WorldWideScience

Sample records for biological uranium reduction

  1. Possible domestication of uranium oxides using biological assistance reduction

    Directory of Open Access Journals (Sweden)

    Slah Hidouri

    2017-01-01

    Full Text Available Uranium has been defined in material research engineering field as one of the most energetic radioactive elements in the entire Mendeleev periodic table. The manipulation of uranium needs higher theories and sophisticated apparatus even in nuclear energy extraction or in many other chemical applications. Above the nuclear exploitation level, the chemical conventional approaches used, require a higher temperature and pressure to control the destination of ionic form. However, it has been discovered later that at biological scale, the manipulation of this actinide is possible under friendly conditions. The review summarizes the relevant properties of uranium element and a brief characterization of nanoparticles, based on some structural techniques. These techniques reveal the common link between chemical approaches and biological assistance in nanoparticles. Also, those biological entities have been able to get it after reduction. Uranium is known for its ability to destroy ductile materials. So, if biological cell can really reduce uranium, then how does it work?

  2. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  3. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  4. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  5. Biological reduction of uranium-From the laboratory to the field

    International Nuclear Information System (INIS)

    Dullies, Frank; Lutze, Werner; Gong, Weiliang; Nuttall, H. Eric

    2010-01-01

    The chemical and biological processes underlying in situ bioremediation of uranium-contaminated groundwater have been studied in the laboratory and in the field. This article focuses on the long-term stability of uraninite (UO 2 ) in the underground. A large tailings pond, 'Daenkritz 1' in Germany, was selected for this investigation. A single-pass flow-through experiment was run in a 100-liter column: bioremediation for 1 year followed by infiltration of tap water (2.5 years) saturated with oxygen, sufficient to oxidize the precipitated uraninite in two months. Instead, only 1 wt.% uraninite was released over 2.4 years at concentrations typically less than 20 μg/L. Uraninite was protected against oxidation by the mineral mackinawite (FeS 0.9 ), a considerable amount of which had formed, together with uraninite. A confined field test was conducted adjacent to the tailings pond, which after bio-stimulation showed similarly encouraging results as in the laboratory. Taking Daenkritz 1 as an example we show that in situ bioremediation can be a viable option for long-term site remediation, if the process is designed based on sufficient laboratory and field data. The boundary conditions for the site in Germany are discussed.

  6. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  7. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  8. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  9. Microbial reduction of uranium using cellulosic substrates

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1996-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate-reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed ground water remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected, and the precipitated U(IV) was determined to be crystalline UO 2(s) by x-ray diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  10. Depleted uranium plasma reduction system study

    International Nuclear Information System (INIS)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF 6 , of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF 6 processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete

  11. Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN

    International Nuclear Information System (INIS)

    Craig S. Criddle; Peter Kitanidis; Scott Fendorf; Weimin Wu; Philip M. Jardine; Jizhong Zhou; Baohua Gu

    2006-01-01

    The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium

  12. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  13. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  14. Uranium manufacturing process employing the electrolytic reduction method

    International Nuclear Information System (INIS)

    Oda, Yoshio; Kazuhare, Manabu; Morimoto, Takeshi.

    1986-01-01

    The present invention related to a uranium manufacturing process that employs the electrolytic reduction method, but particularly to a uranium manufacturing process that employs an electrolytic reduction method requiring low voltage. The process, in which uranium is obtained by means of the electrolytic method and with uranyl acid as the raw material, is prior art

  15. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    Science.gov (United States)

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  16. The manufacturing of depleted uranium biological shield components

    International Nuclear Information System (INIS)

    Metelkin, J.A.

    1998-01-01

    The unique combination of the physical and mechanical properties of uranium made it possible to manufacture biological shield components of transport package container (TPC) for transportation nuclear power plant irradiated fuel and radionuclides of radiation diagnostic instruments. Protective properties are substantially dependent on the nature radionuclide composition of uranium, that why I recommended depleted uranium after radiation chemical processing. Depleted uranium biological shield (DUBS) has improved specific mass-size characteristics compared to a shield made of lead, steel or tungsten. Technological achievements in uranium casting and machining made it possible to manufacture DUBS components of TPC up to 3 tons of mass and up to 2 metres of the maximum size. (authors)

  17. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  18. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    Science.gov (United States)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under

  19. Retention and reduction of uranium on pyrite surface

    International Nuclear Information System (INIS)

    Eglizaud, N.

    2006-12-01

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS 2 ). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH ≥ 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10 -9 mol g -1 , an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. ≥ -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 ± 0.8) x 10 -7 mol L -1 of uranium(VI). Modelling of uranium sorption at high surface coverage (≥ 4 x 10 -9 mol g -1 ) by the Langmuir model yields an adsorption constant of 8 x 10 7 L mol -1 . Finally, a great excess of uranium(VI) above the saturation concentration allows the observation of

  20. Development of a chronocoulometric method for uranium traces determination with basis on nitrate catalytic reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    The application of chronocoulometric technique with catalytic reduction of uranium/nitrate with catalytic reduction of uranium/nitrate system is described to give a detection limits on the sub-nanomolar region of uranium. (author)

  1. Study of electrolytic reduction of uranium VI to uranium IV in nitrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S; Matsuda, H T; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Experimental parameters are optimized in order to obtain uranium (IV) nitrate solutions at maximum yield, using hydrazine as stabilizer. Uranium (VI) electrolytic reduction was chosen because: there is no increase in the volume of radioactive effluents; there are no secondary reactions; there is no need for further separations; all reagents used are not inflammable. The method is, therefore, efficient and of low cost.

  2. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  3. Kinetics of the reduction of uranium oxide catalysts

    International Nuclear Information System (INIS)

    Heynen, H.W.G.; Camp-van Berkel, M.M.; Bann, H.S. van der

    1977-01-01

    The reduction of uranium oxide and uranium oxide on alumina catalysts by ethylbenzene and by hydrogen has been studied in a thermobalance. Ethylbenzene mole fractions between 0.0026 and 0.052 and hydrogen mole fractions between 0.1 and 0.6 were applied at temperatures of 425--530 0 C. During the reduction the uranium oxides are converted into UO 2 . The rate of reduction of pure uranium oxide appears to be constant in the composition region UO/sub 2.6/-UO/sub 2.25/. The extent of this region is independent of the concentration of the reducing agents and of the reaction temperature. The constant rate is explained in terms of a constant oxygen pressure which is in equilibrium with the two solid phases, U 3 O/sub 8-x/ and U 4 O 9 . The reduction rate is first order in hydrogen and zero order in ethylbenzene with activation energies of 120 and 190 kJ mol -1 , respectively. Oxygen diffusion through the lattice is probably not rate limiting. The reduction behavior of uranium oxide on alumina is different from that of pure uranium oxide; the rate of reduction continuously decreases with increasing degree of reduction. An explanation for this behavior has been given by visualizing this catalyst as a set of isolated uranium oxide crystallites with a relative wide variation of diameters, in an alumina matrix. At the beginning of the reduction, carbon dioxide and water are the only reaction products. Thereafter, benzene is found as well and, finally, at U/O ratios below 2.25, styrene also appears in the reactor outlet

  4. Reduction of uranium in disposal conditions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Myllykylae, E.

    2008-02-01

    This literature study is a summary of publications, in which the reduction of uranium by iron has been investigated in anaerobic groundwater conditions or in aqueous solution in general. The basics of the reduction phenomena and the oxidation states, complexes and solubilities of uranium and iron in groundwaters are discussed as an introduction to the subject, as well as, the Finnish disposal concept of spent nuclear fuel. The spent fuel itself mainly (∼96 %) consists of a sparingly soluble uranium(IV) dioxide, UO 2 (s), which is stable phase in the anticipated reducing disposal conditions. If spent fuel gets in contact with groundwater, oxidizing conditions might be induced by the radiolysis of water, or by the intrusion of oxidizing glacial melting water. Under these conditions, the oxidation and dissolution of uranium dioxide to more soluble U(VI) species could occur. This could lead to the mobilization of uranium and other components of spent fuel matrix including fission products and transuranium elements. The reduction of uranium back to oxidation state U(IV) can be considered as a favourable immobilization mechanism in a long-term, leading to precipitation due to the low solubility of U(IV) species. The cast iron insert of the disposal canister and its anaerobic corrosion products are the most important reductants under disposal conditions, but dissolved ferrous iron may also function as reductant. Other iron sources in the buffer or near-field rock, are also considered as possible reductants. The reduction of uranium is a very challenging phenomenon to investigate. The experimental studies need e.g. well-controlled anoxic conditions and measurements of oxidation states. Reduction and other simultaneous phenomena are difficult to distinghuish. The groundwater conditions (pH, Eh and ions) influence on the prevailing complexes of U and Fe and on forming corrosion products of iron and, thus they determine also the redox chemistry. The partial reduction of

  5. Uranium speciation and stability after reductive immobilization in aquifer sediments

    Science.gov (United States)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  6. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  7. Bomb reduction of uranium tetrafluoride. Part II: Influence of the addition elements in the reduction process

    International Nuclear Information System (INIS)

    Anca Abati, R.; Lopez Rodriguez, M.

    1962-01-01

    This work shows the influence of uranium oxide and uranyl fluoride in the reduction of uranium with Ca and Mg. These additions are more harmful when using smaller bombs. The uranyl fluoride has influence in the reduction process; the curves yield-concentration shows two regions depending upon the salt concentration. The behaviour of this addition in these regions can be explained following the different decompositions that can take place during the reduction process. (Author) 9 refs

  8. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  9. Biological adsorbent for water decontamination from uranium

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia); Fuska, J; Nemec, P [Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10/sup -4/ M/dm/sup 3/. Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution.

  10. Biological adsorbent for water decontamination from uranium

    International Nuclear Information System (INIS)

    Jilek, R.; Fuska, J.; Nemec, P.

    1978-01-01

    A study was made into the capacity of native and heat-denaturated mycelium to adsorb uranium salts from solutions and into the effect of uranium on the growth of the microorganism biomass. The presence of uranium did not inhibit the growth of Penicillium and Aspergillus strains used at a concentration of up to 5x10 -4 M/dm 3 . Uranium added to a nutrient medium produced complexes with phosphorus ions which were adsorbed on the surface of growing hyphae, thus the removal of the mycelium also removed uranium. The results of the experiments with denaturated mycelium of the same strains suggested that uranium was also bound to the biomass with chemical bonds so that mycelium acted as a ''multifunction ion exchanger'' from which adsorbed uranium can be removed step by step by elution. A sorbent of a three-dimensional structure could be prepared from a dried native mycelium using reinforcing resins, which prevented leakage of the biomass. Uranium sorption by biosorbents is a function of the concentration of the cation sorbed and of the pH of the solution. (author)

  11. Development of technology for reduction of radiotoxicity of uranium mixture

    International Nuclear Information System (INIS)

    Kim, Kwangwook; Lee, E. H.; Yang, H. B.

    2012-03-01

    The phase 1 of this research project was carried out as a project entitled 'Development of technology for reduction of actinide radiotoxicity' in 2007 to 2009. Its phase 2 was carried out as a project entitled 'Development of technology for reduction of radiotoxicity of uranium mixture' in 2010 to 2011. Five unit research items to accomplish it such as evaluation of dissolution and aquatic chemistry characteristics of U, TRU, RE, and etc elements evaluation of chemical and electrolytic dissolution characteristics of U and SIMFUEL oxides evaluation of removal of environmentally-detrimental elements, and high purity precipitation of uranium evaluation of salt-free electrolytic decarbonation characteristics, and recovery of used carbonate salt, and development of the process to treat uranium mixture materials and the relevant unit equipments and system with engineering concept. were carried out. The obtained results were as follows. -Evaluation of chemical characteristics of several uranium oxide materials and verification of insolubility properties of TRU oxides in carbonate media -Suggestion of the optimal conditions for dissolutions of uranium and SIMFUEL oxides - Development of technology for co-precipitation of environmentally-detrimental elements - Development of an electrolytic recycle way of used carbonate salt solution - Suggestion of a new conceptual process, named COL process to treat spent nuclear fuel, uranium-bearing wastes with high and low contents

  12. Uranium: properties and biological effects after internal contamination

    International Nuclear Information System (INIS)

    Souidi, M.; Tissandie, E.; Racine, R.; Ben Soussan, H.; Rouas, C.; Grignard, E.; Dublineau, I.; Gourmelon, P.; Lestaevel, P.; Gueguen, Y.

    2009-01-01

    Uranium is a radionuclide present in the environment since the origin of the Earth. In addition to natural uranium, recent deposits from industrial or military activities are acknowledged. Uranium's toxicity is due to a combination of its chemical (heavy metal) and radiological properties (emission of ionizing radiations). Acute toxicity induces an important weight loss and signs of renal and cerebral impairment. Alterations of bone growth, modifications of the reproductive system and carcinogenic effects are also often seen. On the contrary, the biological effects of a chronic exposure to low doses are unwell known. However, results from different recent studies suggest that a chronic contamination with low levels of uranium induces subtle but significant levels. Indeed, an internal contamination of rats for several weeks leads to detection of uranium in many cerebral structures, in association with an alteration of short-term memory and an increase of anxiety level. Biological effects of uranium on the metabolisms of xenobiotics, steroid hormones and vitamin D were described in the liver, testis and kidneys. These recent scientific data suggest that uranium could participate to increase of health risks linked to environmental pollution. (authors)

  13. A new method for dosing uranium in biological media

    International Nuclear Information System (INIS)

    Henry, Ph.; Kobisch, Ch.

    1964-01-01

    This report describes a new method for dosing uranium in biological media based on measurement of alpha activity. After treatment of the sample with a mineral acid, the uranium is reduced to the valency four by trivalent titanium and is precipitated as phosphate in acid solution. The uranium is then separated from the titanium by precipitation as UF 4 with lanthanum as carrier. A slight modification, unnecessary in the case of routine analyses, makes it possible to eliminate other possible alpha emitters (thorium and transuranic elements). (authors) [fr

  14. The basic principle and criteria for ore prospecting of uranium neutralizing-reduction mineralization

    International Nuclear Information System (INIS)

    Shi Weijun; Zhou Wenbin; Yuan Xiaoqin

    1992-01-01

    The author discuss the geological criteria, alternated mineral and geochemical criteria of field recognition which is beneficial to the uranium neutralizing-reduction mineralization sectors on the basis of brief introduction to the principle of uranium neutralizing-reduction mineralization, and the geological significance of uranium neutralizing-reduction mineralization is also stated

  15. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  16. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  17. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    International Nuclear Information System (INIS)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn; Arnold, Thuro; Scheinost, Andreas C.

    2017-01-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  18. Tests of alternative reductants in the second uranium purification cycle

    International Nuclear Information System (INIS)

    Thompson, M.C.

    1980-05-01

    Miniature mixer-settler tests of the second uranium purification cycle show that plutonium cannot be removed by hydroxylamine-hydrazine (NH 2 OH-N 2 H 4 ) because the acidity is too high, or by 2,5-di-t-pentylhydroquinone because HNO 3 oxidizes the hydroquinone. Plutonium can be removed satisfactorily when U(IV)-hydrazine is used as the reductant

  19. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  20. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  1. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Tsezos, M.

    1983-01-01

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  2. Uranium tetrafluoride reduction closed bomb. Part I: Reduction process general conditions

    International Nuclear Information System (INIS)

    Anca Abati, R.; Lopez Rodriguez, M.

    1961-01-01

    General conditions about the metallo thermic reduction in small bombs (250 and 800 gr. of uranium) has been investigated. Factors such as kind and granulometry of the magnesium used, magnesium excess and preheating temperature, which affect yields and metal quality have been considered. magnesium excess increased yields in a 15% in the small bomb, about the preheating temperature, there is a range between which yields and metal quality does not change. All tests have been made with graphite linings. (Author) 18 refs

  3. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  4. Heterogeneous catalysis in fluoride melts - reduction of uranium(V) by hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A D; Bennett, M R [Oak Ridge National Lab., Tenn. (USA)

    1976-01-01

    A necessary step in fuel reprocessing for the Molten-Salt Breeder Reactor is the reduction of pentavalent uranium to tetravalent uranium by hydrogen gas. The pentavalent uranium is dissolved in a mixed fluoride melt. Results are presented which show that the hydrogen reduction is rate limited, possibly due to the dissociation of hydrogen molecules to yield active hydrogen atoms; and that by the application of platinum catalysts a 10- to 100-fold increase in the reaction rate can be achieved.

  5. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  6. Uranium speciation and stability after reductive immobilization in sediments.

    OpenAIRE

    Sharp J.O

    2011-01-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions we introduced lactate (15 mM for 3 months) into flow through columns containing sediments derived from a former uranium processing site at Old Rifle CO. This resulted in metal reducing conditions as evidenced by concurrent uranium uptake and iron re...

  7. Uranium speciation and stability after reductive immobilization in sediments

    OpenAIRE

    Sharp, Jonathan O.; Schofield, Eleanor J.; Lezama-Pacheco, Juan S.; Webb, Sam; Ulrich, Kai-Uwe; Blue, Lisa; Chinni, Satyavani; Veeramani, Harish; Junier, Pilar; Margot-Roquier, Camille; Suvorova Buffat, Elena; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-01-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron ...

  8. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Chan Yeon Won; Dae-Seung Kang; Sung-Wook Kim; Ju-Sun Cha; Sung-Jai Lee; Wooshin Park; Hun Suk Im; Jin-Mok Hur

    2015-01-01

    Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl-Li 2 O electrolyte at 650 deg C, followed by the removal of the residual salt by vacuum distillation at 850 deg C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt. (author)

  9. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  10. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Giovanetti, Anna, E-mail: anna.giovanetti@enea.i [ENEA, Institute of Radiation Protection, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Fesenko, Sergey [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria); Cozzella, Maria L. [ENEA, National Institute for Metrology of Ionizing Radiation, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Asencio, Lisbet D. [Centro de Estudios Ambientales, Carretera a Castillo de Jagua, CP. 59350 C. Nuclear, Cienfuegos (Cuba); Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)

    2010-06-15

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg{sup -1}. Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  11. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    International Nuclear Information System (INIS)

    Giovanetti, Anna; Fesenko, Sergey; Cozzella, Maria L.; Asencio, Lisbet D.; Sansone, Umberto

    2010-01-01

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg -1 . Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  12. Hexavalent uranium reduction from solid phase by thermophilic bacterium Thermoterrabacterium ferrireducens

    International Nuclear Information System (INIS)

    Khijniak, T.V.; Slobodkin, A.I.; Bonch-Osmolovskaya, E.A.; Medvedeva-Lyalikova, N.N.; Coker, V.; Lloyd, J.R.; Birkeland, N.K.

    2005-01-01

    Full text of publication follows: It has been reported that in uranium-contaminated sites, solid-phase U(VI) present in sediments is resistant to microbial reduction. Also, it was demonstrated that mesophilic iron and sulfate-reducing bacteria can reduce hexavalent uranium and sulphate-reducing bacteria were able to grow via uranium reduction. Among thermophilic microorganisms reduction of hexavalent uranium has been demonstrated only for cell suspensions of two genera: Pyrobaculum and Thermus. In the present study, Thermoterrabacterium ferrireducens was tested for reduction of U(VI), a thermophilic, gram-positive anaerobic bacterium capable for growth with the reduction of various electron acceptors including Fe(III). Kinetic of bacterial growth, uranium reduction and influence of different uranium concentrations were investigated at 65 deg. C. Due to presence of phosphate in the basal medium yellow uranium phosphate precipitate was formed after addition of uranyl acetate. After 68 h of incubation control tubes without bacteria were contained yellow precipitate whereas in presence of bacteria precipitate turned to the grey color. In the control tubes uranium phosphates and other elements formed a uniform mixture of crystals, but in presence of bacteria the round shape particles, containing uranium, were found by Environmental Scan Electron Microscopy of air-dried or frozen samples. To determine valent state speciation spectroscopic investigations were performed also. Initial yellow uranium phosphate precipitate was separated and identified as uramphite - (NH 4 )(UO 2 )(PO 4 )*3H 2 O by X-Ray Powder Diffraction. Grey precipitate, which was formed by bacterial reduction, was identified as ningyoite - CaU(PO 4 ) 2 *H 2 O. The fact that final grey precipitate contain U(IV) was also confirmed by EXAFS investigation. High concentration of uranium has toxic effect. 1 and 2.5 mM of uranium (VI) support bacterial growth and bacterial biomass was accumulated, but if 5 or 10

  13. Techniques for Reduction and Biomineralization of Radioactive Uranium by Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-12-01

    A new thing revealed by this study was a formation of 'ningyoite', which was made as a new mineral when phosphorus component added into the uranium bioreduction process. In addition, a main sulfide mineral formed by sulfate-reducing bacteria was mackinawite which can incorporate much of uranium as coexisting with metal impurities such as manganese or nickel elements

  14. Novel Insights Into Microbial Uranium Reduction and Immobilization

    Science.gov (United States)

    Loeffler, F. E.; Fletcher, K.; Thomas, S.; Kemner, K. M.; Boyanov, M.; Sanford, R.

    2010-12-01

    Many ferric iron- and manganese oxide-reducing bacteria affect the oxidation state and complexation of toxic radionuclides in subsurface environments. Relevant to uranium (U) speciation are bacteria that reduce predominantly water-soluble and mobile U(VI) to U(IV), which has reduced solubility and typically forms the uraninite (UO2) mineral. Gram-negative model organisms including Shewanella spp., Geobacter spp., and more recently Anaeromyxobacter spp. use U(VI) as growth-supporting electron acceptor; however, the biomass yields are lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Recent findings demonstrated that U(VI) reduction is not limited to Gram-negative bacteria, and members of the genus Desulfitobacterium, which are commonly found in soil and subsurface environments, share the ability to reduce U(VI). Interestingly, extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in cultures of five Desulfitobacterium spp. was not UO2 but rather a phase or mineral composed of mononuclear U(IV) atoms. Since the properties of the reduced product influence U(IV) fate, knowledge of the diversity of U reduction mechanisms and the stability of the end products is desirable for controlling and predicting U fate. For example, UO2 is susceptible to reoxidation by oxidants, and oxic/anoxic interface processes are controlling the stability of the precipitated material. In other words, metal reducers that thrive at the oxic/anoxic interface are likely key players affecting long-term U fate. Anaeromyxobacter spp. are facultative microaerophiles and grow with oxygen as electron acceptor at partial pressures equal to or below 0.18 atm. Thus, Anaeromyxobacter are uniquely adapted to life at the oxic-anoxic interface where they consume oxygen and take advantage of oxidized metal species including U(VI) as electron acceptors. The application of 16S rRNA gene-targeted qPCR approaches

  15. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Adam-Guillermin, Christelle; Palluel, Olivier; Porcher, Jean-Marc; Devaux, Alain

    2011-01-01

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  16. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  17. Remediation of Soil Contaminated with Uranium using a Biological Method

    International Nuclear Information System (INIS)

    Park, Hye Min; Kim, Gye Nam; Shon, Dong Bin; Lee, Ki Won; Chung, Un Soo; Moon, Jai Kwon

    2011-01-01

    Bioremediation is a method to cleanup contaminants in soil or ground water with microorganisms. The biological method can reduce the volume of waste solution and the construction cost and operation cost of soil remediation equipment. Bioremediation can be divided into natural attenuation, bioaugmentation, biostimulation. Biostimulation is technology to improve natural purification by adding nutritional substances, supplying oxygen and controlling pH. In this study, penatron, that is a nutritional substances, was mixed with soil. Optimum conditions for mixing ratios of penatron and soil, and the pH of soil was determined through several bioremediation experiments with soil contaminated with uranium. Also, under optimum experiment conditions, the removal efficiencies of soil and concrete according to reaction time were measured for feasibility analysis of soil and concrete bioremediations

  18. Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium

    OpenAIRE

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen

    2017-01-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...

  19. Research on radon flux reduction from uranium mill tailings

    International Nuclear Information System (INIS)

    Overmyer, R.F.; Thamer, B.J.; Nielson, K.K.; Rogers, V.C.

    1980-01-01

    Radon flux reduction from tailings may be accomplished by the use of an impermeable cover to contain the radon until it decays (half life is 2.8 days). The use of a thick, relatively impermeable cover can attenuate radon flux because a large fraction of the radon would decay before it diffuses through the cover into the atmosphere. This method of reducing radon flux may require soil cover thicknesses on the order of 10 feet. In some locations, obtaining 10 feet of soil to cover 200 acres of tailings may be difficult or may lead to other significant environmental impacts. The Department of Energy is sponsoring research to identify alternatives to thick soil covers for reducing radon flux from uranium tailings to meet the forthcoming standards. The two most effective and practical materials tested thus far are Calcilox and asphalt emulsion. Currently, asphalt emulsions are being tested at the Grand Junction tailings pile in Grand Junction, Colorado, by Battelle Pacific Northwest Laboratory. Other asphalt formulations, such as foamed asphalt that requires less water than asphalt emulsions, may be practical and will be tested this year. Some sulfur-based materials and sulfur-extended asphalt also appear promising and will be tested for effectiveness in reducing radon flux. It is also important to investigate methods of applying various stabilizers to inactive tailings piles in various physical conditions of moisture content, and physical stability. Finally, since the EPA standards for remedial action at tailings piles are stated in terms of radon flux, it is important that radon flux measurements be standardized so that reliable flux measurements can be obtained and directly compared among various laboratories

  20. Influence of the reduction-crucible material on the uranium properties

    International Nuclear Information System (INIS)

    Braga, F.J.C.; Bose, A.; Freitas, C.T. de

    1979-01-01

    The uranium obtained by UF 4 reduction using Mg in bombs coated with different materials such as alumina, blast furnace slag, Zirconia and graphite was studied. The reduction process involves a reaction that altains temperatures of the order of 1600 0 C at tightly closed enclosure environment. Assuming in this process that the only possible influencial agent on the reaction main product, i.e., metallic uranium is the own bomb coaling, different properties, mechanical-metallurgical and phase-transformation characteristics were examined and the influences of the coating materials were compared. The comparison of these properties was also studied in uranium refined by arc fusion. (Author) [pt

  1. Structural Basis of Biological Nitrile Reduction*

    Science.gov (United States)

    Chikwana, Vimbai M.; Stec, Boguslaw; Lee, Bobby W. K.; de Crécy-Lagard, Valérie; Iwata-Reuyl, Dirk; Swairjo, Manal A.

    2012-01-01

    The enzyme QueF catalyzes the reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1), the only nitrile reduction reaction known in biology. We describe here two crystal structures of Bacillus subtilis QueF, one of the wild-type enzyme in complex with the substrate preQ0, trapped as a covalent thioimide, a putative intermediate in the reaction, and the second of the C55A mutant in complex with the substrate preQ0 bound noncovalently. The QueF enzyme forms an asymmetric tunnel-fold homodecamer of two head-to-head facing pentameric subunits, harboring 10 active sites at the intersubunit interfaces. In both structures, a preQ0 molecule is bound at eight sites, and in the wild-type enzyme, it forms a thioimide covalent linkage to the catalytic residue Cys-55. Both structural and transient kinetic data show that preQ0 binding, not thioimide formation, induces a large conformational change in and closure of the active site. Based on these data, we propose a mechanism for the activation of the Cys-55 nucleophile and subsequent hydride transfer. PMID:22787148

  2. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Stylo, M. A.

    2015-07-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of {sup 238}U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U

  3. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    International Nuclear Information System (INIS)

    Stylo, M. A.

    2015-01-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of 238 U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U(IV) product

  4. Study on the electrolytic reduction of Uranium-VI to Uranium-IV in a nitrate system

    International Nuclear Information System (INIS)

    Araujo, B.F. de; Almeida, S.G. de; Forbicini, S.; Matsuda, H.T.; Araujo, J.A. de.

    1981-05-01

    The determination of the best conditions to prepare hydrazine stabilized uranium (IV) nitrate solutions for utilization in Purex flowsheets is dealt with. Electrolytic reduction of U(VI) has been selected as the basic method, using an open electrolytic cell with titanum and platinum electrodes. The hydrazine concentration, the current density, acidity, U(VI) concentration and reduction time were the parameters studied and U(IV)/U(VI) ratio was used to evaluate the degree of reduction. From the results it could be concluded that the technique is reliable. The U(IV) solutions remains constant for at least two weeks and can be used in the chemical processing of irradiated uranium fuels. (Author) [pt

  5. Analysis of radon reduction and ventilation systems in uranium mines in China.

    Science.gov (United States)

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  6. Analysis of radon reduction and ventilation systems in uranium mines in China

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie

    2012-01-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3–5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  7. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  8. Analysis of radon reduction by ventilation in uranium mines in China

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie

    2011-01-01

    Mine ventilation is the most important way to reduce radon in uranium mines. At present, the concentrations of radon and its daughters in underground air is 3-5 times higher than those in other countries, at the same protection conditions. In this paper, through the analysis of radon reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction measures, the reasons for higher radon and radon daughter concentration in Chinese uranium mines are discussed and some problems are put forward in three aspects: radon reduction ventilation theory, measures and management. Based on above problems, this paper puts forward some proposals and measures, such as strengthening examination and verification and monitoring practical situation, making clear ventilation plan, training ventilation technician, enhancing ventilation system management, developing radon reduction ventilation research and putting ventilation equipment in place as soon as possible in future. (authors)

  9. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  10. Development of a choronocoulometric method for determining traces of uranium using the catalytic nitrate reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    With the aim of improving the sensitivity of the electroanalytical determination of uranium at trace levels. The uranium catalyzed reduction of nitrate on mercury electrode and the technique of chronocoulometry were used. Several experimental parameters were investigated (electrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination. Under these conditions it was possible to exceed the best reported sensitivity for the catalytic determination, extending the detection limit to 3.10 -10 M. Exploratory study of the combination of this procedure with pre-concentration of uranium ions on the electrode revealed a detection limit ten limes lower. (author) [pt

  11. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2017-01-01

    Previous studies of in situ bioremediation of uranium-contaminated groundwater with acetate injections have focused on the role of Geobacter species in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit...... an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments....

  12. Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth

    International Nuclear Information System (INIS)

    Brun, C.

    1997-01-01

    The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U 3 O 8 (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO 2 phase appear at the surface of the U 3 O 8 grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.)

  13. Electrodeposition of uranium metal by reduction of uranium oxides in molten Lif-KF=NaF-CaF 2-UF4

    International Nuclear Information System (INIS)

    Pao, D.S.; Burris, L.; Steunenberg, R.K.; Tomczuk, Z.

