-1 and that Si-QDs were less toxic than CdSe-QDs at high concentration in mitochondrial assays and with lactate dehydrogenase (LDH) assays. Especially under UV exposure, Si-QDs were more than ten times safer than CdSe-QDs. We suggest that one mechanism for the cytotoxicity is that Si-QDs can generate oxygen radicals and these radicals are associated with membrane damages. This work has demonstrated the suitability of Si-QDs for bioimaging in lower concentration, and their cytotoxicity and one toxicity mechanism at high concentration

  9. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters.

    Science.gov (United States)

    Cai, Qian; Gao, Yangyang; Gao, Tianyi; Lan, Shi; Simalou, Oudjaniyobi; Zhou, Xinyue; Zhang, Yanling; Harnoode, Chokto; Gao, Ge; Dong, Alideertu

    2016-04-27

    Zinc oxides have gained exciting achievements in antimicrobial fields because of their advantageous properties, whereas their biological effects on bacteria are currently underexplored. In this study, biological effects of flower-shaped nano zinc oxides on bacteria were systematically investigated. Zinc oxide nanoflowers with controllable morphologies (viz., rod flowers, fusiform flowers, and petal flowers) were synthesized by modulating merely base type and concentration using the hydrothermal process. Their antibacterial power is in an order of petal flowers > fusiform flowers > rod flowers because of their differences in microscopic parameters such as specific surface area, pore size, and Zn-polar plane, etc. More importantly, the role of morphology in influencing biological effect on bacteria was examined, focusing on the morphology-induced effect on integrality of cell wall, permeability of cell membrane, DNA cleavage, etc. As for cytotoxicity, all petal flowers, fusiform flowers, and rod flowers show trivial cytotoxicity to the Hela cells. This work provides a guide for enhancing biological effect of the biocides on pathogenic bacteria by the morphological modulation. PMID:27042940

  10. Influence of methanethiol on biological sulphide oxidation in gas treatment system.

    Science.gov (United States)

    Roman, Pawel; Bijmans, Martijn F M; Janssen, Albert J H

    2016-01-01

    Inorganic and organic sulphur compounds such as hydrogen sulphide (H2S) and thiols (RSH) are unwanted components in sour gas streams (e.g. biogas and refinery gases) because of their toxicity, corrosivity and bad smell. Biological treatment processes are often used to remove H2S at small and medium scales (principles have been further studied by assessing the effect of methanethiol on the biological conversion of H2S under a wide range of redox conditions covering not only sulphur but also sulphate-producing conditions. Furthermore, our experiments were performed in an integrated system consisting of a gas absorber and a bioreactor in order to assess the effect of methanethiol on the overall gas treatment efficiency. This study shows that methanethiol inhibits the biological oxidation of H2S to sulphate by way of direct suppression of the cytochrome c oxidase activity in biomass, whereas the oxidation of H2S to sulphur was hardly affected. We estimated the kinetic parameters of biological H2S oxidation that can be used to develop a mathematical model to quantitatively describe the biodesulphurization process. Finally, it was found that methanethiol acts as a competitive inhibitor; therefore, its negative effect can be minimized by increasing the enzyme (biomass) concentration and the substrate (sulphide) concentration, which in practice means operating the biodesulphurization systems under low redox conditions. PMID:26652658

  11. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    Science.gov (United States)

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  12. Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes.

    Science.gov (United States)

    Autin, Olivier; Romelot, Christophe; Rust, Lena; Hart, Julie; Jarvis, Peter; MacAdam, Jitka; Parsons, Simon A; Jefferson, Bruce

    2013-07-01

    There is growing interest in using light emitting diodes (LEDs) as alternative to traditional mercury lamps for the removal of micropollutants by advanced oxidation processes due to their low energy consumption and potential for high efficiency and long lifetime. This study investigates the penetration and coverage of the light emitted by LEDs in order to build an optimised LED collimated beam apparatus. From the experimental data, cost analysis was conducted in order to identify when LEDs will become economically viable. It was observed that if their development follows the predictions, LEDs should be a viable alternative to traditional lamps within 7yr for both UV/H2O2 and UV/TiO2 processes. However, parameters such as wall plug efficiency and input power need to improve for LEDs to become competitive. PMID:23668964

  13. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2012-12-01

    Full Text Available As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS was operated for continuous measurements of fluorescent biological aerosol particles (FBAP. In the coarse particle size range (> 1 μm the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m−3 and 0.72 μg m−3 (0.42–1.19 μg m−3, respectively, accounting for 24% (11–41% of total particle number and 47% (25–65% of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM, light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine

  14. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  15. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process.

    Science.gov (United States)

    Cao, X Z; Li, Y M

    2011-01-01

    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment. PMID:22053469

  16. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H2O2, ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L−1 oxygen. The detection limit was 1.2 mg L−1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  17. Critical Difference and Biological Variation in Biomarkers of Oxidative Stress and Nutritional Status in Athletes

    OpenAIRE

    Franco, Rodrigo; Lewis, Nathan; Newell, John; Burden, Richard; Howatson, Glyn; Pedlar, Charles

    2016-01-01

    The longitudinal monitoring of oxidative stress (OS) in athletes may enable the identification of fatigued states and underperformance. The application of OS biomarker monitoring programs in sport are hindered by reliability and repeatability of in-the-field testing tools, the turnaround of results, and the understanding of biological variation (BV). Knowledge of BV and critical difference values (CDV) may assist with data interpretation in the individual athlete. Methods: We aimed firstly to...

  18. The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars

    OpenAIRE

    Marlow, Jeffrey J.; LaRowe, Douglas E.; Ehlmann, Bethany L.; Amend, Jan P.; Orphan, Victoria J

    2014-01-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO_2 partial pressures. In all scenarios, AOM is exergonic, ranging from −31 to −135 kJ/mol CH_4. A reaction transport model was constructed to examine how environmentally ...

  19. Application of chemical oxidation processes for the removal of pharmaceuticals in biologically treated wastewater

    OpenAIRE

    Hey, Gerly

    2013-01-01

    The discharge of effluents from wastewater treatment plants (WWTPs) is considered to be the major source of residual pharmaceuticals frequently found in aquatic environments. The complex nature of such compounds tends to make conventional biological treatments aimed at their removal ineffective. The present thesis concerns the removal of 62 different active pharmaceutical ingredients commonly detected in Swedish wastewater effluents by means of chemical oxidation techniques. Techniques wit...

  20. Modeling a full scale oxidation ditch system, coupling hydrodynamics and biological kinetics using ASM1 model

    International Nuclear Information System (INIS)

    Optimising the aeration in oxidation ditch aims on one hand, a better wastewater quality and on the other hand, a reduction of the energy expenses of the treatment. given that the energy expenses relative to the aeration represents 60 to 80% of the operating costs of a wastewater treatment plant and given that the biological activity is strictly dependent on dissolved oxygen, the transfer of oxygen is considered as one of the key parameters of the process. (Author) 8 refs.

  1. Treatment of Textile Wastewater by Combining Biological Processes and Advanced Oxidation

    OpenAIRE

    Punzi, Marisa

    2015-01-01

    Treatment of textile wastewater is challenging because the water contains toxic compounds that have low biodegradability. Dyes, detergents, surfactants, biocides and more are used to improve the textile process and to make the clothes resistant to physical, chemical and biological agents. New technologies have been developed in the last decades and in particular Advanced Oxidation Processes (AOPs) have shown considerable potential for treatment of industrial effluents. These pr...

  2. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation.

    Science.gov (United States)

    Stern, Jennifer C; Chanton, Jeff; Abichou, Tarek; Powelson, David; Yuan, Lei; Escoriza, Sharon; Bogner, Jean

    2007-01-01

    Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%. PMID:17005386

  3. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    Science.gov (United States)

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-10-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials.

  4. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity

    Science.gov (United States)

    Jiang, Shan; Cheng, Rui; Wang, Xiang; Xue, Teng; Liu, Yuan; Nel, Andre; Huang, Yu; Duan, Xiangfeng

    2013-07-01

    Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.

  5. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    Science.gov (United States)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  6. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    Science.gov (United States)

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  7. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-N-oxide in fish extracts by capillary electrophoresis with indirect UV-detection

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Jørgensen, Bo

    2002-01-01

    A capillary electrophoretic method with indirect UV detection is described for simultaneous determination of ammonia, dimethylamine (DMA), trimethylamine (TMA) and trimethylamine-N- oxide (TMAO) in aqueous extracts of fish, A buffer consisting of 4 mM formic acid, 5 mM copper(II)sulfate and 3 m......M crown ether 18-crown-6 enabled separation of the analytes in 5-10 min. The use of an extended light path capillary technique resulted in a good sensitivity and repeatability. The linear dynamic range, based on a hydrostatic injection at 50 mbar for 2 s, was from the detection limit to at least 2.5 m...

  8. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-N-oxide in fish extracts by capillary electrophoresis with indirect UV-detection

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Jørgensen, Bo

    2002-01-01

    A capillary electrophoretic method with indirect UV detection is described for simultaneous determination of ammonia, dimethylamine (DMA), trimethylamine (TMA) and trimethylamine-N- oxide (TMAO) in aqueous extracts of fish, A buffer consisting of 4 mM formic acid, 5 mM copper(II)sulfate and 3 m......M. The detection limit for ammonia, DMA, TMA, and TMAO was less than 0.04 mM, corresponding to 2 mg nitrogen per 100 g fish. As an extra benefit, the method also provided a quantitative determination of potassium, sodium, calcium and magnesium ions. (C) 2002 Elsevier Science Ltd. All rights reserved....

  9. Emission spectra of the sol-gel glass doped with europium(III) complexes of picolinic acid N-oxide-A new UV-light sensor

    International Nuclear Information System (INIS)

    New europium complexes of picolinic acid N-oxides have been synthesised and introduced into sol-gel matrices. Their application as UV-light sensors has been considered. The sequence of the electronic levels for Eu3+ ions has been determined from the absorption and emission studies and assigned to the respective electron transitions. The lifetimes of the excited states have been detected and analysed. The role of the CT transition inside the picolinic ligand and its influence on the ligand to metal charge transfer (LMCT) have been discussed

  10. The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells

    Science.gov (United States)

    Hadis, Mohammed A.; Cooper, Paul R.; Milward, Michael R.; Gorecki, Patricia; Tarte, Edward; Churm, James; Palin, William M.

    2015-03-01

    Human dental pulp cells (DPCs) were isolated and cultured in phenol-red-free α-MEM/10%-FCS at 37ºC in 5% CO2. DPCs at passages 2-4 were seeded (150μL; 25,000 cell/ml) in black 96-microwell plates with transparent bases. 24h post-seeding, cultures were irradiated using a bespoke LED array consisting of 60 LEDs (3.5mW/cm2) of wavelengths from 400-900nm (10 wavelengths, n=6) for time intervals of up to 120s. Metabolic and mitochondrial activity was assessed via a modified MTT assay. Statistical differences were identified using multi-factorial analysis of variance and post-hoc Tukey tests (P=0.05). The biological responses were significantly dependent upon post-irradiation incubation period, wavelength and exposure time (PLLLT in dentistry.

  11. Supported Zinc Oxide Photocatalyst for Decolorization and Mineralization of Orange G Dye Wastewater under UV365 Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Chin Chang

    2013-01-01

    Full Text Available To solve the environmental challenge of textile wastewater, a UV/ZnO photocatalytic system was proposed. The objective of this study was to prepare a photocatalytic system by utilizing both cold cathode fluorescent light (CCFL UV irradiation and steel mesh supported ZnO nanoparticles in a closed reactor for the degradation of azo dye C.I. Orange G (OG. Various operating parameters such as reaction time, preparation temperature, mixing speed, ZnO dosage, UV intensity, pH, initial dye concentration, and service duration were studied. Results presented efficient color and total organic carbon (TOC removal of the OG azo dye by the designed photocatalytic system. The optimal ZnO dosage for color removal was 60 g m−2. An alkaline pH of 11.0 was sufficient for photocatalytic decolorization and mineralization. The rate of color removal decreased with the increase in the initial dye concentration. However, the rate of color removal increased with the increase in the UV intensity. The steel mesh supported ZnO can be used repeatedly over 10 times without losing the color removal efficiency for 120 min reaction time. Results of Fourier transform infrared (FTIR and ion chromatography (IC indicated the breakage of N=N bonds and formation of sulfate, nitrate, and nitrite as the major and minor products. The observation indicated degradation of dye molecules.

  12. Response surface method for the optimisation of micropollutant removal in municipal wastewater treatment plant effluent with the UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Schulze-Hennings, U; Pinnekamp, J

    2013-01-01

    Experiments with the ultraviolet (UV)/H2O2 advanced oxidation process (AOP) were conducted to investigate the abatement of micropollutants in wastewater treatment plant effluent. The fluence and the starting concentration of H2O2 in a bench-scale batch reactor were varied according to response surface method (RSM) to examine their influence on the treatment efficiency. It was shown that the investigated AOP is very effective for the abatement of micropollutants with conversion rates typically higher than 90%. Empirical relationships between fluence, H2O2 dosage and the resulting concentration of micropollutants were established by RSM. By this means it was shown that X-ray-contrast media had been degraded only by UV light. Nevertheless, most substances were degraded by the combination of UV irradiation and H2O2. Based on RSM an optimisation of multiple responses was conducted to find the minimal fluence and H2O2 dosage that are needed to reach an efficient abatement of micropollutants. PMID:23656952

  13. Biological consequences from interaction of nanosized titanium(iv) oxides with defined human blood components

    Science.gov (United States)

    Stella, Aaron

    The utility of engineered nanomaterials is growing, particularly the titanium(iv) oxide (titanium dioxide, TiO2) nanoparticles. TiO 2 is very useful for brightening paints, and coloring foods. Nano-sized TiO2 is also useful for sunscreens, cosmetics, and can be utilized as a photocatalyst. However, the nanometer size of the TiO2 nanoparticle is a characteristic that may contribute oxidative stress to red blood cells (RBCs) in humans. This study utilized screening methods to evaluate different forms of TiO2 nanoparticles which differ by primary particle size, specific surface area, crystalline phase, and surface polarity. RBCs are rich in the intracellular antioxidant glutathione (GSH). HPLC analysis revealed that some TiO2 nanoparticles caused oxidation of GSH to glutathione disulfide (GSSG). Vitamin E is a major membrane-bound antioxidant. Vitamin E levels were then determined by HPLC in the RBC membrane after exposure to TiO2 nanoparticles. The HPLC results showed that each nanoparticle oxidized RBC glutathione and membrane vitamin E at different rates. When hemoglobin was mixed with each TiO2 nanoparticle, hemoglobin was adsorbed at varying rates to the surface of the nanoparticles. Similarly, the aminothiol homocysteine was also adsorbed at different rates by the TiO2 nanoparticles. Using light microscopy, some TiO2 nanoparticles caused the formation of RBC aggregates which significantly changed the RBC morphology. The aggregation data was quantified using a hemacytometer. The TiO2 nanoparticles also caused hemolysis of RBCs. Hemolysis is considered to be a toxic endpoint for RBCs. Changes in the nucleated lymphocyte gene expression of certain oxidative stress genes were also observed using real-time polymerase chain reaction (qPCR). The data indicates that RBCs can ultimately be hemolyzed by biological oxidative damage resulting from a combination of oxidative mechanisms. Additionally, the TiO2 nanoparticles demonstrated the ability to adsorb biomolecules to

  14. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland

    Science.gov (United States)

    Belnap, J.; Phillips, S.L.; Smith, S.D.

    2007-01-01

    Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5-4.0 ??C rise in temperature and a 15-20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to

  15. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    Science.gov (United States)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  16. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment.