    1990-01-01

    Although electrolytic reduction of uranium oxides was shown to be feasible in the early 1960's it is recognized that considerable improvement in the electrolytic reduction technology must be achieved for practical applications. This exploratory work on electrolytic reduction of uranium oxide was undertaken to investigate potential improvements in the technology. The approach taken was to deposit solid uranium metal directly on a solid cathode at temperatures below the melting point of uranium (1132 degrees C). The lower temperature electrolytic reduction process has several advantages over the existing chemical reduction processes. It lessens materials problems and special heating and insulating requirements associated with high-temperature operations. It removes most impurities. It does not produce the large quantities of byproduct oxides wastes typical of chemical reduction processes

  14. Recovery of uranium from biological adsorbents - desorption equilibrium

    International Nuclear Information System (INIS)

    Tsezos, M.

    1984-01-01

    Results are presented of the experimental investigations of uranium elution and reloading for the waste inactive biomass of Rhizopus arrhizus. The experimental data and the analysis of the present work suggest the following conclusions: recovery of uranium that has been taken up by R. arrhizus is possible by elution; of the six elution systems examined, sodium bicarbonate solutions appear to be the most promising because they can effect near complete uranium recovery and high uranium concentration factors; the bicarbonate solution causes the least damage to the biomass; solid-to-liquid ratios in bicarbonate elution systems can exceed 120:1 (mg:mL) for a 1N NaHCO 3 solution, with almost complete uranium recovery and eluate uranium concentrations of over 1.98 x 10 4 mg/L; mineral acids, although good elution agents, result in substantial damage to the biomass thus limiting the biomass reuse potential; sulfate ions in the elutions solution limit the elution potential of the biomass, possibly by conferring novel crystallinity to the cell wall chitin network and confining inside the chitin network more biosorbed uranium

  15. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2018-01-01

    Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcr......Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcr......(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest...

  16. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  17. Absorption, accumulation and biological effects of depleted uranium in Peyer's patches of rats

    International Nuclear Information System (INIS)

    Dublineau, I.; Grison, S.; Grandcolas, L.; Baudelin, C.; Tessier, C.; Suhard, D.; Frelon, S.; Cossonnet, C.; Claraz, M.; Ritt, J.; Paquet, P.; Voisin, P.; Gourmelon, P.

    2006-01-01

    The digestive tract is the entry route for radionuclides following the ingestion of contaminated food and/or water wells. It was recently characterized that the small intestine was the main area of uranium absorption throughout the gastrointestinal tract. This study was designed to determine the role played by the Peyer's patches in the intestinal absorption of uranium, as well as the possible accumulation of this radionuclide in lymphoid follicles and the toxicological or pathological consequences on the Peyer's patch function subsequent to the passage and/or accumulation of uranium. Results of experiments performed in Ussing chambers indicate that the apparent permeability to uranium in the intestine was higher (10-fold) in the mucosa than in Peyer's patches ((6.21 ± 1.21 to 0.55 ± 0.35) x 10 -6 cm/s, respectively), demonstrating that the small intestinal epithelium was the preferential pathway for the transmucosal passage of uranium. A quantitative analysis of uranium by ICP-MS following chronic contamination with depleted uranium during 3 or 9 months showed a preferential accumulation of uranium in Peyer's patches (1355% and 1266%, respectively, at 3 and 9 months) as compared with epithelium (890% and 747%, respectively, at 3 and 9 months). Uranium was also detected in the mesenteric lymph nodes (∼5-fold after contamination with DU). The biological effects of this accumulation of depleted uranium after chronic contamination were investigated in Peyer's patches. There was no induction of the apoptosis pathway after chronic DU contamination in Peyer's patches. The results indicate no change in the cytokine expression (Il-10, TGF-β, IFN-γ, TNF-α, MCP-1) in Peyer's patches and in mesenteric lymph nodes, and no modification in the uptake of yeast cells by Peyer's patches. In conclusion, this study shows that the Peyer's patches were a site of retention for uranium following the chronic ingestion of this radionuclide, without any biological consequences of

  18. Remediation of soil/concrete contaminated with uranium and radium by biological method

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Seung-Su Kim; Hye-Min Park; Won-Suk Kim; Uk-Ryang Park; Jei-Kwon Moon

    2013-01-01

    Biological method was studied for remediation of soil/concrete contaminated with uranium and radium. Optimum experiment conditions for mixing ratios of penatron and soil, and the pH of soil was obtained through several bioremediations with soil contaminated with uranium and radium. It was found that an optimum mixing ratio of penatron for bioremediation of uranium soil was 1 %. Also, the optimum pH condition for bioremediation of soil contaminated with uranium and radium was 7.5. The removal efficiencies of uranium and radium from higher concentration of soil were rather reduced in comparison with those from lower concentration of soil. Meanwhile, the removal of uranium and radium in concrete by bioremediation is possible but the removal rate from concrete was slower than that from soil. The removal efficiencies of uranium and radium from soil under injection of 1 % penatron at pH 7.5 for 120 days were 81.2 and 81.6 %, respectively, and the removal efficiencies of uranium and radium from concrete under the same condition were 63.0 and 45.2 %, respectively. Beyond 30 days, removal rates of uranium and radium from soil and concrete by bioremediation was very slow. (author)

  19. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  20. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  1. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  2. Uranium reduction by carbon oxide during ore formation

    International Nuclear Information System (INIS)

    Matyash, I.V.; Gavrusevich, I.B.; Pasal'skaya, L.F.; Shcherba, D.I.

    1981-01-01

    Using the method of gas chromatography the gas content in Pre-Cambrian granitoils of various types and in natrometasomatites associted with them is studied. It is established that granites associated with ore-bearing albitites have sharply elevated amounts of CO as compared with granites, which do not include mineralization. Simultaneously in ore samples the absence or sharply low amounts of CO as compared with ore-free samples is observed, that is reverse dependence of CO and ore components. Carbon oxide is the reducing agent of uranium mineralization and alongside with other reducing agents can be a geochemical barrier in the process of ore formation [ru

  3. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  4. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  5. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  6. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  7. Subsurface bio-mediated reduction of higher-valent uranium and plutonium

    International Nuclear Information System (INIS)

    Reed, Donald T.; Pepper, Sarah E.; Richmann, Michael K.; Smith, Geof; Deo, Randhir; Rittmann, Bruce E.

    2007-01-01

    Bio-mediated reduction of multivalent actinide contaminants plays an important role in their fate and transport in the subsurface. To initiate the process of extending recent progress in uranium biogeochemistry to plutonium, a side-by-side comparison of the bioreduction of uranyl and plutonyl species was conducted with Shewanella alga BrY, a facultative metal-reducing bacterium that is known to enzymatically reduce uranyl. Uranyl was reduced in our system, consistent with literature reports, but we have noted a strong coupling between abiotic and biotic processes and observe that non-reductive pathways to precipitation typically exist. Additionally, a key role of biogenic Fe 2+ , which is known to reduce uranyl at low pH, is suggested. In contrast, residual organics, present in biologically active systems, reduce Pu(VI) species to Pu(V) species at near-neutral pH. The predominance of relatively weak complexes of PuO 2 + is an important difference in how the uranyl and plutonyl species interacted with S. alga. Pu(V) also led to increased toxicity towards S. alga and is also more easily reduced by microbial activity. Biogenic Fe 2+ , produced by S. alga when Fe(III) is present as an electron acceptor, also played a key role in understanding redox controls and pathways in this system. Overall, the bioreduction of plutonyl is observed under anaerobic conditions, which favors its immobilization in the subsurface. Understanding the mechanism by which redox control is established in biologically active systems is a key aspect of remediation and immobilization strategies for actinides when they are present as subsurface contaminants

  8. Biotransformation involved in sustained reductive removal of uranium in contaminant aquifers

    International Nuclear Information System (INIS)

    Lovley, Derek R.

    2005-01-01

    This report summarizes progress made from August 2004 to July 2005. During this period research focused primarily on obtaining a better understanding of the factors controlling the reduction of U(VI) during in situ uranium bioremediation as well as investigating the potential for using electrodes as an alternative electron donor to promote in situ uranium reduction. Analysis of the 2003 experiment at the field study site in Rifle, CO was completed. The results demonstrated the substantial heterogeneity of the zone undergoing bioremediation, both in terms of geochemistry and microbiology. The lack of U(VI) reduction under sulfate-reducing conditions was clearly documented. The need for more detailed sampling both with time and with depth in the aquifer was demonstrated. For the first time a comparison between the composition of the microbial community in the sediments and the microbes in the corresponding groundwater was attempted. The findings from this study are important not only in further demonstrating the potential for in situ uranium bioremediation, but also for indicating how methods and sampling approaches should be improved in the future. A manuscript summarizing these findings has been accepted for publication in Applied and Environmental Microbiology. In summer of 2004 a new field experiment was conducted at the Rifle site. A novel feature of this study was much more intensive sampling in order to better define the progression of microbial processes during in situ uranium bioremediation. The results demonstrated that stimulation of in situ uranium bioremediation with added acetate was a repeatable phenomenon and that U(VI) reduction was clearly linked to the presence and activity of microorganisms in the family Geobacteraceae. A manuscript summarizing these results is in preparation. A surprising result of the field studies at the Rifle site was that although Geobacter species actively reduced U(VI) in the groundwater, removing it from solution, a high

  9. Diazoalkane reduction for the synthesis of uranium hydrazonido complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Ellen M.; Fanwick, Phillip E.; Bart, Suzanne C. [Department of Chemistry, Purdue University, West Lafayette, IN (United States)

    2012-11-15

    The reactivity of the uranium(III) alkyl Tp*{sub 2}UCH{sub 2}Ph (1) toward diazoalkanes is reported. Addition of 1 equiv. N{sub 2}CPh{sub 2} produces 0.5 equiv. bibenzyl, along with Tp*{sub 2}U(N{sub 2}CPh{sub 2}) (2). This species is dynamic in solution at room temperature and rapidly interconverts between the η{sup 1}- and η{sup 2} isomers as determined by variable-temperature {sup 1}H NMR spectroscopy. X-ray crystallographic analysis at low temperature shows exclusively the η{sup 2} isomer, which features a short U-N multiple bond analogous to an imido species. The η{sup 1} isomer reacts quantitatively with aldehydes and ketones through multiple bond metathesis to produce Tp*{sub 2}U(O) and the corresponding ketazine. Treatment of 1 with N{sub 2}CHSiMe{sub 3} generates 0.5 equiv. bibenzyl and the η{sup 1} isomer Tp*{sub 2}U(N{sub 2}CHSiMe{sub 3}) (3). This species is unstable over the course of hours, and there is no spectroscopic evidence for the η{sup 2} isomer. Tp*{sub 2}U(η{sup 1}-N{sub 2}CHSiMe{sub 3}) can be trapped by addition of phenylacetylene by a [2+2] cycloaddition to afford the uranium(IV) metallacycle Tp*{sub 2}U[(N-N = CHSiMe{sub 3})CHCPh] (4). Crystallographic data for 4 are presented. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Evaluation of laser phosphorimetry for the analysis of uranium in biological samples from laboratory animal studies

    International Nuclear Information System (INIS)

    Gray, D.; Eidsom, A.F.

    1985-01-01

    Laser phosphorimetry has been used for uranium analyses in a variety of sample matrices, including environmental and human bioassay samples. The Scientrex-UA-3 Uranium Analyzer has been used at ITRI to acquire data on the applicability of laser phosphorimetry to analyses of uranium in the highly concentrated solutions resulting from chemical processing of biological comparisons of results with those obtained from conventional fluorometry. These comparisons have been very favorable for many sample types. Results of these comparisons and an evaluation of the data obtained with the Scintrex unit are presented

  11. Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Jankovský, O.; Šimek, P.; Klimová, K.; Macková, Anna; Pumera, M.

    2014-01-01

    Roč. 8, č. 7 (2014), s. 7106-7114 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : graphene * actinides * electrochemistry * oxygen reduction * uranium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 12.881, year: 2014

  12. Precipitation of uranium oxide by reduction in alkaline solution; Precipitation d'oxyde d'uranium par reduction en milieu alcalin

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, P; Claus, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the first part of the report the authors study the reaction mechanism for this reduction which makes it possible to precipitate a hydrated uranium oxide from alkaline uranyl carbonate solutions. The research into the effects of different variables on numerous cycles are then summarized. Optical, X-ray and thermogravimetric examinations then make it possible to predict the properties of this oxide. In the second part the authors carry out calculations for the continuous operation of single cells and cells in series. These calculations give the data required for the construction of 2 cells having capacities of 0.3 and 10 litres. Results obtained from the continuous operation of this latter cell lead to certain conclusions concerning the applicability of this method to the hydrometallurgy of uranium. (authors) [French] Dans une premiere partie, les auteurs etudient le mecanisme de reaction de cette reduction qui permet la precipitation d'un oxyde d'uranium hydrate dans les solutions d'uranyle-carbonates alcalins. Les etudes de diverses variables sur de nombreux cycles sont ensuite resumees. Puis des examens optiques, aux rayons X et par thermogravimetrie, permettent de proposer une hypothese sur les proprietes de l'oxyde obtenu. Dans la deuxieme partie, les auteurs developpent un calcul prevoyant la marche continue de cellules uniques et en cascades. De ces calculs on tire les elements permettant la realisation de deux cellules de 0,3 et 10 litres. Des resultats de marche continue sur cette derniere cellule, on peut conclure a l'applicabilite de cette methode a l'hydrometallurgie de l'uranium. (auteurs)

  13. Carbothermic reduction of uranium oxides into solvent metallic baths

    International Nuclear Information System (INIS)

    Guisard Restivo, Thomaz A.; Capocchi, Jose D.T.

    2004-01-01

    The carbothermic reduction of UO 2 and U 3 O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3 O 8 charges, respectively. One example for another system containing Al 2 O 3 is also shown

  14. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  15. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  16. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  17. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  18. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  19. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  20. Development of a reduction process of ammonium uranyl carbonate to uranium dioxide in a fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1990-07-01

    Laboratory development of ammonium uranyl carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amount of fluoride (approx. 500μg/g) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentration is reduced by pyrohydrolisis of UO 2 . Physical and Chemical properties of the final product (UO 2 ) obtained were characterized. (author) [pt

  1. Development of ammonium uranyl carbonate reduction to uranium dioxide using fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1988-01-01

    Laboratory development of Ammonium Uranyl Carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amounts of fluoride ( - 500μgF - /gTCAU) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentrations is reduced by pyrohydrolisis of UO 2 . Physical and Chemical proterties of the final product (UO 2 ) obtained were characterized. (author) [pt

  2. Reductive Anaerobic Biological In Situ Treatment Technology Treatability Testing

    National Research Council Canada - National Science Library

    Alleman, Bruce

    2002-01-01

    Enhanced biological reductive dechlorination (EBRD) shows a great deal of promise for efficiently treating groundwater contaminated with chlorinated solvents, but demonstration sites around the country were reporting mixed results...

  3. Post decommissioning monitoring of uranium mines; a watershed monitoring program based on biological response

    International Nuclear Information System (INIS)

    Russel, C.; Coggan, A.; Ludgate, I.

    2006-01-01

    Rio Algom Limited and Denison Mines own and operated uranium mines in the Elliot Lake area. The mines operated from the late 1950's to the mid 1960's and again for the early 1970's to the 1990's when the mines ceased operations. There are eleven decommissioned mines in the Serpent River watershed. At the time of decommissioning each mine had it's own monitoring program, which had evolved over the operating life of the mine and did not necessarily reflect the objectives associated with the monitoring of decommissioned sites. In order to assess the effectiveness of the decommissioning plans and monitoring the cumulative effects within the watershed, a single watershed monitoring program was developed in 1999: the Serpent River Watershed Monitoring Program which focused on water and sediment quality within the watershed and response of the biological community over time. In order to address other 'source area' monitoring, three complimentary objective-focused programs were developed 1) the In- Basin Monitoring Program, 2) the Source Area Monitoring Program and 3) the TMA Operational Monitoring Program. Through development this program framework and monitoring programs that were objective- focused, more meaningful data has been provided while providing a significant reduction in the cost of monitoring. These programs allow for the reduction in scope over time in response to improvement in the watershed. This talk will describe the development of these programs, their implementation and effectiveness. (author)

  4. Track Detection Technique Using CR-39 for Determining Depleted Uranium in Biological Specimens

    International Nuclear Information System (INIS)

    Murbat, S.M.

    2013-01-01

    Track detecting technique using CR-39 track detector has been implemented for determining depleted uranium concentration in biological specimens (tissues, bones, and blood) of patients infected with cancer diseases. Results were compared with specimens of patients infected with conventional diseases (noncancerous). Specimens were collected from middle and south of Iraq have been contaminated with depleted uranium in the Gulf war in 1991. Results show that this technique is efficient for determining depleted uranium concentration in biological specimens. It was found that all studies samples determine for patients infected with cancer diseases contain a high concentration of depleted uranium (more than the international standard) comparing with noncancerous diseases. Moreover, it was found that persons infected with Leukemia show more sensitive to uranium concentrations to induce the diseases (66-202 ppb), while (116- 1910 ppb) concentrations were needed for inducing cancer diseases in organs and tissues. Result confirmed the correlation between cancerous diseases and the munitions made of depleted uranium used in the Gulf war in 1991 leads to contaminate the Iraqi environment and causes a high risk against people in Iraq.

  5. Effect of flavin compounds on uranium(VI) reduction- kinetic study using electrochemical methods with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Yamasaki, Shinya; Tanaka, Kazuya; Kozai, Naofumi; Ohnuki, Toshihiko

    2017-01-01

    The reduction of uranium hexavalent (U(VI)) to tetravalent (U(IV)) is an important reaction because of the change in its mobility in the natural environment. Although the flavin mononucleotide (FMN) has acted as an electron shuttle for the U(VI) reduction in vivo system, which is called an electron mediator, only the rate constant for the electron transfer from FMN to U(VI) has been determined. This study examined the rate constant for the U(VI) reduction process by three flavin analogues (riboflavin, flavin mononucleotide, flavin adenine dinucleotide) to elucidate their substituent group effect on the U(VI) reduction rate by electrochemical methods. The formation of the U(IV) was monitored by UV-vis spectrometry at 660 nm during the constant potential electrolysis of the U(VI) solution in the presence of the mediator. The cyclic voltammograms indicated that the three flavin analogues behaved as electron mediator to reduce U(VI). The logarithmic rate constant for the U(VI) reduction was related to the standard redox potential of the mediators. This linear relationship indicated that the redox-active group of the mediator and the substituent group of the mediator dominate capability of the U(VI) reduction and its rate, respectively. The apparent reduction potential of U(VI) increased about 0.2 V in the presence of the mediators, which strongly suggests that the biological electron mediator makes the U(VI) reduction possible even under more oxidative conditions. - Highlights: • The rate constant for the U(VI) reduction by flavin analogues was determined. • The flavins showed a mediator effect on the U(VI) reduction. • The logarithmic rate constants for the U(VI) reduction was proportional to redox potential of the mediator. • The presence of the mediator increased about 0.2 V apparent redox potential of U(VI) to U(IV).

  6. Biotransformations Involved in Sustained Reductive Removal of Uranium in Contaminated Aquifers. Final report

    International Nuclear Information System (INIS)

    Lovley, Derek R.

    2008-01-01

    The studies completed under this grant significantly advanced the understanding and design of strategies for in situ uranium bioremediation. Novel strategies identified show promise to make in situ uranium bioremediation technically simpler and less expensive. As detailed, important findings included: (1) Development of an electron donor delivery strategy to prolong the in situ activity of Geobacter species and enhance the removal of uranium from the groundwater; (2) Demonstration that reproducible year-to-year field experiments were possible at the ERSP study site in Rifle, CO, making hypothesis-driven field experimentation possible; (3) Elucidation of the geochemical and microbiological heterogeneities with the subsurface during in situ uranium bioremediation, which must be accounted for to accurately model the bioremediation process; (4) The discovery that most of the U(VI) contamination at the Rifle site is sediment-associated rather than mobile in the groundwater, as previously considered; (5) The finding that unlike soluble U(VI), sediment-associated U(VI) is not microbially reducible; (6) The demonstration that electrodes may be an effective alternative to acetate as an electron donor to promote microbial U(VI) reduction in the subsurface with the added benefit that electrode-promoted microbial U(VI) reduction offers the possibility of removing the immobilized uranium from the subsurface; and (7) The finding that, after extended acetate inputs, U(VI) continues to be removed from groundwater long after the introduction of acetate into the subsurface is terminated and that this appears to be due to adsorption onto biomass. This potentially will make in situ uranium bioremediation much less expensive than previously envisioned.

  7. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat

    International Nuclear Information System (INIS)

    Monleau, M.

    2005-12-01

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure. It

  8. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days -1 while the half-velocity constant (K s ) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k d ) was calculated as 0.072 days -1 . After reduction, U(IV) Precipitated from solution in the uraninite (UO 2 ) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat

  9. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  10. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  11. Role of Some Isolated Fungi in The Biological Leaching of Uranium From Low Grade Cretaceous Sandstone

    International Nuclear Information System (INIS)

    Ibrahim, H.A.; Morsy, A.; El-Sheikh, E.M.

    2012-01-01

    Microbiological leaching has been used as an alternative approach to conventional hydrometallurgical methods of uranium extraction. In this investigation, the biological leaching of uranium by isolated fungi from low grade sandstone was studied. Five isolates of fungi were obtained from sandstone sample. Cladosporium oxysporum and Penicilluim stoloniferum exhibited high potential in generating a variety of organic acids effective for uranium extraction. The percentages of organic acid produced by fungi were determined. By-product such as molasses was tested. The maximum dissolution of uranium was achieved at the following conditions; incubation period 6 days, pulp density 1:3 g/L, ph 3.5 and at 30 degree C. Maximum solubilization of uranium with values of 54% and 67% were achieved by Cladosporium oxysporum and Penicilluim stoloniferum, respectively. From properly prepared pregnant bio-leach liquor, the leached uranium was recovered in the form of marketable products (3UO 3 NH 3 .5H 2 O) using classical chemical technique and the product was confirmed using XRD techniques

  12. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    Science.gov (United States)

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  13. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  14. A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Hur, Jin Mok; Seo, Chung Seok; Park, Seong Won

    2003-01-01

    This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  15. A study on the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Su, J. S.; Hu, J. M.; Hong, S. S.; Jang, D. S.; Park, S. W.

    2003-01-01

    New electrolytic reduction technology was proposed that is based on the integration of metallization of uranium oxide and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  16. Mineral transformations and magnetic properties: example of an uranium rich front of oxido-reduction

    International Nuclear Information System (INIS)

    Mergaux, O.; Samama, J.C.

    1987-01-01

    In sedimentary environments, the mineral associations and the associated magnetic properties may be ascribed to superimposed processes of sedimentation, diagenesis and epigenesis. In the case of uranium sandstone deposits, the epigenetic processes of oxido-reduction are responsible for both concentration in uranium and specific mineral transformations which are related to variations in the magnetic properties of the rocks. These variations are illustrated by the Treville deposit (Southwestern France), where uranium rich bodies have developed within the Tertiary sandstones. The unaltered sandstones are characterized by a low magnetic susceptibility (scarcity of ferrimagnetic species but abundance of paramagnetic species). The siderite rich facies forming part of the front does not display any significant change in the mean magnetic susceptibility whilst the uranium-pyrite facies which belongs to the same front indicates a much lower susceptibility. The mean susceptibility facies resulting from pyrite and siderite oxidation remains unchanged. The facies of alteration of the iron rich silicates is responsible for higher susceptibility. The comparison between measured susceptibility and computed susceptibility helps in interpreting the role of the various species in the overall susceptibility of the rocks. It may also help in restituting the mineral associations from magnetic and chemical logging

  17. Thermogravimetric studies on the silicothermic reduction of uranium tetrafluoride under nitrogen

    International Nuclear Information System (INIS)

    Venkataramani, R.; Bhatt, Y.J.; Krishnamurthy, N.; Garg, S.P.

    1986-01-01

    This paper presents details of the experimental procedure and results obtained by thermogravimetric studies on the preparation of uranium nitrides by silicothermic reduction of uranium tetrafluoride under a nitrogen atmosphere. The folowing sequential steps are involved during the reaction: 4UF 4 +Si->4UF 3 +SiF 4 (g), 2UF 3 +Si+N 2 ->2UNF+SiF 4 (g), 4UNF+Si+N 2 ->2U 2 N 3 +SiF 4 (g), the uranium sesquintride U 2 N 3 obtained in the above process then decomposed at 1370 K under a dynamic vacuum of less than 10 -2 Tor to yield uranium mononitride of purity better than 99.9%, according to reaction 2U 2 N 3 ->4UN+N 2 (g). The chemical composition of the intermediate products formed during the sequential steps of the process, assessed by thermogravimetric and differential thermogravimetric studies, were further confirmed by chemical and X-ray analysis

  18. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  19. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    Science.gov (United States)

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N -methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  20. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts

    Science.gov (United States)

    Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre

    2011-07-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.

  1. The application of N,N-dimethylhydroxylamine as reductant for the separation of plutonium from uranium

    International Nuclear Information System (INIS)

    Jinping Liu; Hui He; Hongbin Tang; Yanxin Chen

    2011-01-01

    Both single stage and multi-stages experiments on stripping plutonium with N,N-dimethylhydroxylamine (DMHAN) as reductant with methylhydrozine (MMH) as supporting reductant were carried out. The effect of contact time, temperature, acidity, concentration of DMHAN on back-extraction rate of plutonium was investigated in the single stage experiment. The results demonstrated that the reaction of stripping Pu(IV) in the organic phase (30% TBP-kerosene) 1BF solutions by DMHAN exhibits excellent stripping efficiency. Under the given conditions, the back-extraction rate of plutonium reaches 90% within 2 min. Higher temperature, lower acidity and the increased concentration of DMHAN benefit the stripping reaction. The concentration profile of HNO 3 , uranium and plutonium were determined in a multi-stages mixer-settler after the steady state of the back-extraction, and the multi-stages results show that the plutonium can be separated effectively from uranium. The recovery of plutonium and uranium reach 99.995% or over 99.99% respectively. The separation factor of U from Pu (SF Pu/U ) is about 2 x 10 4 . (author)

  2. Magnesio-thermic reduction of UF4 to uranium metal : plant operating experience

    International Nuclear Information System (INIS)

    Mayekar, S.V.; Singh, H.; Meghal, A.M.; Koppiker, K.S.

    1991-01-01

    Uranium Metal Plant has switched over from calcio-thermy to magnesio-thermy for production of uranium ingots. In this paper, the plant operating experience for magnesio-thermic reduction is described. Based on trials, the production has been stepped up from 40 kg ingots to 200 kg ingots. The operating parameters optimised include : heating schedule, UF 4 quality, magnesium quantity and quality, and particle size. The effect of quality of refractory lining has been discussed. Conditions for lining are optimised with regard to type of material used and size. Developmental work has also been carried out on use of pelletised charge and on use of graphite sleeves. Some experience in the machining of ingots for removal of surface slag is also discussed. Impurity problems, occasionally encountered, have been investigated and results are discussed. Based on the experience gained, specifications for operation have been laid down, and areas for further improvement are identified. (author). 5 refs., 1 fig., 1 tab

  3. Computer programs for data reduction and interpretation in plutonium and uranium analysis by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Singh, R.K.; Moorthy, A.D.; Babbar, R.K.; Udagatti, S.V.

    1989-01-01

    Non destructive gamma ray have been developed for analysis of isotopic abundances and concentrations of plutonium and uranium in the respective product solutions of a reprocessing plant. The method involves analysis of gamma rays emitted from the sample and uses a multichannel analyser system. Data reduction and interpretation of these techniques are tedious and time consuming. In order to make it possible to use them in routine analysis, computer programs have been developed in HP-BASIC language which can be used in HP-9845B desktop computer. A set of programs, for plutonium estimation by high resolution gamma ray spectrometry and for on-line measurement of uranium by gamma ray spectrometry are described in this report. (author) 4 refs., 3 tabs., 6 figs

  4. Preparation of uranium dioxide by thermal decomposition and direct reduction of ammonium uranate

    International Nuclear Information System (INIS)

    Hernandez R, R.

    1995-01-01

    The thermal decomposition of ammonium uranate has been studied by infrared spectroscopy, and X-ray diffraction. It has been show that ammonia remains in the solid until substantially 350 Centigrade degrees, when gaseous nitrogen is released. It is concluded that compounds derived from the calcination of ammonium uranate at atmospheric pressure, produced amorphous U O 3 at about 350-400 Centigrade degrees and transform to U 3 O 8 via α - U O 3 and/or α - U O 3 . The object of this study was to obtain reliable fundamental information regarding the character of the pure carbon monoxide-ammonium uranate-uranium trioxide-uranium octaoxide reaction, in the range of temperatures that has been used in commercial reduction processes. Through the use of high-purity samples and by the proper control of incidental variable, this object was realized. (Author)

  5. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  6. Standard specification for blended uranium oxides with 235U content of less than 5 % for direct hydrogen reduction to nuclear grade uranium dioxide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...

  7. Detection of thallium and uranium in well water and biological specimens of an eastern Croatian population.

    Science.gov (United States)

    Curković, Mario; Sipos, Laszlo; Puntarić, Dinko; Dodig-Ćurković, Katarina; Pivac, Nela; Kralik, Kristina

    2013-09-01

    Abstract Using inductively-coupled plasma mass spectrometry (ICP-MS), we measured the concentrations of thallium and uranium in local water resources from three villages (Ćelije, Draž, and Potnjani) in eastern Croatia, with the aim to determine if they were associated with the levels of these same elements in the serum, urine, and hair collected from the residents of this area. The exposure of the local population to thallium and uranium through drinking water was generally low. ICP-MS was capable of measuring the levels of both of the elements in almost all of the analysed samples. Although there were differences in the concentrations of both elements in water samples and biological specimens taken from the residents, they did not reach the maximum contaminant level in any of the four sample types studied. Although hair was previously reported as an excellent indicator of occupational and environmental exposure to various elements, our study did not confirm it as a reliable biological material for tracing thallium and uranium levels, mainly due to the very low concentrations of these elements, often well below the detection limit. However, our results have shown that the concentration of thallium and uranium in drinking water can be effectively traced in urine samples.

  8. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1997-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO 2 (s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  9. Uranium uptake by baker's yeast (Saccharomyces cerevisiae) - development of a biological ion exchanger

    International Nuclear Information System (INIS)

    Oost, T.; Schoening, K.U.

    1991-01-01

    The use of micro-organisms for decontamination of, and heavy metal recovery from industrial waste water is a modern, low-cost, and environmentally friendly alternative to the conventional chemical and physical methods. The uptake of uranium by baker's yeast is investigated under the aspect of application in biotechnology. A novel, regenerable biological ion exchanger was produced by immobilisation of the yeast in agar gel. (orig.) [de

  10. Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2006-01-01

    During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg -1 for 238 U, 0.24-16.8 Bq kg -1 for 234 U, and 0.02-1.11 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the 236 U in some of the samples was detectable. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 mBq l -1 for 238 U, 0.41-15.6 mBq l -1 for 234 U and 0.012-0.695 mBq l -1 for 235 U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants

  11. The use of double laser pulses for the atomic-emission spectral estimation of uranium content in biological samples

    International Nuclear Information System (INIS)

    Patapovich, M.P.; Umreiko, D.S.; Zajogin, A.P.; Buloichik, J.I.