    Science.gov (United States)

    Rozas, Oscar; Vidal, Cristiane; Baeza, Carolina; Jardim, Wilson F; Rossner, Alfred; Mansilla, Héctor D

    2016-07-01

    Organic micropollutants (OMPs) are ubiquitous in natural waters even in places where the human activity is limited. The presence of OMPs in natural water sources for human consumption encourages the evaluation of different water purification technologies to ensure water quality. In this study, the Biobío river (Chile) was selected since the watershed includes urban settlements and economic activities (i.e. agriculture, forestry) that incorporate a variety of OMPs into the aquatic environment, such as pesticides, pharmaceuticals and personal care products. Atrazine (herbicide), caffeine (psychotropic), diclofenac (anti-inflammatory) and triclosan (antimicrobial) in Biobío river water and in different stages of a drinking and two wastewater treatment plants downstream Biobío river were determined using solid phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC-MS/MS) and electrospray ionization (ESI). Quantification of these four compounds showed concentrations in the range of 8 ± 2 to 55 ± 10 ng L(-1) in Biobío river water, 11 ± 2 to 74 ± 21 ng L(-1) in the drinking water treatment plant, and 60 ± 10 to 15,000 ± 1300 ng L(-1) in the wastewater treatment plants. Caffeine was used as an indicator of wastewater discharges. Because conventional water treatment technologies are not designed to eliminate some emerging organic pollutants, alternative treatment processes, UV and UV/H2O2, were employed. The transformation of atrazine, carbamazepine (antiepileptic), diclofenac and triclosan was investigated at laboratory scale. Both processes were tested at different UV doses and the Biobío river water matrix effects were evaluated. Initial H2O2 concentration used was 10 mg L(-1). Results showed that, the transformation profile obtained using UV/H2O2 at UV doses up to 900 mJ cm(-2), followed the trend of diclofenac > triclosan > atrazine > carbamazepine. Furthermore acute toxicity tests with Daphnia magna were carried

  17. Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, Billy; Henderson, Hunter B. [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States); Yablinsky, Clarissa A. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Gan, Jian [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Allen, Todd R. [Department of Nuclear Engineering, University of Wisconsin-Madison, 921 ERB, 1500 Engineering Drive, Madison, WI 53706 (United States); Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611 (United States)

    2015-09-15

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO{sub 2}) and uranium oxide (UO{sub 2}) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  18. Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides

    International Nuclear Information System (INIS)

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors

  19. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually. PMID:15533022

  20. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  1. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds

    Directory of Open Access Journals (Sweden)

    A.C. Pereira

    2011-09-01

    Full Text Available During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP production, which in turn leads to protein kinase G (PKG activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

  2. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds.

    Science.gov (United States)

    Pereira, A C; Paulo, M; Araújo, A V; Rodrigues, G J; Bendhack, L M

    2011-09-01

    During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca(2+) signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described. PMID:21755266

  3. The hazard assessment of nanostructured CeO{sub 2}-based mixed oxides on the zebrafish Danio rerio under environmentally relevant UV-A exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [National Institute of Chemistry, Laboratory for Environmental Sciences and Engineering, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana (Slovenia); Djinović, Petar; Črnivec, Ilja Gasan Osojnik; Pintar, Albin [National Institute of Chemistry, Laboratory for Environmental Sciences and Engineering, Hajdrihova 19, SI-1001 Ljubljana (Slovenia)

    2015-02-15

    The effect of nanomaterials on biota under realistic environmental conditions is an important question. However, there is still a lack of knowledge on how different illumination conditions alter the toxicity of some photocatalytic nanomaterials. We have investigated how environmentally relevant UV-A exposure (intensity 8.50 ± 0.61 W/m{sup 2}, exposure dose 9.0 J/cm{sup 2}) affected the toxicity of cerium oxide (CeO{sub 2})-based nanostructured materials to the early-life stages of zebrafish Danio rerio. Pure cerium oxide (CeO{sub 2}), copper–cerium (CuO–CeO{sub 2}) (with a nominal 10, 15 and 20 mol.% CuO content), cerium–zirconium (CeO{sub 2}–ZrO{sub 2}) and nickel and cobalt (Ni–Co) deposited over CeO{sub 2}–ZrO{sub 2} were tested. It was found that under both illumination regimes, none of the tested materials affected the normal development or induced mortality of zebrafish early-life stages up to 100 mg/L. Only in the case of CuO–CeO{sub 2}, the growth of larvae was decreased (96 h LOEC values for CuCe10, CuCe15 and CuCe20 were 50, 50 and 10 mg/L, respectively). To conclude, CeO{sub 2}-based nanostructured materials are not severely toxic to zebrafish and environmentally relevant UV-A exposure does not enhance their toxicity. - Highlights: • CeO{sub 2}–ZrO{sub 2} nanomaterials and pure CeO{sub 2} (up to 100 mg/L) were not harmful to zebrafish. • Only CuO modified CeO{sub 2} affected the growth of zebrafish larvae. • UV-A radiation did not enhance the toxicity of tested nanomaterials.

  4. Formation of High-quality Advanced High-k Oxide Layers at Low Temperature by Excimer UV Lamp-assisted Photo-CVD and Sol-gel Processing

    Institute of Scientific and Technical Information of China (English)

    YU J. J.

    2004-01-01

    We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta2O5 and ZrO2 have been deposited at t<400 ℃by means of a UV photo-CVD technique and HfO2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties.Low leakage current densities on the order of 10-8 A/cm2 at 1 MV/cm for deposited ultrathin Ta2O5 films and ca. 10-6 A/cm2 for the photo-CVD ZrO2 layers and photo-irradiated sol-gel HfO2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O(1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta2O5films deposited across 10. 16-cm Si wafers exhibit a high thickness uniformity with a variation of less than ±2.0% being obtained for ultrathin ca. 10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.

  5. The hazard assessment of nanostructured CeO2-based mixed oxides on the zebrafish Danio rerio under environmentally relevant UV-A exposure

    International Nuclear Information System (INIS)

    The effect of nanomaterials on biota under realistic environmental conditions is an important question. However, there is still a lack of knowledge on how different illumination conditions alter the toxicity of some photocatalytic nanomaterials. We have investigated how environmentally relevant UV-A exposure (intensity 8.50 ± 0.61 W/m2, exposure dose 9.0 J/cm2) affected the toxicity of cerium oxide (CeO2)-based nanostructured materials to the early-life stages of zebrafish Danio rerio. Pure cerium oxide (CeO2), copper–cerium (CuO–CeO2) (with a nominal 10, 15 and 20 mol.% CuO content), cerium–zirconium (CeO2–ZrO2) and nickel and cobalt (Ni–Co) deposited over CeO2–ZrO2 were tested. It was found that under both illumination regimes, none of the tested materials affected the normal development or induced mortality of zebrafish early-life stages up to 100 mg/L. Only in the case of CuO–CeO2, the growth of larvae was decreased (96 h LOEC values for CuCe10, CuCe15 and CuCe20 were 50, 50 and 10 mg/L, respectively). To conclude, CeO2-based nanostructured materials are not severely toxic to zebrafish and environmentally relevant UV-A exposure does not enhance their toxicity. - Highlights: • CeO2–ZrO2 nanomaterials and pure CeO2 (up to 100 mg/L) were not harmful to zebrafish. • Only CuO modified CeO2 affected the growth of zebrafish larvae. • UV-A radiation did not enhance the toxicity of tested nanomaterials

  6. Combined oxidative and biological treatment of separated streams of tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, G.; Nieto, J. [Environmental Science Center EULA - Chile, Univ. of Concepcion, Concepcion (Chile); Mansilla, H.D. [Lab. of Renewable Resources, Univ. of Concepcion, Concepcion (Chile); Bornhardt, C. [Chemical Engineering Dept., Univ. of La Frontera, Temuco (Chile)

    2003-07-01

    Leather tanning effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to the beamhouse processes, generates an alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids, and salts, which shows significant toxicity. The objective of this work was to evaluate the biodegradation of this industrial wastewater by combined oxidative and biological treatments. An advanced oxidation process (AOP) with Fenton's reagent was used as batch pre-treatment. The relationships of H{sub 2}O{sub 2}/Fe{sup 2+} and H{sub 2}O{sub 2}/COD were 9 and 4, respectively, reaching an organic matter removal of about 90%. Subsequently, the oxidised beamhouse effluent was fed to an activated sludge system, at increasing organic load rates (OLR), in the range of 0.4 to 1.6 g COD/L.d. The biological organic matter removal of the pre-treated wastewater ranged between 35% and 60% for COD, and from 60% to 70% for BOD. Therefore, sequential AOP pretreatment and biological aerobic treatment increased the overall COD removal up to 96%, compared to 60% without pretreatment. Bioassays with D. magna and D. pulex showed that this kind of treatment achieves only a partial toxicity removal of the tannery effluent. (orig.)

  7. A Modified Oxidation Ditch with Additional Internal Anoxic Zones for Enhanced Biological Nutrient Removal

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Dianhai; XU Li; SHEN Changming

    2013-01-01

    A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally,aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process.Under all experimental conditions,the anaerobic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency.The effluent NH+4-N,total nitrogen(TN),PO34--P and total phosphorus(TP)contents were 1.2 mg·L-1,13 mg·L-1,0.3 mg·L-1 and 0.4 mg·L-1,respectively,all met the discharge standards in China.The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%.The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification.It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones,which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source.However,an excess internal recycle would cause nitrite to accumulate in the system.This seems to be harmful to biological phosphorus removal.

  8. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  9. UV and visible reflection spectral study of CO adsorption on the surface of yttrium, erbium, and holmium oxides

    International Nuclear Information System (INIS)

    Diffuse reflection spectroscopy in the UV and visible ranges was used to study the surface compounds formed upon the adsorption of CO on Y2O3, Er2O3, and Ho2-O3. The adsorption of CO at 300 K on a surface aged at 1073 K is accompanied by the appearance of bands at 340, 350, and 450 nm, which are related to dioxoketenes (C2O3)2-, croconates (CO)52-, and rhodizonates (CO)62-

  10. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  11. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.

    Science.gov (United States)

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs) have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH) and adenosine triphosphate (ATP) significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH), glutathione S-transferase (GST), super oxide dismutase (SOD), and catalase (CAT). These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and heat stress

  12. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongnan; Kitchin, John R., E-mail: jkitchin@andrew.cmu.edu [Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Joshi, Yogesh V.; Raman, Sumathy [Exxon-Mobil Research and Engineering, 1545 Route 22 E St. 1, Annandale, New Jersey 08801 (United States)

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  13. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    International Nuclear Information System (INIS)

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively

  14. Report: Bioconversion of agriculture waste to lysine with UV mutated strain of brevibacterium flavum and its biological evaluation in broiler chicks.

    Science.gov (United States)

    Tabassum, Alia; Hashmi, Abu Saeed; Masood, Faiza; Iqbal, Muhammad Aamir; Tayyab, Muhammad; Nawab, Amber; Nadeem, Asif; Sadeghi, Zahra; Mahmood, Adeel

    2015-07-01

    Lysine executes imperative structural and functional roles in body and its supplementation in diet beneficial to prevent the escalating threat of protein deficiency. The physical mutagenesis offers new fascinating avenues of research for overproduction of lysine through surplus carbohydrate containing agriculture waste especially in developing countries. The current study was aimed to investigate the potential of UV mutated strain of Brevibacterium flavum at 254 nm for lysine production. The physical and nutritional parameters were optimized and maximum lysine production was observed with molasses (4% substrate water ratio). Moreover, supplementation of culture medium with metal cations (i.e. 0.4% CaSO₄, 0.3% NaCl, 0.3% KH₂PO₄, 0.4% MgSO₄, and 0.2% (NH₄) ₂SO₄w/v) together with 0.75% v/v corn steep liquor significantly enhanced the lysine production up to 26.71 ± 0.31 g/L. Though, concentrations of urea, ammonium nitrate and yeast sludge did not exhibit any profound effect on lysine production. Biological evaluation of lysine enriched biomass in terms of weight gain and feed conversion ratio reflected non-significant difference for experimental and control (+ve) groups. Conclusively, lysine produced in the form of biomass was compatible to market lysine in its effectiveness and have potential to utilize at commercial scale. PMID:26142531

  15. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    Science.gov (United States)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  16. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    OpenAIRE

    Moradas, Gerly; Fick, Jerker; Ledin, Anna; Jansen, Jes la Cour; Andersen, Henrik Rasmus

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended nitrogen removal. The removal of the APIs varied from no significant removal at the highest dose of ClO2 (20 mg/l) to 90% removal at a dose of 0.5 mg/l of the oxidant. From the low COD effluent, only 4 ...

  17. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  18. Mineral oxides change the atmospheric reactivity of soot: NO2 uptake under dark and UV irradiation conditions.

    Science.gov (United States)

    Romanias, Manolis N; Bedjanian, Yuri; Zaras, Aristotelis M; Andrade-Eiroa, Aurea; Shahla, Roya; Dagaut, Philippe; Philippidis, Aggelos

    2013-12-01

    The heterogeneous reactions between trace gases and aerosol surfaces have been widely studied over the past decades, revealing the crucial role of these reactions in atmospheric chemistry. However, existing knowledge on the reactivity of mixed aerosols is limited, even though they have been observed in field measurements. In the current study, the heterogeneous interaction of NO2 with solid surfaces of Al2O3 covered with kerosene soot was investigated under dark conditions and in the presence of UV light. Experiments were performed at 293 K using a low-pressure flow-tube reactor coupled with a quadrupole mass spectrometer. The steady-state uptake coefficient, γ(ss), and the distribution of the gas-phase products were determined as functions of the Al2O3 mass; soot mass; NO2 concentration, varied in the range of (0.2-10) × 10(12) molecules cm(-3); photon flux; and relative humidity, ranging from 0.0032% to 32%. On Al2O3/soot surfaces, the reaction rate was substantially increased, and the formation of HONO was favored compared with that on individual pure soot and pure Al2O3 surfaces. Uptake of NO2 was enhanced in the presence of H2O under both dark and UV irradiation conditions, and the following empirical expressions were obtained: γ(ss,BET,dark) = (7.3 ± 0.9) × 10(-7) + (3.2 ± 0.5) × 10(-8) × RH and γ(ss,BET,UV) = (1.4 ± 0.2) × 10(-6) + (4.0 ± 0.9) × 10(-8) × RH. Specific experiments, with solid sample preheating and doping with polycyclic aromatic hydrocarbons (PAHs), showed that UV-absorbing organic compounds significantly affect the chemical reactivity of the mixed mineral/soot surfaces. A mechanistic scheme is proposed, in which Al2O3 can either collect electrons, initiating a sequence of redox reactions, or prevent the charge-recombination process, extending the lifetime of the excited state and enhancing the reactivity of the organics. Finally, the atmospheric implications of the observed results are briefly discussed. PMID:24188183

  19. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    OpenAIRE

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on can obtain mechanistic information on catalytic processes. The set-up was tested for the dehydrogenation of propane over a Cr / Al2O3 catalyst, a very important industrial process. It is shown tha...

  20. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. PMID:27568982

  1. Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors, and chemical sensors

    Science.gov (United States)

    Willander, Magnus; Sadollahkhani, Azar; Echresh, Ahmad; Nur, Omer

    2014-03-01

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

  2. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    Science.gov (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  3. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment. PMID:20956012

  4. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  5. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    Science.gov (United States)

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096

  6. Comparison of Nitric Oxide Concentrations in μs- and ns-Atmospheric Pressure Plasmas by UV Absorption Spectroscopy

    Science.gov (United States)

    Peters, F.; Hirschberg, J.; Mertens, N.; Wieneke, S.; Viöl, W.