    2012-01-01

    This paper is aimed at the development of the techniques for estimation of the uranium content in biological objects (hair) using the atomic-emission laser analysis with a sufficient accuracy and high processing rate. (authors)

  12. Computational simulation studies of the reduction process of UF4 to metallic uranium

    International Nuclear Information System (INIS)

    Borges, Wesden de Almeida

    2011-01-01

    The production of metallic uranium is essential for production of fuel elements for using in nuclear reactors manufacturing of radioisotopes and radiopharmaceuticals. In IPEN, metallic uranium is produced by magnesiothermical reduction of UF 4 . This reaction is performed in a closed graphite crucible inserted in a sealed metal reactor and no contact with the outside environment. The set is gradually heated in an oven pit, until it reaches the ignition temperature of the reaction (between 600-650 degree C). The modeling of the heating profile of the system can be made using simulation programs by finite element method. Through the thermal profiles in the load, we can have a notion of heating period required for the reaction to occur, allowing the identification of the same group in a greater or smaller yield in metallic uranium production. Thermal properties of UF 4 are estimated, obtaining thermal conductivity and heat capacity using the Flash Laser Method, and for the load UF 4 + Mg, either. The results are compared to laboratory tests to simulate the primary production process. (author)

  13. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  14. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    Science.gov (United States)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  15. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  16. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  17. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  18. Reduction of water consumption in the dynamic acid leaching process of uranium

    International Nuclear Information System (INIS)

    Chocron, M.; Arias, M.J.; Avato, A.M.; Díaz, V.A.

    2013-01-01

    In 2006 the Argentine state announced a plan to reactivate the nuclear sector. As a result of this decision, the National Atomic Energy Commission (CNEA) resumed its research in uranium mining for Argentine deposits. The first step was the study of the leaching process, mainly the dynamic leaching. In this work the influence of the reduction of the water content in the dynamic leaching process in acid medium, at laboratory scale and under batch operating conditions, on the main operating parameters (concentration of the leaching reagent, the oxidizing reagent and The reaction temperature). The percentages of pulp solids studied in the dynamic leaching were 53% and 66% w / w. For the tests uranium-molybdenum ores of the sandstone type were used. Two different working schemes were used to study the different operating parameters. In the tests carried out with 53% of solid in pulp, the parameters were studied individually (varying one parameter at a time), while working with a pulp of 66% solids, the study of the parameters was performed by a Factorial design of two levels of three variables, which in addition to studying the dependence of the different parameters allowed to analyze how they influence each other. During the leaching tests with 66% solids content in pulp, changes in the geometric and dynamic conditions of the system were necessary because of the poor mixing observed when using the same agitation conditions used in the leaching tests with 53% solids in pulp. When comparing the tests for both solids content conditions (53% and 66% w / w), similar extraction yields were observed for both uranium and molybdenum (more than 90% for uranium and more than 80% for The molybdenum). As a final result, the process water consumption (380 liters of water per ton of ore) is reduced by more than 50% by working with pulps of 66% w / w of solids, obtaining acceptable extraction yields and, as an additional, reducing The consumption of the leaching reagent. (author)

  19. Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth; Modelisation de la cinetique de reduction d`oxydes d`uranium par l`hydrogene. Reactivites de germination et de croissance

    Energy Technology Data Exchange (ETDEWEB)

    Brun, C

    1997-12-04

    The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U{sub 3}O{sub 8} (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO{sub 2} phase appear at the surface of the U{sub 3}O{sub 8} grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.) 45 refs.

  20. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  1. Direct determination of uranium in soil, rock, ore and biological samples by laser-induced fluorometry

    International Nuclear Information System (INIS)

    Li Qingzhen; Zhang Yanan

    1993-03-01

    A laser-induced fluorometric method with modified J-22 anti-interferent fluorescent reagent for directly determining the uranium in soil, rock, ore, geochemical, biological and other samples has been studied. The effects of external ions and dilution law of sample are examined in detail. A method for correcting inner effect is proposed. A mixed solution of 0.25% NaOH-10% J-22 is prepared which can be added to the sample cuvette for direct measurement without any pre-adjustment of acidity. Therefore, it is much simpler for operation and reduces the loss and contamination of uranium. By changing the laser fluorometer sensitivity (400 ∼ 200), up to 3000 ng uranium in the cuvette can be detected. Thus, both analytical accuracy and detectable range are improved. This method is simple, rapid, accurate and applicable to various uranium-bearing samples. The detection limit is better than 0.05 μgU/g. The relative standard deviation is ≤+-5% for the rock reference samples of 0.95, 84.8, 669 and 7240 μgU/g

  2. Uranium Sequestration During Biostimulated Reduction and In Response to the Return of Oxic Conditions In Shallow Aquifers

    Science.gov (United States)

    Fuller, Christopher C.; Johnson, Kelly J.; Akstin, Katherine; Singer, David M.; Yabusaki, Steven B.; Fang, Yilin; Fuhrmann, M.

    2015-01-01

    A proposed approach for groundwater remediation of uranium contamination is to generate reducing conditions by stimulating the growth of microbial populations through injection of electron donor compounds into the subsurface. Sufficiently reducing conditions will result in reduction of soluble hexavalent uranium, U(VI), and precipitation of the less soluble +4 oxidation state uranium, U(IV). This process is termed biostimulated reduction. A key issue in the remediation of uranium (U) contamination in aquifers by biostimulated reduction is the long term stability of the sequestered uranium. Three flow-through column experiments using aquifer sediment were used to evaluate the remobilization of bioreduced U sequestered under conditions in which biostimulation extended well into sulfate reduction to enhance precipitation of reduced sulfur phases such as iron sulfides. One column received added ferrous iron, Fe(II), increasing production of iron sulfides, to test their effect on remobilization of the sequestered uranium, either by serving as a redox buffer by competing for dissolved oxygen, or by armoring the reduced uranium. During biostimulation of the ambient microbial population with acetate, dissolved uranium was lowered by a factor of 2.5 or more with continued removal for over 110 days of biostimulation, well after the onset of sulfate reduction at ~30 days. Sequestered uranium was essentially all U(IV) resulting from the formation of nano-particulate uraninite that coated sediment grains to a thickness of a few 10’s of microns, sometimes in association with S and Fe. A multicomponent biogeochemical reactive transport model simulation of column effluents during biostimulation was generally able to describe the acetate oxidation, iron, sulfate, and uranium reduction for all three columns using parameters derived from simulations of field scale biostimulation experiments. Columns were eluted with artificial groundwater at equilibrium with atmospheric oxygen to

  3. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  4. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  5. Application of chronocoulomentry for trace levels uranium determination using catalytic nitrate reduction on mercury electrode

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.

    1988-01-01

    With the aim of improving the sensitivity of the electro-analytical determination of uranium at trace levels, the uranium catalyzed reduction of nitrate on mercury electrodes was used and the technique of chronocoulometry was compared with other voltammetric techniques. The catalytic process offers high sensitivity in comparison with uranyl reduction in absence of nitrate. The chronocoulometry, virtually unexplored for analytical applications, was found to be specially well suited for determinations based on this kind of electrode process, when using current integration times in the range of several seconds. Under these conditions the interference from diffusion controlled faradaic processes is reduced to a minimum. Several experimental parameters were investigated (eletrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination of pure and real samples. The proposed method was applied and evaluated with real and, when necessary, an adapted liquid-liquid extraction procedure was used. Reference materials with complex matrices like rocks were first solubilized by hot digestion under pressure. The obtained results are in good agreement with the values obtained with other techniques such as X-ray fluorescence, mass spectrometry-isotope dilution and epithermal netron activation analysis. (author) [pt

  6. Facile reductive silylation of UO{sub 2}{sup 2+} to uranium(IV) chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, John J.; Bart, Suzanne C. [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Zeller, Matthias [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Department of Chemistry, Youngstown State University, Youngstown, OH (United States)

    2017-01-19

    General reductive silylation of the UO{sub 2}{sup 2+} cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO{sub 2}X{sub 2}(L){sub 2} (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R{sub 3}Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R{sub 3}SiO){sub 2}UX{sub 2}(L){sub 2} in high yields. Support is included for the key step in the process, reduction of U{sup VI} to U{sup V}. This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl{sub 4} or two equivalents of Me{sub 2}SiCl{sub 2} results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solution

    International Nuclear Information System (INIS)

    Hocking, W.H.; Betteridge, J.S.; Shoesmith, D.W.

    1991-09-01

    The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solutions has been investigated within the context of a program to develop a comprehensive model to predict the behaviour of used CANDU (Canada Deuterium Uranium) nuclear fuel under disposal-vault conditions. Two different kinds of ceramic UO 2 were studied: reactor-grade CANDU fuel with normal p-type electrical conductivity and low-resistance material that exhibits n-type photoelectrochemical behaviour. The transport of electroactive species in solution was controlled by varying the rotation rate of rotating disc electrodes (RDE) and rotating ring-disc electrodes (RRDE). Steady-state polarization measurements were made using the current-interrupt method to compensate for the potential drop caused by ohmic resistance. Any release of peroxide to solution from the UO 2 (disc) surface could be monitored by oxidizing it at the Au ring of an RRDE. The existing theory for the cathodic 0 2 -reduction process as applied to RDE and RRDE experiments has been reviewed as a starting point for the interpretation of the results obtained in our work. (37 figs., 2 tabs., 170 refs.)

  8. Reduction of uranium and plutonium oxides by aluminum. Application to the recycling of plutonium

    International Nuclear Information System (INIS)

    Gallay, J.

    1968-01-01

    A process for treating plutonium oxide calcined at high temperatures (1000 to 2000 deg. C) with a view to recovering the metal consists in the reduction of this oxide dissolved in a mixture of aluminium, sodium and calcium fluorides by aluminium at about 1180 deg. C. The first part of the report presents the results of reduction tests carried out on the uranium oxides UO 2 and U 3 O 8 ; these are in agreement with the thermodynamic calculations of the exchange reaction at equilibrium. The second part describes the application of this method to plutonium oxides. The Pu-Al alloy obtained (60 per cent Pu) is then recycled in an aqueous medium. (author) [fr

  9. Fixation and reduction of uranium by natural organic matter: reaction mechanisms and kinetics

    International Nuclear Information System (INIS)

    Nakashima, S.; Perruchot, A.; Trichet, J.; Disnar, J.R.

    1987-01-01

    The reactivity of lignite towards soluble uranyl species in an aqueous medium is experimentally investigated as a function of temperature (between 20 0 C and 400 0 C). The fixation process starts near 45 0 C, with reduction beginning around 120 0 C. The fixation process leads to the formation of chemically and thermally stable organo-uranyl species. The reduction of free uranyl species is accompanied by a stoichiometric (2:1) liberation of protons into the medium. These protons originate from the organic matter which thus undergoes dehydrogenation. The general evolution of the carbonaceous residue in the course of this reaction shows that alcoholic and aliphatic hydrocarbon groups are responsible for the reduction. This chemical dehydrogenation could explain the low hydrogen content of natural organic materials associated with uraniferous deposits. The kinetics of the reduction step have been studied at 180 0 C, 190 0 C and 200 0 C. The kinetic parameters determined over this temperature range, and the extrapolation made to 20 0 C, show that reduction can be a crucial process in the geochemical behaviour of uranium especially in the thermal conditions in which sedimentary basins evolve [fr

  10. Simultaneous removal and recovery of uranium from aqueous solution using TiO_2 photoelectrochemical reduction method

    International Nuclear Information System (INIS)

    Huichao He; Meirong Zong; Faqin Dong; Southwest University of Science and Technology, Sichuan; Pengpan Yang; Gaili Ke; Mingxue Liu; Xiaoqin Nie; Wei Ren; Liang Bian; Southwest University of Science and Technology, Sichuan; Chinese Academy of Sciences, Xinjiang

    2017-01-01

    U(VI)-containing wastewater has potential radiation hazard to the environment, but contains valuable uranium resource. Based on the reduction of U(VI) and the difference in solubility between U(VI) and U(IV), here we construct a TiO_2-based photoelectrochemical cell to remove U(VI) and recover uranium from aqueous solution. By irradiating TiO_2 photoanode at E = 0.45 V versus SCE, U(VI) can be simultaneously removed from aqueous solution and recovered as solid uranium compounds on a FTO glass cathode. Since ethanol can act as hole scavenger to protect the formed U(IV) and provide CO_2"−"· as reductant, ethanol adding improved the U(VI) reduction efficiency of TiO_2-based photoelectrochemical cell. (author)

  11. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  12. A new method for dosing uranium in biological media; Nouvelle methode de dosage de l'uranium dans les milieux biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Ph; Kobisch, Ch [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report describes a new method for dosing uranium in biological media based on measurement of alpha activity. After treatment of the sample with a mineral acid, the uranium is reduced to the valency four by trivalent titanium and is precipitated as phosphate in acid solution. The uranium is then separated from the titanium by precipitation as UF{sub 4} with lanthanum as carrier. A slight modification, unnecessary in the case of routine analyses, makes it possible to eliminate other possible alpha emitters (thorium and transuranic elements). (authors) [French] Ce rapport decrit une nouvelle methode de dosage de l'uranium dans les milieux biologiques par mesure de l'activite alpha. Apres mineralisation de l'echantillon, l'uranium est reduit a la valence IV par le titane trivalent et precipite en milieu acide sous forme de phosphate. L'uranium est ensuite separe du titane par precipitation a l'etat d'UF{sub 4} avec du lanthane entraineur. Une legere modification, inutile dans le cas d'analyses de routine, permet d'effectuer l'elimination d'autres emetteurs alpha eventuels (thorium et transuraniens). (auteurs)

  13. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  14. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  15. Synthesis and reduction of uranium(V) imido complexes with redox-active substituents

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Kimberly C.; Carroll, Patrick J.; Schelter, Eric J. [P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2017-04-27

    Organic azides that contain naphthyl functional groups were used to prepare uranium(V) imido complexes U{sup V}[=NC(2-naph)Ph{sub 2}][N(SiMe{sub 3}){sub 2}]{sub 3} (2), U{sup V}[=NC(2-naph){sub 3}][N(SiMe{sub 3}){sub 2}]{sub 3} (3), and U{sup V}[=N(2-naph)][N(SiMe{sub 3}){sub 2}]{sub 3} (4), and their properties were compared with U{sup V}[=NCPh{sub 3}][N(SiMe{sub 3}){sub 2}]{sub 3} (1). The electronic structures of these compounds were investigated by solution electrochemistry studies, which revealed accessible U{sup V/VI}, U{sup IV/V}, and naphthalene{sup 0}/naphthalene{sup -1} couples. The uranium(V) naphthylimido complexes were reduced by potassium graphite to yield their uranium(IV) congeners K[U{sup IV}[=NC(2-naph)Ph{sub 2}][N(SiMe{sub 3}){sub 2}]{sub 3}] (2-K), K[U{sup IV}[=NC(2-naph){sub 3}][N(SiMe{sub 3}){sub 2}]{sub 3}] (3-K), and K[U{sup IV}[=N(2-naph)][N(SiMe{sub 3}){sub 2}]{sub 3}] (4-K). The electronic structure of the dianionic compounds were investigated by DFT calculations, and this revealed that the second reduction was ligand-based, which opens the possibility of accomplishing multi-electron redox chemistry by using a tailored multiply-bonded ligand. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a

  17. MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States)

    2014-12-31

    Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application of a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.

  18. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level

  19. Somatic cell genetics of uranium miners and plutonium workers. A biological dose-response indicator

    International Nuclear Information System (INIS)

    Brandom, W.F.; Bloom, A.D.; Bistline, R.W.; Saccomanno, G.

    1978-01-01

    Two populations of underground uranium miners and plutonium workers work in the state of Colorado, United States of America. We have explored the prevalence of structural chromosome aberrations in peripheral blood lymphocytes as a possible biological indicator of absorbed radiation late-effects in these populations. The uranium miners are divided into four exposure groups expressed in Working Level Months (WLM), the plutonium workers into six groups with estimated 239 Pu burdens expressed in nCi. Comparison of chromosome aberration frequency data between controls, miners, and plutonium workers demonstrate: (1) a cytogenetic response to occupational ionizing radiation at low estimated doses; and (2) an increasing monotonic dose-response in the prevalence of complex (all exchange) or total aberrations in all exposure groups in these populations. We also compared trends in the prevalence of aberrations per exposure unit (WLM and nCi) in each exposure subgroup for each population. In the uranium miners, the effects per WLM seem to decrease monotonically with increasing dose, whereas in the Pu workers the change per nCi appears abrupt, with all exposure groups over 1.3 nCi (minimum detectable level) having essentially similar rates. The calculations of aberrations per respective current maximum permissible dose (120 WLM and 40 nCi) for the two populations yield 4.8 X 10 -2 /100 cells for uranium miners and 90.6 X 10 -2 /100 cells for Pu workers. Factors which may have influenced this apparent 20-fold increase in the effectiveness of plutonium in the production of complex aberrations (9-fold increase in total aberrations) are discussed. (author)

  20. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka; Lainie Petrie; Nadia North; David L. Balkwill; Joseph W. Stucki; Lee Kerkhof

    2004-01-01

    The overall objective of our project is to understand the microbial and geochemical mechanisms controlling the reduction and immobilization of U(VI) during biostimulation in subsurface sediments of the Field Research Center (FRC) which are cocontaminated with uranium and nitrate. The focus will be on activity of microbial populations (metal- and nitrate-reducing bacteria) and iron minerals which are likely to make strong contributions to the fate of uranium during in situ bioremediation. The project will: (1) quantify the relationships between active members of the microbial communities, iron mineralogy, and nitrogen transformations in the field and in laboratory incubations under a variety of biostimulation conditions, (2) purify and physiologically characterize new model metal-reducing bacteria isolated from moderately acidophilic FRC subsurface sediments, and (3) elucidate the biotic and abiotic mechanisms by which FRC aluminosilicate clay minerals are reduced and dissolved under environmental conditions resembling those during biostimulation. Active microbial communities will be assessed using quantitative molecular techniques along with geochemical measurements to determine the different terminal-electron-accepting pathways. Iron minerals will be characterized using a suite of physical, spectroscopic, and wet chemical methods. Monitoring the activity and composition of the denitrifier community in parallel with denitrification intermediates during nitrate removal will provide a better understanding of the indirect effects of nitrate reduction on uranium speciation. Through quantification of the activity of specific microbial populations and an in-depth characterization of Fe minerals likely to catalyze U sorption/precipitation, we will provide important inputs for reaction-based biogeochemical models which will provide the basis for development of in situ U bioremediation strategies. In collaboration with Jack Istok and Lee Krumholz, we have begun to study the

  1. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  2. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  3. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  4. Low cost biological lung volume reduction therapy for advanced emphysema

    Directory of Open Access Journals (Sweden)

    Bakeer M

    2016-08-01

    Full Text Available Mostafa Bakeer,1 Taha Taha Abdelgawad,1 Raed El-Metwaly,1 Ahmed El-Morsi,1 Mohammad Khairy El-Badrawy,1 Solafa El-Sharawy2 1Chest Medicine Department, 2Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt Background: Bronchoscopic lung volume reduction (BLVR, using biological agents, is one of the new alternatives to lung volume reduction surgery.Objectives: To evaluate efficacy and safety of biological BLVR using low cost agents including autologous blood and fibrin glue.Methods: Enrolled patients were divided into two groups: group A (seven patients in which autologous blood was used and group B (eight patients in which fibrin glue was used. The agents were injected through a triple lumen balloon catheter via fiberoptic bronchoscope. Changes in high resolution computerized tomography (HRCT volumetry, pulmonary function tests, symptoms, and exercise capacity were evaluated at 12 weeks postprocedure as well as for complications.Results: In group A, at 12 weeks postprocedure, there was significant improvement in the mean value of HRCT volumetry and residual volume/total lung capacity (% predicted (P-value: <0.001 and 0.038, respectively. In group B, there was significant improvement in the mean value of HRCT volumetry and (residual volume/total lung capacity % predicted (P-value: 0.005 and 0.004, respectively. All patients tolerated the procedure with no mortality.Conclusion: BLVR using autologous blood and locally prepared fibrin glue is a promising method for therapy of advanced emphysema in term of efficacy, safety as well as cost effectiveness. Keywords: BLVR, bronchoscopy, COPD, interventional pulmonology

  5. Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li2O Molten Salts with an Integrated Cathode Assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    The electrolytic reduction of uranium oxide in a LiCl-Li 2 O molten salt system has been studied in a 10 g U 3 O 3 /batch-scale experimental apparatus with an integrated cathode assembly at 650 .deg. C. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt% Li 3 O system and the U 3 O 3 -LiCl-3 wt% Li 2 O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  6. Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Sung Bin Park; Byung Heung Park; Sang Mun Jeong; Jin Mok Hur; Chung Seok Seo; Seong Won Park; Seung-Hoon Choi

    2006-01-01

    Electrochemical behavior of the reduction of uranium oxide was studied in a LiCl-Li 2 O molten salt system with an integrated cathode assembly. The mechanism for the electrolytic reduction of uranium oxide was studied through cyclic voltammetry. By means of a chronopotentiometry, the effects of the thickness of the uranium oxide, the thickness of the MgO membrane and the material of the conductor of an integrated cathode assembly on the overpotential of the cathode were investigated. From the voltamograms, the reduction potential of the uranium oxide and Li 2 O was obtained and the two mechanisms of the electrolytic reduction were considered with regard to the applied cathode potential. From the chronopotentiograms, the exchange current, the transfer coefficient and the maximum allowable current based on the Tafel behavior were obtained with regard to the thickness of the uranium oxide, and of the MgO membrane and the material of the conductor of an integrated cathode assembly. (author)

  7. Strategies for the reduction of Legionella in biological treatment systems.

    Science.gov (United States)

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection.

  8. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingjun, E-mail: kongl_jun@163.com [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Zhu, Yuting; Wang, Min; Li, Zhixuan; Tan, Zhicong; Xu, Ruibin; Tang, Hongmei; Chang, Xiangyang [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Xiong, Ya [Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Chen, Diyun, E-mail: cdy@gzhu.edu.cn [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China)

    2016-12-15

    Uranium containing radioactive wastewater is seriously hazardous to the natural environment if it is being discharged directly. Herein, nano-flake like Fe loaded sludge carbon (Fe-SC) is synthesized by carbothermal process from Fe-rich sludge waste and applied in the immobilization of uranium in aqueous. Batch isotherm and kinetic adsorption experiments are adopted to investigate the adsorption behavior of Fe-SC to uranium in aqueous. XPS analyses were conducted to evaluate the immobilized mechanism. It was found that the carbonized temperature played significant role in the characteristics and immobilization ability of the resulted Fe-SC. The Fe-SC-800 carbonized at 800 °C takes more advantageous ability in immobilization of uranium from aqueous than the commercial available AC and powder zero valent iron. The adsorption behavior could be fitted well with the Langmuir isotherm adsorption model and pseudo-second order model. The equilibrium adsorption amount and rate for Fe-SC-800 is high to 148.99 mg g{sup -1} and 0.015 g mg{sup -1} min{sup -1}, respectively. Both reductive precipitation and physical adsorption are the main mechanisms of immobilization of uranium from aqueous by Fe-SC-800.

  9. The role of uranium-arene bonding in H2O reduction catalysis

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  10. Determination of kinetic coefficients for the reduction and removal of uranium from water by the Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Tucker, M.D.; Barton, L.L.; Thomson, B.M.

    1996-01-01

    Uranium contamination of groundwater and surface water from abandoned uranium mill tailings piles is a serious concern in many areas of the western United States. U(VI) is soluble in water and, as a result, is relatively mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain microorganisms, such as the sulfate-reducing bacteria Desuffiovibrio desulfricans, can mediate the reduction of U(VI) to U(IV) by anaerobic respiration. Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reaction have not been characterized. The purpose of this research was to perform kinetic studies on Desuffiovibrio desulfricans during simultaneous reduction of sulfate and uranium and to determine the mineral phase of uranium after it has been reduced. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. The maximum rate of substrate utilization (k) was determined to be 4.70 days -1 while the half-velocity constant (Ks) was 140 mg CODA. The yield coefficient (Y) was determined to be 0. 17 mg cells/mg COD while the endogenous decay coefficient (kd) was found to be 0.072 days -1 . After reduction, U(IV) precipitated from solution in the uraninite (UO 2 ) phase as predicted by thermodynamics. Uranium removal efficiency as high as 90% was achieved in the chemostat

  11. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  12. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Kang, Jun-Gill; Song, Kyuseok; Jee, Kwang-Yong

    2008-01-01

    Both a potentiometric and a chronoamperometric electrochemical technique have been applied in an attempt to develop an efficient method for an on-line monitoring of a lithium metal reduction process of uranium oxides at a high-temperature in a molten salt medium. As a result of this study, it was concluded that the chronoamperometric method provided a simple and effective way for a direct on-line monitoring measurement of a lithium metal reduction process of uranium oxides at 650 o C by the measuring electrical currents dependency on a variation of the reduction time for the reaction. A potentiometric method, by adopting a homemade oxide ion selective electrode made of ZrO 2 stabilized by a Y 2 O 3 doping, however, was found to be inappropriate for an on-line monitoring of the reduction reaction of uranium oxide in the presence of lithium metal due to an abnormal behavior of the adopted electrodes. The observed experimental results were discussed in detail by comparing them with previously published experimental data

  13. The Global Threat Reduction Initiative's Return of Highly Enriched Uranium from Chile

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Dickerson, S.L.; Greenberg, R.F. Jr. [U.S. Department of Energy, National Nuclear Security Administration, Washington D.C. (United States); Andes, T.C. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2011-07-01

    In March 2010, the U.S. National Nuclear Security Administration's Office of Global Threat Reduction (GTRI), in collaboration with the Chilean Nuclear Energy Commission (CCHEN), completed a shipment of 18.2 kilograms of non-U.S.-origin highly enriched uranium (HEU) to the United States. The HEU was in the form of 71 aluminium-clad material test reactor (MTR) fuel elements and was the first GTRI Gap Program shipment that included non-U.S. origin irradiated nuclear fuel. Although shipments of research reactor fuels are not unique, this shipment served as a cornerstone to the first Presidential Nuclear Security Summit held in Washington, D.C., in April 2010. Carrying out the shipment became critical when a severe earthquake struck Chile just one day before the shipment was to occur. As the fuel had already been packaged in casks and the ocean vessels were nearing the port, U.S. and Chilean officials decided that it was most imperative that the shipment continue as planned. After careful analysis of the situation, inspection of the transportation packages, roadways, and port services, the shipment team was able to make the shipment occur in a safe and secure manner. This paper describes the loading activities at both the RECH-1 and RECH-2 reactors as well as the transportation of the loaded casks to the port of departure. (author)

  14. Kinetic study of the reduction of Ferric-1, 10-Orthophenanthroline with Uranium (IV) DTPA

    International Nuclear Information System (INIS)

    Perveen, Rashida; Naqvi, Iftikhar Imam

    2006-01-01

    The reduction of ferric 1, 10-orthophenanthroline by Uranium (IV) complex of Diethylenetriaminepentaacetic acid was investigated in aqueous hydrochloride acid at 30C, ionic strength 0.01 mole dm-3 and pH 3.5. The mechanism and rate law for the formation of [Fe (opt) 3] was established by isolation method at constant and varying pH values. Spectroscopic method was employed for this investigation. The rate constant and order of reaction with respect to each of the reactant the [U (IV) DTPA] and [Fe(opt3)] was established by plotting a graph 1n (A-At) vs. time. The reaction was observed to be following first order with respect each of following reactants. Overall reaction order was found to be two, having the value of the rate constant 571.59 m min. at pH 3.5. Thermodynamic parameters for the reaction were determined to be E=26.47 kj mol, G=35.11 kj mol, H=24.86 mol and S= 50.17 mol. With the help of Arrhenius equation activation energy for the reaction was calculated. Change in enthalpy and entropy for the reaction (S, H) were determined from the slope and intercept of Eyring plot. Hydrogen ion dependence of the reaction was determined by varying the pH and the rate law was determined. (author)

  15. Bomb reduction of uranium tetrafluoride. Part II: Influence of the addition elements in the reduction process; Reduccion del tetrafluoruro de uranio en bomba cerrada. Parte II: Influencia de elementos de adicion en la reducion

    Energy Technology Data Exchange (ETDEWEB)

    Anca Abati, R; Lopez Rodriguez, M

    1962-07-01

    This work shows the influence of uranium oxide and uranyl fluoride in the reduction of uranium with Ca and Mg. These additions are more harmful when using smaller bombs. The uranyl fluoride has influence in the reduction process; the curves yield-concentration shows two regions depending upon the salt concentration. The behaviour of this addition in these regions can be explained following the different decompositions that can take place during the reduction process. (Author) 9 refs.

  16. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield

    International Nuclear Information System (INIS)

    Newsome, Laura; Morris, Katherine; Trivedi, Divyesh; Atherton, Nick; Lloyd, Jonathan R.

    2014-01-01

    Highlights: • U(VI) (aq) mobility can be controlled by stimulating biogeochemical interactions. • Indigenous microbes in varied sediments reduced U(VI) to insoluble U(IV). • Sediment cell numbers and amount of bioavailable Fe(III) could limit this process. - Abstract: The presence of uranium in groundwater at nuclear sites can be controlled by microbial processes. Here we describe the results from stimulating microbial reduction of U(VI) in sediment samples obtained from a nuclear-licensed site in the UK. A variety of different lithology sediments were selected to represent the heterogeneity of the subsurface at a site underlain by glacial outwash deposits and sandstone. The natural sediment microbial communities were stimulated via the addition of an acetate/lactate electron donor mix and were monitored for changes in geochemistry and molecular ecology. Most sediments facilitated the removal of 12 ppm U(VI) during the onset of Fe(III)-reducing conditions; this was reflected by an increase in the proportion of known Fe(III)- and U(VI)-reducing species. However U(VI) remained in solution in two sediments and Fe(III)-reducing conditions did not develop. Sequential extractions, addition of an Fe(III)-enrichment culture and most probable number enumerations revealed that a lack of bioavailable iron or low cell numbers of Fe(III)-reducing bacteria may be responsible. These results highlight the potential for stimulation of microbial U(VI)-reduction to be used as a bioremediation strategy at UK nuclear sites, and they emphasise the importance of both site-specific and borehole-specific investigations to be completed prior to implementation

  17. Electrochemical behavior for a reduction of uranium oxide in a LiCl-Li2O molten salt with an integrated cathode assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Electrolytic reduction of uranium oxide to uranium metal was studied in a LiCl-Li 2 O molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a Li Cl-3 wt% Li 2 O molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl

  18. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  19. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  20. Titrimetric determination of uranium in low-grade ores by the ferrous ion-phosphoric acid reduction method

    International Nuclear Information System (INIS)

    Hitchen, A.; Zechanowitsch, G.