    2016-04-01

    In this paper, an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide. The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge (DBD) for applications in plasma medicine. The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen. One of the emitted wavelengths is an important resonance wavelength of nitric oxide (λ = 226.2 nm). By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength, and measuring the change in intensity by the absorbing plasma, the concentration of nitric oxide inside the plasma can be calculated. The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm, so that a distance of about 10cm to the respiratory tract is enough to conform to the VDI Guideline 2310.

  7. Mixed metal oxide nanocomposites derived from layered double hydroxides as photocatalysts for C.I. Basic Blue 3 degradation under UV light

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, Z.; Sarkarat, M. [Department of Chemistry, Faculty of Basic Sciences, Azarbaijan University of Shahid Madani,Tabriz (Iran, Islamic Republic of); Khataee, A.R. [Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz (Iran, Islamic Republic of); Nejati, K. [Chemistry Department, Payame Noor University, Tehran (Iran, Islamic Republic of)

    2012-11-15

    In this research we report synthesis of the heterostructure Mg-Al-Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH){sub 2}/Mg-Al-layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X-ray diffraction (XRD), FT-IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X-ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X-ray diffraction spectra. The calcined samples at 500, 600 and 700 C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  9. Selective Alcohol Oxidation by a Copper TEMPO Catalyst: Mechanistic Insights by Simultaneously Coupled Operando EPR/UV-Vis/ATR-IR Spectroscopy.

    Science.gov (United States)

    Rabeah, Jabor; Bentrup, Ursula; Stößer, Reinhard; Brückner, Angelika

    2015-09-28

    The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 . PMID:26174141

  10. Advanced oxidation of the antibiotic sulfapyridine by UV/H2O2: Characterization of its transformation products and ecotoxicological implications.

    Science.gov (United States)

    García-Galán, M Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Rodriguez-Mozaz, Sara; Comas, Joaquim

    2016-03-01

    The aim of the present work is to investigate, under lab-scale conditions, the removal and transformation of the antibiotic sulfapyridine (SPY) upon advanced oxidation with UV/H2O2. High resolution mass spectrometry (HRMS) analyses by means of an ultra-high pressure liquid chromatography (UHPLC)-linear ion trap high resolution Orbitrap instrument (LTQ-Orbitrap-MS) were carried out in order to elucidate the different transformation products (TPs) generated. The abatement (>99%) of the antibiotic was only achieved after 180 min, highlighting its resilience to elimination and its potential persistence in the environment A total of 10 TPs for SPY were detected and their molecular structures elucidated by means of MS(2) and MS(3) scans. Finally, the combined ecotoxicity at different treatment times was evaluated by means of bioluminescence inhibition assays with the marine bacteria Vibrio fischeri. PMID:26789837

  11. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    Science.gov (United States)

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  12. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  13. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS in Central Europe

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2009-08-01

    Full Text Available Primary biological aerosol particles (PBAPs, including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS to measure fluorescent biological aerosol particles (FBAPs, which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm, but not for coarse particles (1–20 μm.

    Averaged over the four-month measurement period (August–December 2006, the mean number concentration of coarse FBAPs was ~3×10−2 cm−3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1 μg m−3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10−2 cm−3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively.

    The observed number concentrations and

  14. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS in Central Europe

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2010-04-01

    Full Text Available Primary Biological Aerosol Particles (PBAPs, including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany we used an Ultraviolet Aerodynamic Particle Sizer (UV-APS to measure Fluorescent Biological Aerosol Particles (FBAPs, which provide an estimate of viable bioaerosol particles and can be regarded as an approximate lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm, but not for coarse particles (1–20 μm.

    Averaged over the four-month measurement period (August–December 2006, the mean number concentration of coarse FBAPs was ~3×10−2 cm−3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1μg m−3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10−2 cm−3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle (24-h with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be single bacterial cells, larger fungal spores, and pollen grains, respectively.

    The observed number

  15. Destruction of organic contaminants in industrial wastewater using oil coalescence and photochemical oxidation (UV/ozone) technologies

    International Nuclear Information System (INIS)

    Dissolved organic contaminants are present in trace concentrations in most industrial wastewater processing applications. Boilers can remove organic contaminants if they are nonvolatile, but a secondary (concentrate stream) is produced. In comparison to evaporation, which is capital-intensive, photochemical oxidation methods produce no secondary waste, and can be used for the destruction of dissolved organic contaminants for most process effluent streams, including those originating from the nuclear power sector. The present work has demonstrated the utility of two different types of photochemical oxidation technologies for destruction of trace organics in wastewater (pretreated by an oil coalescer for oil and grease removal). Use of an oil coalescer as pretreatment to photochemical oxidation was necessitated due to the relatively high concentration of oil and grease (up to 8000 mg/kg) in the feed stream. The oil coalescer removed greater than 95% of the oil and grease and saturated aliphatic compounds. Organics were easily extracted into the oil-rich lighter phase which was periodically ejected from the coalescer

  16. Nitric Oxide Diffusion Attributes in Biological And Artificial Environments: A Computational Study

    Directory of Open Access Journals (Sweden)

    Patricio García Báez

    2011-03-01

    Full Text Available This paper presents a computational study on the dynamic of nitric oxide (NO in both the biological and artificial environments, by means the analysis of important nitric oxide diffusion attributes, which are defined in this work. We apply the compartmental model of NO diffusion as a formal tool, using a computational neuroscience point of view. The main objective is the analyses of the emergence and dynamic of complex structures, essentially diffusion neighbourhood (DNB, in environments with volume transmission (VT. The study is performed by the observation of the NO diffusion attributes, the NO directionality (NOD, the average influence (AI and the center of DNB (CDNB. We present a study of the influences and dependences with respect to associated features to the NO synthesis-diffusion process, and to the different environments where it spreads (non-isotropy and non-homogeneity. The paper is structured into three sets of experiences which cover the aforementioned aspects: influence of the NO synthesis process, isolated and multiple processes, influence of distance to the element where NO is synthesized, and influence of features of the diffusion environment. The developments have been performed in mono bi-and three-dimensional environments, with endothelial cell features. The study contributes the needed formalism to management the dynamic of NO in artificial an biological environments also to quantify the information representation capacity that a type of NO diffusion-based signaling presents and their implications in many other underlying neural mechanisms, such as neural recruitment, synchronization of computations between neurons and in the brain activity in general.

  17. Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity

    OpenAIRE

    G. Bhumi; N. SAVITHRAMMA

    2014-01-01

    Biologically synthesized nanoparticles have been widely using in the field of medicine. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Present study focuses on the Biological synthesis of Zinc oxide nanoparticles (ZnO-NPs) by Zinc acetate and sodium hydroxide utilizing the biocomponents of leaves of Catharanthus roseus. The samples were characterized by x-ray diffraction (XRD), Scanning Electron Microscopy ...

  18. Spectrophotometric Determination of Thioridazine Hydrochloride in Tablets and Biological Fluids by Ion-Pair and Oxidation Reactions

    OpenAIRE

    El-Didamony, Akram; Hafeez, Sameh

    2012-01-01

    Two simple, sensitive and selective spectrophotometric methods have been described for the determination of the psychoactive drug, thioridazine HCl in tablets and in biological fluids. The first method is based on the oxidation of thioridazine HCl with measured excess of KMnO4 under acidic conditions followed by the determination of unreacted oxidant using indigo carmine and methyl orange. The second method is based on the formation of ion-pair complexes with the acidic sulphophthalein dyes s...

  19. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  20. The detection for hypochlorite by UV-Vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction

    Science.gov (United States)

    Xiong, Kangming; Yin, Caixia; Chao, Jianbin; Zhang, Yongbin; Huo, Fangjun

    2016-09-01

    In this work, two high selective and sensitive fluorescent probes for ClO-, 7-Hydroxycoumarin and 4-Hydroxycoumarin were designed. The reaction mechanism that we speculated was the oxidized ring opening reaction and hydrolysis. The detection could be realized in quasi-aqueous phase and the detection limits of probe [7] and probe [4] for ClO- were found to be 56.8 nM and 70.5 nM. Furthermore, the probes can be used to cell imagings.

  1. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2014-12-01

    Full Text Available Soo-Jin Choi,1 Jin-Ho Choy2 1Department of Food Science and Technology, Seoul Women's University, 2Center for Intelligent Nano Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea Abstract: Biokinetic studies of zinc oxide (ZnO nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. Keywords: ZnO nanoparticles, biokinetics, distribution, excretion, fate, interaction

  2. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Dipsikha; Sahu, Sumanta K. [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Banerjee, Indranil [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Das, Manasmita [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Mishra, Debashish; Maiti, Tapas K. [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Pramanik, Panchanan, E-mail: dipsikha.chem@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2011-09-15

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T{sub 2} contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T{sub 2} relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  3. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  4. Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents

    International Nuclear Information System (INIS)

    Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu2O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria. - Highlights: • We obtained copper oxide nanoparticles in a powder form. • Several capping agents were tested. • Structural and chemical tests showed that the main component were Cu2O and CuO. • The size of nanoparticles was in the range 7–21 nm. • Nanoparticles with glycerin and ammonia capping agent showed good antibacterial properties

  5. Superior drainage treated by combinational technique of biologic contact oxidation and constructed wetland

    Institute of Scientific and Technical Information of China (English)

    胡学斌; 徐志恒; 柴宏祥; 龙腾锐

    2009-01-01

    The superior drainage was pre-treated by biologic contact oxidation on BOD5 load of 0.72 kg/(m3·d),and then post-treated by constructed wetland. The results about the effect on the constructed wetland post-treatment show that the total nitrogen (TN) is the restrictive index of the combinational technique treatment effect. To meet the reclaimed water quality standard and reuse for waterscape,the peak hydraulic load of constructed wetland is 0.50 m/d in summer (30-36 ℃) and 0.33 m/d in winter (8-12℃),and the load ratio of the peak hydraulic under the two temperature conditions is 3-2. The results are combined of reclaimed water quantity requirements in different seasons of green building. Reasonable scale of the reclaimed water treatment systems can be determined. The treatment efficacy can be well predicted,and both the design and operations can be effectively guided,by which the reclaimed water treatment systems regard superior drainage as the source and are purified by combinational technique of contact oxidation and artificial wetland.

  6. Kinetic behavior of nitric oxide in biological system studied by pulse radiolysis

    International Nuclear Information System (INIS)

    With pulse radiolysis technique, nitric oxide (NO) can be produced by the reaction of hydrated electron with NO2-. This is verified by the formation of the NO complex of ferrous myoglobin after pulse radiolysis of the ferric form in the presence of NO2- under deaerated condition. By the use of this technique, the reaction of superoxide anion (O2-) with NO was followed directly in oxygen saturated solution containing NO2-. It was found that O2- reacted with NO with a second-order rate constant of 3.8 x 109 M-1s-1 at pH 7.5 to form peroxynitrite (ONOO-) with an absorption maximum around 300 nm. Peroxynitrite thus formed decomposed with a first-order rate constant 0.8 s-1 at pH 7.5. The reactivity of peroxynitrite against various biological molecules was also studied. Peroxynitrite was found to react with NADH and GSH with second-order rate constants of 4 x 103 M-1s-1 and 6.5 x 102 M-1s-1 at pH 7.4, respectively, but did not react with either ascorbate or hydroquinone. These results suggest that peroxynitrite does not act a strong oxidant. (author)

  7. Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Szade, J.; Talik, E.; Ratuszna, A. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Ostafin, M. [Agricultural University of Cracow, Department of Microbiology, Krakow (Poland); Peszke, J. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)

    2014-06-01

    Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu{sub 2}O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria. - Highlights: • We obtained copper oxide nanoparticles in a powder form. • Several capping agents were tested. • Structural and chemical tests showed that the main component were Cu{sub 2}O and CuO. • The size of nanoparticles was in the range 7–21 nm. • Nanoparticles with glycerin and ammonia capping agent showed good antibacterial properties.

  8. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  9. Graphene oxide modified ZnO nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Liang, Changhao; Dai, Jianming [Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Guangping; Liu, Zhongliang; Liu, Qinzhuang; Zhang, Yongxing [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2014-02-14

    In this work, graphene oxide/zinc oxide (GO/ZnO) hybrid was prepared through a facile hydrothermal process. Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectra and N{sub 2} adsorption and desorption isotherms were used to investigate the morphology, crystal structure, optical properties and specific surface area of GO/ZnO hybrid. It was shown that the well-dispersed ZnO nanorods were deposited on GO homogeneously. Photocatalytic properties of GO/ZnO nanorods hybrid were evaluated under 375 nm light-emitting diode light irradiation for photodegradation of methylene blue (MB). The synergic effect between GO and ZnO was found to lead to an improved photo-generated carrier separation. An optimal GO content has been determined to be 3 wt%, and corresponding the apparent pseudo-first-order rate constant k{sub app} is 0.0248 min{sup −1}, 4.3 times and 2.5 times more than that of pure ZnO nanorods and commercial P25 photocatalyst, respectively. Moreover, the cyclic photocatalytic test indicated that GO/ZnO hybrid can be reused for degradation of MB, suggesting the possible application of GO/ZnO hybrid as excellent candidate for water treatment. - Highlights: • GO/ZnO hybrid was successfully synthesized by hydrothermal process. • GO/ZnO hybrid showed high photocatalytic activity with irradiation of LED light. • Effective photo-electrons separation and fast transportation. • Excellent recycled performance was achieved by GO/ZnO hybrid.

  10. Biological interactions in vitro of zinc oxide nanoparticles of different characteristics

    Science.gov (United States)

    Aula, Sangeetha; Lakkireddy, Samyuktha; AVN, Swamy; Kapley, Atya; Jamil, Kaiser; Rao Tata, Narasinga; Hembram, Kaliyan

    2014-09-01

    Zinc oxide nanoparticles (ZnO NPs) have recently received growing attention for various biomedical applications, including use as therapeutic or carrier for drug delivery and/or imaging. For the above applications, the NPs necessitate administration into the body leading to their systemic exposure. To better anticipate the safety, make risk assessment, and be able to interpret the future preclinical and clinical safety data, it is important to systematically understand the biological interaction of the NPs, the consequences of such interaction, and the mechanisms associated with the toxicity induction, with the important components with which the NPs are expected to be in contact after systemic exposure. In this context, we report here a detailed study on the biological interactions in vitro of the ZnO NPs with healthy human primary lymphocytes as these are the important immune components and the first systemic immune contact, and with the whole human blood. Additionally, the influence, if any, of the NPs shape (spheres and rods) on the biological interaction has been evaluated. The ZnO NPs caused toxicity (30% at 12.5 μg ml-1 spheres and 10.5 μg ml-1 rods; 50% at 22 μg ml-1 spheres and 19.5 μg ml-1 rods) to the lymphocytes at molecular and genetic level in a dose-dependent and shape-dependent manner, while the interaction consequences with the blood and blood components such as RBC, platelets was only dose-dependent and not shape-dependent. This is evident from the decreased RBC count due to increased %Hemolysis (5.3% in both the spheres- and rods-treated blood) and decreased platelet count due to increased %platelet aggregation (28% in spheres-treated and 33% in rods-treated platelet-rich plasma). Such in-depth understanding of the biological interaction of the NPs, the consequences, and the associated mechanisms in vitro could be expected to allow anticipating the NP safety for risk assessment and for interpretation of the preclinical and clinical safety

  11. Biological interactions in vitro of zinc oxide nanoparticles of different characteristics

    International Nuclear Information System (INIS)

    Zinc oxide nanoparticles (ZnO NPs) have recently received growing attention for various biomedical applications, including use as therapeutic or carrier for drug delivery and/or imaging. For the above applications, the NPs necessitate administration into the body leading to their systemic exposure. To better anticipate the safety, make risk assessment, and be able to interpret the future preclinical and clinical safety data, it is important to systematically understand the biological interaction of the NPs, the consequences of such interaction, and the mechanisms associated with the toxicity induction, with the important components with which the NPs are expected to be in contact after systemic exposure. In this context, we report here a detailed study on the biological interactions in vitro of the ZnO NPs with healthy human primary lymphocytes as these are the important immune components and the first systemic immune contact, and with the whole human blood. Additionally, the influence, if any, of the NPs shape (spheres and rods) on the biological interaction has been evaluated. The ZnO NPs caused toxicity (30% at 12.5 μg ml−1 spheres and 10.5 μg ml−1 rods; 50% at 22 μg ml−1 spheres and 19.5 μg ml−1 rods) to the lymphocytes at molecular and genetic level in a dose-dependent and shape-dependent manner, while the interaction consequences with the blood and blood components such as RBC, platelets was only dose-dependent and not shape-dependent. This is evident from the decreased RBC count due to increased %Hemolysis (5.3% in both the spheres- and rods-treated blood) and decreased platelet count due to increased %platelet aggregation (28% in spheres-treated and 33% in rods-treated platelet-rich plasma). Such in-depth understanding of the biological interaction of the NPs, the consequences, and the associated mechanisms in vitro could be expected to allow anticipating the NP safety for risk assessment and for interpretation of the preclinical and clinical

  12. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  13. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2...