    1980-01-01

    The modification and extension of the U.S.A.E.C. ferrous ion-phosphoric acid reduction method for the determination of uranium in high-grade or relatively pure material to a method for the determination of uranium with a high accuracy and precision, in ores containing 0.004 to 7% U is described. It is simple, rapid and requires no prior separations from elements that, in other methods, frequently interfere. For sample materials having very high concentrations of interfering elements, a prior concentration step using extraction with tri-n-octylphosphine oxide is described, but it is shown that, for most low-grade ores, this step is unnecessary. (author)

  1. Reduction of radioactive waste from remediation of uranium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Gook; Kim, Seung Soo; Kim, Gye Nam; Han, Gyu Seong; Choi, Jong Won [Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

  2. Reduction of radioactive waste from remediation of uranium-contaminated soil

    International Nuclear Information System (INIS)

    Kim, Il Gook; Kim, Seung Soo; Kim, Gye Nam; Han, Gyu Seong; Choi, Jong Won

    2016-01-01

    Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0

  3. Development of a kinetic model for biological sulphate reduction ...

    African Journals Online (AJOL)

    A two-phase (aqueous/gas) physical, biological and chemical processes ... Additionally, the background weak acid/base chemistry for water, carbonate, ... in the UCTADM1 model, and hence the physical gas exchange for sulphide is included.

  4. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    OpenAIRE

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this thesis was to make this biological process more broadly applicable for desulfurization of flue-gases and ground- and wastewaters by using the cheap chemical methanol as electron donor for the reduct...

  5. On the implementation of the Biological Threat Reduction Program in the Republic of Uzbekistan

    OpenAIRE

    Tuychiev, Laziz; Madaminov, Marifjon

    2013-01-01

    Objective To review the implementation of the Biological Threat Reduction Program (BTRP) of the U.S. Defense Threat Reduction Agency in the Republic of Uzbekistan since 2004. Introduction The Biological Threat Reduction Program (BTRP) has been being implemented in the Republic of Uzbekistan since 2004 within the framework of the Agreement between the Government of the Republic of Uzbekistan and the Government of the United States of America Concerning Cooperation in the Area of the Promotion ...

  6. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-01-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bq kg -1 for 238 U, 0.48-93.9 Bq kg -1 for 234 U and 0.02-12.2 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, 236 U was detectable in some of the samples. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 μBq m -3 for 238 U, 0.96-38.0 μBq m -3 for 234 U, and 0.05-1.83 μBq m -3 for 235 U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBq l -1 for 238 U, 0.27-28.1 mBq l -1 for 234 U, and 0.01-0.88 mBq l -1 for 235 U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of

  7. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    Science.gov (United States)

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  8. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  9. Studies on biological reduction of chromate by Streptomyces griseus

    International Nuclear Information System (INIS)

    Poopal, Ashwini C.; Laxman, R. Seeta

    2009-01-01

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  10. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  11. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  12. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    International Nuclear Information System (INIS)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems

  13. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  14. The relationship of uranium isotopes to oxidation/reduction in the Edwards carbonate aquifer of Texas

    International Nuclear Information System (INIS)

    Cowart, J.B.

    1980-01-01

    The concentration of dissolved uranium and 234 U/ 238 U alpha activity ratio ( A.R. ) were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. (orig./ME)

  15. Sociological analysis of the reduction of hazardous radiation in uranium mines

    International Nuclear Information System (INIS)

    Pearson, J.S.

    1975-04-01

    The report describes the responses of companies, unions, and government enforcement agencies to the problem of execessive radiation in uranium mines resulting in respiratory cancer in Colorado chiefly between the years 1950 and 1969. It focuses on the organizational actions which ultimately solved the hazard as well as the non-technological factors that prevented an earlier solution of the problem

  16. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  17. Finite difference simulation of biological chromium (VI) reduction in ...

    African Journals Online (AJOL)

    The model results showed that post-barrier infusion of biomass into the clean aquifer downstream of the barrier could be limited by depletion of the substrates within the barrier. The model when fully developed will be used in desktop evaluation of proposed in situ biological barrier systems before implementation in actual ...

  18. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wu Weimin [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Mehlhorn, Tonia [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kelly, Shelly D.; Kemner, Kenneth M. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Zhang, Gengxin [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Schadt, Christopher; Brooks, Scott C. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Criddle, Craig S. [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2010-11-15

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  19. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Zhang Fan; Wu Weimin; Parker, Jack C.; Mehlhorn, Tonia; Kelly, Shelly D.; Kemner, Kenneth M.; Zhang, Gengxin; Schadt, Christopher; Brooks, Scott C.; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.

    2010-01-01

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  20. Electrolytic reduction of nitroheterocyclic drugs leads to biologically important damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Pluijmackers-Westmijze, E.J.; Loman, H.

    1985-01-01

    The effects of electrolytic reduction of nitroimidazole drugs on biologically active DNA was studied. The results show that reduction of the drugs in the presence of DNA affects inactivation for both double-stranded (RF) and single-stranded phiX174 DNA. However, stable reduction products did not make a significant contribution to the lethal damage in DNA. This suggests that probably a short-lived intermediate of reduction of nitro-compounds is responsible for damage to DNA. (author)

  1. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  2. MURMoT: Design and Application of Microbial Uranium Reduction Monitoring Tools

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, Kurt [Tufts Univ., Medford, MA (United States)

    2014-12-31

    The overarching project goal of the MURMoT project was the design of tools to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-transforming bacteria. To accomplish these objectives, an integrated approach that combined nucleic acid-based tools, proteomic workflows, uranium isotope measurements, and U(IV) speciation and structure analyses using the Advanced Photon Source (APS) at Argonne National Laboratory was developed.

  3. MURMoT: Design and Application of Microbial Uranium Reduction Monitoring Tools

    International Nuclear Information System (INIS)

    Pennell, Kurt

    2014-01-01

    The overarching project goal of the MURMoT project was the design of tools to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-transforming bacteria. To accomplish these objectives, an integrated approach that combined nucleic acid-based tools, proteomic workflows, uranium isotope measurements, and U(IV) speciation and structure analyses using the Advanced Photon Source (APS) at Argonne National Laboratory was developed.

  4. Concentrations and biological availability of 238U and 230Th in the environs of a uranium milling operation

    International Nuclear Information System (INIS)

    Ibrahim, S.; Flot, S.; Whicker, F.W.

    1982-01-01

    This paper reports on a study whose objectives were to determine 238 U and 230 Th concentrations in soil and native plants from various sites around a conventional acid leach uranium milling operation in the Western US, and to estimate plant/soil concentration factors. Soil and vegetation samples were collected from exposed, weathered tailings; near the edge of a tailings pond; from a reclamation area; and at several native range background (control) locations. The results indicate that mean plant/soil concentration factors varied significantly among sites and between radionuclides, but no significant differences between plant groups were found. Concentration factors for 230 Th were greater than for 238 U for plants growing at the edge of the tailings pond. It is speculated that the lower concentration factors for uranium relative to thorium at this site may be due to the proportion of their contents in soil that is biologically available for plant uptake

  5. Interaction of uranium(VI) with bioligands present in human biological fluids. The case study of urea and uric acid

    International Nuclear Information System (INIS)

    Osman, A.A.A.; Geipel, G.; Bernhard, G.

    2013-01-01

    The complexation of uranium(VI) with bioligands found in human biological fluids, viz, urea and uric acid in aqueous solutions, has been investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature, I = 0.1 M (NaClO4) and pH (3 for uric acid; 4 for urea). In both complex systems a static quench effect with increasing ligand concentration and no peaks shift upon complexation were observed. With uranium(VI) both ligands formed a fairly weak 1:1 complex with average stability constants of log β 110 = 4.67 ± 0.29 for uric acid and log β 110 = 3.79 ± 0.15 and 2.12 ± 0.18 for relatively low and relatively high urea concentrations, respectively. Application of the newly generated data on the U(VI) speciation modelling in biofluids, e.g., human urine was also discussed.

  6. Interaction of uranium(VI) with bioligands present in human biological fluids. The case study of urea and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Osman, A.A.A.; Geipel, G.; Bernhard, G. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Resource Ecology

    2013-05-01

    The complexation of uranium(VI) with bioligands found in human biological fluids, viz, urea and uric acid in aqueous solutions, has been investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature, I = 0.1 M (NaClO4) and pH (3 for uric acid; 4 for urea). In both complex systems a static quench effect with increasing ligand concentration and no peaks shift upon complexation were observed. With uranium(VI) both ligands formed a fairly weak 1:1 complex with average stability constants of log {beta}{sub 110} = 4.67 {+-} 0.29 for uric acid and log {beta}{sub 110} = 3.79 {+-} 0.15 and 2.12 {+-} 0.18 for relatively low and relatively high urea concentrations, respectively. Application of the newly generated data on the U(VI) speciation modelling in biofluids, e.g., human urine was also discussed.

  7. Reduction of uranium and plutonium oxides by aluminum. Application to the recycling of plutonium; Reduction des oxydes d'uranium et de plutonium par l'aluminium application au recyclage du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Gallay, J [Commissariat a l' Energie Atomique, Valduc (France). Centre d' Etudes

    1968-07-01

    A process for treating plutonium oxide calcined at high temperatures (1000 to 2000 deg. C) with a view to recovering the metal consists in the reduction of this oxide dissolved in a mixture of aluminium, sodium and calcium fluorides by aluminium at about 1180 deg. C. The first part of the report presents the results of reduction tests carried out on the uranium oxides UO{sub 2} and U{sub 3}O{sub 8}; these are in agreement with the thermodynamic calculations of the exchange reaction at equilibrium. The second part describes the application of this method to plutonium oxides. The Pu-Al alloy obtained (60 per cent Pu) is then recycled in an aqueous medium. (author) [French] Un procede de traitement de l'oxyde de plutonium calcine a haute temperature (1000 deg. C a 2000 deg. C), en vue de la recuperation du metal, consiste a reduire cet oxyde dissous dans un melange de fluorures d'aluminium, de sodium et de calcium, par l'aluminium vers 1180 deg. C. Une premiere partie du rapport presente les resultats des essais de reduction des oxydes d'uranium UO{sub 2} et U{sub 3}O{sub 8}, en accord avec les resultats du calcul thermodynamique de la reaction d'echange a l'equilibre. Une seconde partie rend compte de l'application de cette methode a l'oxyde de plutonium. L'alliage Pu-Al obtenu (60 pour cent Pu) est ensuite recycle par voie aqueuse. (auteur)

  8. Cost and Performance Report for Reductive Anaerobic Biological in Situ Treatment Technology (RABITT) Treatability Testing

    National Research Council Canada - National Science Library

    Alleman, Bruce

    2003-01-01

    Enhanced biological reductive dechlorination (EBRD) shows a great deal of promise for efficiently treating groundwater contaminated with chlorinated solvents, but demonstration sites around the country were reporting mixed results...

  9. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  10. Complete biological reductive transformation of tetrachloroethene to ethane.

    Science.gov (United States)

    de Bruin, W P; Kotterman, M J; Posthumus, M A; Schraa, G; Zehnder, A J

    1992-01-01

    Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes. PMID:1622277

  11. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method

    International Nuclear Information System (INIS)

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF 6 and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  12. Methanol as electron donor for thermophilic biological sulfate and sulfite reduction

    NARCIS (Netherlands)

    Weijma, J.

    2000-01-01

    Sulfur oxyanions (e.g. sulfate, sulfite) can be removed from aqueous waste- and process streams by biological reduction with a suitable electron donor to sulfide, followed by partial chemical or biological oxidation of sulfide to elemental sulfur. The aim of the research described in this

  13. 76 FR 59705 - Guidance for Industry on User Fee Waivers, Reductions, and Refunds for Drug and Biological...

    Science.gov (United States)

    2011-09-27

    ...] Guidance for Industry on User Fee Waivers, Reductions, and Refunds for Drug and Biological Products..., Reductions, and Refunds for Drug and Biological Products.'' This guidance provides recommendations to... ``User Fee Waivers, Reductions, and Refunds for Drug and Biological Products.'' This guidance provides...

  14. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  15. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  16. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  17. Trace determination of uranium and thorium in biological samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Benedik, Ljudmila; Repinc, Urska; Byrne, Anthony R.; Stegnar, Peter

    2002-01-01

    Radiochemical neutron activation analysis (RNAA) is an excellent method for determining uranium and thorium; it offers unique possibilities for their ultratrace analysis using selective radiochemical separations. Regarding the favourably sensitive nuclear characteristics of uranium and of thorium with respect to RNAA, but the different half-lives of their induced nuclides, two different approaches were used. In the first approach uranium and thorium were determined separately via 239 U, 239 Np and 233 Pa. In the second approach these elements were 239 239 233 determined simultaneously in a single sample using U and/or Np and Pa. Isolation of induced nuclides was based on separation by extraction and/or anion exchange chromatography. Chemical yields were measured in each sample aliquot using added 235 U, 238 Np and 231 Pa radioisotopic tracers. (author)

  18. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method; NF ISO 7097-1. Technologie du combustible nucleaire. Dosage de l'uranium dans des solutions, l'hexafluorure d'uranium et des solides. Partie 1: reduction par fer (II) / oxydation par bichromate de potassium / methode par titrage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF{sub 6} and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  19. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    Science.gov (United States)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  20. U(VI) speciation and reduction in acid chloride fluids in hydrothermal conditions: from transport to deposition of uranium in unconformity-related deposits

    International Nuclear Information System (INIS)

    Dargent, Maxime

    2014-01-01

    Circulations of acidic chloride brines in the earth's crust are associated with several types of uranium deposits, particularly unconformity-related uranium (URU) deposits. The spectacular high grade combined with the large tonnage of these deposits is at the origin of the key questions concerning the geological processes responsible for U transport and precipitation. The aim of this work is to performed experimental studies of U(VI) speciation and its reduction to U(IV) subsequently precipitation to uraninite under hydrothermal condition. About uranium transport, the study of U(VI) speciation in acidic brines at high temperature is performed by Raman and XAS spectroscopy, showing the coexistence of several uranyl chloride complexes UO 2 Cl n 2-n (n = 0 - 5). From this study, complexation constants are proposed. The strong capability of chloride to complex uranyl is at the origin of the transport of U(VI) at high concentration in acidic chloride brines. Concerning uranium precipitation, the reactivity of four potential reductants under conditions relevant for URU deposits genesis is investigated: H 2 , CH 4 , Fe(II) and the C-graphite. The kinetics of reduction reaction is measured as a function of temperature, salinity, pH and concentration of reductant. H 2 , CH 4 , and the C-graphite are very efficient while Fe(II) is not able to reduce U(VI) in same conditions. The duration of the mineralizing event is controlled by (i) the U concentration in the ore-forming fluids and (ii) by the generation of gaseous reductants, and not by the reduction kinetics. These mobile and efficient gaseous reductant could be at the origin of the extremely focus and massive character of ore in URU deposits. Finally, first partition coefficients uraninite/fluid of trace elements are obtained. This last part opens-up new perspectives on (i) REE signatures interpretation for a given type of uranium deposit (ii) and reconstruction of mineralizing fluids composition. (author) [fr

  1. Alpha spectroscopic determination of plutonium and uranium in food, biological materials, and soils

    International Nuclear Information System (INIS)

    Frindik, O.

    1980-07-01

    An alpha-spectrometric method for the plutonium determination which was tested in different samples is described in detail. In particular, this method is capable of determining the very low plutonium levels found in food at present, and allow recoveries of 85-95% of the tracer added. Inorganic samples, such as soil samples for example, can be analyzed by using an abbreviated modification of the method. The measuring preparations show a high degree of spectral purity. Uranium can be separated during the analytical procedure and, after purification, can also be determined alpha-spectrometrically. 90-100% of the uranium are recovered. (orig.) [de

  2. Use of the reference organism Eisenia foetida to investigate bioaccumulation and biological effects following contamination of soil by uranium

    International Nuclear Information System (INIS)

    Giovanetti, A.; Cozzella, M.L.; Basso, E.; Ninova, P.; Fesenko, S.; Sansone, U.

    2006-01-01

    Full text of publication follows: The use of reference organisms for radiological assessments on non -human species is an integral part of the current systemic approach for the management of radiation effects in the environment. The reference organisms approach allows the evaluation of radiological impact on the environment taking into account relationships among ambient radionuclide activity concentrations, dose and expected adverse biological effects. Four broad categories of biological damages are included: mortality, morbidity, DNA damage and reproductive failure. Earthworms are one of the most important biotic components in the soil, they are commonly used in studies of toxicity and they are included in the list of the reference organisms suggested by International (ICRP) and national organisations. However, up to now, no adequate results have been obtained for earthworms allowing the identification of the dose-response relationship, essentially for the contamination scenarios where radionuclide can provide both radiation and chemical impact. Uranium (U) is a naturally occurring heavy metal. Recently there has been public concern on the presence in the environment of depleted uranium (DU), a by-product of the process used to enrich natural uranium ore for use in nuclear reactors and in nuclear weapons. The presence of uranium in soil could lead to both toxic and radiation impact and it is difficult to distinguish the different impacts and their contribution to possible biological effects. European Union, OECD and FAO have selected the earthworms Eisenia for testing soil toxicity because it is an organism that can be easily cultured in the laboratory, an extensive database is available, and it feeds at the soil surface level. The prime objective of the present study was to evaluate the possible use of Eisenia foetida as a bio-marker of U environmental impact. Four groups of six sexually mature Eisenia foetida were maintained in the dark at 21 deg. C in Petri

  3. Biological effects in beagle dogs of inhaled radon daughters, uranium ore dust, and cigarette smoke

    International Nuclear Information System (INIS)

    Palmer, R.F.; Filipy, R.E.; Stuart, B.O.; Hackett, P.; Ragan, H.A.; McDonald, K.E.

    1975-01-01

    After 5 years of daily inhalation exposures to 600 WL radon daughters plus uranium ore dust and/or cigarette smoking, observed pulmonary lesions include macrophage proliferation, septal fibrosis, epithelial hyperplasia, emphysema, endothelial proliferation, and bronchiolar-alveolar epithelial changes involving multiple foci of squamous metaplasia with atypia. Epithelial neoplasms were found in the respiratory tracts of three dogs. (U.S.)

  4. Biological effects of embedded depleted uranium (DU). Summary of Armed Forces Radiobiology Research Institute research

    International Nuclear Information System (INIS)

    McClain, D.E.; Dalton, T.K.; Emond, C.A.; Hodge, S.J.; Kalinich, J.F.; Landauer, M.A.; Miller, A.C.; Stewart, M.D.; Villa, V.; Xu, J.; Benson, K.A.; Ejnik, J.; Pellmar, T.C.

    2001-01-01

    The Persian Gulf War resulted in injuries of US Coalition personnel by fragments of depleted uranium (DU). Fragments not immediately threatening the health of the individuals were allowed to remain in place, based on long-standing treatment protocols designed for other kinds of metal shrapnel injuries. However, questions were soon raised as to whether this approach is appropriate for a metal with the unique radiological and toxicological properties of DU. The Armed Forces Radiobiology Research Institute (AFRRI) is investigating health effects of embedded fragments of DU to determine whether current surgical fragment removal policies remain appropriate for this metal. These studies employ rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate uranium from implanted DU fragments distributed to tissues far-removed from implantation sites, including bone, kidney, muscle, and liver. Despite levels of uranium in the kidney that were nephrotoxic after acute exposure, no histological or functional kidney toxicity was observed. However, results suggest the need for further studies of long-term health impact, since DU was found to be mutagenic, and it transformed human osteoblast cells to a tumorigenic phenotype. It also altered neurophysiological parameters in rat hippocampus, crossed the placental barrier, and entered fetal tissue. This report summarizes AFRRI's depleted uranium research to date

  5. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  6. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    Energy Technology Data Exchange (ETDEWEB)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B. [Lab. Pierre Sue, CEA-CNRS UMR 9956, CEA/Saclay, Gif-sur-Yvette (France); Coves, J. [Inst. de Biologie Structurale - J.-P. Ebel, Lab. des Proteines Membranaires, Grenoble (France); Hazemann, J.L. [Lab. de Geophysique Interne et Tectonopbysique, UMR CNRS/Univ. Joseph Fourier, Saint-Martin-D' Heres (France)

    2009-07-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  7. Assessment of uranium and selenium speciation in human and bacterial biological models to probe changes in their structural environment

    International Nuclear Information System (INIS)

    Avoscan, L.; Milgram, S.; Untereiner, G.; Collins, R.; Khodja, H.; Carriere, M.; Gouget, B.; Coves, J.; Hazemann, J.L.

    2009-01-01

    This study illustrates the potential of physicochemical techniques to speciate uranium (U) and selenium (Se) in biological samples. Speciation, defined he0re as the study of structural environment, of both toxic elements, was characterized at several levels in biological media and directly in human cells or bacteria once the metal(loid)s were internalized. External speciation that is extracellular speciation in culture media was predicted by thermodynamic equilibrium computer modelling using the JChess software and validated by spectroscopic measurements (XANES and EXAFS). Internal speciation that is intracellular speciation in eukaryotic and prokaryotic cells was studied in vitro with a soil bacterium Cupriavidus metallidurans CH34 and ROS 17/2.8 osteoblasts, human cells responsible for bone formation. XANES, EXAFS, HPLC-ICP-MS and SDS-PAGE coupled to particle induced X-ray emission (PIXE) permitted the identification and quantification of complexes formed with organic or inorganic molecules and/or larger proteins. (orig.)

  8. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  9. Direct reduction of uranium oxide(U3O8) by Li metal and U-metal(Fe, Ni) alloy formation in molten LiCl medium

    International Nuclear Information System (INIS)

    Cho, Young Hwan; Kim, Tack Jin; Choi, In Kyu; Kim, Won Ho; Jee, Kwang Yong

    2004-01-01

    Molten salt based electrochemical processes are proposed as a promising method for the future nuclear programs and more specifically for spent fuel processing. The lithium reduction has been introduced to convert actinide oxides into corresponding actinide metal by using lithium metal as a reductant in molten LiCl medium. We have applied similar lab-scale experiments to reduce uranium oxide in an effort to gain additional information on rates and mechanisms

  10. Uranium toxicology

    International Nuclear Information System (INIS)

    Ferreyra, Mariana D.; Suarez Mendez, Sebastian

    1997-01-01

    In this paper are presented the methods and procedures optimized by the Nuclear Regulatory Authority (ARN) for the determination of: natural uranium mass, activity of enriched uranium in samples of: urine, mucus, filters, filter heads, rinsing waters and Pu in urine, adopted and in some cases adapted, by the Environmental Monitoring and Internal Dosimetry Laboratory. The analyzed material corresponded to biological and environmental samples belonging to the staff professionally exposed that work in plants of the nuclear fuel cycle. For a better comprehension of the activities of this laboratory, it is included a brief description of the uranium radiochemical toxicity and the limits internationally fixed to preserve the workers health

  11. Synthesis on Biology and Uranium Mineralization of Rabau Hulu Sector Kalan, Kalimantan Barat

    International Nuclear Information System (INIS)

    Bambang-Soetopo; Retno-Witjahyanti; Yanu-Wusana

    2004-01-01

    The results of previous research on Rabau Hulu sector consist of geology, geophysics and drilling data show that the area prospect for finding U mineralization. Goal of this synthesis is to know geological and U mineralization of Rabau sector in order to develop further followup program. In general geology the area consists of biotite micro quartzite, muscovite micro quartzite, muscovite quartzite, leopard quartzite, horn fels and granite. The directions of stratification is NE-SW of the dipping is NW. Prominent fault is NE-SW sinistral fault, NNE-SSW and NW-SE dextral fault. Uranium mineralization as a uraninite fill in the space between minerals and fractures system ENE-WSW, its associated with pyrite, pyrrhotite, chalcopyrite, molybdenite, sphalerite, magnetite, tourmaline and quartz. With radiometric anomalies values are about 1.000-15.000 c/s. Uranium mineralization process is connected with the granite intrusion as the hydrothermal magnetic process. (author)

  12. Laser enhanced reductions of uranium(VI) ion in aqueous phosphoric acid solutions

    International Nuclear Information System (INIS)

    Park, Y.Y.; Harada, M.; Tomiyasu, H.; Ikeda, Y.; Takashima, Y.

    1991-01-01

    Photochemical reactions of U(VI) ions with inorganic anions (I - , Br - , Cl - , NCS - ) and organic compounds (1-hexene, cyclohexene, pyridine) in phosphoric acid were studied for the purpose of finding an efficient method of adjusting the oxidation states of uranium ions in nuclear fuel reprocessing. The formation of U(IV) was observed in the photoreactions with I - , Br - and NCS - , but not with Cl - . The yield of U(VI) increased in the order, Br - - - . This order was the same as the quenching rate constants of the excited U(VI) ions with these anions, and the reverse of their standard redox potentials. The rates of the formation of U(IV) in the presence of Br - were measured spectrophotometrically. It was found that the rate equation was first order in both [U(VI)] and [Br - ]. The results were reasonably interpreted by a series of reaction processes involving U(V) and Br radical. With organic molecules, 1-hexene, cyclohexene, and pyridine, the formation of U(IV) were observed. The yield of U(IV) increased in the order pyridine < 1-hexene < cyclohexene. This order is the reverse of their vertical ionization potentials, suggesting an electron transfer mechanism between these organic molecules and excited U(VI). (author)

  13. Cask size and weight reduction through the use of depleted uranium dioxide-concrete material

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Haire, J.M.

    2007-01-01

    Newly developed depleted uranium (DU) composite materials enable fabrication of spent nuclear fuel (SNF) transport and storage casks that are smaller and lighter in weight than casks made with conventional materials. One such material is DU dioxide (DUO2)-concrete, so-called DUCRETE TM . This paper examines the radiation shielding efficiency of DUCRETE as compared with that of a conventional concrete cask that holds 32 pressurized-water-reactor SNF assemblies. In this analysis, conventional concrete shielding material is replaced with DUCRETE. The thickness of the DUCRETE shielding is adjusted to give the same radiation surface dose, 200 mrem/h (2 mSv/hr), as the conventional concrete cask. It was found that the concrete shielding thickness decreased from 71 to 20 cm and that the cask radial cross-section shielding area was reduced approx 50 %. The weight was reduced approx 21 %, from 154 to approx 127 tons. Should one choose to add an extra outer ring of SNF assemblies, the number of such assemblies would increase from 32 to 52. In this case, the outside cask diameter would still decrease, from 169 to 137 cm. However, the weight would increase somewhat from 156 to 177 tons. Neutron cask surface dose is only approx 10 % of the gamma dose. These reduced sizes and weights will significantly influence the design of next-generation SNF casks

  14. Study of performance characteristics of a radiochemical method to determine uranium in biological samples

    International Nuclear Information System (INIS)

    Puga, Maria J.; Cerchietti, Maria L.R.; Prudenzo, J.E.; Arguelles, Maria G.

    2005-01-01

    In this paper is described a methodology to calculate detection limit (Ld), quantification level (Lq) and minimum detectable activity (MDA) in a radiochemical method for determination of uranium in urine samples. The concentration is measured by fluorimetry and alpha gross activity using liquid scintillation counting (LSC). The calculation of total propagated uncertainty on a spike sample is presented. Furthermore, the major sources of uncertainty and percentage contribution in both measurements are assessed. (author)

  15. Sediment studies of the biological factors controlling the reduction of U(VI)

    International Nuclear Information System (INIS)

    Lovley, Derek R.

    2004-01-01

    Studies were conducted primarily with sediments, both in laboratory incubations and in a field experiment, with supporting studies with pure cultures. To our knowledge the sediment studies were the first on microbial U(VI) reduction in actual uranium-contaminated subsurface sediments, under conditions that mimic those found in situ. Important findings included: (1) U(VI) reduction is a biotic process in subsurface sediments. (2) U(VI) reduction can be stimulated most effectively with the addition of acetate. Although it had been speculated that microbial U(VI) reduction might be capable of this type of environmental remediation ever since the discovery of microbial U(VI) reduction, this had not been previously demonstrated under environmentally relevant conditions. (3) U(VI) is reduced concurrently with Fe(III) and prior to sulfate reduction. U(VI) and Fe(III) reduction proceeded concurrently, accompanied by a dramatic enrichment in organisms in the Geobacteraceae. Sulfate-reducing microorganisms do not appear to be important components of the microbial community reducing U(VI) in these subsurface sediments. (4) Nitrate has important influences on U(VI) reduction. Nitrate inhibits the reduction of metals until nitrate is depleted. Fe(III)-reducing microorganisms such as Geobacter metallireducens and Desulfitobacterium species can oxidize Fe(II) with the reduction of nitrate which is an important consideration because our previous studies have demonstrated that freshly precipitated Fe(III) oxides can reoxidize U(IV) to U(VI). The discovery that G. metallireducens can ''run backwards'' and oxidize U(IV) when nitrate is present reveals another mechanism preventing precipitation of U(IV) in the presence of nitrate as well as potential novel strategy for removing uranium from the subsurface after a site has been remediated. (5) Importance of understanding Fe(III) forms available for microbial reduction. Fe(III) is orders of magnitude more abundant than U(VI) as an

  16. Sublethal effects of a metal contamination due to uranium mine tailings in the three-spined stickleback (Gasterosteus aculeatus L.). Implication in the susceptibility to a biological stress

    International Nuclear Information System (INIS)

    Le Guernic, Antoine

    2015-01-01

    Uranium extraction has resulted in a remobilization of this actinide into mine surrounding ecosystems. Uses of metal salts during mining site rehabilitation, and the natural presence of metals have increased the metal contamination in hydro systems submitted to mine tailings. In situ experiments were conducted in two former French uranium mining sites. Three-spined stickleback caging was used to determine the sublethal effects of this metal mixture on this freshwater fish, as well as its effects on fish susceptibility to a sudden biological stress. This pollution, characterised by higher metal concentrations (especially for uranium), has led to an oxidative stress in sticklebacks visible through several bio-markers, and other effects dependent on the study site. The polymetallic contamination has modified the stickleback responses to the biological stress, by preventing their phagocytic and antioxidant responses. This work has reinforced the interest of the caging technique during environmental studies and that of immuno-markers in a multi-bio-marker approach. (author)

  17. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  18. The Study of Microbial Environmental Processes Related to the Natural Attenuation of Uranium at the Rifle Site using Systems-level Biology

    Energy Technology Data Exchange (ETDEWEB)

    Methe, Barbara [J. Craig Venter Inst. (JCVI), Rockville, MD (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahadevan, Krishna [Univ. of Toronto, ON (Canada)

    2016-08-31

    Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives of this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling

  19. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    International Nuclear Information System (INIS)

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-01-01

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe 0 ) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe 0 , however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO 2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe 0 . This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe 0 in subsurface environments.

  20. Assessment and evaluation of speciation tools for the study of uranium (6) circulating biological species

    International Nuclear Information System (INIS)

    Scapolan, St.

    1998-01-01

    The aim of this work is the development of tools allowing the study of uranium VI speciation in inorganic and organic environments, and in particular in the blood environment. The characterization of the different complexed forms of the uranyl ion has been improved by combining two techniques: the time resolution laser spectro-fluorimetry (TRLS) and the capillary electrophoresis (CE). CE is a developing separative analytical technique with a strong resolution. Therefore, the following studies have been carried out: the analysis of the speciation of hydroxo complexes of the uranyl ion by indirect UV detection, with the qualitative identification of the (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + complexes; the application of the iso-electrical focussing mode in order to show the uranium-transferrin complexing; the evaluation of the electrophoretic mobility of UO 2 2+ and the interactions with the phosphate, hydroxo-isobutyric acid (HIBA) and citrate ligands; and the study of the U(VI)-blood serum system with the separation of the different seric proteins and the influence of U(VI) on electrophoretic profiles. two points are important to consider in the development of the system: the coupling with an on-line detector (mass spectrometer, counter, laser) and the surface grafting of the capillaries used. The TRLS is a system used in geology, in the Purex process chemistry, in medical and environmental control, and in nuclear wastes management. After having analyzed the influence of different ligands (citrate, phosphate, carbonate, transferrin) in the fluorescence spectra of uranium (VI), the complexing conditional constant (K) of the U(VI)-transferrin system has been evaluated for the first time using a mathematical model and the titration. A study performed on blood plasma has permitted to show a U(VI)-phosphates complexing and finally, three phosphate complexes UO 2 H 2 PO 4 + , UO 2 HPO 4 and UO 2 PO 4 + have been characterized both spectrally and temporarily. (J.S.)

  1. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  2. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    International Nuclear Information System (INIS)

    Nejad, F.T.

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the 'dry method'. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  3. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, F.T. [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the `dry method`. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  4. Separation of neptunium, plutonium and uranium by using butyraldehydes as reductants in reprocessing

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Hotoku, Shinobu; Fujine, Sachio; Maeda, Mitsuru

    1993-10-01

    A new separation process of Np, Pu and U using n- and iso-butyraldehydes as reductants for Np(VI) and Pu(IV), respectively, in the reprocessing has been investigated. In the kinetics study of Np, Pu and U reduction, it was found that n-butyraldehyde reduced Np(VI) to Np(V) in the Purex solution but did not reduce Pu(IV) and U(VI), and iso-butyraldehyde reduced Np(VI) and Pu(IV) but did not reduce U(VI). Based on these results, a new selective separation process of Np, Pu and U was proposed. The main process consists of three steps: co-decontamination, Np separation and U/Pu partition steps. In the Np separation step, Np(VI) extracted together with Pu(IV) and U(VI) by the solvent of 30 % tri-n-bytyl phosphate/n-dodecane was selectively reduced to Np(V) by using n-butyraldehyde and was back-extracted from the solvent. In the U/Pu partition step, iso-butyraldehyde was used as a reductant for Pu(IV). The effectiveness of the new process was demonstrated in the flow sheet study using miniature mixer-settlers. In the Np separation step, 99.98 % of Np extracted together with U(VI) in the co-decontamination step was reduced by n-butyraldehyde and separated from U. In the U/Pu partition step, more than 99 % of Pu was reduced by iso-butyraldehyde and separated from U. (author)

  5. Reduction of neptunium(V) and uranium(VI) in bicarbonate solutions by iron(II)

    International Nuclear Information System (INIS)

    Gogolev, A.V.; Zakharova, E.V.; Rodygina, N.I.; Fedoseev, A.M.; Shilov, V.P.

    2006-01-01

    Interaction of Np(VI) and Fe(II) compounds in bicarbonate solutions is investigated. Interaction of Np(V) with Fe(II) in the presence of phthalate-ions is studied briefly. Fe(II) compounds reduce Np(V) compounds in saturated with Ar or CO 2 solutions with any bicarbonate-ion concentrations. Chemical reaction kinetics is studied. Reduction of U(VI) by Fe(II) compounds takes place in the case of diluted bicarbonate solutions. UO 2 and FeOOH are products of reaction at raised temperatures [ru

  6. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  7. Potentiometric titration in a low volume of solution for rapid assay of uranium. Application to quantitative electro-reduction of uranium(VI)

    International Nuclear Information System (INIS)

    Sahoo, P.; Ananthanarayanan, R.; Murali, N.; Mallika, C.; Falix Lawrence; Kamachi Mudali, U.

    2012-01-01

    A simple, inexpensive PC based potentiometric titration technique for the assay of uranium using low volumes of sample aliquot (25-100 μL) along with all reagents (total volume of solution being less than 2.5 mL) is presented. The technique involves modification of the well known Davies and Gray Method recommended for assay of uranium(VI) in nuclear materials by introducing an innovative potentiometric titration device with a mini cell developed in-house. After appropriate chemical conditioning the titration is completed within a couple of minutes with display of online titration plot showing the progress of titration. The first derivative plot generated immediately after titration provides information of end point. The main advantage of using this technique is to carry out titration with minimum volumes of sample and reagents generating minimum volume of wastes after titration. The validity of the technique was evaluated using standard certified samples. This technique was applied for assay of uranium in a typical sample collected from fuel reprocessing laboratory. Further, the present technique was deployed in investigating the optimum conditions for efficient in situ production of U(IV). The precision in the estimation of uranium is highly satisfactory (RSD less than 1.0%). (author)

  8. Reduction of uranium(IV) and its mixtures with an olefin or an alkyne in tetrahydrofuran solutions by solvated electrons

    International Nuclear Information System (INIS)

    Koulkes-Pujo, A.M.; Le Marechal, J.F.; Le Motais, B.; Folcher, G.

    1985-01-01

    The reduction of UCl 4 and its mixtures with different olefins (stilbene, St, diphenylethylene, DPE, acenaphtylene, Ac or with diphenylacetylene (DPA) was studied by pulse radiolysis of tetrahydrofuran (THF) solutions. U(III) was formed by U(IV) reaction either with the solvated electrons created by THF radiolysis or with the transitory anions St - and DPA - . In the latter case, the reaction proceeds via a first step leading to [St-U(IV)] - or [DPA-U(IV)] - . In the case of DPE - the first species, [DPE-U(IV)] - , does not lead to U(III) but is destroyed by THF(H) + giving DPE(H). and U(IV). Ac - does not react with U(IV). A mechanistic scheme of this electron attachment is discussed as well as its implication in catalytic hydrogenation of olefins in LiAlH 4 -UCl 4 solutions. It is concluded that the catalytic effect observed is rather the result of a hydride transfer from a uranium transient compound to the alkenes. 22 references, 8 figures, 1 table

  9. The reduction of uranium hexafluoride by carbon tetrachloride in the gaseous phase

    International Nuclear Information System (INIS)

    Xu Heqing; Qiu Lufu

    1987-01-01

    The reduction of UF 6 to UF 4 by CCl 4 in a 0.08 m diameter vertical glass reactor has been studied. In the tests, UF 6 and CCl 4 , preheated to about 350 deg C, were fed into the reactor and the tower walls were held at about 500 deg C, the reaction was taking place almost completely in the gaseous phase. A high temperature flames can be visually observed by increasing in the reactant feed rates, and the brightness of the flame changes with the reactant feed rates. The conversion of UF 6 is essentially complete if a CCl 4 excess is maintained. The method is considered to be an effective process to meet continuous conversion of slightly enriched UF 6

  10. Control of radon and daughters in uranium mines and calculations on biologic effects

    International Nuclear Information System (INIS)

    Holaday, Duncan A.; Rushing, David E.; Coleman, Richard D.; Woolrich, Paul F.; Kusnetz, Howard L.; Bale, William F.

    2006-01-01

    A long range study under way by the Public Health Service since 1950 seeks to define the effects of uranium mining operations on the health of the miners and to derive data leading to the establishment of a healthful working environment. Although no evidence of health damage has been found among American miners, the European experience points to possible serious health effects. As a preventive measure, steps were therefore taken early in the industry's growth to safeguard the health of the miners. The current bulletin describes the results of the environmental study to date, together with the work of other investigators, with reference to methods of measuring atmospheric concentrations of radon and daughter products, the establishment of a safe working level for radon daughter products, and the development of effective control measures. It is believed that the material presented will be found useful by the industry and others, particularly in evaluating health hazards and in deriving economically feasible control methods

  11. Biological treatment of nitrate bearing wastewater from a uranium production plant

    International Nuclear Information System (INIS)

    Benear, A.K.; Kneip, R.W.

    1988-01-01

    The Feed Materials Production Center (FMPC) produces uranium metal products used for DOE defense programs resulting in the generation of nitrate-bearing wastewaters. To treat these wastewaters, a two-column fluidized bed biodenitrification facility (BDN) was constructed at the FMPC. The operation of the BDN resulted in substantial compliance with the design criteria limits for nitrate from July through November, 1987. Since the BDN surge lagoon (BSL) proved inadequate for providing nitrate concentration equalization, the BDN feed nitrate concentration fluctuated widely throughout this period of operation. BDN effluent caused a doubling of the hydraulic loading and a tripling of the organic loading on the FMPC sewage treatment plant (STP). Better control of the methanol feed to the BDN, coupled with reduced throughput and improved preaeration, caused a significant improvement in the operation of the STP. The overloading of the STP prompted a decision to add a stand-alone effluent treatment system to the BDN

  12. Studies on the kinetics of uranium (VI) electro-reduction and reextraction: Pt. 2

    International Nuclear Information System (INIS)

    Tong Jihong; Ma Xuquan; Tai Derong; Sun Shiren

    1992-01-01

    The kinetics of U(VI) reextraction and U(IV) extraction in the process of U(VI) electro-reduction with the system of HNO 3 -N 2 H 5 NO 3 (H 2 O)/UO 2 (NO 3 ) 2 -HNO 3 (30% TBP-OK) is investigated with a constant interfacial area cell (Lewis cell) with cathode and anode in it. According to the experimental results and data processing, the apparent activation energy of the U(VI) reextraction process is 36.02 kJ/nol. The U(VI) reextraction rate increases when the stirring speed of two phases increases. This process is mainly diffusion controlled. For the U(VI) extraction process, the apparent activation energy is 21.13 kJ/mol. The U(IV) extraction rate also increases when the stirring speed of two phases increases. This process is mainly diffusion controlled. The lower the potential of cathode is, the higher the rates of U(VI) reextraction and U(IV) extraction are

  13. Pyrometallurgical partitioning of uranium and transuranic elements from rare earth elements by electrorefining and reductive extraction

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Kinoshita, Kensuke; Inoue, Tadashi; Storvick, T.S.; Krueger, C.L.; Nabelek, C.R.

    2001-01-01

    High-level liquid waste generated from PUREX reprocessing contains a small amount of transuranic elements, such as Np, Pu, Am, and Cm, with long-lived radioactivities. A pyrometallurgical partitioning process is being developed to recover transuranic elements from such waste. Small amounts of U contained in the high-level liquid waste are also recovered in the process. A key issue for developing the process is effective separation of U and the transuranic elements from the rare-earth elements, because the two elemental groups are chemically analogous. A series of process tests were carried out in the present study to demonstrate that a combination of electrorefining and reductive extraction is useful for separating U and transuranic elements from the rare-earth elements. The results indicate that 99% of U and each transuranic elements is recovered by the combination process as a product, and that the quantity of rare-earth elements contained in the product is smaller than the transuranic elements by weight. The overall mass balance of U and transuranic elements in the system ranged within the experimental errors assigned to sampling and analysis. (author)

  14. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka

    2008-01-01

    This project represented a joint effort between Florida State University (FSU), Rutgers University (RU), and the University of Illinois (U of I). FSU served as the lead institution and Dr. J.E. Kostka was responsible for project coordination, integration, and deliverables. This project was designed to elucidate the microbial ecology and geochemistry of metal reduction in subsurface environments at the U.S. DOE-NABIR Field Research Center at Oak Ridge, Tennessee (ORFRC). Our objectives were to: (1) characterize the dominant iron minerals and related geochemical parameters likely to limit U(VI) speciation, (2) directly quantify reaction rates and pathways of microbial respiration (terminal-electron-accepting) processes which control subsurface sediment chemistry, and (3) identify and enumerate the organisms mediating U(VI) transformation. A total of 31 publications and 47 seminars or meeting presentations were completed under this project. One M.S. thesis (by Nadia North) and a Ph.D. dissertation (by Lainie Petrie-Edwards) were completed at FSU during fall of 2003 and spring of 2005, respectively. Ph.D. students, Denise Akob and Thomas Gihring have continued the student involvement in this research since fall of 2004. All of the above FSU graduate students were heavily involved in the research, as evidenced by their regular attendance at PI meetings and ORFRC workshops

  15. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  16. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  17. Reductive methylation of insulin. Production of a biologically active tritiated insulin

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J W; Nahum, A; Steiner, D F [Department of Biochemistry, University of Chicago, Illinois, USA

    1983-01-01

    Reductive methylation of the three amino groups of porcine insulin was accomplished by incubation with formaldehyde and sodium cyanoborohydride. The two amino termini and the epsilon amino group of B29 lysine were each dimethylated within 1 h of incubation. The fully methylated insulin bound more tightly to a reverse phase column than did native insulin, had a slightly more acid isoelectric point, and maintained approximately 50% biological activity when examined with an insulin sensitive cultured cell line. Reductive methylation with sodium cyanoboro (/sup 3/H) hydride resulted in a (/sup 3/H) methylated insulin with a specific activity of 6 Ci/mmol.

  18. Development of uranium reduction system for incineration residue generated at LWR nuclear fuel fabrication plants in Japan

    International Nuclear Information System (INIS)

    Sampei, T.; Sato, T.; Suzuki, N.; Kai, H.; Hirata, Y.

    1993-01-01

    The major portion of combustible solid wastes generated at LWR nuclear fuel fabrication plants in Japan is incinerated and stored in a warehouse. The uranium content in the incineration residue is higher compared with other categories of wastes, although only a small amount of incineration residue is generated. Hence, in the future uranium should be removed from incineration residues before they are reduced to a level appropriate for the final disposal. A system for processing the incineration residue for uranium removal has been developed and tested based on the information obtained through laboratory experiments and engineering scale tests

  19. Uranium tetrafluoride reduction closed bomb. Part I: Reduction process general conditions; Reduccion del tetrafluoruro de uranio en bomba cerrada. Part I. estudio de las variables generales del proceso de reduccion

    Energy Technology Data Exchange (ETDEWEB)

    Anca Abati, R; Lopez Rodriguez, M

    1961-07-01

    General conditions about the metallo thermic reduction in small bombs (250 and 800 gr. of uranium) has been investigated. Factors such as kind and granulometry of the magnesium used, magnesium excess and preheating temperature, which affect yields and metal quality have been considered. magnesium excess increased yields in a 15% in the small bomb, about the preheating temperature, there is a range between which yields and metal quality does not change. All tests have been made with graphite linings. (Author) 18 refs.

  20. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  1. Uranium resources and the scope for nuclear power

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1975-01-01

    The subject is discussed under the following headings: uranium resources, forecast on nuclear programme, avenues for reduction in uranium consumption, uranium consumption for fixed programme with various breeders, possible nuclear growth determined by uranium supply. (U.K.)

  2. Experimental studies of the mechanisms and the kinetic and thermodynamic aspects of the uranium reduction by sedimentary organic materials from ligneous origin under diagenetic or hydrothermal conditions

    International Nuclear Information System (INIS)

    Nakashima, S.

    1984-01-01

    This research thesis reports experimental studies of fixation and reduction of the uranyl cation by sedimentary organic materials from ligneous origin in order to understand the mechanisms and quantitative aspects of these processes in diagenetic or hydrothermal conditions. Two fixation mechanisms have been identified. Reduction appears to be governed by the oxidation of hydroxyl functions and the dehydrogenation of aliphatic hydro-carbonated entities. A kinetic study of this reduction process is reported, as well as a simulation of these processes by simple organic compounds (alcohols, aliphatic hydrocarbons). The assessment of thermodynamic parameters of the reduction process is discussed, and the obtained thermodynamic data show that almost the totality of uranium present in natural waters precipitates under the form of uraninite in presence of lignite. The extension of the obtained results to all sedimentary organic materials is finally discussed [fr

  3. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  4. Preparation of uranium dioxide by thermal decomposition and direct reduction of ammonium uranate; Preparacion del dioxido de uranio por descomposicion termica y reduccion directa del uranato de amonio

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, R

    1996-12-31

    The thermal decomposition of ammonium uranate has been studied by infrared spectroscopy, and X-ray diffraction. It has been show that ammonia remains in the solid until substantially 350 Centigrade degrees, when gaseous nitrogen is released. It is concluded that compounds derived from the calcination of ammonium uranate at atmospheric pressure, produced amorphous U O{sub 3} at about 350-400 Centigrade degrees and transform to U{sub 3} O{sub 8} via {alpha} - U O{sub 3} and/or {alpha} - U O{sub 3}. The object of this study was to obtain reliable fundamental information regarding the character of the pure carbon monoxide-ammonium uranate-uranium trioxide-uranium octaoxide reaction, in the range of temperatures that has been used in commercial reduction processes. Through the use of high-purity samples and by the proper control of incidental variable, this object was realized. (Author).

  5. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Peters, R.W.; Tyree, A.

    1991-01-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  6. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Montemagno, C. D. [Argonne National Laboratory, Argonne, IL (United States); Peters, R. W.; Tyree, A.

    1991-07-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  7. The case against uranium mining

    International Nuclear Information System (INIS)

    Robotham, F.P.

    1980-01-01

    Australia is a potential uranium supplier. The case against uranium mining is presented. Biological effects of radiation, risks involved in reactor operation and the problems of waste disposal are discussed

  8. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U 3 O 8 mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U 3 O 8 . The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables

  9. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center, Subproject to Co-PI Eric E. Roden. Final Report

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2011-01-01

    This report summarizes research conducted in conjunction with a project entitled 'Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center', which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  10. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  11. Elimination of chloride ions in the analytical method for the precise determination of plutonium or uranium using titanous ions as reductant

    International Nuclear Information System (INIS)

    Nicol-Rostaing, C.; Wagner, J.F.

    1991-01-01

    The Corpel and Regnaud's procedure for the precise determination of uranium and plutonium, using titanous (III) chloride as reductant has been modified in order to be compatible with the throwing out standards in nuclear plants. The removal of chloride reagents has been studied. On the original method, there are two: titanous chloride and ferric chloride. We propose titanous sulphate and ferric nitrate as substitution reagents. As commercial titanous sulphate can't be found, an easy procedure has been set and described with storage conditions: experimental conditions have been optimized and adapted for manufacturing on a laboratory scale [fr

  12. Uranium City radiation reduction program: further studies on remedial measures and radon infiltration routes for houses with block walls

    International Nuclear Information System (INIS)

    Leung, M.K.

    1980-01-01

    This report describes the results of tests of partial sealing of concrete block walls to prevent radon infiltration into houses in Uranium City, and gives the results of studies of radon migration through concrete block walls. Results of some laboratory tests on the effectiveness of concrete blocks as a radon barrier are included

  13. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2010-01-01

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 μM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  14. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    Science.gov (United States)

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  15. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  16. Titrimetric determination of uranium

    International Nuclear Information System (INIS)

    Florence, T.M.

    1989-01-01

    Titrimetric methods are almost invariably used for the high precision assay of uranium compounds, because gravimetric methods are nonselective, and not as reliable. Although precipitation titrations have been used, for example with cupferron and ferrocyanide, and chelate titrations with EDTA and oxine give reasonable results, in practice only redox titrations find routine use. With all redox titration methods for uranium a precision of 01 to 02 percent can be achieved, and precisions as high as 0.003 percent have been claimed for the more refined techniques. There are two types of redox titrations for uranium in common use. The first involves the direct titration of uranium (VI) to uranium (IV) with a standard solution of a strong reductant, such as chromous chloride or titanous chloride, and the second requires a preliminary reduction of uranium to the (IV) or (III) state, followed by titration back to the (VI) state with a standard oxidant. Both types of redox titrations are discussed. 4 figs

  17. Biological effects and oxidative stress responses in Arabidopsis thaliana following exposure to uranium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H.; Vanhoudt, N.; Wannijn, J.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Vangronsveld, J.; Cuypers, A. [Hasselt University (Belgium)

    2014-07-01

    Since organisms are almost always exposed to multiple stressors, it is important to investigate the toxicity effects in plants in a multiple stressor context to provide a more realistic estimate of environmental risks. Therefore, we evaluated the toxicity of U and Cu individually and in combination. Arabidopsis thaliana plants were exposed during 3 days to 25 μM U, 2.5 μM Cu or 12.5 μM U + 1.25 μM Cu at pH 7.5. The concentrations of U and Cu administered to the plants were the derived EC30 values for plant growth reduction based on the single-dose response curves. When plants were exposed to U or Cu, this resulted in an increased metal concentration in both roots and shoots as compared to the control plants. The increased Cu content of the plant, led to a significant decrease in leaf and root growth, while U exposure did not affect plant growth. By exposing plants to both metals, it seems that Cu interferes with the translocation of U from the roots to the leaves. In addition, U interferes with the Cu uptake, since less Cu was found in the roots than expected. This can probably be explained by the fact that U causes a shift in the Cu speciation in our medium. As such, the percentage of the bioavailable fractions of Cu decreased, while the percentage Cu-EDTA (i.e. non-available fraction) increased. No effects on plant growth were observed by exposing plants to U+Cu. Exposing plants to heavy metals can lead to an increased production of reactive oxygen species (ROS). After U or Cu exposure, the transcript levels of different ROS-producing enzymes (NADPH oxidases and lipoxygenases (LOX)) were up-regulated in the roots. Furthermore, exposing plants to U+Cu resulted in a 20-fold increase in the expression of LOX1 as compared to the single stressor conditions. This possibly indicates an enhanced ROS production. In addition, the increased expression of LOX1 can also indicate an increased production of oxylipins, important molecules in inter-organ signalling. In the

  18. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions

    International Nuclear Information System (INIS)

    Freedman, D.L.; Gossett, J.M.

    1989-01-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [ 14 C]PCE indicated that [ 14 C]ethylene was the terminal product; significant conversion to 14 CO 2 or 14 CH 4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE

  19. High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the NABIR Field-Research Center

    International Nuclear Information System (INIS)

    David R. Veblen; Chen Zhu; Lee Krumholz; Claudine Stirling; Emma-Kate Potter; Alex N. Halliday

    2004-01-01

    The effectiveness and feasibility of bioremediation at the field scale cannot be fully assessed until the mechanisms of immobilization and U speciation in the solid matrix are resolved. However, characterization of the immobilized U and its valence states is extremely difficult, because microbially mediated mineral precipitates are generally nanometer (nm)-sized, poorly crystalline, or amorphous. We are developing combined field emission gun--scanning electron microscopy (FEG-SEM, at Indiana University) and FEG transmission electron microscopy (TEM, at Hopkins) to detect and isolate uranium containing phases; (1) method developments for TEM sample preparations and parallel electron energy loss spectroscopy (EELS) determination of uranium valence; and (2) to determine the speciation, fate, reactivity, valence states of immobilized uranium, using the state-of-the-art 300-kV, FEG-TEM. We have obtained preliminary results on contaminated sediments from Area 3 at the Oak Ridge Field Research Center (FRC). TEM results show that the sediments contain numerous minerals, including quartz, mica/clay (muscovite and/or illite), rutile, ilmenite, zircon, and an Al-Sr-Ce-Ca phosphate mineral, none of which contain uranium above the EDS detection limit. Substantial U (up to ∼2 wt.%) is, however, clearly associated with two materials: (1) the Fe oxyhydroxide and (2) clots of a chemically complex material that is likely a mixture of several nm-scale phases. The Fe oxyhydroxide was identified as goethite from its polycrystalline SAED pattern and EDS analysis showing it to be very Fe-rich; the aggregate also displays one of several morphologies that are common for goethite. U is strongly sorbed to goethite in the FRC sediment, and the ubiquitous association with phosphorous suggests that complexes containing both U and P may play an important role in that sorption. Results from bulk analysis and SEM had previously demonstrated the association of U with Fe and thus suggested that U

  20. Modelling biological Cr(VI) reduction in aquifer microcosm column systems.

    Science.gov (United States)

    Molokwane, Pulane E; Chirwa, Evans M N

    2013-01-01

    Several chrome processing facilities in South Africa release hexavalent chromium (Cr(VI)) into groundwater resources. Pump-and-treat remediation processes have been implemented at some of the sites but have not been successful in reducing contamination levels. The current study is aimed at developing an environmentally friendly, cost-effective and self-sustained biological method to curb the spread of chromium at the contaminated sites. An indigenous Cr(VI)-reducing mixed culture of bacteria was demonstrated to reduce high levels of Cr(VI) in laboratory samples. The effect of Cr(VI) on the removal rate was evaluated at concentrations up to 400 mg/L. Following the detailed evaluation of fundamental processes for biological Cr(VI) reduction, a predictive model for Cr(VI) breakthrough through aquifer microcosm reactors was developed. The reaction rate in batch followed non-competitive rate kinetics with a Cr(VI) inhibition threshold concentration of approximately 99 mg/L. This study evaluates the application of the kinetic parameters determined in the batch reactors to the continuous flow process. The model developed from advection-reaction rate kinetics in a porous media fitted best the effluent Cr(VI) concentration. The model was also used to elucidate the logistic nature of biomass growth in the reactor systems.

  1. Fat, oil and grease reduction in commercial kitchen ductwork: A novel biological approach.

    Science.gov (United States)

    Mudie, S; Vahdati, M

    2017-03-01

    Recent research has characterised emissions upon cooking a variety of foods in a commercial catering environment in terms of volume, particle size and composition. However, there has been limited focus on the deposition of solid grease in commercial kitchen ductwork, the sustainability of these systems and their implications on the heat recovery potential of kitchen ventilation extract air. This paper reviews the literature concerning grease, commonly referred to as Fat, Oils and Grease (FOG) abatement strategies and finds that many of these systems fall short of claimed performances. Furthermore these technologies often add to the energy cost of the operation and reduce the potential application of heat recovery in the ventilation ductwork. The aim of this study was to develop and evaluate a novel FOG removal system, with a focus on low environmental impact. The novel FOG removal system, utilises the biological activity of Bacillus subtilis and associated enzymes. The biological reagent is delivered via a misting system. The temperature, relative humidity and FOG deposit thickness were measured in the ductwork throughout a 3month trial period. FOG deposit thickness was reduced by 47% within 7weeks. The system was found to be effective at reducing the FOG deposit thickness with minimal energy cost and impact upon the kitchen and external environment. Internal ductwork operating temperature was measured with respect to future heat recovery potential and a reduction of 7°C was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  3. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  4. Preparation of Uranium Dioxide by Electrochemical Reduction in Ammonium Carbonate Solutions and Subsequent Precipitation; Preparation de bioxyde d'uranium par reduction electrochimique dans des solutions de carbonate d'ammonium et precipitation; Prigotovlenie dvuokisi urana metodom ehlektrokhimicheskogo vosstanovleniya v rastvore karbonata ammoniya s posleduyushchim osazhdeniem; Preparacion de dioxido de uranio por reduccion electroquimica en soluciones de carbonato amonico u precipitacion subsiguiente

    Energy Technology Data Exchange (ETDEWEB)

    Pravdic, V.; Branica, M.; Pucar, Z. [Department of Physical Chemistry, Rudjer Boskovic Institute, Zagreb, Yugoslavia (Serbia)

    1963-11-15

    Experiments in a small scale electrolysis cell on cathodic reduction of uranium (VI) to uranium (IV) show the possibility of an efficient way to obtain uranium (IV) in carbonate solutions. From this solution uranium (IV) hydrous oxide precipitates by merely raising the temperature. To obtain larger quantities of material needed for technological testing, a scale-up of the process was attempted. An electrolysis cell of hard PVC (polyvinylchloride) was constructed with a mercury pool cathode of approximately 2.5 dm{sup 2} and platinum anodes. The catholyte was separated from the anolyte by cationexchange membranes. The catholyte was circulated between two 50-1 reservoirs and streamed toward the vigorously stirred mercury cathode. The working potential of mercury was controlled against an Ag/AgCl/KC1 (sat.) reference electrode, the potential being held constant at -1.5 V. The current efficiency is approximately 90%; the power consumed for the reduction process is about 0.8 kWh/kg of uranium dioxide. After the electrolysis was completed the precipitation was initiated only by heating the deeply green clear solution up to 70 deg. C in a separate all-glass vessel of 60-1 volume. From 50, 1 of the catholyte solution 1 kg of a centrifuged product (containing about 20% of water) was obtained. The coulometric analysis of the oxygen-uranium ratio always gave results in the range of 2.04 to 2.09. By the procedure described uranium (IV) hydrous oxide is selectively precipitated, and the oxygen-uranium ratio in the precipitate was found to be independent of the degree of completion of the reduction. The product was identified as the alpha phase of uranium dioxide by the X-ray powder diffraction. Experiments in sintering and characterization of uranium dioxide thus obtained for the ceramic nuclear fuel requirements are under way. (author) [French] Des experiences faites dans une petite cellule d'electrolyse sur la reduction cathodique d'uranium (VI) en uranium (IV) montrent qu

  5. Toxicity of a binary mixture on Daphnia magna: biological effects of uranium and selenium isolated and in mixture

    International Nuclear Information System (INIS)

    Zeman, F.