  14. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, M.P.M. van; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Qua

  15. Development of UV Optical Measurements of Nitric Oxide and Hydroxyl Radical at the Exit of High Pressure Gas Turbine Combustors

    Science.gov (United States)

    Liscinsky, D. S.; Knight, B. A.; Shirley, J. A.

    1998-01-01

    Measurements of nitric oxide (NO) and hydroxyl radical (OR) have been made in a laboratory flat flame at pressures up to 30 atm using line-of-sight resonant absorption. Data are reported at equivalence ratios of 0.98 and 1.3 and pressures of 1, 5, 10, 20 and 30 atm. The performance of the in-situ LTV absorption technique with assessed at these elevated pressures by comparing the measured absorption with those predicted by detailed theoretical spectroscopic models for NO and OH. Previous to this experiment the resonant models had not been verified at pressures greater than two atmospheres. Agreement within 25% was found between the measurements and predictions with only slight modification of the existing models for both NO and OH to account for line center shifting and pressure broadening. Continuum interference of hot oxygen (O2) on the NO absorption spectra was not significant in the interpretation of the data. The optical methods used in this study are distinct from laser-based diagnostics such as laser induced fluorescence and, hence, have the potential to provide independent verification of the laser-based measurements. The methodology is also of sufficient simplicity to be hardened into a portable optical measurement system that can be deployed in gas turbine engine test cells. A miniature fiber optic couple portable instrument is described.

  16. Photooxidation of tetrahydrobiopterin under UV irradiation: possible pathways and mechanisms.

    Science.gov (United States)

    Buglak, Andrey A; Telegina, Taisiya A; Lyudnikova, Tamara A; Vechtomova, Yulia L; Kritsky, Mikhail S

    2014-01-01

    Tetrahydrobiopterin (H4 Bip) is a cofactor for several key enzymes, including NO synthases and aromatic amino acid hydroxylases (AAHs). Normal functioning of the H4 Bip regeneration cycle is extremely important for the work of AAHs. Oxidized pterins may accumulate if the H4 Bip regeneration cycle is disrupted or if H4 Bip autoxidation occurs. These oxidized pterins can photosensitize the production of singlet molecular oxygen (1)O2 and thus cause oxidative stress. In this context, we studied the photooxidation of H4 Bip in phosphate buffer at pH 7.2. We found that UV irradiation of H4 Bip affected its oxidation rate (quantum yield Φ300 = (2.7 ± 0.4) × 10(-3)). The effect of UV irradiation at λ = 350 nm on H4 Bip oxidation was stronger, especially in the presence of biopterin (Bip) (Φ350 = (9.7 ± 1.5) × 10(-3)). We showed that the rate of H4 Bip oxidation linearly depends on Bip concentration. Experiments with KI, a selective quencher of triplet pterins at micromolar concentrations, demonstrated that the oxidation is sensitized by the triplet state biopterin (3) Bip. Apparently, electron transfer sensitization (Type-I mechanism) is dominant. Energy transfer (Type-II mechanism) and singlet oxygen generation play only a secondary role. The mechanisms of H4 Bip photooxidation and their biological meaning are discussed. PMID:24773158

  17. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode were investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its color and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and color during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and color removal with anode efficiency of 0.118 kgCOD-1A-1m-2 and energy consumption 20.61 kWh.kg-1 of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD-1A-1m-2 to 0.144 kWh.kg-1 of COD while decrease the energy consumption from 20.61 kWh.kg-1 of COD to12 .86 kWh.kg-1 of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%.

  18. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method.

    Science.gov (United States)

    Bejankiwar, Rajesh S; Lokesh, K S; Gowda, T P Halappa

    2003-05-01

    The treatment of biologically treated wastewater of coffee-curing industry by the electrochemical oxidation using steel anode was investigated. Bench-scale experiments were conducted for activated sludge process on raw wastewater and the treated effluents were further treated by electrochemical oxidation method for its colour and organic content removal. The efficiency of the process was determined in terms of removal percentage of COD, BOD and colour during the course of reaction. Several operating parameters like time, pH and current density were examined to ascertain their effects on the treatment efficiency. Steel anode was found to be effective for the COD and colour removal with anode efficiency of 0.118 kgCOD x h(-1) x A(-1) x m(-2) and energy consumption 20.61 kWh x kg(-1) of COD at pH 9. The decrease in pH from 9 to 3 found to increase the anode efficiency from 0.118 kgCOD x h(-1) x A(-1) x m(-2) to 0.144 kWh x kg(-1) of COD while decrease the energy consumption from 20.61 kWh x kg(-1) of COD to 12.86 kWh x kg(-1) of COD. The pH of 5 was considered an ideal from the present treatment process as it avoids the addition of chemicals for neutralization of treated effluents and also economical with respect to energy consumption. An empirical relation developed for relationship between applied current density and COD removal efficiency showed strong predictive capability with coefficient of determination of 96.5%. PMID:12938980

  19. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  20. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    Science.gov (United States)

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  1. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  2. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Science.gov (United States)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  3. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light

    International Nuclear Information System (INIS)

    The potential ecotoxicological consequences about semiconductor crystal nanoparticles (NPs) are a growing concern. However, our understanding of the mechanism of toxicity in NPs is very limited, especially under varying environmental conditions such as ultraviolet (UV) light. We performed an in vivo study employing Daphnia magna to evaluate the mechanism involved in toxicity of cadmium selenide/zinc selenide quantum dots (QDs) with two different organic coatings under an environmental level of UV-B light. We used QDs with mercaptopropionic acid (MPA) and tri-n-octylphosphine oxide/gum arabic (GA) and measured their toxicities under an environmental level of UV-B light. Whole-body reactive oxygen species (ROS) generation and mRNA expression level biomarkers, as well as acute toxicity, were measured in D. magna. With UV-B light, both cadmium (Cd) and GA-QD became more toxic in daphnids. The levels of small Cd molecules (<10 kDa cutoff) increased for GA-QD under UV-B; however, the observed acute lethal toxicity could not be explained by the measured Cd level. Under UV-B light, both Cd and GA-QD generated more ROS. In addition, the expression pattern of mRNAs specific to Cd exposure was not observed from GA-QD with or without UV-B light. These observations suggest that the phototoxicity of QDs may be explained not only by Cd release from the QD core but also by stability of surface coating characteristics and other potential causes such as ROS generation.

  4. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungkon, E-mail: koguma@snu.ac.kr [Department of Environmental Health, School of Public Health, Seoul National University, 28 Yunkeon, Chongro, Seoul 110-799 (Korea, Republic of); Park, Yena, E-mail: elohim@snu.ac.kr [Department of Environmental Health, School of Public Health, Seoul National University, 28 Yunkeon, Chongro, Seoul 110-799 (Korea, Republic of); Yoon, Tae Hyun, E-mail: taeyoon@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang, Seongdong, Seoul 133-791 (Korea, Republic of); Yoon, Chung Sik, E-mail: csyoon@snu.ac.kr [Department of Environmental Health, School of Public Health, Seoul National University, 28 Yunkeon, Chongro, Seoul 110-799 (Korea, Republic of); Choi, Kyungho, E-mail: kyungho@snu.ac.kr [Department of Environmental Health, School of Public Health, Seoul National University, 28 Yunkeon, Chongro, Seoul 110-799 (Korea, Republic of)

    2010-04-15

    The potential ecotoxicological consequences about semiconductor crystal nanoparticles (NPs) are a growing concern. However, our understanding of the mechanism of toxicity in NPs is very limited, especially under varying environmental conditions such as ultraviolet (UV) light. We performed an in vivo study employing Daphnia magna to evaluate the mechanism involved in toxicity of cadmium selenide/zinc selenide quantum dots (QDs) with two different organic coatings under an environmental level of UV-B light. We used QDs with mercaptopropionic acid (MPA) and tri-n-octylphosphine oxide/gum arabic (GA) and measured their toxicities under an environmental level of UV-B light. Whole-body reactive oxygen species (ROS) generation and mRNA expression level biomarkers, as well as acute toxicity, were measured in D. magna. With UV-B light, both cadmium (Cd) and GA-QD became more toxic in daphnids. The levels of small Cd molecules (<10 kDa cutoff) increased for GA-QD under UV-B; however, the observed acute lethal toxicity could not be explained by the measured Cd level. Under UV-B light, both Cd and GA-QD generated more ROS. In addition, the expression pattern of mRNAs specific to Cd exposure was not observed from GA-QD with or without UV-B light. These observations suggest that the phototoxicity of QDs may be explained not only by Cd release from the QD core but also by stability of surface coating characteristics and other potential causes such as ROS generation.

  5. Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions.

    Science.gov (United States)

    Einola, Juha-Kalle M; Karhu, A Elina; Rintala, Jukka A

    2008-01-01

    The residual fraction of mechanically-biologically treated municipal solid waste (MBT residual) was studied in the laboratory to evaluate its suitability and environmental compatibility as a support medium in methane (CH(4)) oxidative biocovers for the mitigation of greenhouse gas emissions from landfills. Two MBT residuals with 5 and 12 months total (aerobic) biological stabilisation times were used in the study. MBT residual appeared to be a favourable medium for CH(4) oxidation as indicated by its area-based CH(4) oxidation rates (12.2-82.3 g CH(4) m(-2) d(-1) at 2-25 degrees C; determined in CH(4)-sparged columns). The CH(4) oxidation potential (determined in batch assays) of the MBT residuals increased during the 124 d column experiment, from solid (L/S) ratio of 10:1, suggest a potential for leachate pollutant emissions which should be considered in plans to utilise MBT residual. In conclusion, the laboratory experiments suggest that MBT residual can be utilised as a support medium for CH(4) oxidation, even at low temperatures, to mitigate greenhouse gas emissions from landfills. PMID:17360174

  6. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  7. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O2- to H2O2, the question as to whether the resultant H2O2 is further detoxicated into H2O and O2 or not must still be evaluated. Hence, we studied the effect of

  8. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    CERN Document Server

    Lu, Peter J; Macarthur, James B; Sims, Peter A; Ma, Hongshen; Slocum, Alexander H

    2012-01-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  9. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    Science.gov (United States)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  10. Stability of Commercial Small-Sized Cerium Oxide in the Presence of Biological Material: Dilucidating Relationships between Reactivity and Toxicity of Nanomaterials

    Science.gov (United States)

    Cervini-Silva, J.; Gilbert, B.; Fernandez-Lomelin, P.; Guzman-Mendoza, J.; Chavira, E.

    2007-05-01

    the transformation of biomolecules (as % carbon) with decreasing CeO2 particle diameter (13 oxidation are distributed next to the mineral surface and its occurrence is coupled to Ce reduction-oxidation. As evidenced by DSL and UV experiments conducted for the pH 2 to 8 range, the aggregation behavior of nanoCeO2 is susceptible to pH variations imposed because the presence of biological moieties itself over solid concentration.

  11. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity

  12. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  13. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    Directory of Open Access Journals (Sweden)

    Lionel F Gamarra

    2010-03-01

    Full Text Available Lionel F Gamarra1,2, Antonio J daCosta-Filho3, Javier B Mamani1, Rita de Cassia Ruiz4, Lorena F Pavon1, Tatiana T Sibov1, Ernanni D Vieira3, André C Silva1, Walter M Pontuschka5, Edson Amaro Jr1,21Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, São Paulo, Brazil; 2Instituto de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; 3Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil; 4Instituto Butantan, São Paulo, Brazil; 5Instituto de Física, Universidade de São Paulo, São Paulo, BrazilAbstract: The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs administered in biological materials by means of the ferromagnetic resonance technique (FMR applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133 in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo or per labeled cell (in vitro.Keywords: quantification, FMR, ferrofluid, biodistribution, nanoparticles

  14. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    International Nuclear Information System (INIS)

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH 2 which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO2 increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO2 as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L-1 for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L-1-5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L-1-2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L-1. Sample throughput for the automated system was 8 h-1 for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 μL per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  15. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    OpenAIRE

    Maas,, F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration require...

  16. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater

    OpenAIRE

    Espejo, Azahara; Aguinaco, Almudena; Amat Payá, Ana María; Fernando J. Beltrán

    2014-01-01

    Removal of nine pharmaceutical compounds¿acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)¿spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the ...

  17. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    OpenAIRE

    Namratha Pai Kotebagilu; Vanitha Reddy Palvai; Asna Urooj

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Cost...

  18. Methane oxidation in a boreal climate in an experimental landfill cover composed from mechanically-biologically treated waste.

    Science.gov (United States)

    Einola, J-K M; Sormunen, K M; Rintala, J A

    2008-12-15

    The present study evaluated microbial methane (CH4) oxidation in a boreally located outdoor landfill lysimeter (volume 112 m3, height 3.9 m) filled with mechanically-biologically treated waste (MBT residual) and containing a cover layer made from the same MBT residual. The calculations based on gas emission and pore gas measurements showed that, between April and October 2005, a significant proportion (> 96%) of the methane produced (landfill covers in field conditions in a boreal climate. PMID:18823644

  19. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  20. Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage

    International Nuclear Information System (INIS)

    DNA is subject to constant oxidative damage from endogenous oxidants. The oxidized DNA is continuously repaired and the oxidized bases are excreted in the urine. A simple routine analytical procedure is described for urinary 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage adduct, as an indicator of oxidative damage in humans and rodents. This adduct was purified from human urine and characterized. The described assay employs a series of solid-phase extraction steps that separate 8-hydroxy-2'-deoxyguanosine from other urinary constituents, followed by analysis by gradient reversed-phase HPLC coupled to a dual-electrode high-efficient electrochemical detection system. Analysis of urine from three species by this method indicates that mice excrete approximately 3.3-fold more 8-hydroxy-2'-deoxyguanosine than humans (582 vs. 178 residues per cell day), a result that supports the proposal that oxidative damage to DNA increases in proportion to species-specific basal metabolic rates

  1. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  2. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates.

    Science.gov (United States)

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  3. Study of reactive blue 171 dye degradation in hybrid system of UV/H2O2 & SBAR

    OpenAIRE

    leila Moradi Pasand; Bita Ayati

    2014-01-01

    Background and Aim: In this study, the removal of dye blue reactive-171 by combination of advanced oxidation processes UV/H2O2 and SBAR has been investigated. Methods: The efficiency of chemical and biological system was first investigated separately. In chemical system, the kind, power, initial dye concentration and hydrogen parasitize and in biological system, hydraulic detention time, aeration rate, initial dye concentration and the percent removal of dye and COD were investigated. In o...

  4. Effects of enhanced UV-B radiation on Mentha spicata essential oils

    International Nuclear Information System (INIS)

    In vitro propagated plantlets representing two distinct chemotypes of Mentha spicata, viz. plants producing essential oils rich in piperitone oxide and piperitenone oxide (chemotype I) and rich in carvone and dihydrocarvone (chemotype II), were grown in the field under ambient or ambient plus supplemental UV-B radiation, biologically equivalent to a 15% ozone depletion over Patras (38.3°N, 29.1°E), Greece. Enhanced UV-B radiation stimulated essential oil production in chemotype II substantially, while a similar, non-significant trend was observed in chemotype I. No effect was found on the qualitative composition of the essential oils, whereas the quantitative composition was slightly modified in chemotype I. This is the first investigation reporting an improved essential oil content under UV-B supplementation in aromatic plants under field conditions

  5. Role of sensitivity of zinc oxide nanorods (ZnO-NRs) based photosensitizers in hepatocellular site of biological tissue

    Science.gov (United States)

    Atif, M.; Fakhar-E-Alam, M.; Alsalhi, M. S.

    2011-11-01

    Zinc oxide nanorods (ZnO-NRs) with high surface to volume ratio and bio compatibility are used as an efficient photosensitizer carrier system for achievement of Hepatocellular cancer cell (HepG2) necrosis within few minutes. Present study highlights the role of effectiveness of ZnO-NRs in photodynamic therapy (PDT). We have grown the ZnO-NRs on the tip of borosilicate glass capillaries (0.5 μm diameter). The grown ZnO-NRs were conjugated using Photofrin® and ALA for the efficient intracellular drug delivery, which produces reactive oxygen species (ROS) via photochemical reactions leading to cell death within few minutes after exposing UV light (240 nm). Viability of controlled and treated HepG2 cells with optimum dose of light (UV-visible) has been assessed by neutral red assay (NRA). The results were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as ROS detection. ZnO-NRs based Phogem® (PG) treated normal liver tissues of Sprague-Dawley rats were used as comparative experimental model. Morphological apoptotic changes in liver tissue of Sprague-Dawley rats before and after ZnO-NRs conjugated with photosensitizer (PS)-mediated PDT were investigated by microscopic examination.

  6. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    DEFF Research Database (Denmark)

    Cadet, Jean; Loft, Steffen; Olinski, Ryszard;

    2012-01-01

    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the...

  7. Role of nitric oxide in developmental biology in plants, bacteria, and man

    OpenAIRE

    Allain, Alexander V.; Hoang, T; Lasker, George F.; Pankey, Edward A.; Murthy, Subramanyam N; Kadowitz, Philip J.

    2011-01-01

    Since its discovery, nitric oxide (NO) has been observed to play an important role in the physiology of single-celled organisms as well as high-order vertebrates. In this review, we will discuss the involvement of NO in bacterial, plant and human systems. NO originates from a variety of sources, namely bacterial, plant, and mammalian nitric oxide synthases which oxidize L-arginine. Bacterial NO is involved in toxin synthesis, signaling and biofilm formation. Organisms use NO to mediate oxidat...

  8. Synthesis, spectral (FT-IR, UV-visible, NMR) features, biological activity prediction and theoretical studies of 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione and its tautomer

    Science.gov (United States)

    Srivastava, Ambrish Kumar; Kumar, Abhishek; Misra, Neeraj; Manjula, P. S.; Sarojini, B. K.; Narayana, B.

    2016-03-01

    Triazole compounds constitute an important class of organic chemistry due to their various biological and corrosion inhibition activities. The synthesis scheme of a new triazole compound namely, 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (4AHT) has been theoretically analyzed. Our density functional theory (DFT) based calculations show that the synthesis of 4AHT is energetically feasible at the room temperature as the reaction is exothermic, spontaneous as well as favored in forward direction. The calculated bond-lengths are found to be in good agreement with corresponding crystallographic values. We have considered two possible tautomers of 4AHT viz. thione and thiol forms. The FT-IR (KBr disc), UV-visible (ethanol) and 1H-NMR (DMSO) spectra of 4AHT have been recorded. The vibrational modes have been assigned on the basis of their potential energy distributions and scaled wavenumbers agree well with the FT-IR wavenumbers. Time dependent DFT calculations are performed to analyze the electronic transitions for various excited states which reproduce the experimental peak observed in UV-visible spectrum. Using gauge independent atomic orbital method 1H-NMR chemical shifts have been calculated and correlated with the experimental chemical shifts with the linear correlation coefficient of 0.9453. Our spectral analyses reveal the dominance of thione over thiol form of 4AHT. The chemical reactivity of 4AHT has been discussed by molecular electrostatic potential surface as well as various electronic parameters. The biological activities of 4AHT have also been explored theoretically and it has been found that the title molecule can act as a potential inhibitor of cyclin-dependent kinase 5 enzyme. These findings may guide the synthesis and design of new triazole compounds with interesting biological activity.

  9. Biological nitrogen removal in one step by nitritation and anaerobic oxidation of ammonia in biofilms; Einstufige biologische Stickstoffelimination durch Nitritation und anaerobe Ammonium-Oxidation im Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, C.; Tromm, C.; Hippen, A.; Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    For biological treatment of high nitrogenous wastewaters with low C/N ratio autotrophic microorganisms which are able to convert ammonium directly into nitrogen gas are especially interesting. It is exceptionally difficult to verify their presence and importance in mixed populations of full scale wastewater treatment plants. So it could not be clarified finally up to now which basic microbial reactions lead to single stage complete nitrogen removal, here called deammonification, in the nitrification step (biological contactor) of the leachate treatment plant in Mechernich. It succeeded meanwhile to establish the process of deammonification in a continuous flow moving-bed pilot plant. In batch experiments which biomass-covered carriers nitrogen conversions could become investigated at the intact biofilm for the first time. Two autotrophic nitrogen conversion reactions could be proved in the biofilm depending on dissolved oxygen (DO) concentration: A nitritation under aerobic conditions and an anaerobic ammonium oxidation. For the anaerobic ammonium oxidation nitrite was used as electron acceptor with ammonium as electron donor. N{sub 2} was the end product of the reaction. The ratio of ammonium conversion to nitrite conversion was 1:1,37, which was described in the same range for the ANAMMOX-process (1:1,31{+-}0,06). Nitrate could not be used as electron acceptor. Nitrite had to be added to the experiment to obtain oxygen independent oxidation of ammonium. The parts of nitritation and anaerobic ammonium conversion in nitrogen conversion could be controlled by the DO concentration. At a DO concentration of 0.7 mg/l both processes were balanced, so that a direct almost complete elimination of ammonium was possible without any dosage of nitrite. The added ammonium was partially oxidised to nitrite and partially oxidised anaerobically. The aerobic ammonium oxidation to nitrite in the outer oxygen supplied biofilm layers produced the reactant for the anaerobic ammonium

  10. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro.

    Directory of Open Access Journals (Sweden)

    Ramon R P P B de Menezes

    Full Text Available Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO. NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with

  11. Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Novotná, Božena; Jendelová, Pavla; Kapcalová, Miroslava; Rössner ml., Pavel; Turnovcová, Karolína; Bagryantseva, Yana; Babič, Michal; Horák, Daniel; Syková, Eva

    2012-01-01

    Roč. 210, č. 1 (2012), s. 53-63. ISSN 0378-4274 R&D Projects: GA MŠk 1M0538; GA ČR GA203/09/1242; GA ČR(CZ) GAP304/12/1370 Grant ostatní: GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703; CEZ:AV0Z40500505 Institutional support: RVO:68378041 ; RVO:61389013 Keywords : iron oxide nanoparticles * oxidative damage * stromal cells Subject RIV: FP - Other Medical Disciplines; FP - Other Medical Disciplines (UMCH-V) Impact factor: 3.145, year: 2012

  12. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  13. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  14. O3浓度升高和UV-B辐射增强对大豆叶片抗氧化酶活性及POD同工酶的影响%Combined Effects of Elevated O3 Concentration and UV-B Radiation on Anti-Oxidative Enzymes Activities and POD Enzymes Isozymes of Soybean

    Institute of Scientific and Technical Information of China (English)

    刘轶鸥; 王岩; 刘波; 杨兴; 赵天宏

    2013-01-01

    During the last several decades, significant reductions in the concentrations of stratospheric ozone( O3) have been reported. The decrease of ozone concentration causes an increment of ultraviolet-B radiation to earth surface. The objective of this experiment is to reveal the toxicological mechanism under elevated ozone concentration and UV-B radiation singly or in combination on plant anti-oxidation enzymes activities and POD isoenzyme. Open-top chambers ( OTCs) were utilized to investigate change of anti-oxidation enzymes activities and POD isoenzyme band in soybean( Glycine max) leaves under elevated ozone concentration and UV-B radiation singly or in combination treatment. The results of anti-oxidation enzymes activities indicated that either O3 treatment or UV-B treatment induced a decrease on SOD,POD and CAT,and in the combined stress,anti-oxidation enzymes activities had intensified this trend to a certain degree. The result of POD isozyme band showed that a new band appeared under O3 treatment in branching stage and two new bands appeared in flowering stage and podding stage compared of branching stage,and the shade of color of POD isoenzyme bands was lighter compared to CK treatment. It was suggested that in all growth period,POD isoenzyme activity was inhibited under combined stress.%以大豆品种铁丰29为材料,利用开顶式气室(OTCs)研究了O3浓度升高和UV-B辐射增强单独胁迫及复合胁迫下大豆叶片抗氧化酶(SOD、POD和CAT)活性及POD同工酶谱带的变化.结果表明:O3处理大豆叶片SOD、CAT和POD活性均低于对照;UV处理下,大豆叶片SOD、CAT、POD活性也均低于对照,但基本高于O3处理;O3及UV复合处理下,加剧了SOD、CAT、POD活性的减弱.对POD同工酶研究发现,在分枝期,O3处理产生Ⅰ条新谱带,开花期和结荚期均比分枝期多2条谱带,并且受胁迫处理的POD酶谱带与对照相比颜色较浅,说明在整个生育期,胁迫处理下的大豆叶片POD同工酶活性受到抑制.

  15. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    Science.gov (United States)

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery. PMID:17344963

  16. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  17. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  18. Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics

    Science.gov (United States)

    Li, Lei; Liu, Qi; Wang, Yi-Xuan; Zhao, Han-Qing; He, Chuan-Shu; Yang, Hou-Yun; Gong, Li; Mu, Yang; Yu, Han-Qing

    2016-01-01

    How reduced graphene oxide (RGO) mediates the reductive transformation of nitroaromatic pollutants by mixed cultures and the role of its surface characteristics were evaluated in this study. Different electron donors were applied to investigate the interaction between RGO and anaerobic microbes. Moreover, the influence of the surface properties of RGO on biological nitroaromatic removal was further elucidated. The results show that RGO could achieve an approximate one-fold rate increase of nitrobenzene reduction by mixed culture with glucose as an electron donor. Selective elimination of oxygen moieties on the RGO surface, such as quinone groups, decreased the nitrobenzene transformation rate, whereas doping nitrogen into the RGO framework exhibited a positive effect. The study indicates that graphene-based carbon nanomaterials have the potential to accelerate the biological transformation of nitroaromatic compounds and that the functionalization of these carbon nanomaterials, especially through surface modification, would further enhance the conversion efficiency of contaminants. PMID:27439321

  19. Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics.

    Science.gov (United States)

    Li, Lei; Liu, Qi; Wang, Yi-Xuan; Zhao, Han-Qing; He, Chuan-Shu; Yang, Hou-Yun; Gong, Li; Mu, Yang; Yu, Han-Qing

    2016-01-01

    How reduced graphene oxide (RGO) mediates the reductive transformation of nitroaromatic pollutants by mixed cultures and the role of its surface characteristics were evaluated in this study. Different electron donors were applied to investigate the interaction between RGO and anaerobic microbes. Moreover, the influence of the surface properties of RGO on biological nitroaromatic removal was further elucidated. The results show that RGO could achieve an approximate one-fold rate increase of nitrobenzene reduction by mixed culture with glucose as an electron donor. Selective elimination of oxygen moieties on the RGO surface, such as quinone groups, decreased the nitrobenzene transformation rate, whereas doping nitrogen into the RGO framework exhibited a positive effect. The study indicates that graphene-based carbon nanomaterials have the potential to accelerate the biological transformation of nitroaromatic compounds and that the functionalization of these carbon nanomaterials, especially through surface modification, would further enhance the conversion efficiency of contaminants. PMID:27439321

  20. The comparison of the biological behaviour of morphine and its N-oxides in rats

    International Nuclear Information System (INIS)

    14C labelled morphine and morphine N-oxide solutions are injected into rats for the in vivo detection and comparison of morphine N-oxides, the natural presence of which in Papaver somniferum L. was proved by us in an earlier work /1/ and morphine itself and the distributions of these two substances in the kidneys, liver, blood and urine of the injected animals are investigated, in various time intervals. (author)

  1. Comparison of the biological behaviour of morphine and its N-oxides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gurkan, E.; Demirel, B.; Ozker, K. (Cekmece Nuclear Research and Training Center, Istanbul (Turkey))

    1982-04-01

    /sup 14/C labelled morphine and morphine N-oxide solutions are injected into rats for the in vivo detection and comparison of morphine N-oxides, the natural presence of which in Papaver somniferum L. was proved by us in an earlier work /1/ and morphine itself and the distributions of these two substances in the kidneys, liver, blood and urine of the injected animals are investigated, in various time intervals.

  2. Formation and colloidal behaviour of elemental sulphur produced from the biological oxidation of hydrogensulphide.

    OpenAIRE

    Janssen, A.J.H.

    1996-01-01

    The formation and aggregation of elemental sulphur from the microbiological oxidation of hydrogensulphide (H 2 S) by a mixed population of aerobic Thiobacillus -like bacteria has been investigated. Sulphide is formed during the anaerobic treatment of wastewaters which contain oxidized sulphur compounds such as thiosulphate, sulphite and sulphate. This sulphide has to be removed from the effluent solution of anaerobic reactors because of its detrimental characteristics e.g. toxicity, corrosive...

  3. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu®) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 105 and 4.7 ± 0.2 × 109 M−1 s−1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  4. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    OpenAIRE

    Bo Li; Guangxue Wu

    2014-01-01

    Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characte...

  5. Quercetin Improved Biological Membrane Integrity and Decreased Protein Oxidation as Induced in Rats by Ionizing Radiation Exposure

    International Nuclear Information System (INIS)

    After radiation exposure at certain levels, harmful changes in the living cell metabolic activities may occur. These changes include oxidation of lipid and protein as well as membrane permeability disorders. Gamma glutamyl transferase (GGT) is recently believed to be important in protecting against oxidative stress and is considered as good indicator of it. In the present study Spague Dawely rats (140-150 g) were exposed to whole body gamma irradiation (shot dose, 5 Gy), samples of blood and liver were taken 1 and 10 days post exposure. Quercetin (pentahydroxy flavone) presented in most vegetables, was administered orally (1.064 mmol/kg body wt.)up to 10 days before radiation exposure to evaluate its anti oxidative role. he data revealed serious effects of radiation exposure on the membrane integrity as reflected by increased serum potassium associated with decreased sodium levels. Oxidation of lipid and protein with antioxidant disorders were recorded after radiation exposure as reflected by increased contents of malondialdehyde, carbonyl and GGT activity. Quercetin administration before radiation exposure attenuated the harmful effects of irradiation in the most chosen parameters. The beneficial role of quercetin may be related to its ability in quenching free radicals and scavenging reactive oxygen species thus improving regeneration in the biological tissues

  6. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.