    2008-10-01

    Among the multiple substances that affect freshwater ecosystems, uranium and selenium are two pollutants found worldwide in the environment, alone and in mixture. The aim of this thesis work was to investigate the effect of uranium and selenium mixture on daphnia (Daphnia magna). Studying effects of a mixture requires the assessment of the effect of single substances. Thus, the first experiments were performed on single substance. Acute toxicity data were obtained: EC 50 48h = 0, 39±0, 04 mg.L -1 for uranium and EC 50 48h 1, 86±0, 85 mg.L -1 for selenium. Chronic effects were also studied. Data on fecundity showed an EC 10 reproduction of 14±7 μg. L -1 for uranium and of 215±25 μg. L -1 for selenium. Uranium-selenium mixture toxicity experiments were performed and revealed an antagonistic effect. This study further demonstrates the importance of taking into consideration different elements in binary mixture studies such as the choice of reference models (concentration addition or independent action), statistical method, time exposure and endpoints. Using integrated parameters like energy budget was shown to be an interesting way to better understand interactions. An approach including calculation of chemical speciation in the medium and bioaccumulation measurements in the organism permits assumptions to be made on the nature of possible interactions between mixture components (toxico-dynamic et toxico-kinetic interactions). (author)

  6. NRC's limit on intake of uranium-ore dust

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1983-04-01

    In 1960 the Atomic Energy Commission adopted an interim limit on the intake by inhalation of airborne uranium-ore dust. This report culminates two decades of research aimed at establishing the adequacy of that limit. The report concludes that the AEC underestimated the time that thorium-230, a constituent of uranium-ore dust, would remain in the human lung. The AEC assumed that thorium-230 in ore dust would behave like uranium with a 120-day biological half-life in the lung. This report concludes that the biological half-life is actually on the order of 1 year. Correcting the AEC's underestimate would cause a reduction in the permitted airborne concentration of uranium-ore dust. However, another factor that cancels the need for that reduction was found. The uranium ore dust in uranium mills was found to occur with very large particle sizes (10-micron activity median aerodynamic diameter). The particles are so large that relatively few of them are deposited in the pulmonary region of the lung, where they would be subject to long-term retention. Instead they are trapped in the upper regions of the respiratory tract, subsequently swallowed, and then rapidly excreted from the body through the gastrointestinal tract. The two effects are of about the same magnitude but in opposing directions. Thus the present uranium-ore dust intake limit in NRC regulations should provide a level of protection consistent with that provided for other airborne radioactive materials. The report recalculates the limit on intake of uranium-ore dust using the derived air concentrations (DAC) from the International Commission on Radiological Protection's recent Publication 30. The report concludes that the silica contained in uranium-ore dust is a greater hazard to workers than the radiological hazard

  7. Utilization of low grade and waste uranium ores by means of biological processes. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Czegledi, B.

    1978-01-01

    Investigation of the possible affect of bacteria in leaching uranium using alkaline carbonate medium has been investigated. Eleven strains of bacteria were isolated from the alkaline percolation solutions. Most belonged to the genus Thiobacillus. Each strain was characterized by growth under aerobic conditions in Levinthal - bouillon medium and under vaseline (semi-anaerobic in Hetehens medium. Growth of the bacteria was optimum at pH range 7 to 8 but a significant population was found to exist in alkaline leaching solutions of about pH 9 to 9.5 in heap leaching experiments. It was concluded that microbiological processes can play a role in alkaline heap leaching although the quantitative measure is yet uncertain

  8. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    Science.gov (United States)

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  9. On the Potential of Nuclear Fission Energy for Effective Reduction of Carbon Emission under the Constraint of Uranium Resources Use without Spent Fuel Reprocessing

    International Nuclear Information System (INIS)

    Knapp, V.; Pevec, D.; Matijevic, M.

    2010-01-01

    Urgency to stop further increase of greenhouse gases emissions and reverse the trends, as stated in the Fourth Intergovernmental Panel on Climate Change (IPPC) Report and in Copenhagen discussions, limits the realistic choice of energy technologies to those available now or in the near future of few decades. In the coming fifty years neither nuclear fusion nor carbon capture and storage (CCS) can be expected to give a significant contribution to world energy production. Two perspective intermittent sources such as wind and solar together with nuclear fission energy covering the base load consumption appears to be a combination with a potential to produce a large share of carbon free energy in the total world energy production. This contribution considers the issues, associated with required large scale deployment of nuclear fission energy. A serious question associated with nuclear energy is nuclear proliferation. Spread of uranium enrichment and spent fuel reprocessing installations in many new countries constructing nuclear reactors would be a major concern in present political environment. We investigate whether uranium resources would be sufficient to support nuclear build-up in next 50-60 years sufficiently large to significantly reduce carbon emission without reprocessing of spent nuclear fuel. A positive answer would mean that 50-60 years can be available to develop effective international control of nuclear fuel cycle installations. Our results show that a maximum nuclear build-up which would consume currently estimated uranium resources by 2065 without reprocessing could reduce by 2065 carbon emission by 39.6% of the total reduction needed to bring the WEO 2009 Reference Scenario prediction of total GHG emissions in 2065 to the level of the WEO 450 Scenario limiting global temperature increase to 2 degrees of C. The less demanding strategy of the nuclear replacement of all non-CCS coal power plants retiring during the 2025-2065 period would reduce emission

  10. Uranium and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Basic principles and definitions of reactor technology, biological radiation effects in man, and radioactive wastes are outlined. An argument is presented against Australia exploiting its uranium resources. (R.L.)

  11. Study of the biological effects of uranium exposure on zebra fish (D. rerio). Impact on life stages

    International Nuclear Information System (INIS)

    Bourrachot, St.

    2009-05-01

    This work is part of an ongoing project (ENVIRHOM) started at IRSN in 2000, which consists in studying the environmental effects of radioactive substances at chronic low level of exposure. In this general frame, our aim was two fold: (i) to identify sensitivity of different critical life stages of zebra fish (fish of fresh water frequently used for tests standards in ecotoxicology) to uranium exposure and (ii) to evaluate underlying mechanisms. Experiments were conducted with eggs, larvae and genitors exposed to uranium at environmentally relevant concentrations (from 20 to 500 μg/L) in order to study survival, hatching of eggs, growth of larvae and reproduction of genitors. Bio-markers of exposure (i.e. U bioaccumulation) and bio-markers of effects at molecular level (i.e. genotoxic effects, reproductive-toxicity) were also measured. Sensitivity of fish to uranium was dependent of the life stage of development with the early life stage being the most sensitive to U either directly or maternally exposed. It underlines the relevance of including pro-larval stages for toxicity assessments in fish. Moreover drastic effects of uranium on reproductive success and DNA damages in the germ cells foretell a strong impact on the population for low concentration of exposure (20 μg/L). As it is increasingly recognized that population-level effects of toxic substances are more relevant in terms of ecological risk assessment, this study points out the need to include different life stages of organisms in eco-toxicological studies, especially the sensitive early stages. Moreover, it appears, through the comparative study of the radiological effects or by another isotope of the uranium of stronger radioactivity ( 233 U or by an irradiation with 137 Cs), that the effects of the uranium are due to its chemo-toxicity. (author)

  12. On the implementation of the Biological Threat Reduction Program in the Republic of Uzbekistan

    Science.gov (United States)

    Tuychiev, Laziz; Madaminov, Marifjon

    2013-01-01

    Objective To review the implementation of the Biological Threat Reduction Program (BTRP) of the U.S. Defense Threat Reduction Agency in the Republic of Uzbekistan since 2004. Introduction The Biological Threat Reduction Program (BTRP) has been being implemented in the Republic of Uzbekistan since 2004 within the framework of the Agreement between the Government of the Republic of Uzbekistan and the Government of the United States of America Concerning Cooperation in the Area of the Promotion of Defense Relations and the Prevention of Proliferation of Weapons of Mass Destruction of 06.05.2001. Threat agent detection and response activities that target a list of especially dangerous pathogens are being carried out under the BTRP within the health care system of Uzbekistan. This presentation reviews some of the achievements of the program to date. Results BTRP, in partnership with the Government of Uzbekistan, has funded the establishment of five Regional Diagnostic Laboratories (RDL) and ten Epidemiological Support Units (ESU), operated by the Ministry of Health of Uzbekistan, which are intended to improve the diagnosis of quarantine and especially dangerous infections, and to ensure timely preventive and anti-epidemic measures. RDLs provide a high level of biosafety and biosecurity to conduct rapid laboratory diagnostics (PCR, ELISA) of especially dangerous infections. RDLs are equipped with up-to-date diagnostic laboratory equipment that conforms to internationals standards, as well as with all necessary consumables. Personnel of RDLs have been appropriately trained in epidemiology, clinical and diagnostic techniques for especially dangerous infections, including such state-of-the-art techniques as rapid PCR and ELISA diagnostics, as well as in work and equipment operation safety regulations. Epidemiological Support Units (ESU) have been established on the basis of the Especially Dangerous Infections Divisions of Oblast, city and Rayon Centers for State Sanitary

  13. Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results.

    Science.gov (United States)

    Criner, Gerard J; Pinto-Plata, Victor; Strange, Charlie; Dransfield, Mark; Gotfried, Mark; Leeds, William; McLennan, Geoffrey; Refaely, Yael; Tewari, Sanjiv; Krasna, Mark; Celli, Bartolome

    2009-05-01

    Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).

  14. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  15. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat; Etudes biocinetique et biologique comparees d'inhalations chroniques et aigues de composes uraniferes chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Monleau, M

    2005-12-15

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure. It

  16. Compared biokinetic and biological studies of chronic and acute inhalations of uranium compounds in the rat; Etudes biocinetique et biologique comparees d'inhalations chroniques et aigues de composes uraniferes chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Monleau, M

    2005-12-15

    Uranium is a natural, radioactive heavy metal, widely used in the nuclear industry in various chemical and isotopic forms. Its use in the fuel cycle involves the risk of radiological exposure for the workers, mainly via the inhalation of uranium particles. According to the workplace configuration, uranium contaminations can be acute or repeated, involve various chemical forms and different levels of enrichment, as well as involving one or several components. The dosimetric concepts and models available for workers' radiological protection, as well as most of the studies of the biological effects, correspond to acute exposure situations. Moreover the processes leading to pathological effects are little known in vivo. In this context, the main question is to know whether exposures due to repeated inhalation by rats induce the element kinetics and toxicity, which may be different from those observed after an acute exposure. In this study, comparison of the experimental and theoretical biokinetics of an insoluble uranium repeatedly inhaled over three weeks shows that a chronic contamination is correctly modelled, except for bone retention, by the sum of acute, successive and independent incorporations. Moreover, the kinetics of a soluble uranium inhaled irregularly can be modified by previous repeated exposure to an insoluble uranium. In certain cases therefore, exposure to uranium could modify its biokinetics during later exposures. At a toxicological level, the study demonstrates that the uranium particles inhaled repeatedly induce behavioural disruptions and genotoxic effects resulting in various sorts of DNA damage, in several cell types and certainly depending on the quantity inhaled. Exposures involving several uraniferous components produce a synergy effect. Moreover, repeated inhalations worsen the genotoxic effects in comparison to an acute exposure. This work demonstrates the importance of not ignoring the effects of the repetition of uranium exposure

  17. Uranium-mediated electrocatalytic dihydrogen production from water

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten

    2016-02-01

    Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.

  18. Chemical aspects of uranium behavior in soils: A review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  19. Discrimination of uranium chemo-toxic and radio-toxic effects: definition of biological markers for evaluating professional risks in nuclear industry

    International Nuclear Information System (INIS)

    Darolles, Carine

    2010-01-01

    Uranium (U) is a heavy metal that is also considered as an alpha emitter. Thus the origin of U toxicity is both chemical and radiological. The identification of bio-markers to discriminate chemical and radiological toxicity for a given U compound is required to assess accurately the health effects of isotopic mixtures such as depleted U in 235 U with a low specific activity. Data from the literature show that the best candidates are cytogenetic markers. In the present work, the assessment of bio-markers of U contamination was performed on three cellular models (mouse fibroblasts, rat lymphocytes and human lymphocytes) that were exposed to different isotopic mixtures of U. The cytokinesis-block micronucleus (MN) centromere assay was performed to discriminate the chemo-toxic and radio-toxic effects of U. This study showed that the evaluation of micronuclei in bi-nucleated cells could not assess U genotoxicity accurately. Instead, the assessment of centromere-negative micronuclei and nucleo-plasmic bridges correlated with the radio-toxic effects of U. The evaluation of centromere-positive micronuclei and micronuclei in mono-nucleated cells correlated with the chemo-toxic effects of U. These cytogenetic markers should be validated on different biological models and could be proposed to discriminate radiological and chemical toxicity of a given isotopic mixture of U. These four cytogenetic markers could be a useful complement of the classical dosimetric bio-markers for the assessment of internal uranium contamination. (author)

  20. Photochemical process of laboratory uranium wastes recovery

    International Nuclear Information System (INIS)

    Borges, O.N.; Barros, M.P. de.

    1984-01-01

    A method for uranium extraction in presence of various aquometallic ions, based on selective photo-reduction of uranium is studied. Some economical advantages in relation with others conventional processes are analysed. (M.J.C.) [pt

  1. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  2. The use of anomalous scattering of uranium for the determination of biological macromolecules structures - From hard to soft X-rays

    International Nuclear Information System (INIS)

    Chesne-Seck, M.L.

    2002-01-01

    In order to solve biological macromolecules structures, structure factor phases must be derived from the intensities diffracted by the crystal. The SAD and the MAD methods make use of variations in scattering factors measured at specific absorption edges of heavy atoms, bound to the protein. The phasing power depends on the occupancy of the binding sites and on the variations of the scattering factors at the absorption edge that is used. With uranyl, numerous sites with low occupancies are usually obtained. We used new colored uranyl complexes, which give higher occupancies, to solve de novo the lysozyme structure and an unknown structure. We have developed the use of the My absorption edge of uranium (λ = 3,5 Angstroms), where a variation of 120 electrons is observed in the scattering factors. With a helium atmosphere to limit the X-rays absorption, we have collected three data sets, on a single image. Data were processed both with 'classical' and specific programs. (author) [fr

  3. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    2006-01-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2

  4. Isolation of a star-shaped uranium(V/VI) cluster from the anaerobic photochemical reduction of uranyl(VI)

    International Nuclear Information System (INIS)

    Chatelain, Lucile; White, Sarah; Scopelliti, Rosario; Mazzanti, Marinella

    2016-01-01

    Actinide oxo clusters are an important class of compounds due to their impact on actinide migration in the environment. The photolytic reduction of uranyl(VI) has potential application in catalysis and spent nuclear fuel reprocessing, but the intermediate species involved in this reduction have not yet been elucidated. Here we show that the photolysis of partially hydrated uranyl(VI) in anaerobic conditions leads to the reduction of uranyl(VI), and to the incorporation of the resulting U V species into the stable mixed-valent star-shaped U VI /U V oxo cluster [U(UO 2 ) 5 (μ 3 -O) 5 (PhCOO) 5 (Py) 7 ]. This cluster is only the second example of a U VI /U V cluster and the first one associating uranyl groups to a non-uranyl(V) center. The U V center in 1 is stable, while the reaction of uranyl(V) iodide with potassium benzoate leads to immediate disproportionation and formation of the U 12 IV U 4 V O 24 cluster {[K(Py) 2 ] 2 [K(Py)] 2 [U 16 O 24 (PhCOO) 24 (Py) 2 ]}.

  5. Isolation of a star-shaped uranium(V/VI) cluster from the anaerobic photochemical reduction of uranyl(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, Lucile; White, Sarah; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. de Sciences et Ingenierie Chimiques

    2016-11-07

    Actinide oxo clusters are an important class of compounds due to their impact on actinide migration in the environment. The photolytic reduction of uranyl(VI) has potential application in catalysis and spent nuclear fuel reprocessing, but the intermediate species involved in this reduction have not yet been elucidated. Here we show that the photolysis of partially hydrated uranyl(VI) in anaerobic conditions leads to the reduction of uranyl(VI), and to the incorporation of the resulting U{sup V} species into the stable mixed-valent star-shaped U{sup VI}/U{sup V} oxo cluster [U(UO{sub 2}){sub 5}(μ{sub 3}-O){sub 5}(PhCOO){sub 5}(Py){sub 7}]. This cluster is only the second example of a U{sup VI}/U{sup V} cluster and the first one associating uranyl groups to a non-uranyl(V) center. The U{sup V} center in 1 is stable, while the reaction of uranyl(V) iodide with potassium benzoate leads to immediate disproportionation and formation of the U{sub 12}{sup IV}U{sub 4}{sup V}O{sub 24} cluster {[K(Py)_2]_2[K(Py)]_2[U_1_6O_2_4(PhCOO)_2_4(Py)_2]}.

  6. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  7. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  8. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.

    Science.gov (United States)

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2017-07-01

    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.

  9. Real-Time Speciation of Uranium During Active Bioremediation and U(IV) Reoxidation

    International Nuclear Information System (INIS)

    Komlos, J.; Mishra, B.; Lanzirotti, A.; Myneni, S.; Jaffe, P.

    2008-01-01

    The biological reduction of uranium from soluble U(VI) to insoluble U(IV) has shown potential to prevent uranium migration in groundwater. To gain insight into the extent of uranium reduction that can occur during biostimulation and to what degree U(IV) reoxidation will occur under field relevant conditions after biostimulation is terminated, X-ray absorption near edge structure (XANES) spectroscopy was used to monitor: (1) uranium speciation in situ in a flowing column while active reduction was occurring; and (2) in situ postbiostimulation uranium stability and speciation when exposed to incoming oxic water. Results show that after 70 days of bioreduction in a high (30 mM) bicarbonate solution, the majority (>90%) of the uranium in the column was immobilized as U(IV). After acetate addition was terminated and oxic water entered the column, in situ real-time XANES analysis showed that U(IV) reoxidation to U(VI) (and subsequent remobilization) occurred rapidly (on the order of minutes) within the reach of the oxygen front and the spatial and temporal XANES spectra captured during reoxidation allowed for real-time uranium reoxidation rates to be calculated.

  10. Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Istok, Jonathan; Krumholz, L; McKinley, J.; Gu, B.

    2004-01-01

    Summary of Recent Field Testing: Extensive in situ (in ground) field testing using the push-pull method has demonstrated that indigenous microorganisms in the shallow ( ∼ 20 mM. Field data and laboratory studies suggest that U(IV) is likely oxidized by Fe(III) minerals produced by enzymatic Fe(II) oxidation or by Fe(II) oxidation by nitrite. U(IV) reoxidation rates (10-3 to 10-2 uM/hr) were somewhat larger than U(VI) reduction rates indicating that sustained nitrate removal will be necessary to maintain the stability of U(IV) in this environment

  11. The chemical toxicity of uranium with special reference to effects on the kidney and the use of urine for biological monitoring

    International Nuclear Information System (INIS)

    Stopps, G.J.; Todd, M.

    1982-04-01

    Starting from a review of the literature the authors discuss the use of kidney uranium levels as a basis for setting limits for human exposure to uranium. They assess the usefulness of testing for protein or other substances in urine as an indicator of kidney damage, and evaluate the significance of levels of uranium in urine. They found a need for further study to establish the effects of various levels of airborne uranium

  12. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  13. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.

    1992-01-01

    solubilization was 10-13% of the suspended COD. The liquid phase of the hydrolyzed sludge, the hydrolysate, was separated from the suspended fraction by centrifugation and added to the biological nitrogen removal stage to support denitrification. The hydrolysate COD consisted mainly of volatile fatty acids......A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  14. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO_2 to U metal in LiCl-1wt.% Li_2O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  15. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  16. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  17. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  18. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  19. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Dermou, E.; Vayenas, D.V.

    2007-01-01

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  20. Natural uranium

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain

    2014-08-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with natural uranium

  1. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Univ. of Oklahoma, Norman, OK (United States); He, Zhili [Univ. of Oklahoma, Norman, OK (United States); Van Nostrand, Joy D. [Univ. of Oklahoma, Norman, OK (United States); Qin, Yujia [Univ. of Oklahoma, Norman, OK (United States); Deng, Ye [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Beijing (China); Wu, Liyou [Univ. of Oklahoma, Norman, OK (United States); Tu, Qichao [Univ. of Oklahoma, Norman, OK (United States); Zhejiang Univ., Hangzhou (China); Wang, Jianjun [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Nanjing (China); Schadt, Christopher W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); W. Fields, Matthew [Montana State Univ., Bozeman, MT (United States); Hazen, Terry C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arkin, Adam P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stahl, David A. [Univ. of Washington, Seattle, WA (United States); Zhou, Jizhong [Univ. of Oklahoma, Norman, OK (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsinghua Univ., Beijing (China)

    2017-03-16

    To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced in this paper genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4–2, U(VI), NO3, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4–31 days, whereas Desulfobacterium became dominant at 80–140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Finally, our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.

  2. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Patterson, J.A.

    1980-01-01

    Domestic uranium delivery commitments have risen significantly since January 1979, with the bulk of deliveries scheduled after 1990. Much of the long-term procurement will be obtained from captive production. However, buyers have adjusted their delivery schedules in the near term, deferring some procurement to later years, including a portion of planned captive production. Under current commitments, US imports of foreign uranium in the 1981 to 1985 period will be greater than our exports of domestic uranium. The anticipated supply of domestic uranium through 1985 is clearly more than adequate to fill the probable US demand in the meantime, uranium producers are continuing their efforts to increase future domestic supply by their considerable investments in new or expanded mine and mill facilities. Since January 1980, average contract prices including market-price settlements, for 1980 uranium deliveries have increased slightly, but average market-price settlements made this year have decreased by several dollars. While the general trend of US uranium prices has been upward since we began reporting price data in 1973, some reductions in average prices for future deliveries appeared in 1980. The softening of prices for new procurement can be expected to be increasingly apparent in future surveys

  3. Uranium deposits in Africa

    International Nuclear Information System (INIS)

    Wilpolt, R.H.; Simov, S.D.

    1979-01-01

    Africa is not only known for its spectacular diamond, gold, copper, chromium, platinum and phosphorus deposits but also for its uranium deposits. At least two uranium provinces can be distinguished - the southern, with the equatorial sub-province; and the south Saharan province. Uranium deposits are distributed either in cratons or in mobile belts, the first of sandstone and quartz-pebble conglomerate type, while those located in mobile belts are predominantly of vein and similar (disseminated) type. Uranium deposits occur within Precambrian rocks or in younger platform sediments, but close to the exposed Precambrian basement. The Proterozoic host rocks consist of sediments, metamorphics or granitoids. In contrast to Phanerozoic continental uranium-bearing sediments, those in the Precambrian are in marginal marine facies but they do contain organic material. The geology of Africa is briefly reviewed with the emphasis on those features which might control the distribution of uranium. The evolution of the African Platform is considered as a progressive reduction of its craton area which has been affected by three major Precambrian tectonic events. A short survey on the geology of known uranium deposits is made. However, some deposits and occurrences for which little published material is available are treated in more detail. (author)

  4. Off-label biologic regimens in psoriasis: a systematic review of efficacy and safety of dose escalation, reduction, and interrupted biologic therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Brezinski

    Full Text Available OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SELECTION: We searched OVID Medline from January 1, 1990 through August 1, 2011 for prospective clinical trials that studied biologic therapy for psoriasis treatment in adults. Individual articles were screened for studies that examined escalated, reduced, or interrupted therapy with etanercept, adalimumab, infliximab, ustekinumab, or alefacept. DATA SYNTHESIS: A total of 23 articles with 12,617 patients matched the inclusion and exclusion criteria for the systematic review. Data were examined for primary and secondary efficacy outcomes and adverse events including infections, malignancies, cardiovascular events, and anti-drug antibodies. The preponderance of data suggests that continuous treatment with anti-TNF agents and anti-IL12/23 agent was necessary for maintenance of disease control. Among non-responders, dose escalation with etanercept, adalimumab, ustekinumab, and alefacept typically resulted in greater efficacy than standard dosing. Dose reduction with etanercept and alefacept resulted in reduced efficacy. Withdrawal of the examined biologics led to an increase in disease activity; efficacy from retreatment did not result in equivalent initial response rates for most biologics. Safety data on off-label dosing regimens are limited. CONCLUSION: Dose escalation in non-responders generally resulted in increased efficacy in the examined biologics used to treat moderate-to-severe psoriasis. Continuous treatment with anti-TNF agents and anti-IL12/23 agent

  5. Pre-operational monitoring program of Ra-226 in biological material in uranium mining and milling areas

    International Nuclear Information System (INIS)

    Souza Pereira, Wagner de; Azevedo Py Junior, Delcy de; Kelecom, Alphonse; Iatesta, Antonio

    2008-01-01

    The environmental licensing processes of 'Santa Quiteria' uranium mining and milling unit are being carried out nowadays. The pre-operational radiological environmental monitoring program is part of those processes, which has the objective of determining the background for further comparisons and evaluation of radiological environmental impact of the operation unit. This work shows the results of Ra-226 determination in the most consumed farm products of the region, which are black beans, corn and milk. These data are compared with data available in the literature. Measurement results of Ra-226 in black beans vary from 3.3 x 10 -2 Bq/Kg to 9.1 x 10 -2 Bq/Kg; in corn, the results vary from 8.0 x 10 -3 Bq/Kg to 4.6 x 10 -2 Bq/Kg; in milk the results vary from 1.0 x 10 -3 Bq/Kg to 7.0 x 10 -3 Bq/Kg that represents the smallest variation range. All of these results are in good agreement with literature reported data. (author)

  6. Uranium hexafluoride. Bromine spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Bromine determination in hydrolized uranium hexafluoride by reduction of bromates by ferrous sulfate, oxidation of bromides by potassium permanganate to give bromine which is extracted into carbon tetrachloride and transformed in eosine for spectrophotometry at 510 nm. The method is suitable for determining 5 to 150 ppm with respect to uranium [fr

  7. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    Science.gov (United States)

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential

  8. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.

    Science.gov (United States)

    Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan

    2018-05-09

    This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Thomas, D.C.

    1981-01-01

    Domestic uranium delivery commitments for the 1981 to 1990 period reached a peak in the July 1980 survey and then declined in the January 1981 survey and again in the July 1981 survey. However, there are sizable sales contracts through the mid-1980s. In the latter part of this decade, unfilled requirements increase which can provide a needed market for domestic producers. Older contracts are helping to keep the average contract prices, including market price settlements, rather stable. However, average market price settlements decreased from data reported in January 1981, but some of these deliveries represent settlement of litigation. Foreign uranium procurement is scheduled to exceed deliveries of US uranium to foreign buyers in the 1981 to 1990 period. However, the actual use of foreign uranium has been quite low as US enrichment services customers have preferred to buy US uranium. Based on over four and one-half years of data, only about 7% foreign uranium has been brought to the Department of Energy for enrichment. Inventories of natural and enriched uranium in buyers' hands continue to increase. This is a concern to the uranium-producing industry. However, the industry should not be concerned about DOE-owned inventories, which are needed to supply Government requirements. There is absolutely no plan to dispose of DOE inventories on the commercial market. Capital expenditures reached a peak of $800 million in 1979. This decreased to $780 million in 1980, although higher expenditures were planned for the year. A very sharp reduction in plans for 1981, from $830 to $450 million, has been reported. A further reduction to $350 million is planned for 1982. However, it is interesting to note that the planned expenditures for 1982 are above the expenditures for 1975, a period of industury expansion

  10. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  11. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Science.gov (United States)

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  12. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Directory of Open Access Journals (Sweden)

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  13. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins

    Science.gov (United States)

    Alberts, Johanna F.; van Zyl, Willem H.; Gelderblom, Wentzel C. A.

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  14. Draft Technical Protocol: A Treatability Test for Evaluating the Potential Applicability of the Reductive Anaerobic Biological in Situ Treatment Technology (Rabitt) to Remediate Chloroethenes

    National Research Council Canada - National Science Library

    Morse, Jeff

    1998-01-01

    This draft, unvalidated protocol describes a comprehensive approach for conducting a phased treatability test to determine the potential for employing the Reductive Anaerobic Biological In Situ Treatment Technology (RABITT...

  15. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system

    Science.gov (United States)

    Liu, Chong; Sakimoto, Kelsey K.; Colón, Brendan C.; Silver, Pamela A.

    2017-01-01

    We demonstrate the synthesis of NH3 from N2 and H2O at ambient conditions in a single reactor by coupling hydrogen generation from catalytic water splitting to a H2-oxidizing bacterium Xanthobacter autotrophicus, which performs N2 and CO2 reduction to solid biomass. Living cells of X. autotrophicus may be directly applied as a biofertilizer to improve growth of radishes, a model crop plant, by up to ∼1,440% in terms of storage root mass. The NH3 generated from nitrogenase (N2ase) in X. autotrophicus can be diverted from biomass formation to an extracellular ammonia production with the addition of a glutamate synthetase inhibitor. The N2 reduction reaction proceeds at a low driving force with a turnover number of 9 × 109 cell–1 and turnover frequency of 1.9 × 104 s–1⋅cell–1 without the use of sacrificial chemical reagents or carbon feedstocks other than CO2. This approach can be powered by renewable electricity, enabling the sustainable and selective production of ammonia and biofertilizers in a distributed manner. PMID:28588143

  16. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Jonathan O. [Colorado School of Mines, Golden, CO (United States)

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  17. Uranium control in phosphogypsum

    International Nuclear Information System (INIS)

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes

  18. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  19. Studies on the interference of hydrofluoric acid and phosphoric acid in the determination of uranium using Ti(III) reduction method-biamperometry end point

    International Nuclear Information System (INIS)

    Shiny, T.S.; Rajalakshmi, A.; Phal, D.G.; Charyulu, M.M.; Ramakumar, K.L.

    2007-01-01

    Accurate and precise determination of uranium in nuclear materials is necessary for chemical quality control as well as for nuclear material accounting purposes. Different types of uranium samples are received for the measurements. Depending upon the nature of the sample dissolution procedure is selected. Mixed oxide samples of uranium and plutonium, for example, are dissolved in nitric acid containing hydrofluoric acid under IR lamp. The fluoride ions are removed by repeated evaporation of the solution. However, some fluoride ions are left in the solutions depending on the conditions of evaporation. Uranium samples and alloy samples are dissolved in dilute hydrochloric acid. The rate of dissolution depends on concentration of acid. Sometimes a mixture of hydrochloric acid and hydrofluoric acid is used for the dissolution metal alloy samples, which may contain silica. Another method of dissolution of these samples is using a mixture of phosphoric acid and 1% hydrofluoric acid. It is necessary to study the interference of hydrofluoric acid and phosphoric acid on the determination of uranium

  20. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  1. Applications of fluorescence techniques to the study of uranium in homogeneous and heterogeneous environments: hydrolysis and photo-reduction reactions on titanium dioxide

    International Nuclear Information System (INIS)

    Eliet, Veronique

    1996-01-01

    This thesis describes the use of Time-Resolved Fluorescence to characterise the spectroscopy of hydroxo-complexes of hexavalent Uranium, and to study photochemical reactions involving these species at mineral/water interfaces. The instrumentation used comprised of either an excimer laser coupled to an optical multichannel analyser OMA or a Nd-YAG laser coupled to a stroboscopic photomultiplier. The hydrolysis of Uranium at a constant temperature of 25 deg. C, has been studied in the pH ranges 0-5 and 9-12. Deconvolution of spectra and fluorescence decay curves for Uranium yielded individual fluorescence spectra and decay times for uranyl UO 2 2+ and its hydroxo-complexes UO 2 OH + , (UO 2 )2(OH) 2 2+ , (UO 2 ) 3 (OH) 5 + et UO 2 (OH) 3 - . The comparison of fluorescence efficiencies for the various species showed that the complex (UO 2 )2(OH) 2 2+ is up to 85 times more fluorescent than uranyl, depending on the emission wavelength. Further, investigations of fluorescence decays as a function of temperature in the pH range 0-6, yielded activation energies for the various Uranium hydroxo species. The knowledge gained in homogeneous media served in the study of the photochemical behaviour of Uranium in suspensions of the semi-conductor mineral, TiO 2 . After UV-light absorption, charge carriers formed at the mineral surface were found to reduce hexavalent Uranium to the tetravalent oxidation state. Time-Resolved Fluorescence Spectroscopy has been used to monitor the kinetics of the oxidation state change. A reaction mechanism is proposed on the basis of results obtained by studying the kinetics of the process at different values of pH The role of humic substances on the heterogeneous redox reaction has also been examined. (author) [fr

  2. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  3. In vitro and in vivo measurements of the dissolution parameters of uranium and plutonium mixed oxides in biological environment

    International Nuclear Information System (INIS)

    Matton, S.

    1999-01-01

    During the mixed-oxide fuel fabrication process, inhalation is potentially the main route of internal contamination. The International Commission on Radiological Protection recommends experimental measurement of parameters such as size and dissolution rate for specific industrial compounds. First, we validated the use of PERALS (Photon Electron Rejecting Alpha Liquid Scintillation) for alpha measurement in biological samples which, in some cases, could improve detection limit. We characterised physical chemical properties in terms of size, specific area and activity of 3 different powders: MOX made according to either the MIMAS process, which showed heterogeneous chemical composition, or the SOLGEL, which showed homogeneous chemical composition and industrial PuO 2 . Their dissolution parameters, f r and s s , as defined in the simplest model proposed by ICRP 66 were measured in vivo, after inhalation in the rat, and in vitro. The statistical variation of these values were expressed as standard deviation. Moreover, in vitro studies demonstrated variation of the s s value depending on the duration of the incubation. We also developed methods to characterise interactions between UO 2 particles and phosphate ions which could be involved in the actinide toxicity. (author) [fr

  4. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  5. Root uptake of uranium (6) in solution by a higher plant: speciation in hydroponic solution, bioavailability, micro-localisation and biological effects induced

    International Nuclear Information System (INIS)

    Laroche, L.

    2005-01-01

    Uranium exists naturally in the environment, usually present in trace quantities. In soil solution and oxic conditions, uranium is present in the +VI oxidation state and forms a large number of inorganic and organic complexes. The exposure medium, an artificial soil solution, was designed in such a way as to control the uranium species in solution. The geochemical speciation code JCHESS was used to calculate the uranium aqueous species concentration and to define the domains of interest, each of them characterized by a limited number of dominant U species. These domains were defined as follows: pH 4.9 with uranyl ions as dominant species, pH 5.8 with hydroxyl complexes and pH 7 where carbonates play a major role. For each pH, short-duration (5 hours of exposure) well-defined laboratory experiments were carried out with Phaseolus vulgaris as plant model. The effect of competitive ions such as Ca 2+ or the presence of ligands such as phosphate or citrate on root assimilation efficiency was explored. Results have shown that uranium transfer was not affected by the presence of calcium, phosphate or citrate (but was decreased of 60% with citrate (10 μM) at pH 5.8) in our experimental conditions. Moreover, observation in Transmission Electronic Microscopy (TEM), equipped with an EDAX probe, have shown that uranium was associated with granules rich in phosphorus and that there were some chloroplast anomalies. Finally, the presence of uranium affects root CEC by reducing it and stimulates root elongation at low uranium concentrations (100 nM, 400 nM and 2 μM at pHs 4.9, 5.8 and 7 respectively) and inhibits it at high uranium concentrations. (author)

  6. Cyclic voltammetric study of the reduction of U(III) to uranium metal in molten LiCl-NaCl-CaCl2-BaCl2-UCl3

    International Nuclear Information System (INIS)

    Poa, D.S.; Tomczuk, Z.; Steunenberg, R.K.

    1986-01-01

    Cyclic voltammetry was used to investigate the electrochemistry of the reduction of UCl 3 to uranium metal in molten LiCl-NaCl-CaCl 2 -BaCl 2 (49.7-8.0-26.5-15.8 mol %) containing dissolved UCl 3 . The purpose of the study was to obtain information on the kinetics of the reaction, which will be used in the design of electrorefining equipment for the reprocessing of core and blanket fuel discharged from the Integral Fast Reactor (IFR). The electrorefining operation employs the above salt as the electrolyte and a liquid cadmium pool as the anode

  7. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  8. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  9. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  10. Standard test method for uranium by Iron (II) reduction in phosphoric acid followed by chromium (VI) titration in the presence of vanadium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method, commonly referred to as the Modified Davies and Gray technique, covers the titration of uranium in product, fuel, and scrap materials after the material is dissolved. The test method is versatile and has been ruggedness tested. With appropriate sample preparation, this test method can give precise and unbiased uranium assays over a wide variety of material types (1, 2). Details of the titration procedure in the presence of plutonium with appropriate modifications are given in Test Method C1204. 1.2 Uranium levels titrated are usually 20 to 50 mg, but up to 200 mg uranium can be titrated using the reagent volumes stated in this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determ...

  11. Uranium City radiation reduction program: further efforts at remedial measures for houses with block walls, concrete porosity test results, and intercomparison of Kuznetz method and Tsivoglau method

    International Nuclear Information System (INIS)

    Haubrich, E.; Leung, M.K.; Mackie, R.

    1980-01-01

    An attempt was made to reduce the levels of radon in a house in Uranium City by mechanically venting the plenums in the concrete block basement walls, with little success. A table compares the results obtained by measuring the radon WL using the Tsivoglau and the Kuznetz methods

  12. Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage

    Directory of Open Access Journals (Sweden)

    Alena Luptakova

    2012-12-01

    Full Text Available The impacts of AMD pollution on biological systems are mostly severe and the problem may persist from many decadesto thousands of years. Consequently AMD prior to being released into the environment must be treated to meet government standardsfor the amount of metal and non-metal ions contained in the water. One of the best available technologies for the removal of metals fromAMD is precipitation as metal sulphides. SRB applications for AMD treatment involve a few principal stages. The first stageis the cultivation of SRB i.e. the bacterial sulphate reduction. At the laboratory conditions the sodium lactate is the energetic substratefor the growth of bacteria. Its price is not economic for the application in the practice and is needed investigate the alternativesubstitutes. The aim of this work was the cultivation of SRB using the selected energetic substrates such as: calcium lactate, ethanol,saccharose, glucose and whey. Experimental studies confirm that in the regard to the amount of reduced sulphates the calcium lactateand ethanol are the best alternative substrates for the bacterial sulphate-reduction.

  13. Isotopic ratio method for determining uranium contamination

    International Nuclear Information System (INIS)

    Miles, R.E.; Sieben, A.K.

    1994-01-01

    The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort

  14. Uranium mining

    International Nuclear Information System (INIS)

    Lange, G.

    1975-01-01

    The winning of uranium ore is the first stage of the fuel cycle. The whole complex of questions to be considered when evaluating the profitability of an ore mine is shortly outlined, and the possible mining techniques are described. Some data on uranium mining in the western world are also given. (RB) [de

  15. US uranium reserves

    International Nuclear Information System (INIS)

    Hansen, M.V.

    1981-01-01

    The current low level of demand, compounded by rapidly rising costs and low prices, has caused a significant reduction in drilling for uranium in the United States, and the trend is likely to continue for a few more years. The effect on uranium reserves will be fewer additions to reserves because less exploration is being done. Further reductions will occur, especially in low-cost reserves, because of increasing costs, continuing depletion through production, and erosion through the high grading of deposits to fulfill previous contractual commitments. During the past several years, it has been necessary to increase the upper reserve cost level twice to compensate for rising costs. Rising costs are reducing the $15 reserves, the cost category corresponding most closely to the present market price, to an insignificant level. An encouraging factor related to US uranium reserves is that the US position internationally, as far as quantity is concerned, is not bad for the longer term. Also, there is a general opinion that US consumers would rather contract for domestic uranium than for foreign because of greater assurance of supply. Still another factor, nearly impossible to assess, is what effect rising costs in other countries will have on their uranium reserves. The annual conferences between the Grand Junction Area Office staff and major uranium companies provide a broad overview of the industry's perception of the future. It is not optimistic for the short term. Many companies are reducing their exploration and mining programs; some are switching to other more marketable mineral commodities, and a few are investing more heavily in foreign ventures. However, there is general optimism for the long term, and many predict a growth in demand in the mid-1980s. If the industry can survive the few lean years ahead, rising prices may restore its viability to former levels

  16. Domestic uranium exploration activities

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1980-01-01

    Uranium exploration in the United States reached its alltime high in 1978 when the chief exploration indicator, surface drilling, totaled 47 million feet. In 1979, however, total drilling declined to 41 million feet, and during the first 8 months of 1980 the trend continued, as surface drilling was 27% less than for the same period in 1979. The total drilling for 1980 now is expected to be below 30 million feet, far less than the 39.4 million feet planned by industry at the beginning of the year. Falling uranium prices, the uncertainties of future uranium demand, rising costs, and the possibility of stiff foreign competition are the prime causes for the current reduction in domestic uranium exploration. Uranium exploration in the United States continues to be concentrated in the vicinity of major producing areas such as the San Juan Basin, Wyoming Basins, Texas Coastal Plain, Paradox Basin, and northeastern Washington, and in areas of recent discoveries including the Henry Mountains, Utah, the McDermitt caldera in Nevada and Oregon, and central Colorado. The distributions, by location, of total surface drilling for 1979 and the first half of 1980 are presented

  17. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  18. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  19. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

    Science.gov (United States)

    Langley, S; Igric, P; Takahashi, Y; Sakai, Y; Fortin, D; Hannington, M D; Schwarz-Schampera, U

    2009-01-01

    use of common synthetic iron minerals to model their reduction may lead to a significant underestimation of their biological reactivity.

  20. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors

  1. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  2. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  3. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.

    Science.gov (United States)

    Mulat, Daniel Girma; Mosbæk, Freya; Ward, Alastair James; Polag, Daniela; Greule, Markus; Keppler, Frank; Nielsen, Jeppe Lund; Feilberg, Anders

    2017-10-01

    Biological reduction of CO 2 into CH 4 by exogenous addition of H 2 is a promising technology for upgrading biogas into higher CH 4 content. The aim of this work was to study the feasibility of exogenous H 2 addition for an in situ biogas upgrading through biological conversion of the biogas CO 2 into CH 4. Moreover, this study employed systematic study with isotope analysis for providing comprehensive evidence on the underlying pathways of CH 4 production and upstream processes. Batch reactors were inoculated with digestate originating from a full-scale biogas plant and fed once with maize leaf substrate. Periodic addition of H 2 into the headspace resulted in a completely consumption of CO 2 and a concomitant increase in CH 4 content up to 89%. The microbial community and isotope analysis shows an enrichment of hydrogenotrophic Methanobacterium and the key role of hydrogenotrophic methanogenesis for biogas upgrading to higher CH 4 content. Excess H 2 was also supplied to evaluate its effect on overall process performance. The results show that excess H 2 addition resulted in accumulation of H 2 , depletion of CO 2 and inhibition of the degradation of acetate and other volatile fatty acids (VFA). A systematic isotope analysis revealed that excess H 2 supply led to an increase in dissolved H 2 to the level that thermodynamically inhibit the degradation of VFA and stimulate homo-acetogens for production of acetate from CO 2 and H 2 . The inhibition was a temporary effect and acetate degradation resumed when the excess H 2 was removed as well as in the presence of stoichiometric amount of H 2 and CO 2 . This inhibition mechanism underlines the importance of carefully regulating the H 2 addition rate and gas retention time to the CO 2 production rate, H 2 -uptake rate and growth of hydrogenotrophic methanogens in order to achieve higher CH 4 content without the accumulation of acetate and other VFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Determination of reduction yield of lithium metal reduction process

    International Nuclear Information System (INIS)

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  5. Preparation of uranium ingots from double fluorides

    International Nuclear Information System (INIS)

    Le Boulbin, E.

    1967-05-01

    A simple method has been developed for the preparation of uranium double fluorides and has given a new impetus to the study of the reduction of these compounds with a view to obtaining very pure uranium ingots. This reduction can be carried out using calcium or magnesium as the reducing agent, this latter metal being very interesting from the practical point of view. A comparative study of the heat balances of the reduction processes for the double fluorides and for uranium tetrafluoride has shown that reduction of the double fluorides is possible. The exact experimental conditions for these reductions have been determined. Our study has shown in particular that the reduction of the double salt UF 4 , CaF 2 by magnesium leads to the production of small (20 to 500 g) samples of high-purity uranium with a yield of 99 per cent. (author) [fr

  6. A method for reducing memory errors in the isotopic analyses of uranium hexafluoride by mass spectrometry; Methode de reduction des erreurs de memoire dans les analyses isotopiques de l'hexafluorure d'uranium par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Bir, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    One of the most serious causes of systematic error in isotopic analyses of uranium from UF{sub 6} is the tendency of this material to become fixed in various ways in the mass spectrometer. As a result the value indicated by the instrument is influenced by the isotopic composition of the substances previously analysed. The resulting error is called a memory error. Making use of an elementary mathematical theory, the various methods used to reduce memory errors are analysed and compared. A new method is then suggested, which reduces the memory errors to an extent where they become negligible over a wide range of {sup 235}U concentration. The method is given in full, together with examples of its application. (author) [French] Une des causes d'erreurs systematiques les plus graves dans les analyses isotopiques d'uranium a partir d'UF{sub 6} est l'aptitude de ce produit a se fixer de diverses manieres dans le spectrometre de masse. Il en resulte une influence de la composition isotopique des produits precedemment analyses sur la valeur indiquee par l'appareil. L'erreur resultante est appelee erreur de memoire. A partir d'une theorie mathematique elementaire, on analyse et on compare les differentes methodes utilisees pour reduire les erreurs de memoire. On suggere ensuite une nouvelle methode qui reduit les erreurs de memoire dans une proportion telle qu'elles deviennent negligeables dans un grand domaine de concentration en {sup 235}U. On donne le mode operatoire complet et des exemples d'application. (auteur)

  7. Rossing uranium

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    In this article the geology of the deposits of the Rossing uranium mine in Namibia is discussed. The planning of the open-pit mining, the blasting, drilling, handling and the equipment used for these processes are described

  8. Oxidation-reduction phenomena in tabular uranium-vanadium bearing sandstone from the Salt Wash deposits (Upper Jurassic) of the Cottonwood Wash district (Utah, USA)

    International Nuclear Information System (INIS)

    Meunier, J.D.

    1984-02-01

    A braided to meandering fluvial environment has been postulated for this area after a sedimentological study. The mineralization is spatially related with conifer derived organic matter and wood is preserved in these sediments because of the reducing environment of deposition. The degree of maturation of the organic matter has been estimated from chemical analyses. Results show the presence of variable diagenetic oxidation depending on the environment. The organic matter which was least affected by this oxidation have attained a thermal maturation characteristic of the end stage of diagenesis. The high grade ore is situated at the edges of or within the trunks of trees (which remained permeable during diagenesis) and at the boundaries of the carbonaceous beds. Geochemical study shows there to be good correlation between uranium and vanadium. Uranium occurs as pitchblende, coffinite or as impregnations in the vanadiferous clay cement. A detailed study of clays shows an association of chlorite and roscoelite which most probably contain V 3+ . Fluid inclusion study suggests burying temperatures of >= 100 0 C and shows the existance of brines before the mineralization. The following genetical model is proposed. Low Eh uraniferous solutions move through a reduced pyritised environment. The low degree of oxidation of the pyrites propagates the destabilization of the clastic iron-titanium oxides which release vanadium and the dissociation of uranylcarbonates. Then, the deposit of pitchblende, coffinite, montroseite and vanadiferous clays took place in association with a secondary pyrite. When the rocks were uplifted to the subsurface, uranium (IV) and vanadium (III) were remobilised in an oxidising environment to form a secondary mineralization essentially represented by tyuyamunite [fr

  9. Gamma exposure rate reduction and residual radium-226 concentrations resulting from decontamination activities conducted at the former uranium millsite in Shiprock, New Mexico

    International Nuclear Information System (INIS)

    Hans, J.M. Jr.; Hurst, T.L.

    1981-01-01

    Gamma radiation surveys and residual radium 226 soil samples were taken as part of the decontamination activities of the former Shiprock uranium mill site in New Mexico. In order to facilitate the decontamination activities, the mill site and its contaminated environs were divided into 6 major areas. Extensive data are presented in 2 appendices of the pre- and post-decontamination gamma ray exposure rates made on mill site, and of radium 226 concentrations in surface soil samples. A training program established on the mill site by the Navajo Engineering and Construction Authority is described

  10. Uranium loans

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    When NUEXCO was organized in 1968, its founders conceived of a business based on uranium loans. The concept was relatively straightforward; those who found themselves with excess supplies of uranium would deposit those excesses in NUEXCO's open-quotes bank,close quotes and those who found themselves temporarily short of uranium could borrow from the bank. The borrower would pay interest based on the quantity of uranium borrowed and the duration of the loan, and the bank would collect the interest, deduct its service fee for arranging the loan, and pay the balance to those whose deposits were borrowed. In fact, the original plan was to call the firm Nuclear Bank Corporation, until it was discovered that using the word open-quotes Bankclose quotes in the name would subject the firm to various US banking regulations. Thus, Nuclear Bank Corporation became Nuclear Exchange Corporation, which was later shortened to NUEXCO. Neither the nuclear fuel market nor NUEXCO's business developed quite as its founders had anticipated. From almost the very beginning, the brokerage of uranium purchases and sales became a more significant activity for NUEXCO than arranging uranium loans. Nevertheless, loan transactions have played an important role in the international nuclear fuel market, requiring the development of special knowledge and commercial techniques

  11. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    Science.gov (United States)

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  12. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  13. Formation mechanism of uranium minerals at sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Li Shengfu; Zhang Yun

    2004-01-01

    By analyzing the behavior and existence form of uranium in different geochemical environments, existence form of uranium and uranium minerals species, this paper expounds the formation mechanism of main commercial uranium mineral--pitchblende: (1) uranium is a valence-changeable element. It is reactivated and migrates in oxidized environment, and is reduced and precipitated in reducing environment; (2) [UO 2 (CO 3 ) 3 ] 4- , [UO 2 (CO 3 ) 2 ] 2- coming from oxidized environment react with reductants such as organic matter, sulfide and low-valence iron at the redox front to form simple uranium oxide--pitchblende; (3)the adsorption of uranium by organic matter and clay minerals accelerates the reduction and the concentration of uranium. Therefore, it is considered, that the reduction of SO 4 2- by organic matter to form H 2 S, and the reduction of UO 2 2+ by H 2 S are the main reasons for the formation of pitchblende. This reaction is extensively and universally available in neutral and weakly alkaline carbonate solution. The existense of reductants such as H 2 S is the basic factor leading to the decrease of Eh in environments and the oversaturation of UO 2 2+ at the redox front in groundwater, thus accelerating the adsorption and the precipitation of uranium

  14. Geochemistry of uranium in the Black Sea

    International Nuclear Information System (INIS)

    Zhorov, V.A.; Bogushlavskij, S.G.; Babinets, A.E.; Solov'eva, L.V.; Kirchanova, A.I.; Kir'yanov, P.A.

    1982-01-01

    According to the results of expedition investigations on the base of SCOICH program (''Acade''Mmician Vernadsky'' and ichael Lomonosov'' shiptrips) main geometrical peculiarities of uranium distribution in deep water of the Black Sea including benthic and silt waters are studied. Sampling have been made from the surface layer across the whole width of the water and from benthic sediments (silt water). Uranium in samples has been determined by the adsorption-colorimetric method. Nonuniform uranium distribution (depending on water dynamics) over the basin area and across the whole width of water is established. Most of uranium is contained in the 0-500 m layer and in the eastern part of the sea. Uranium content decreases in depth, it is higher in the benthic water layer. It is shown that uranium decrease in a hydrogen-sulphide sea zone is conditioned by its reduction due to formation of more adsorption-active forms and effective sedimentation. Causes of differences in uranium content in silt waters have been found. High uranium concentrations in silt waters are confined to active sulphate reduction characterized by elevated values of pHsub(#betta#), alkalinity, Eh. In weak suphate reduction zones (pHsub(#betta#), Alsub(k) value decrease) in silt waters uranium content is lower as a result of sorption-active forms formation and their transition into the solid phase of sediments

  15. Final Scientific/Technical Report - DE-FG02-06ER64172 - Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center - Subproject to Co-PI Eric E. Roden

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2009-01-01

    This report summarizes research conducted in conjunction with a project entitled 'Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center', which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field

  16. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  17. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  19. The U.S. uranium market

    International Nuclear Information System (INIS)

    White, G. Jr.

    1978-01-01

    A brief analysis is presented of factors influencing buyers and sellers in the U.S. uranium market. Factors suggesting a reduction in uranium demand, increased supply and reduced uncertainty are set against factors suggesting the reverse of these trends. Prices and economic factors are considered, as well as political and business aspects. (U.K.)

  20. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  1. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  2. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  4. Uranium from seawater

    International Nuclear Information System (INIS)

    Gregg, D.; Folkendt, M.

    1982-01-01

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10 5 , which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10 3 in seawater instead of the reported values of 10 5 . However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10 5 in fresh water. However, the system was not tested in seawater

  5. Uranium update

    International Nuclear Information System (INIS)

    Steane, R.

    1997-01-01

    This paper is about the current uranium mining situation, especially that in Saskatchewan. Canada has a unique advantage with the Saskatchewan uranium deposits. Making the most of this opportunity is important to Canada. The following is reviewed: project development and the time and capital it takes to bring a new project into production; the supply and demand situation to show where the future production fits into the world market; and our foreign competition and how we have to be careful not to lose our opportunity. (author)

  6. Purification method for calcium fluoride containing uranium

    International Nuclear Information System (INIS)

    Ogami, Takeshi

    1998-01-01

    Calcium fluoride (CaF 2 ) containing uranium is heated in an electrolytic bath having a cathode and an anode to form a molten salt, and the molten salt is electrolytically reduced to form metal uranium deposited on the surface of the cathode. The calcium fluoride molten salt separated by the deposition of generated metal uranium on the surface of the cathode is solidified by cooling. The solidified calcium fluoride is recovered. When metal uranium is deposited on the surface of the cathode by the electrolytic reduction of the molten salt, impurities such as plutonium and neptunium are also deposited on the surface of the anodes entrained by the metal uranium. Impurities having high vapor pressures such as americium and strontium are evaporated and removed from the molten salts. Then, nuclides such as uranium can thus be separated and recovered, and residual CaF 2 can be recovered in a state easily storable and reutilizable. (T.M.)

  7. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  8. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  9. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    Science.gov (United States)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  10. Final Technical Report. Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Dr. Jonathan D. Istok , Oregon State University; Dr. Lee Krumholz, University of Oklahoma; Dr. James McKinley, Pacific Northwest National Laboratory; Dr. Baohua Gu, Oak Ridge National Laboratory

    2006-01-01

    The overall goal of this project was to better understand factors and processes controlling microbially-mediated reduction and reoxidation of U and Tc in the unconsolidated residuum overlying the Nolichucky shale at the Field Research Center (FRC) at Oak Ridge National Laboratory. Project activities were designed to test the following hypotheses: (1) The small rates of denitrification and U bio-reduction observed in laboratory incubations of sediments from FRC Area 1 at low pH (< 5) are due to the presence of high concentrations of toxic metals (especially Al and Ni). Rates of Tc reduction will also be small at low pH in the presence of high concentrations of toxic metals. (2) In situ rates of U and perhaps Tc bio-reduction can be increased by increasing system pH and thus precipitating toxic metals from solution. (3) In situ rates of U and Tc bio-reduction can be increased by the addition of humic substances, which complex toxic metals such as Al and Ni, buffer pH, and serve as electron shuttles to facilitate U and Tc reduction. (4) Microbially-reduced U and Tc are rapidly oxidized in the presence of high concentrations of NO3- and the denitrification intermediates NO2-, N2O, and NO. (5) An electron-donor-addition strategy (type and form of donor, with or without pH adjustment and with or without the co-addition of humic substances) can be devised to reduce U and Tc concentrations for an extended period of time in low pH groundwater in the presence of high concentrations of NO3-, Al, and Ni. This strategy operates by removing or complexing these components of FRC groundwater to allow the subsequent reduction of U(VI) and Tc(VII)

  11. Maintenance of a labour safety and ecological safety in chinks at extraction of uranium

    International Nuclear Information System (INIS)

    Svambaev, Z.A.; Svambaev, E.A.; Sultanbekov, G.A; Tusupbekova, S.T.; Svambaev, A.S.

    2010-01-01

    then an overload of the sorbent sated with uranium in column disobeyed are named. Uterus sobered the rest after clearing by pitch, moves in sediment bowls of sand uterus sobered. At the given stage of processing it is made disrobers that is removal of uranium from pitch with the help nitrate sobered solutions and reception eluded in other words commodity disobeyed. Pitch passes procedure de nitrate a solution of a sulfuric acid with the purpose reduction the maintenance nitrate of ions, and then procedure of washing from a sulfuric acid, further pitch is sent back in column sobered. The following stage of processing it of sedimentation. Here there is a sedimentation of uranium from commodity disobeyed then a filtration of a pulp to reception of an intermediate product of a concentrate of natural uranium 'yellow concentrate'. After processing by organic chemistry yellow concentrate receive natural uranium, so-called sour - oxide uranium. At all stages of a work cycle of work described above in the text is radiating, toxicological and ecological dangerous demanding the special approach. Many experts refer frequently to parameters of measurement of capacity of an exposition doze, and thus in attention activity of a source ionization radiations not always undertakes. Practical value of relative biological efficiency the radiations established for the control of a degree of radiating danger at a chronic irradiation, a so-called weight multiplier or the weighing factor is not taken into account regulated. Therefore the works connected to processing of productive solutions in particular, and extraction of uranium underground chink in the way alkali as a whole is radiating, toxicological and ecological dangerous process.

  12. A Spectroscopic Study of the effect of Ligand Complexation on the Reduction of Uranium(VI) by Anthraquinone-2,6-disulfonate (AH2DS)

    International Nuclear Information System (INIS)

    Wang, Zheming; Wagnon, Ken B.; Ainsworth, Calvin C.; Liu, Chongxuan; Rosso, Kevin M.; Fredrickson, Jim K.

    2008-01-01

    In this project, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and Desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH2DS), a potential electron shuttle for microbial reduction of metal ions (Newman and Kolter 2000), is studied by stopped-flow kinetics techniques under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest kobs within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH- > CO32- > EDTA > DFB, consistent with the same trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. Increasing the stability of uranyl complexes and ligand size decreased the maximum reduction rate. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and AH2DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS3- was suggested as the primary reductant in all cases examined. Species UO2CO3(aq) , UO2HEDTA-, and (UO2)2(OH)22+ were suggested as the principal electron acceptors among the U(VI) species mixture in carbonate, EDTA, and hydroxyl systems, respectively

  13. Uranium mining

    International Nuclear Information System (INIS)

    Cheeseman, E.W.

    1980-01-01

    The international uranium market appears to be currently over-supplied with a resultant softening in prices. Buyers on the international market are unhappy about some of the restrictions placed on sales by the government, and Canadian sales may suffer as a result. About 64 percent of Canada's shipments come from five operating Ontario mines, with the balance from Saskatchewan. Several other properties will be producing within the next few years. In spite of the adverse effects of the Three Mile Island incident and the default by the T.V.A. of their contract, some 3 600 tonnes of new uranium sales were completed during the year. The price for uranium had stabilized at US $42 - $44 by mid 1979, but by early 1980 had softened somewhat. The year 1979 saw the completion of major environmental hearings in Ontario and Newfoundland and the start of the B.C. inquiry. Two more hearings are scheduled for Saskatchewan in 1980. The Elliot Lake uranium mining expansion hearings are reviewed, as are other recent hearings. In the production of uranium for nuclear fuel cycle, environmental matters are of major concern to the industry, the public and to governments. Research is being conducted to determine the most effective method for removing radium from tailings area effluents. Very stringent criteria are being drawn up by the regulatory agencies that must be met by the industry in order to obtain an operating licence from the AECB. These criteria cover seepages from the tailings basin and through the tailings retention dam, seismic stability, and both short and long term management of the tailings waste management area. (auth)

  14. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  15. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  16. Uranium in the Black Sea

    International Nuclear Information System (INIS)

    Babinets, A.E.; Zhorov, V.A.; Bezborodov, A.A.; Kobylyanskaya, A.G.; Solov'eva, L.V.; Urdenko, V.A.

    1975-01-01

    Water samples for uranium analysis have been collected over the entire Black Sea, from the surface to the sea floor. As distinct from the previously known facts, it has been established that the uranium content in different parts of the sea appears to vary both in extent and with depth. A behaviour of uranium is governed by redox conditions of the environment. A decrease in pH value of water to 7.5 and a change of Eh value from +0.4 to -0.2 v lead to reduction of U 6+ → U 4+ and ensure higher sorption properties of the solid phases. The reducing reaction is proved possible through the calculated data. It is shown that the rate of uranium isolation is increasing with depth and its content is going down. Using optical properties of water, a hydrogeochemical behaviour of organic matter and uranium in water thickness is explained. Role of organic matter and mineral components in the uranium deposition is described. Sorption of U 6+ ions on twelve components, which constitute a base of suspensions and floor sediments, has been also studied [ru

  17. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  18. Australia's uranium policy: an examination

    International Nuclear Information System (INIS)

    Crook, K.A.W.; Derborough, M.A.; Diesendorf, M.; Inall, E.K.; Peaslee, D.C.; Taylor, S.R.

    1974-12-01

    The mining and export of Australian Uranium poses problems for the safety of the world that any responsible government is bound to consider. The following note lists the major problems, attempts to assess their importance, and to suggest what lines may be relevant to Australia for their solution. These problems were examined because of the concern about the appropriateness of attempting to fulfill projected world energy needs by any means; and their fulfillment, by using nuclear fuels carries special problems of biological, social and political hazards. Any development of Australia's uranium resources should be considered in this light. (author)

  19. Uranium - what role

    International Nuclear Information System (INIS)

    Grey, T.; Gaul, J.; Crooks, P.; Robotham, R.

    1980-01-01

    Opposing viewpoints on the future role of uranium are presented. Topics covered include the Australian Government's uranium policy, the status of nuclear power around the world, Australia's role as a uranium exporter and problems facing the nuclear industry

  20. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.) [pt

  1. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  2. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  3. Uranium-contaminated soil pilot treatment study

    International Nuclear Information System (INIS)

    Turney, W.R.J.R.; Mason, C.F.V.; Michelotti, R.A.