    Science.gov (United States)

    Kobayashi, Takuro; Li, Yu-You; Kubota, Kengo; Harada, Hideki; Maeda, Takeki; Yu, Han-Qing

    2012-01-01

    The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100-500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions. PMID:21735263

  7. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    Czech Academy of Sciences Publication Activity Database

    Pavelková, T.; Vaněček, V.; Jakubec, Ivo; Čuba, V.

    2016-01-01

    Roč. 124, JUL (2016), s. 252-257. ISSN 0969-806X Institutional support: RVO:61388980 Keywords : E-beam * Nuclear fuels * Radiation synthesis * Cerium(IV) oxide * Europium(III) oxide * Uranium(IV) oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.380, year: 2014

  8. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors

    Science.gov (United States)

    Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2016-03-01

    In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein

  9. CHLOROPHENOL DEGRADATION BY ELECTROCATALYSIS COMBINED WITH UV RADIATION%电催化与紫外光辐射降解氯酚

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 叶倩; 周明华; 丛燕青

    2002-01-01

    @@ Chlorinated organic compounds, especially chlorophenols are well-known water priority pollutant family due to their toxicity and potential health hazard. As biological treatment processes for the degradation of chlorinated phenols have not been effective, various technologies and processes such as activated carbon adsorption[1], chemical oxidation[2], have been conventionally attempted for phenolic waster treatment. Recently, advanced oxidation processes (AOPs) have attracted a great deal of attention for treatment of phenolic wastewater, among these chemical oxidation ultraviolet (UV) oxidation system[3], anodic oxidation and indirect electro-oxidation have been widely studied[4]. Though a number of researchers worked on the degradation of chlorophenol by UV radiation or electrochemical processes, there are few reports on both methods for organic wastewater treatment. If these two processes can operate in harmony, the degradation efficiency would be enhanced.

  10. An investigation of inhibition effect of metronidazole before and after using advanced oxidation process (UV254/H2O2 on specific methanogenic activity of anaerobic biomass

    Directory of Open Access Journals (Sweden)

    S. A. Mirzaee

    2014-07-01

    Conclusion: Different concentrations of metronidazole had an inhibition effect on anaerobic digestions and therefore the efficient pretreatment method is needed to reduce this inhibition effect. The UV254/H2O2 process is an effective method for degradation and conversion of metronidazole to more biodegradable compounds for anaerobic bacteria consumption and, in turn, to increase biogasproduction in anaerobic digestions.

  11. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems.

    Science.gov (United States)

    Helmer, C; Tromm, C; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Kunst, S

    2001-01-01

    In full scale wastewater treatment plants with at times considerable deficits in the nitrogen balances, it could hitherto not be sufficiently explained which reactions are the cause of the nitrogen losses and which micro-organisms participate in the process. The single stage conversion of ammonium into gaseous end-products--which is henceforth referred to as deammonification--occurs particularly frequently in biofilm systems. In the meantime, one has succeeded to establish the deammonification processes in a continuous flow moving-bed pilot plant. In batch tests with the biofilm covered carriers, it was possible for the first time to examine the nitrogen conversion at the intact biofilm. Depending on the dissolved oxygen (DO) concentration, two autotrophic nitrogen converting reactions in the biofilm could be proven: one nitritation process under aerobic conditions and one anaerobic ammonium oxidation. With the anaerobic ammonium oxidation, ammonium as electron donor was converted with nitrite as electron acceptor. The end-product of this reaction was N2. Ammonium and nitrite did react in a stoichiometrical ratio of 1:1.37, a ratio which has in the very same dimension been described for the ANAMMOX-process (1:1.31 +/- 0.06). Via the oxygen concentration in the surrounding medium, it was possible to control the ratio of nitritation and anaerobic ammonium oxidation in the nitrogen conversion of the biofilm. Both processes were evenly balanced at a DO concentration of 0.7 mg/l, so that it was possible to achieve a direct, almost complete elimination of ammonium without addition of nitrite. One part of the provided ammonium did participate in the nitritation, the other in the anaerobic ammonium oxidation. Through the aerobic ammonium oxidation into nitrite within the outer oxygen supplied layers of the biofilm, the reaction partner was produced for the anaerobic ammonium oxidation within the inner layers of the biofilm. PMID:11379106

  12. Selective oxidation of methionine residues in apolipoprotein A-I and its potential biological consequences

    International Nuclear Information System (INIS)

    The earliest stages of HDL oxidation are accompanied by the oxidation of specific Met residues in apolipoprotein AI and AII and the formation of Met sulfoxides (Met(O)) has been proposed to play a significant role in the reduction and hence detoxification of lipid hydroperoxides associated with HDL. Oxidation of HDL may generally decrease the anti-atherogenic properties of this lipoprotein, although both, the inhibition and the enhancement of cholesterol removal from cells has been reported for different types of oxidation. In light of these findings we have investigated the secondary structure, lipid affinity, LCAT activation and cholesterol-efflux promoting properties of native and selectively oxidized apo A-I(apo A-I+32, containing Met(O) at Metl12 and Metl48) in purified or reconstituted forms. Data obtained by circular dichroism revealed that selective oxidation of Met residues 112 and 148 does not alter alpha helicity of the protein in solution, indicating that this oxidation is not sufficient to influence significantly this type of secondary structure of apo A-I in its 'lipid-free' form. The lipid affinity of native apo A-I and apo A-I+32 was determined as the rate of clearance of DMPC multilamellar to small unilamellar vesicles. Compared with the native protein, apo A-I+32 induced a 2-3 fold faster rate of clearance, suggesting that the increased hydrophilicity due Met(O) increased the rate for protein-lipid interactions. Met residues 112 and 148 reside in the hydrophobic faces of helices 5 and 7, and both these regions have been suggested to be important for both, LCAT activation and cholesterol efflux. Kinetic experiments have revealed that the affinity for LCAT is comparable for HDL reconstituted with either apo A-I or apo A-I+32. Efflux of [3H]-cholesterol from lipid-laden human monocytederived macrophages to isolated apolipoproteins was enhanced for apo A-I+32 compared with apo A-I, consistent with the DMPC clearance data. Together these findings

  13. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    Energy Technology Data Exchange (ETDEWEB)

    Baldassarre, Francesca, E-mail: francesca.baldassarre@unisalento.it [University of Salento, Department of Cultural Heritage (Italy); Cacciola, Matteo, E-mail: matteo.cacciola@unirc.it [University “Mediterranea” of Reggio Calabria, DICEAM (Italy); Ciccarella, Giuseppe, E-mail: giuseppe.ciccarella@unisalento.it [University of Salento, Department of Innovation Engineering (Italy)

    2015-09-15

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  14. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays

  15. Schwertmannite and Fe oxides formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: Impact on trace metal sequestration

    Science.gov (United States)

    Burgos, William D.; Borch, Thomas; Troyer, Lyndsay D.; Luan, Fubo; Larson, Lance N.; Brown, Juliana F.; Lambson, Janna; Shimizu, Masayuki

    2012-01-01

    Three low-pH coal mine drainage (CMD) sites in central Pennsylvania were studied to determine similarities in sediment composition, mineralogy, and morphology. Water from one site was used in discontinuous titration/neutralization experiments to produce Fe(III) minerals by abiotic oxidative hydrolysis for comparison with the field precipitates that were produced by biological low-pH Fe(II) oxidation. Even though the hydrology and concentration of dissolved metals of the CMD varied considerably between the three field sites, the mineralogy of the three iron mounds was very similar. Schwertmannite was the predominant mineral precipitated at low-pH (2.5-4.0) along with lesser amounts of goethite. Trace metals such as Zn, Ni and Co were only detected at μmol/g concentrations in the field sediments, and no metals (other than Fe) were removed from the CMD at any of the field sites. Metal cations were not lost from solution in the field because of unfavorable electrostatic attraction to the iron mound minerals. Ferrihydrite was the predominant mineral formed by abiotic neutralization (pH 4.4-8.4, 4 d aging) with lesser amounts of schwertmannite and goethite. In contrast to low-pH precipitation, substantial metal removal occurred in the neutralized CMD. Al was likely removed as hydrobasaluminite and Al(OH) 3, and as a co-precipitate into schwertmannite or ferrihydrite. Zn, Ni and Co were likely removed via adsorption onto and co-precipitation into the freshly formed Fe and Al solids. Mn was likely removed by co-precipitation and, at the highest final pH values, as a Mn oxide. Biological low-pH Fe(II) oxidation can be cost-effectively used to pre-treat CMD and remove Fe and acidity prior to conventional neutralization techniques. A further benefit is that solids formed under these conditions may be of industrial value because they do not contain trace metal or metalloid contaminants.

  16. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna;

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...

  17. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully ...

  18. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully ...

  19. Biological implications of oxidation and unidirectional chiral inversion of D-amino acids.

    Science.gov (United States)

    Wang, Yong-Xiang; Gong, Nian; Xin, Yan-Fei; Hao, Bin; Zhou, Xiang-Jun; Pang, Catherine C Y

    2012-03-01

    Recent progress in chiral separation of D- and L-amino acids by chromatography ascertained the presence of several free Damino acids in a variety of mammals including humans. Unidirectional chiral inversion of many D-amino acid analogs such as exogenous NG-nitro-D-arginine (D-NNA), endogenous D-leucine, D-phenylanine and D-methionine have been shown to take place with inversion rates of 4-90%, probably dependent on various species D-amino acid oxidase (DAAO) enzymatic activities. DAAO is known to catalyze the oxidative deamination of neutral and basic D-amino acids to their corresponding α-keto acids, hydrogen peroxide and ammonia, and is responsible for the chiral inversion. This review provides an overview of recent research in this area: 1) oxidation and chiral inversion of several D-amino acid analogs in the body; 2) the indispensable but insufficient role of DAAO particularly in the kidneys and brain for the oxidation and chiral inversion of D-amino acids analogs; and 3) unidentified transaminase(s) responsible for the second step of chiral inversion. The review also discusses the physiological significance of oxidation and chiral inversion of D-amino acids, which is still a subject of dispute. PMID:22304623

  20. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. PMID:27083071

  1. Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l. G. Don. Leaf extract and validation for antibacterial activity

    Directory of Open Access Journals (Sweden)

    G. Bhumi

    2014-03-01

    Full Text Available Biologically synthesized nanoparticles have been widely using in the field of medicine. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Present study focuses on the Biological synthesis of Zinc oxide nanoparticles (ZnO-NPs by Zinc acetate and sodium hydroxide utilizing the biocomponents of leaves of Catharanthus roseus. The samples were characterized by x-ray diffraction (XRD, Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDAX and FT-Raman Spectroscopy. The synthesized ZnO-NPs were found to be spherical in shape with an average size of 23 to 57 nm. These ZnO-NPs were evaluated for antibacterial activity. The maximum diameter of inhibition zones around the ZnONPs disk used for Bacillus thuringiensis indicates the resistance to ZnO NPs followed by Escherichia coli. Among the four bacterial species tested, the Pseudomonas aeuroginosa is more susceptible when compared with other three species. It is concluded that the biological synthesis of ZnO NPs is very fast, easy, cost effective and eco-friendly and without any side effects and ZnO Nps may be used for the preparation of antibacterial formulations against Pseudomonas aeuroginosa

  2. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    International Nuclear Information System (INIS)

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH4) oxidation process were examined. The investigation was performed on compost experiments incubated with CH4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the Vmax value was 35.0 μg CH4h-1gwetwt-1. This value was reduced to 19.1 μg CH4h-1gwetwt-1 when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

  3. Electrochemical oxidation behavior of hydrochlorothiazide on a glassy carbon electrode and its voltammetric determination in pharmaceutical formulations and biological fluids

    Directory of Open Access Journals (Sweden)

    Ali F. Alghamdi

    2014-09-01

    Full Text Available The electrochemical oxidation behavior of hydrochlorothiazide (HCT on a glassy carbon as a working electrode was investigated in Britton–Robinson (B–R buffer pH 3, by using anodic stripping voltammetry (ASV and cyclic voltammetry (CV. This drug gave a well-defined voltammetric oxidation peak at + 1200 mV versus an Ag/AgCl reference electrode. The electrochemical oxidation process was shown to be irreversible and diffusion controlled, with adsorption characterized over the entire pH range. The optimized conditions, such as accumulation time and potential, scan rate, frequency, pulse amplitude, varying of working electrodes, and instrumental parameters were studied. The calibration graph for HCT was obtained from 4 × 10−6 to 4 × 10−5 M (correlation coefficient = 0.997 using the developed electroanalytical method (ASV. The detection limit of this drug was 4.3 × 10−9 M. ASV and CV techniques with adequate precision and accuracy have been developed and applied for direct determination of HCT in commercial tablets without separation or extraction procedures and biological fluids such as urine and plasma.

  4. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers.

    Science.gov (United States)

    Albanna, Muna; Warith, Mostafa; Fernandes, Leta

    2010-02-01

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH4) oxidation process were examined. The investigation was performed on compost experiments incubated with CH4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 degrees C without any NMOCs the V(max) value was 35.0 microg CH4 h(-1)gwet wt(-1). This value was reduced to 19.1 microg CH4 h(-1) gwet wt(-1) when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated. PMID:19896356

  5. Biological Alteration of Basaltic Glass With Altered Composition and Oxidation States

    Science.gov (United States)

    Bailey, B. E.; Staudigel, H.; Templeton, A.; Tebo, B. M.; Ryerson, F.; Plank, T.; Schroder, C.; Klingelhoefer, G.

    2004-12-01

    The ocean crust is an extreme and oligotrophic environment and yet recent studies have shown that reactions between oceanic crust and seawater are capable of supporting microbial life. We are specifically targeting volcanic glass as a source of energy and nutrients necessary to support endolithic microbial communities. A significant amount of chemical energy is available from the process of iron oxidation and our goal is to determine the ability of microorganisms to use Fe(II) as an energy source as well as liberate other essential nutrients from the host rock. In addition, microbes may oxidize Mn or use phosphate from glass. To explore the dependency of microbial life on these nutrients and energy sources, we produce basaltic glasses with varying Fe oxidation states and relative abundance of iron, manganese and phosphate and introduce them to microbial isolates and consortia both in the laboratory and in deep-ocean environments. The natural exposure experiments occur in a variety of settings including hydrothermal vents and cold deep seawater (Loihi Seamount), brines (Mediterranean), and basaltic flows at spreading ridges (EPR), when possible on submarine lava flows of recent and known age. Upon collection of the exposure experiments, we compare basalt colonizing microbial communities on our synthetic glasses with the in situ glass communities through a large culturing effort and molecular (t-RFLP) studies. So far we have produced a number of enrichment cultures and isolated several iron-oxidizing and manganese-oxidizing bacteria that were used to inoculate glasses in the laboratory. Laboratory experiments concentrate on biofilm formation and dissolution of the colonized glasses. Continued collection of exposure experiments on a yearly time-scale provides valuable information regarding spatial and temporal variations in microbial community diversity and structure. We have also analyzed the authigenic reaction products of seafloor, microbially mediated alteration

  6. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology

    Science.gov (United States)

    Jasim, Dhifaf A.; Lozano, Neus; Kostarelos, Kostas

    2016-03-01

    This work aimed to interrogate the role that the starting graphitic material played on the physicochemical properties of graphene oxide (GO) sheets and their impact on mammalian cell viability following exposure to those flakes. Three different GO thin sheets were synthesised from three starting graphite material: flakes (GO-f), ground (GO-g) and powder (GO-p) using a modified Hummers’ method. The synthetic yield of this methodology was found to differ according to type of starting material, with GO-p resulting in most efficient yields. Structural and morphological comparison of the three GO sheet types were carried out using transmission electron microscopy and atomic force microscopy. Optical properties were measured using UV/visible and fluorescence spectroscopy. Surface characteristics and chemistry were determined using a battery of techniques. Exposure to human cells was studied using the human A549 lung epithelial cultures. Our results revealed that all three GO samples were composed of few-layer sheets with similar physicochemical and surface characteristics. However, significant differences were observed in terms of their lateral dimensions with GO-p, prepared from graphite powder, being the largest among the GOs. No cytotoxicity was detected for any of the GO samples following exposure onto A549 cells up to 48 h. In conclusion, the form and type of the starting graphite material is shown to be an important factor that can determine the synthetic yield and the structural characteristics of the resulting GO sheets.

  7. Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology.

    Science.gov (United States)

    Zhang, Hui; Ran, Xiaoni; Wu, Xiaogang; Zhang, Daobin

    2011-04-15

    Box-Behnken statistical experiment design and response surface methodology were used to investigate electrochemical oxidation of mature landfill leachate pretreated by sequencing batch reactor (SBR). Titanium coated with ruthenium dioxide (RuO(2)) and iridium dioxide (IrO(2)) was used as the anode in this study. The variables included current density, inter-electrode gap and reaction time. Response factors were ammonia nitrogen removal efficiency and COD removal efficiency. The response surface methodology models were derived based on the results. The predicted values calculated with the model equations were very close to the experimental values and the models were highly significant. The organic components before and after electrochemical oxidation were determined by GC-MS. PMID:21334807

  8. Biologically Inspired Design of Biocompatible Iron Oxide Nanoparticles for Biomedical Applications

    OpenAIRE

    Demirer, Gözde S.; Okur, Aysu C; Kızılel, Seda

    2015-01-01

    During the last couple of decades considerable research efforts have been directed towards the synthesis and coating of iron oxide nanoparticles (IONPs) for biomedical applications. To address the current limitations, recent studies have focused on the design of new generation nanoparticle systems whose internalization and targeting capabilities have been improved through surface modifications. This review covers the most recent challenges and advances in the development of IONPs with enhance...

  9. Biological monitoring of the ethylene oxide gas effects on medical utilities sterilization exposed staff

    OpenAIRE

    Kamel, Mahmoud M; Hewehy, Mahmoud A. I.; Hussein, Ahmed H. M.; Samy, Waleed

    2013-01-01

    Abstract. Chronic exposure to Ethylene Oxide (EtO) gas was suggested to be associated with many health hazards. This study was conducted on thirty one workers exposed to EtO gas in different production areas and classified into three groups; group I included seven workers with direct exposure, group II included thirteen workers with partial exposure and group III included eleven workers with indirect exposure. One group included 20 non exposed persons and served as a control group (group IV)....

  10. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    OpenAIRE

    J. L. Dixon; Beale, R; P. D. Nightingale

    2011-01-01

    Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol up t...

  11. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    OpenAIRE

    J. L. Dixon; Beale, R; P. D. Nightingale

    2011-01-01

    Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol betw...

  12. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection.

    Science.gov (United States)

    Mirzajani, Roya; Kardani, Fatemeh

    2016-04-15

    A molecularly imprinted polymer (MIP) fiber on stainless steel wire using ciprofloxacin template with a mild template removal condition was synthetized and evaluated for fiber solid phase microextraction (SPME) of fluoroquinolones (FQs) from biological fluids and pharmaceutical samples, followed by high performance liquid chromatography analysis with UV detection (HPLC-UV). The developed MIP fiber exhibited high selectivity for the analytes in complex matrices. The coating of the fibers were inspected using fourier transform infrared spectrophotometry, thermogaravimetric analysis, energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The fiber shows high thermal stability (up to 300°C), good reproducibility and long lifetime. The composite coating did not swell in organic solvents nor did it strip off from the substrate. It was also highly stable and extremely adherent to the surface of the stainless steel fiber. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some FQs. The effective parameters influencing the microextraction efficiency such as pH, extraction time, desorption condition, and stirring rate were investigated. Under optimized conditions, the limits of detection of the four FQs ranged from 0.023-0.033 μg L(-1) (S/N=5) and the calibration graphs were linear in the concentration range from 0.1-40 μg L(-1), the inter-day and intraday relative standard deviations (RSD) for various FQs at three different concentration level (n=5) using a single fiber were 1.1-4.4% and the fiber to fiber RSD% (n=5) was 4.3-6.7% at 5 μg L(-1) of each anlyetes. The method was successfully applied for quantification of FQs in real samples including serum, plasma and tablet formulation with the recoveries between 97 to 102%. PMID:26852159

  13. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    International Nuclear Information System (INIS)

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV–Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation–reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V2O5 form.

  14. Sub-micron period grating structures in Ta2O5 thin oxide films patterned using UV laser post-exposure chemically assisted selective etching

    International Nuclear Information System (INIS)

    A high-resolution and low-damage method for patterning relief structures in thin Ta2O5 films by chemically assisted UV laser selective etching is presented. The method is based on the initial exposure of the Ta2O5 films to pulsed UV radiation (quadrupled Nd:YAG laser at 266 nm) at fluences below the ablation threshold, for the creation of volume damage in the exposed areas. Subsequent immersion of the exposed sample in a KOH solution results in selective etching of the UV-exposed areas, developing relief structures of high quality. Interferometric exposure was used for the patterning of such gratings with periods of the order of 500 nm in films with a thickness of 100 and 500 nm. The behaviour of the patterning process is studied using diffraction efficiency measurements and AFM scans. Diffraction efficiency increases by a factor of ∼63, compared to the undeveloped structure, were obtained for gratings exposed with 1000 pulses of 30 mJ/cm2 energy density, which were developed in a KOH solution. The etching method presented is being applied to the fabrication of gratings in optical waveguides

  15. Effects of temperature and relative humidity on biological indicators used for ethylene oxide sterilization.

    OpenAIRE

    Oxborrow, G. S.; Placencia, A M; Danielson, J W

    1983-01-01

    A study was made to determine the effects of temperature and moisture on the D-value of a common biological indicator. Relative humidity (RH) was varied between 10 and 70% in increments of 10%, and temperature was varied between 30 and 70 degrees C in increments of 10 degrees C. Temperature was found to have a pronounced effect on the D-value. At 60% RH, the D-value varied from 15.0 min at 30 degrees C to 1.1 min at 70 degrees C. When RH was plotted against the average D-value at the various ...

  16. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber

    International Nuclear Information System (INIS)

    The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species. (author)

  17. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Science.gov (United States)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  18. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  19. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes.

    Science.gov (United States)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I; von Gunten, Urs; Canonica, Silvio

    2012-02-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu(®)) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10(5) and 4.7 ± 0.2 × 10(9) M(-1) s(-1) for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. PMID:22230064

  20. Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media.

    Science.gov (United States)

    Moral-Vico, J; Sánchez-Redondo, S; Lichtenstein, M P; Suñol, C; Casañ-Pastor, N

    2014-05-01

    Much effort is currently devoted to implementing new materials in electrodes that will be used in the central nervous system, either for functional electrostimulation or for tests on nerve regeneration. Their main aim is to improve the charge capacity of the electrodes, while preventing damaging secondary reactions, such as peroxide formation, occurring while applying the electric field. Thus, hybrids may represent a new generation of materials. Two novel hybrid materials are synthesized using three known biocompatible materials tested in the neural system: polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and iridium oxide (IrO2). In particular, PPy-IrO2 and PEDOT-IrO2 hybrid nanocomposite materials are prepared by chemical polymerization in hydrothermal conditions, using IrO2 as oxidizing agent. The reaction yields a significant ordered new hybrid where the conducting polymer is formed around the IrO2 nanoparticles, encapsulating them. Scanning electron microscopy and backscattering techniques show the extent of the encapsulation. Both X-ray photoelectron and Fourier transform infrared spectroscopies identify the components of the phases, as well as the absence of impurities. Electrochemical properties of the final phases in powder and pellet form are evaluated by cyclic voltammetry. Biocompatibility is tested with MTT toxicity tests using primary cultures of cortical neurons grown in vitro for 6 and 9days. PMID:24394636

  1. Effect of Return Sludge Pre-concentration on Biological Phosphorus Removal in a Novel Oxidation Ditch

    Institute of Scientific and Technical Information of China (English)

    刘巍; 扬殿海; 徐立; 贾川; 卢文建; BOSIRE Omosa Isaiah; 沈昌明

    2012-01-01

    A pilot-scale,pre-anoxic-anaerobic oxidation ditch was used in this study to treat municipal wastewater with limited carbon source.A novel return activated sludge(RAS) pre-concentration tank was adopted for improv-ing the phosphorus removal efficiency and the effects of RAS pre-concentration ratio were studied.Under the opti-mal operational condition,the suspended total phosphorus(STP) and the total phosphorus(TP) removal efficiencies were around 58.9% and 63.9% respectively and the effluent-P was lower than 0.8 mg·L-1.The reason is that with the optimal RAS pre-concentration ratio,nitrate is completely removed with endogenous carbon source and the secondary phosphorus release is strictly restrained in the pre-anoxic tank.Therefore,the anaerobic phosphorus release and the carbon source uptake by phosphorus accumulation organisms(PAOs) in the sludge,which are ex-tremely important to the phosphorus removal process,can be fully satisfied.Furthermore,the oxidation-reduction potential is proved to be suitable for controlling the RAS pre-concentration ratio due to influent fluctuation and varied conditions.The novel modified system is also beneficial for PAO accumulation.

  2. Exposure to solar UV in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, K.; Visuri, R.; Ylianttila, L. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-12-31

    Exceptionally low total ozone, up to 40 % below the normal level, was measured over Northern Europe during winter and spring in 1992 and 1993. In 1993 the depletion persisted up to the end of May, resulting in a significant increase in biologically effective ultraviolet (UV) radiation. The increases were significantly smaller in 1992 and 1994 than in 1993. A special interest in Northern Europe is the effect of high reflection of UV from the snow. The period from the mid March to the mid May is critical in Northern Finland, because in that time the UV radiation is intense enough to cause significant biological effects, and the UV enhancing snow still covers the ground. Moreover, there is some evidence of increasing springtime depletions of ozone over Arctic regions. In this study the increase of UV exposure associated with the ozone depletions was examined with measurements and theoretical calculations. The measurements were carried out with spectroradiometrically calibrated Solar Light Model 500 and 501 UV radiometers which measure the erythemally effective UV doses and dose rates. The theoretical UV doses and dose rates were computed with the clear sky model of Green

  3. Influence of EfOM on the oxidation of micropollutants by Ozone and UV/H2O2 in secondary effluents

    OpenAIRE

    Vieira, S. P.; Dantas, R. F.; Esplugas Vidal, Santiago; Sans Mazón, Carme; M. Dezotti

    2011-01-01

    The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly...

  4. Advanced oxidation technologies H{sub 2}O{sub 2}/UV evaluation in the treatment of effluent containing VCH (Vinylcyclohexene); Avaliacao do processo oxidativo avancado H{sub 2}O{sub 2}/UV no tratamento de efluente contendo VCH (Vinilciclohexeno)

    Energy Technology Data Exchange (ETDEWEB)

    Lenise, V.F.G.; Dezotti, M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica; Aquino Neto, F.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica

    2004-07-01

    The study of vinylcyclohexene (VCH) degradation by the advanced oxidation technology H{sub 2}O{sub 2} /UV was researched in a pilot plant containing two Germetec, PFR reactors, with 0.7 L of useful volume. VCH is a persistent organic compound generated by thermal dimerization of 1,3-butadiene. One of the reactors had a warming/colding jacket and a low-pressure mercury vapor lamp, germicidal, of 25 W and the another had a medium-pressure mercury vapor lamp of 1.7 KW. Synthetic effluents containing VCH, VCH and ethanol and real hydroxyl terminated polybutadiene (HTPB) effluent were researched under different temperature and pH conditions. The aqueous effluent generated in HTPB plant was composed by 10-100 mg/L of VCH, others organic compounds like ethanol, butadiene and polymer, acidic pH, residual peroxide and a mean content of soluble organic carbon of 25000 mg/L. After 30 minutes of H{sub 2}O{sub 2}/UV treatment with a germicidal lamp , VCH was completely degradated while in the reactor with a medium pressure lamp after 5 minutes the complete VCH degradation happened. The degradation of others organic compounds in the effluent was observed with soluble organic carbon content reduction about 80%. The Kinetics of VCH degradation was monitored by GC/MS. (author)

  5. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Science.gov (United States)

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  6. Spectrofluorimetric method for quantification of citalopram in pharmaceutical preparations and biological fluids through oxidation with Ce(IV)

    Science.gov (United States)

    Shah, Jasmin; Jan, M. Rasul; Khan, M. Naeem; Inayatullah

    2013-01-01

    A sensitive and simple spectrofluorimetric method for the quantification of citalopram in a pure form, in pharmaceutical preparations, and in human blood plasma and urine has been described. The proposed method was based on the oxidation of citalopram by Ce(IV) in acidic media to produce fluorescent Ce(III), and on the subsequent measurement of its fluorescence intensity at 353 nm after excitation at 252 nm. All variables affecting the oxidation of citalopram such as Ce(IV) concentration, the type and concentration of acid, temperature and heating time were studied and optimized. Under the optimized experimental conditions the linear range of concentration versus fluorescence intensity was found to lie between 0.02 and 1.4 g/ml. Limits of detection and quantification were determined to be 6.9·10-3 g/ml and 2.3·10-2 g/ml respectively. Effects of excipients commonly used in the quantification of citalopram have been studied and no interferences were found. The proposed method was successfully applied to determine citalopram in pure form, in pharmaceutical preparations, and in biological fluids. Good recoveries in the ranges of 95.31-101.67%, 88.50-96.67%, and 90.0-96.67% were obtained for the pharmaceutical preparations (tablets), blood plasma, and human urine respectively.

  7. The biological water-oxidizing complex at the nano-bio interface.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Larkum, Anthony W; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-09-01

    Photosynthesis is one of the most important processes on our planet, providing food and oxygen for the majority of living organisms on Earth. Over the past 30 years scientists have made great strides in understanding the central photosynthetic process of oxygenic photosynthesis, whereby water is used to provide the hydrogen and reducing equivalents vital to CO2 reduction and sugar formation. A recent crystal structure at 1.9-1.95Å has made possible an unparalleled map of the structure of photosystem II (PSII) and particularly the manganese-calcium (Mn-Ca) cluster, which is responsible for splitting water. Here we review how knowledge of the water-splitting site provides important criteria for the design of artificial Mn-based water-oxidizing catalysts, allowing the development of clean and sustainable solar energy technologies. PMID:26183174

  8. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    Directory of Open Access Journals (Sweden)

    J. L. Dixon

    2011-09-01

    Full Text Available Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol between 151–296 nM in parts of the oligotrophic North Atlantic, with corresponding microbial uptake rates between 2–146 nM d−1, suggesting turnover times as low as 1 day (1–25 days in surface waters of the oligotrophic tropical North East Atlantic. Methanol is mainly (≥97% used by microbes for obtaining energy in oligotrophic regions, which contrasts with shelf and coastal areas where between 20–50% can be used for cell growth. Comparisons of microbial methanol oxidation rates with parallel determinations of bacterial leucine uptake suggest that methanol contributes on average 13% to bacterial carbon demand in the central northern Atlantic gyre (maximum of 54%. In addition, the contribution that methanol makes to bacterial carbon demand varies as a power function of chlorophyll a concentrations; suggesting for concentrations <0.2 μg l−1 that methanol can make a significant contribution to bacterial carbon demand. However, our low air to sea methanol flux estimates of 7.2–13 μmol m−2 d−1 suggest that the atmosphere is not a major methanol source. We conclude that there must be a major, as yet unidentified, in situ oceanic methanol source in these latitudes which we suggest is sunlight driven decomposition of organic matter.

  9. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    Science.gov (United States)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  10. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions

    International Nuclear Information System (INIS)

    The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Moeller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  11. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO2. - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  12. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N2O4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60Co. Methemoglobin was determined in the interval of 15-180 min after NaNO2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  13. Zinc Oxide Nanocrystals for Non-resonant Nonlinear Optical Microscopy in Biology and Medicine.

    Science.gov (United States)

    Kachynski, Aliaksandr V; Kuzmin, Andrey N; Nyk, Marcin; Roy, Indrajit; Prasad, Paras N

    2008-07-24

    In this paper we show that biocompatible zinc oxide (ZnO) nanocrystals (NCs) having non-centrosymmetric structure can be used as non-resonant nonlinear optical probes for targeting in bioimaging applications in vitro by use of the second order processes of second harmonic and sum frequency generation, as well as the third order process of four wave mixing. These non-resonant processes provide advantages above and beyond traditional two-photon bioimaging: (i) the probes do not photo-bleach; (ii) the input wavelength can be judiciously selected; and (iii) no heat is dissipated into the cells, ensuring longer cell viability and ultimately longer imaging times. ZnO NCs have been synthesized in organic media by using a non-hydrolytic sol-gel process, and subsequently dispersed in aqueous media using phospholipid micelles, and incorporated with the biotargeting molecule folic acid (FA). Sum Frequency, Second Harmonic and non-resonant four wave mixing non-linear signals from this stable dispersion of ZnO NCs, targeted to the live tumor (KB) cells were used for imaging. Robust intracellular accumulation of the targeted (FA incorporated) ZnO nanocrystals could be observed, without any indication of cytotoxicity. PMID:19633706

  14. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    Directory of Open Access Journals (Sweden)

    J. L. Dixon

    2011-04-01

    Full Text Available Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol up to 300 nM, with corresponding microbial uptake rates between 2–146 nM d−1, suggesting turnover times as low as 1 day in surface waters of the oligotrophic tropical North East Atlantic. Comparisons with parallel determinations of bacterial leucine uptake suggest that methanol contributes on average 13% to bacterial carbon demand in the central northern Atlantic gyre (maximum of 54%. However, our low air to sea methanol flux estimates of 7.2–13 μmol m−2 d−1 suggest that the atmosphere is not a major source. We conclude that there must be a major, as yet unidentified, in situ oceanic methanol source in these latitudes which we suggest is sunlight driven decomposition of organic matter.

  15. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  16. THE INFLUENCE OF NICKEL OXIDE COMBINED WITH THE INFLUENCE OF ALTERNATING MAGNETIC FIELDS ON BIOLOGICAL PROPERTIES OF ALKALINITY BLACK SOILS OF THE CRIMEA (THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    Minnikova T. V.

    2014-12-01

    Full Text Available In the article we have investigated the influence of nickel oxide in the amount of 100, 1000 mg/kg of the soil (1, 10 MPC, combined with the influence of an alternating magnetic field of induction of 50, 100 and 650 µT power frequency of 50 Hz on the biological properties of alkalinity black soil

  17. Nitric Oxide-Related Biological Pathways in Patients with Major Depression.

    Directory of Open Access Journals (Sweden)

    Andreas Baranyi

    Full Text Available Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA and symmetric dimethylarginine (SDMA might be biomarkers for depression-induced cardiovascular risk.In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR, arginase activity (arginine/ornithine ratio, the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge.The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed.Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission.

  18. UV Index Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — The UV Index Widget displays the ultraviolet (UV) Index providing a daily forecast of the expected risk of overexposure to the sun for a user-specified area of...

  19. UV missile plume signatures

    NARCIS (Netherlands)

    Neele, F.P.; Schleijpen, H.M.A.

    2002-01-01

    As a result of the deployment of UV missile warning systems, recent years have seen an increasing interest in threat assessment in the UV band. Unfortunately, due to the different nature of the physical processes that are needed to describe a missile signature in the UV, available codes for the IR c

  20. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process

    International Nuclear Information System (INIS)

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H2O2 process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H2O2 process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by ROH,UV, defined as the experimentally determined ·OH radical exposure per UV fluence. The ROH,UV values represent the background ·OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H2O2 due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H2O2 process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H2O2 process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of ·OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H2O2 process would be determined by parent compound degradation and toxicity changes.

  1. Sensing and Responding to UV-A in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Young-Ho Chung

    2012-12-01

    Full Text Available Ultraviolet (UV radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress.

  2. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  3. Pilot Scale Test to Treat High Concentration Gasification Wastewater Using Catalytic Oxidation and Aerobic Biological Fluid-Bed Combination Process

    Institute of Scientific and Technical Information of China (English)

    LI Na; HUANG Jun-li; WANG Wei; ZHAO Jian-wei; WANG Cui-lin; CUI Chong-wei

    2008-01-01

    The gasitication wastewatet is a kind of typical ocgauic industrial wastewatet with high chemical oxygen demand (COD) and ammonia uitrogen,which could not be completely degraded by the traditional physical,chimical and bidogical method.So it is very important to find an effective treatment process.A combination process of catalytic oxidation with noble metal catalysts and aerobic biological fluid-bed packed with the new uitrastructure biological carriers,which was devdoped by ourselves,was investigated to treat the gasification wastcwater.The pilot scale test with 0.5m3/h influent flow was carried out to investigate the performance of this new combination process.The results showed that the effluent COD was 84.02 mg/L,ananonia nitrogen was 14.15 mg/L,and total phenol was 0.20 mg/L,which could completely meet the Grade I of Wastewater Discharge Standard (GB8978-1996),when the influent average COD was 5564 mg/L,anunonia nitrogen was 237 mg/L,and total phenol was 1100 mg/L.The two catalytic reactors could evidently improve the wastewater biodegradability,and the value of BOD5/COD(B/C) increased from 0.23 to 0.413 in the one-stage catalytic reactor and from 0.273 to 0.421 in two-stage catalytic reactor.The further experiment results showed that the effluent quality of this new combination progess could still meet the discharge standard,aromatic and heterocyclic compounds were degraded effectively in this combination process.

  4. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Cassee, Flemming R., E-mail: flemming.cassee@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Campbell, Arezoo, E-mail: acampbell@westernu.edu [Western University of Health Sciences, Pomona, CA (United States); Boere, A. John F., E-mail: john.boere@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); McLean, Steven G., E-mail: smclean1@staffmail.ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom); Duffin, Rodger, E-mail: Rodger.Duffin@ed.ac.uk [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom); Krystek, Petra, E-mail: petra.krystek@philips.com [Philips Innovation Services, Eindhoven (Netherlands); Gosens, Ilse, E-mail: Ilse.gosens@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Miller, Mark R., E-mail: Mark.Miller@ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom)

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  5. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    International Nuclear Information System (INIS)

    Background: Cerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7 mg/m3, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  6. Biological effects and oxidative stress responses in Arabidopsis thaliana following exposure to uranium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H.; Vanhoudt, N.; Wannijn, J.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Vangronsveld, J.; Cuypers, A. [Hasselt University (Belgium)

    2014-07-01

    leaves, no inductions of the NADPH oxidases or LOX were observed. This possibly indicates that the oxidative stress in the leaves is generated via root-to-shoot signalling since U and Cu are almost completely retained in the roots. Under both U and Cu stress and both in roots and shoots, microRNA398b/c is involved in the post-transcriptional regulation of the superoxide dismutase (SOD) response. As expected from previous research, the expression levels of MIR398b/c increased under U stress while they decreased under Cu stress. This led to a decreased expression of the Cu-requiring Cu/Zn SODs when Cu is below a critical threshold, while their expression will increase under Cu excess. In the multi-pollution setup, the response is comparable to the response observed under Cu stress. In conclusion, it seems that there is an enhanced production of ROS after exposure to U+Cu as compared to the single stressor conditions. However, additional experiments, e.g. with different U and Cu concentrations, are needed to further elucidate the interactions between U and Cu. Document available in abstract form only. (authors)

  7. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells

    Science.gov (United States)

    Appala, Raju N.; Appala, Raju V. V. S. S.

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1–20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells.

  8. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells.

    Science.gov (United States)

    Appala, Raju N; Chigurupati, Sridevi; Appala, Raju V V S S; Krishnan Selvarajan, Kesavanarayanan; Islam Mohammad, Jahidul

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1-20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  9. In vitro and in vivo measurements of the dissolution parameters of uranium and plutonium mixed oxides in biological environment

    International Nuclear Information System (INIS)

    During the mixed-oxide fuel fabrication process, inhalation is potentially the main route of internal contamination. The International Commission on Radiological Protection recommends experimental measurement of parameters such as size and dissolution rate for specific industrial compounds. First, we validated the use of PERALS (Photon Electron Rejecting Alpha Liquid Scintillation) for alpha measurement in biological samples which, in some cases, could improve detection limit. We characterised physical chemical properties in terms of size, specific area and activity of 3 different powders: MOX made according to either the MIMAS process, which showed heterogeneous chemical composition, or the SOLGEL, which showed homogeneous chemical composition and industrial PuO2. Their dissolution parameters, fr and ss, as defined in the simplest model proposed by ICRP 66 were measured in vivo, after inhalation in the rat, and in vitro. The statistical variation of these values were expressed as standard deviation. Moreover, in vitro studies demonstrated variation of the ss value depending on the duration of the incubation. We also developed methods to characterise interactions between UO2 particles and phosphate ions which could be involved in the actinide toxicity. (author)

  10. Activation of chemical biological defense mechanisms and alleviation of in vivo oxidation injury by low dose radiation

    International Nuclear Information System (INIS)

    We clarified that adequate oxygen stress induced by low dose radiation activates not only chemical biological protective function, such as induction of the synthesis of superoxide dismutase (SOD), glutathione peroxidase (GPX) and heat shock protein 70 (HSP70), but also the biomembrane function, such as enhanced membrane fluidity and ATPase activity. It is possible that activation of these mechanisms alleviates in vivo oxidation injuries resulting in alleviation of pathologic condition, such as ferric-nitrilotriacetate (Fe3+-NTA) or CCl4-induced liver damage, 1-methyl-4-phenyl 1,2,3,6-tetrahydro-pyridine (MPTP)-induced brain damage and diabetes mellitus. Namely, in contrast to the toxic effects of high dose irradiation, adequate activation of the functions of the living body by low dose radiation or inhalation of an appropriate amount of radon can contribute to suppressing aging and to preventing or reducing active oxygen species related diseases which are thought to involve peroxidation and have been regarded as the diseases for which radon spring water is an effective treatment. In future, clarification in detail of the mechanisms of these phenomena is required to understand the effects of low dose radiation on the functions of the living body, including adaptive response. (author)

  11. Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation

    OpenAIRE

    IdilArslan-Alaton

    2013-01-01

    This study explored the potential use of a sulfate radical (SO·− 4)-based photochemical oxidation process to treat the commercial nonionic surfactant octylphenol polyethoxylate (OPPE) Triton™ X-45. For this purpose, the effect of initial S2O2− 8 (0–5.0 mM) and OPPE (10–100 mg/L) concentrations on OPPE and its organic carbon content (TOC) removal were investigated at an initial reaction pH of 6.5. Results indicated that very fast OPPE degradation (100%) accompanied with high TOC abatement rate...

  12. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    International Nuclear Information System (INIS)

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg2+ to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L−1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials

  13. High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...

  14. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-03-01

    Full Text Available Sludge retention time (SRT is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O in biological nutrient removal (BNR processes. Four laboratory-scale sequencing batch reactors (SBRs, namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities.

  15. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    Science.gov (United States)

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications. PMID:26850095

  16. Nitrogen and Sulfur Codoped Reduced Graphene Oxide as a General Platform for Rapid and Sensitive Fluorescent Detection of Biological Species.

    Science.gov (United States)

    Chen, Lu; Song, Liping; Zhang, Yichi; Wang, Ping; Xiao, Zhidong; Guo, Yuguo; Cao, Feifei

    2016-05-11

    Nitrogen (N) and sulfur (S) codoped reduced graphene oxide (N,S-rGO) was synthesized through a facile solvothermal process. The introduction of N and S heteroatoms into GO effectively activated the sp(2)-hybridized carbon lattice and made the material an ideal electron/energy acceptor. Such unique properties enable this material to perform as a general platform for rapid and sensitive detection of various biological species through simple fluorescence quenching and recovering. When quantum dot (QD)-labeled HBV (human being disease-related gene hepatitis B virus DNA) and HIV (human being disease-related gene human immunodeficiency virus DNA) molecular beacon probes were mixed with N,S-rGO, QD fluorescence was quenched; when target HBV and HIV DNA were added, QD fluorescence was recovered. By the recovered fluorescence intensity, the target virus DNA detection limits were reduced to 2.4 nM for HBV and 3.0 nM for HIV with detection time of less than 5 min. It must be stressed out that different viruses in the same homogeneous aqueous media could be discriminated and quantified simultaneously through choosing diverse QD probes with different colors. Moreover, even one mismatched target DNA could be distinguished using this method. When altering the molecular beacon loop domain to protein aptamers, this sensing strategy was also able to detect thrombin and IgE in 5 min with detection limits of 0.17 ng mL(-1) and 0.19 ng mL(-1), respectively, which was far more rapid and sensitive than bare GO-based fluorescence detection strategy. PMID:27089122

  17. The role of EPR spectroscopy in studies of the oxidative status of biological systems and the antioxidative properties of various compounds - REVIEW

    OpenAIRE

    IVAN SPASOJEVIĆ; MILOŠ MOJOVIĆ; ALEKSANDAR IGNJATOVIĆ; GORAN BAČIĆ

    2011-01-01

    In this era of intense study of free radicals and antioxidants, electron paramagnetic resonance (EPR) is arguably the best-suited technique for such research, particularly when considering biochemical and biological systems. No attempt was made to cover all the topics of EPR application but instead attention was restricted to two areas that are both novel and received less attention in previous reviews. In the first section, the application of EPR in assessing the oxidative status of various ...

  18. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis.

    Science.gov (United States)

    Wu, Jianrong; Zhao, Hongyan; Xiao, Deli; Chuong, Pham-Huy; He, Jia; He, Hua

    2016-07-01

    A novel mixed hemimicelles solid phase extraction based on magnetic graphene oxide (Fe3O4/GO) and ionic liquid (IL) was developed for the simultaneous extraction and determination of trace cephalosporins in spiked human urine. The high surface area and excellent adsorption capacity of the graphene oxide after modification with1-hexadecyl-3-methylmidazoliumbromide(C16mimBr) were utilized adequately in the solid phase extraction(SPE) process. A comprehensive study of the parameters affecting the extraction recovery, such as the zeta-potential of magnetic graphene oxide, amounts of magnetic graphene oxide and surfactant, pH of solution, ionic strength, extraction time, and desorption condition were optimized. A comparative study on the use of different surfacant-coated Fe3O4/GO NPs as sorbents was presented. Good linearity (R(2)>0.9987) for all calibration curves was obtained. The LODs were ranged between 0.6 and 1.9ng mL(-1) for the cephalosporins and the LOQs were 1.5 to 5.5, respectively. Satisfactory recoveries(84.3% to 101.7%)and low relative standard deviations from 1.7% to 6.3% in biological matrices w