    1996-01-01

    A pilot treatment study is proving to be effective for the remediation of uranium-contaminated soil from a site at the Los Alamos National Laboratory by use of a two-step, zero-discharge, 100% recycle system. Candidate uranium-contaminated soils were characterized for uranium content, uranium speciation, organic content, size fractionization, and pH. Geochemical computer codes were used to forecast possible uranium leach scenarios. Uranium contamination was not homogenous throughout the soil. In the first step, following excavation, the soil was sorted by use of the ThemoNuclean Services segmented gate system. Following the sorting, uranium-contaminated soil was remediated in a containerized vat leach process by use of sodium-bicarbonate leach solution. Leach solution containing uranium-carbonate complexes is to be treated by use of ion-exchange media and then recycled. Following the treatment process the ion exchange media will be disposed of in an approved low-level radioactive landfill. It is anticipated that treated soils will meet Department of Energy site closure guidelines, and will be given open-quotes no further actionclose quotes status. Treated soils are to be returned to the excavation site. A volume reduction of contaminated soils will successfully be achieved by the treatment process. Cost of the treatment (per cubic meter) is comparable or less than other current popular methods of uranium-contamination remediation

  4. Water Treatment for Uranium at the U.S. Department of Energy's Legacy Management Sites

    International Nuclear Information System (INIS)

    Dayvault, J.; Bush, R.; Ribeiro, T.; Surovchak, S.; Powell, J.; Bartlett, T.; Carpenter, C.; Jacobson, C.; Miller, D.; Morrison, S.; Boylan, J.; Broberg, K.; Glassmeyer, C.; Hertel, W.

    2009-01-01

    year from the aquifer. The system requires minimal operation and maintenance; however, the reactive media requires occasional replacement. At a former uranium milling site in Shiprock, New Mexico, uranium-contaminated ground water is captured by pumping wells and subsurface collection drains. The captured water is conveyed to an 11-acre evaporation pond. The total flow rate of contaminated ground water to the evaporation pond is about 190 lpm. Influent uranium concentration is about 800 μg/L, and about 80 kg of uranium is removed from the subsurface annually. Because of the evaporation process, the ground-water resource is lost. Operation of the system is limited to occasional pump maintenance. A pump-and-treat system is used at the Fernald Preserve in Ohio to lower uranium concentrations to less than 30 μg/L prior to discharge to the Great Miami River. The treatment system uses six flow-through vessels, each containing 8.9 m 3 of anion-exchange resin. The treatment flow rate is currently about 5,678 lpm, and the system is removing about 54 kg of uranium per year. Some ground water is blended with treated water such that about 300 kg of uranium is removed from the aquifer per year. The treatment process requires continuous operation and maintenance. At a former uranium milling site near Tuba City, Arizona, uranium-contaminated ground water is pumped from extraction wells and treated by ion exchange followed by distillation. The average flow rate is about 340 lpm, and the influent uranium concentration is about 250 μg/L. About 40 kg of uranium is removed from the aquifer per year. The distillation treatment process is operated full time, with the treated water being injected back into the aquifer. A wide variety of water treatments are used by the LM Program to remove uranium from contaminated ground water. If uranium is the only contaminant, it can be removed by simple flow-through columns containing an ion exchanger (Dowex) or a reductant (ZVI). Ion exchange with

  5. Uranium determination by spectrophotometry, in chloride solutions, using titanium (III) as reducer; Determinacao de uranio por espectrofotometria, em solucoes cloridricas, utilizando titanio (III) como redutor

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, E T.R.; Bastos, M B.R.

    1986-08-01

    A simple method for determining uranium in uranium (VI) solutions with the presence of uranium (IV), iron (II), and titanium (IV) in chloridic solution is described. The method comprises in uranium (VI) reduction with titanium (III), acidity adjustment and uranium (IV) spectrophotometry in hydrochloric acid 2 M. (C.G.C.).

  6. A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH2DS)

    International Nuclear Information System (INIS)

    Wang, Z.; Wagnon, K.B.; Ainsworth, C.C.; Liu, C.; Rosso, K.M.; Fredrickson, J.K.

    2008-01-01

    In this paper, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH 2 DS) is studied by stopped-flow kinetic technique under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest pseudo-1 st order reaction rate constant, k obs , within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH - > CO 3 2- > EDTA > DFB, in reverse order of the trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and an AH 2 DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS 3- was suggested as the primary reductant in all cases examined. Species UO 2 CO 3 (aq), UO 2 HEDTA - , and (UO 2 ) 2 (OH) 2 2+ were suggested as the principal electron acceptors among the U(VI) species mixture in each of the carbonate, EDTA, and hydroxyl systems, respectively. (orig.)

  7. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  8. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  9. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  10. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  11. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  12. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  13. In-situ metal precipitation in a zinc-aerobic, sandy aquifer by means of biological sulfate reduction

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Temminghoff, E.J.M.

    2004-01-01

    The applicability of in situ metal precipitation (ISMP) based on bacterial sulfate reduction (BSR) with molasses as carbon source was tested for the immobilization of a zinc plume in an aquifer with highly unsuitable initial conditions (high Eh, low pH, low organic matter content, and low sulfate

  14. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  15. Study of the dry processing of uranium ores

    International Nuclear Information System (INIS)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [fr

  16. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  17. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  18. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  19. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  20. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  1. Study of ammonia synthesis over uranium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  2. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  3. Uranium mining sites - Thematic sheets

    International Nuclear Information System (INIS)

    2009-01-01

    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  4. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  5. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  6. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  7. Uranium mill tailings stabilization

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-02-01

    Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration

  8. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  9. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  10. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  11. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  12. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  13. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  14. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  15. Recovering uranium from phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, M [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney-Ugine Kuhlmann, 75 - Paris (France)

    1981-06-01

    Processes for the recovery of the uranium contained in phosphates have today become competitive with traditional methods of working uranium sources. These new possibilities will make it possible to meet more rapidly any increases in the demand for uranium: it takes ten years to start working a new uranium deposit, but only two years to build a recovery plant.

  16. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  17. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  18. Depleted uranium: Metabolic disruptor?; Uranium appauvri: perturbateur metabolique?

    Energy Technology Data Exchange (ETDEWEB)

    Souidi, Maamar; Dublineau, Isabelle; Lestaevel, Philippe [Institut de Radioprotection et de Surete Nucleaire - IRSN, Direction de la radioprotection de l' homme, Laboratoire de radiotoxicologie experimentale, Service de radiobiologie et d' epidemiologie, BP 17, 92262 Fontenay-aux-Roses cedex (France)

    2011-11-15

    The presence of uranium in the environment can lead to long-term contamination of the food chain and of water intended for human consumption and thus raises many questions about the scientific and societal consequences of this exposure on population health. Although the biological effects of chronic low-level exposure are poorly understood, results of various recent studies show that contamination by depleted uranium (DU) induces subtle but significant biological effects at the molecular level in organs including the brain, liver, kidneys and testicles. For the first time, it has been demonstrated that DU induces effects on several metabolic pathways, including those metabolizing vitamin D, cholesterol, steroid hormones, acetylcholine and xenobiotics. This evidence strongly suggests that DU might well interfere with many metabolic pathways. It might thus contribute, together with other man-made substances in the environment, to increased health risks in some regions. (authors)

  19. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Oliveira, E.T.; Garcia, R.H.L.; Durazzo, M.

    2013-01-01

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235 U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99 Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H 2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO 2 2+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO 2 (NO 3 ) 2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  20. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  1. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  2. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  3. Biological reduction of hexavalent chromium and mechanism analysis of detoxification by enterobacter sp. HT1 isolated from tannery effluents, Mongolia

    Directory of Open Access Journals (Sweden)

    N Marjangul

    2014-12-01

    Full Text Available Enterobacter sp. HT1, Cr (VI resistant bacterial strain was isolated from the wastewater sample of the tannery in Mongolia. Batch experiments on hexavalent chromium removal was carried out at 10, 20, and 30 mg/L of Cr (VI added as potassium dichromate (K2Cr2O7, at pH 7 and temperature of 30 °C using pure culture of Enterobacter sp. HT1 as inoculum.  The isolated HT1 is capable of reduction nearly 100% of Cr (VI resulting in the decrease of Cr (VI from 10 to 0.2 mg/L within 20 hours. When the concentration of Cr (VI increased to 20 and 30mg/L, almost complete reduction of Cr (VI could achieve after 72 and 96 hours, respectively.DOI: http://doi.dx.org/10.5564/mjc.v15i0.322 Mongolian Journal of Chemistry 15 (41, 2014, p47-52

  4. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  5. Potentiometric determination of hexavalent uranium in uranium silicide samples

    International Nuclear Information System (INIS)

    Arlegui, Oscar

    1999-01-01

    The Chilean Nuclear Energy Commission's Department of Nuclear Materials has among its projects the production of fuels elements for nuclear reactors, and, therefore, the Chemical Analysis Laboratory must have a rapid and reliable method for uranium analysis, to control the uranium concentration during each stage of the production process. For this reason the Chilean Nuclear Energy Commission's Chemical Analysis Laboratory has validated a potentiometric method, which is a modification of the Davies and Gray method proposed by A.R. Eberle. This method uses the Potentiometric Titration Technique and is based on the direct and rapid reduction of uranium (VI) to Uranium (IV), in a concentrated phosphoric acid medium, with excess iron (II) used as a reducing agent. In this medium the excess iron (II) selectively oxidizes to iron (III) with nitric acid, using molybdenum (IV) as a catalyzer, the nitrous acid that is produced is eliminated by adding amidosulfuric acid. The solution is diluted with 1M sulfuric acid and the uranium (IV) obtained is titrated potentiometrically with potassium dichromate in the presence of vanadilic sulfate to obtain a better defined final titration point. The samples were softened with hydrochloric acid and nitric acid and later 50 ml were estimated in a 20% sulfuric acid medium. The analytical method was validated by comparing it with Certified Reference Material (C.R.M.) from the New Brunswick Laboratory (NBL), Metallic Uranium, CRM 112-A. The F Test and the T Test show that the value calculated is less than the tabulated value so the result is traceable to the reference material. The quantification limit, sensitivity, precision and accuracy were quantified for the method

  6. Uranium refining process using ion exchange membrane

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1977-01-01

    As for the method of refining uranium ore being carried out in Europe and America at present, uranium ore is roughly refined at the mine sites to yellow cake, then this is transported to refineries and refined by dry method. This method has the following faults, namely the number of processes is large, it requires expensive corrosion-resistant materials because of high temperature treatment, and the impurities in uranium tend to increase. On the other hand, in case of EXCER method, treatment is carried out at low temperature, and high purity uranium can be obtained, but the efficiency of electrolytic reduction process is extremely low, and economically infeasible. In the wet refining method called PNC process, uranium tetrafluoride is produced from uranium ore without making yellow cake, therefore the process is rationalized largely, and highly economical. The electrolytic reduction process in this method was developed by Asahi Chemical Industry Co., Ltd. by constructing the pilot plant in Ningyotoge Mine. The ion exchange membrane, the electrodes, and the problems concerning the process and the engineering for commercial plants were investigated. The electrolytic reduction process, the pilot plant, the development of the elements of electrolytic cells, the establishment of analytical process, the measurement of the electrolytic characteristics, the demonstration operation, and the life time of the electrolytic diaphragm are reported. (Kako, I.)

  7. Inhalation of uranium ores

    International Nuclear Information System (INIS)

    Stuart, B.O.; Jackson, P.O.

    1975-01-01

    In previous studies the biological dispositions of individual long-lived alpha members of the uranium chain ( 238 U, 234 U and 230 Th) were determined during and following repeated inhalation exposures of rats to pitchblende (26 percent U 3 O 8 ) ore. Although finely dispersed ore in secular equilibrium was inhaled, 230 Th/ 234 U radioactivity ratios in the lungs rose from 1.0 to 2.5 during 8 weeks of exposures and increased to 9.2 by four months after cessation of exposures. Marked non-equilibrium levels were also found in the tracheobronchial lymph nodes, kidneys, liver, and femur. Daily exposures of beagle dogs to high levels of this ore for 8 days resulted in lung 230 Th/ 234 U ratios of >2.0. Daily exposures of dogs to lower levels (0.1 mg/1) for 6 months, with sacrifice 15 months later, resulted in lung and thoracic lymph node 230 Th/ 234 U ratios ranging from 3.6 to 9 and nearly 7, respectively. The lungs of hamsters exposed to carnotite (4 percent U 3 O 8 ) ore in current lifespan studies show 230 Th/ 234 U ratios as high as 2.0 during daily inhalation of this ore in secular equilibrium. Beagle dogs sacrificed after several years of daily inhalations of the same carnotite ore plus radon daughters also showed marked non-equilibrium ratios of 230 Th/ 234 U, ranging from 5.6 to 7.4 in lungs and 6.2 to 9.1 in thoracic lymph nodes. This pattern of higher retention of 230 Th than 234 U in lungs, thoracic lymph nodes, and other tissues is thus consistent for two types of uranium ore among several species and suggests a reevaluation of maximum permissible air concentrations of ore, currently based only on uranium content

  8. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    1990-05-01

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10 -4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10 -4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10 -2 Sv -1 . Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  9. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness

    Science.gov (United States)

    Jones, Therésa M.; Durrant, Joanna; Michaelides, Ellie B.; Green, Mark P.

    2015-01-01

    The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml−1) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN. PMID:25780235

  10. Concentration factors of uranium mineralization in VII depositional cycle of Shuixigou group, lower-middle Jurassic at Wukurqi uranium deposit, Yili basin

    International Nuclear Information System (INIS)

    Liu Taoyong

    2004-01-01

    Starting with the analysis on uranium mineralization, this paper emphatically discusses factors related to uranium concentration in VII depositional cycle, such as the structure, the paleoclimate, the lithofacies-paleogeography, the lithology, the hydrogeology, the geochemistry, and the content of effective reductant. The author suggests that key factors of uranium migration and concentration at Wukurqi uranium deposit are the existence of ore-hosting formation (sand body), the long-term recharge of oxygen and uranium-bearing groundwater, the existence of effective reductant in ore-hosting formation

  11. Modeling of the non isothermal and non isobaric transformations kinetics. Application to the kaolinite de-hydroxylation and to the tri-uranium octo-oxide reduction by hydrogen

    International Nuclear Information System (INIS)

    Perrin, St.

    2002-12-01

    The aim of this work is to be able to describe transformations, occurring when solids and gases are in non isothermal and non isobaric conditions, with kinetic models. A methodology has been used. Two essential processes have to be taken into account: the germination and the growth. The germs are supposed to be formed (at constant temperature and pressure) in the grains surface with a constant velocity by surface unit, (gamma), called germination surface frequency (number of germs.m -2 .s -1 . The growth velocity is characterized by a growth surface reactivity, (phi) (in mol.m -2 .s -1 ). With an appropriate transformation model, it is possible to obtain the variations of (gamma) and (phi) in terms of the temperature and pressure which are then used in the calculation of the velocity in non isothermal and non isobaric conditions. In order to validate the developed method, two reactions have been studied. For the first one, the kaolinite de-hydroxylation, an anisotropic germination-growth model, where the step limiting the growth is a diffusion step, has been developed in order to explain the experimental kinetic curves. Nevertheless the velocity curves calculated from this model do not allow to describe the reaction for some temperature variations. This result shows the difficulty to precisely determine the germination surface frequency what induces an important approximation on the kinetic curves. The second reaction is the tri-uranium octo-oxide reduction by hydrogen. It has been shown that this reaction occurs according to three successive transformations. A kinetic model has been developed for each of these reactions considering germination as instantaneous. At last, in comparing this model with the experimental velocity curves, a very good agreement has been verified as well as for a temperature variation than for a hydrogen partial pressure change during the reaction. (O.M.)

  12. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  13. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  14. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  15. Preparation of uranium ingots from double fluorides; Elaboration de lingots d'uranium a partir de fluorures doubles

    Energy Technology Data Exchange (ETDEWEB)

    Le Boulbin, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-05-15

    A simple method has been developed for the preparation of uranium double fluorides and has given a new impetus to the study of the reduction of these compounds with a view to obtaining very pure uranium ingots. This reduction can be carried out using calcium or magnesium as the reducing agent, this latter metal being very interesting from the practical point of view. A comparative study of the heat balances of the reduction processes for the double fluorides and for uranium tetrafluoride has shown that reduction of the double fluorides is possible. The exact experimental conditions for these reductions have been determined. Our study has shown in particular that the reduction of the double salt UF{sub 4}, CaF{sub 2} by magnesium leads to the production of small (20 to 500 g) samples of high-purity uranium with a yield of 99 per cent. (author) [French] La mise au point d'une methode simple de preparation de fluorures doubles d'uranium a remis a l'ordre du jour la reduction de ces composes en vue d'obtenir des lingots d'uranium tres pur. Cette reduction peut etre conduite en utilisant du calcium ou du magnesium comme reducteur, ce dernier metal etant tres interessant du point de vue pratique. Une etude comparative des bilans thermiques des reductions des fluorures doubles et du tetrafluorure d'uranium a montre que la reduction des fluorures doubles etait possible. Les conditions experimentales precises de ces reductions ont ete determinees. Notre etude a montre, en particulier, que la reduction du sel double UF{sub 4}, F{sub 2}Ca par le magnesium permet d'obtenir sur des petites quantites de 20 a 500 g, de l'uranium de haute purete avec un rendement de 99 pour cent. (auteur)

  16. Uranium in bone: metabolic and autoradiographic studies in the rat

    International Nuclear Information System (INIS)

    Priest, N.D.; Haines, J.W.; Howells, G.R.; Green, D.

    1982-01-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1) Uranium is initially deposited on to all types of bone surface, but preferentially on to those that are accreting. 2) Uranium is deposited in the calcifying zones of skeletal cartilage. 3) Bone accretion results in the burial of surface deposits of uranium. 4) Bone resorption causes the removal of uranium from surfaces. 5) Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6) Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7) The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium. (author)

  17. Uranium in bone: metabolic and autoradiographic studies in the rat.

    Science.gov (United States)

    Priest, N D; Howells, G R; Green, D; Haines, J W

    1982-03-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.

  18. Uranium recovery from seawater

    International Nuclear Information System (INIS)

    Bitte, J.; Fremery, M.I.; Kellner, A.; Schroeer, K.; Knippenberg, W.

    1984-09-01

    The present publication describes the development work of a process to recover uranium from seawater and the proposition of a commercial demonstration plant. The essential components of this process are verified in the laboratory scale as well as in some field tests. A detailed engineering design for a model plant in a semi-technical scale to allow field tests in the marine environment is also presented. These field tests are expected to produce more realistic data on the technical and economical feasibility of the proposed technology. Production cost estimates based on state-of-the-art technology lie around 250 Dollar/1b U 3 O 8 . However, the effect of a corresponding uranium price increase on electricity costs are comparable to cost increases in coal operated power plants caused by the desulfurisation of coal. Further reductions of the production costs in the range below 150 Dollar/1b U 3 O 8 seem possible through special research efforts in the area of sorber development and concept design. (orig.) [de

  19. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  20. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    International Nuclear Information System (INIS)

    Rasool, Kashif; Mahmoud, Khaled A.; Lee, Dae Sung

    2015-01-01

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  1. Laboratory simulation studies of uranium mobility in natural waters

    International Nuclear Information System (INIS)

    Giblin, A.M.; Swaine, D.J.; Batts, B.D.

    1981-01-01

    The effects of imposed variations of pH and Eh on aqueous uranium mobility at 25 0 C have been studied in three simulations of natural water systems. Constituents tested for their effect on uranium mobility were: (a) hydrous ferric oxide, to represent adsorptive solids which precipitate or dissolve in response to variations in pH and Eh; (b) kaolinite, representing minerals which, although modified by pH and Eh changes, are present as solids over the pH-Eh range of natural waters; and (c) carbonate, to represent a strong uranium-complexing species. Uranium mobility measurements from each simulation were regressed against pH and Eh within a range appropriate to natural waters. Hydrous ferric oxide and kaolinite each affected uranium mobility, but in separate pH-Eh domains. Aqueous carbonate increased mobility of uranium, and adsorption of UO 2 (CO 3 ) 3 4- caused colloidal dispersion of hydrous ferric oxide, possibly explaining the presence of 'hydrothermal hematite' in some uranium deposits. Enhanced uranium mobility observed in the pH-Eh domains of thermodynamically insoluble uranium oxides could be explained if the oxides were present as colloids. Uranium persisting as a mobile species, even after reduction, has implications for the near surface genesis of uranium ores. (author)

  2. Adsorption study for uranium in Rocky Flats groundwater

    International Nuclear Information System (INIS)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite)

  3. State of uranium and radium radionuclides in the soil medium

    International Nuclear Information System (INIS)

    Vojnikova, E.V.; Sokolik, G.A.; Ovsyannikova, S.V.; Popenya, M.V.

    2010-01-01

    The reserves of migratory active, potentially mobile and potentially biologically available forms of uranium and radium in the mineral and organic soils of Belarus have been established. The uranium and radium species in the soil pore waters have been also studied. The received data makes possible the estimation of the radionuclide ability to participate in the processes of biogeochemical migration in terrestrial ecosystems. (authors)

  4. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  5. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  6. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  7. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  8. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  9. Bacterial leaching of waste uranium materials.

    Science.gov (United States)

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  10. Bacterial leaching of waste uranium materials

    International Nuclear Information System (INIS)

    Barbic, F.F.; Bracilovic, D.M.; Krajincanic, B.V.; Lucic, J.L.

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.0372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid. (author)

  11. Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety.

    Science.gov (United States)

    Rock, Cheryl L; Flatt, Shirley W; Barkai, Hava-Shoshana; Pakiz, Bilge; Heath, Dennis D

    2017-12-04

    Dietary strategies that help patients adhere to a weight reduction diet may increase the likelihood of weight loss maintenance and improved long-term health outcomes. Regular nut consumption has been associated with better weight management and less adiposity. The objective of this study was to compare the effects of a walnut-enriched reduced-energy diet to a standard reduced-energy-density diet on weight, cardiovascular disease risk factors, and satiety. Overweight and obese men and women (n = 100) were randomly assigned to a standard reduced-energy-density diet or a walnut-enriched (15% of energy) reduced-energy diet in the context of a behavioral weight loss intervention. Measurements were obtained at baseline and 3- and 6-month clinic visits. Participants rated hunger, fullness and anticipated prospective consumption at 3 time points during the intervention. Body measurements, blood pressure, physical activity, lipids, tocopherols and fatty acids were analyzed using repeated measures mixed models. Both study groups reduced body weight, body mass index and waist circumference (time effect p weight was -9.4 (0.9)% vs. -8.9 (0.7)% (mean [SE]), for the standard vs. walnut-enriched diet groups, respectively. Systolic blood pressure decreased in both groups at 3 months, but only the walnut-enriched diet group maintained a lower systolic blood pressure at 6 months. The walnut-enriched diet group, but not the standard reduced-energy-density diet group, reduced total cholesterol and low-density lipoprotein cholesterol (LDL-C) at 6 months, from 203 to 194 mg/dL and 121 to 112 mg/dL, respectively (p weight loss that is comparable to a standard reduced-energy-density diet in the context of a behavioral weight loss intervention. Although weight loss in response to both dietary strategies was associated with improvements in cardiovascular disease risk factors, the walnut-enriched diet promoted more favorable effects on LDL-C and systolic blood pressure. The trial

  12. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.

    Science.gov (United States)

    Alquier, Marjorie; Kassim, Caroline; Bertron, Alexandra; Sablayrolles, Caroline; Rafrafi, Yan; Albrecht, Achim; Erable, Benjamin

    2014-01-01

    After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement

  13. Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (2) (Joint research)

    International Nuclear Information System (INIS)

    Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Kataoka, Takahiro; Etani, Reo

    2016-03-01

    Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and exposure doses of radon. From 2009 to 2013, the following results were obtained. (1) Literature on drinking effects of radon hot spring water was surveyed to determine the present tasks. (2) Under the present experimental conditions, drinking of hot spring water into which radon was intentionally introduced using the equipment in the facility did not have significant effects on mice. (3) Inhibitory effects of antioxidant pre-supplements (Vitamins C and E) and radon pre-inhalation on hepatic or renal oxidative damage were examined to make the comparison. (4) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon were studied. (5) Some exposure routes due to inhalation of radon or its progeny were modeled to calculate organ doses in mice. (author)

  14. Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (Joint research)

    International Nuclear Information System (INIS)

    Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Kataoka, Takahiro; Yamato, Keiko; Nishiyama, Yuichi

    2013-06-01

    Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and absorbed doses of radon. From 2007 to 2011, the following results were obtained. (1) Literature on effects of radon for the low-dose range was surveyed to determine the present tasks. (2) The first Japanese large-scale facility was developed for radon inhalation experiments with small animals. (3) Relationships between radon concentration and inhalation time were widely examined to understand the change in antioxidative functions due to radon, which are the most basic parameters. (4) Inhibitory effects of radon on oxidative damages were observed using model mice with reactive oxygen- or free radical-related diseases like alcohol-induced oxidative damages and type I diabetes. (5) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon was examined and the model for calculation of absorbed doses for organs and tissues was obtained. (author)

  15. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  16. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  17. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  18. The environmental behaviour of uranium and thorium

    International Nuclear Information System (INIS)

    Sheppard, M. I.

    1980-08-01

    Uranium and thorium have had many uses in the past, and their present and potential use as nuclear fuels in energy production is very significant. Both elements, and their daughter products, are of environmental interest because they may have effects from the time of mining to the time of ultimate disposal of used nuclear fuel. To assess the impact on the environment of man's use and disposal of uranium and thorium, we must know the physical, chemical and biological behaviour of these elements. This report summarizes the literature, updating and extending earlier reviews pertaining to uranium and thorium. The radiological properties, chemistry, forms of occurrence in nature, soil interactions, as well as distribution coefficients and mode of transport are discussed for both elements. In addition, uranium and thorium concentrations in plants, plant transfer coefficients, concentrations in soil organisms and methods of detection are summarized. (auth)

  19. Fluorescence of UO22+ in different acidic media containing cationic and anionic impurities. Application to the elaboration of a very sensitive dosing method of Uranium in solution by fluorimetry and to the study of the kinetics of U-6 reduction by Iron

    International Nuclear Information System (INIS)

    Belkadi, L.

    1990-09-01

    The use of the fluorimetric analysis method in phosphoric medium proved that this method is very sensitive for detecting Uranium traces (10 E-10 M). The dosing can be carried out after a simple calibration of the device and without calling for the addition techniques. The interference of most organic matters is eliminated by the 337 nm exciting radiation. The inhibition of the fluorescence induced by anions and cations is generally resolved by a simple dilution. The nitrates that have a harmful effect on the Uranium fluorescence have been eliminated by successive evaporations. This method, as it has been improved in this work, is applied to the study of U-6 reduction by metallic Iron and Fe-2 in orthophosphoric acid medium in case the absorption spectrophotometry becomes inoperative. 37 figs., 14 tabs., 50 refs. (author)

  20. Analysis of uranium and its compounds. Ruthenium spectrographic determination

    International Nuclear Information System (INIS)

    Anon.

    Ruthenium determination in uranium and its compounds, suitable for content greater than 0.1 ppm with respect to uranium, by dissolution in sulfuric acid and addition of palladium as an internal standard, separation of the precipitated ruthenium, in the presence of gold, by reduction with zinc, the precipitate is calcined and ruthenium is determined by spectrography [fr

  1. Analysis on metallogenetic geological and physicochemical conditions in uranium deposit No.138

    International Nuclear Information System (INIS)

    Tang Qitao

    1996-01-01

    The uranium deposit No.138 is of Mesozoic volcano-sedimentary transformation type. This paper discusses such geological conditions as source of uranium, stratigraphy and lithology, lithofacies and paleogeography, paleoclimate, structure and reworking-regeneration, and such physicochemical conditions as uranium adsorbent and reductant, effective porosity, chemical compositions, pH and Eh of rocks in the deposit

  2. Analysis on ore-controlling factors of Zhajistan uranium deposit, Xinjiang

    International Nuclear Information System (INIS)

    A Zhongming

    2000-01-01

    The geologic-structural background where the Zhajistan uranium deposit is located, and sedimentary features of the basin, as well as ore-controlling factors such as the uranium source, the reductant, hydrogeologic conditions and development features of interlayer oxidation zone in Zhajistan, are analysed. Then the author proposes the most favourable sedimentary cycle for uranium metallogenesis and the most favourable prospecting areas

  3. Uranium production

    International Nuclear Information System (INIS)

    Jones, J.Q.

    1981-01-01

    The domestic uranium industry is in a state of stagflation. Costs continue to rise while the market for the product remains stagnant. During the last 12 months, curtailments and closures of mines and mills have eliminated over 5000 jobs in the industry, plus many more in those industries that furnish supplies and services. By January 1982, operations at four mills and the mines that furnish them ore will have been terminated. Other closures may follow, depending on cost trends, duration of current contracts, the degree to which mills have been amortized, the feasibility of placing mines on standby, the grade of the ore, and many other factors. Open-pit mines can be placed on standby without much difficulty, other than the possible cost of restoration before all the ore has been removed. There are a few small, dry, underground mines that could be mothballed; however, the major underground producers are wet sandstone mines that in most cases could not be reopened after a prolonged shutdown; mills can be mothballed for several years. Figure 8 shows the location of all the production centers in operation, as well as those that have operated or are on standby. Table 1 lists the same production centers plus those that have been deferred, showing nominal capacity of conventional mills in tons of ore per calendar day, and the industry production rate for those mills as of October 1, 1981

  4. Biosolubilization of uranyl ions in uranium ores by hydrophyte plants

    International Nuclear Information System (INIS)

    Cecal, Alexandru; Calmoi, Rodica; Melniciuc-Puica, Nicoleta

    2006-01-01

    This paper investigated the bioleaching of uranyl ions from uranium ores, in aqueous medium by hydrophyte plants: Lemna minor, Azolla caroliniana and Elodea canadensis under different experimental conditions. The oxidation of U(IV) to U(VI) species was done by the atomic oxygen generated in the photosynthesis process by the aquatic plants in the solution above uranium ores. Under identical experimental conditions, the capacity of bioleaching of uranium ores decreases according to the following series: Lemna minor > Elodea canadensis > Azolla caroliniana. The results of IR spectra suggest the possible use of Lemna minor and Elodea canadensis as a biological decontaminant of uranium containing wastewaters. (author)

  5. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  6. Investigations for the Recycle of Pyroprocessed Uranium

    Science.gov (United States)

    Westphal, B. R.; Price, J. C.; Chambers, E. E.; Patterson, M. N.

    Given the renewed interest in uranium from the pyroprocessing of used nuclear fuel in a molten salt system, the two biggest hurdles for marketing the uranium are radiation levels and transuranic content. A radiation level as low as possible is desired so that handling operations can be performed directly with the uranium. The transuranic content of the uranium will affect the subsequent waste streams generated and, thus also should be minimized. Although the pyroprocessing technology was originally developed without regard to radiation and transuranic levels, adaptations to the process have been considered. Process conditions have been varied during the distillation and casting cycles of the process with increasing temperature showing the largest effect on the reduction of radiation levels. Transuranic levels can be reduced significantly by incorporating a pre-step in the salt distillation operation to remove a majority of the salt prior to distillation.

  7. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Known uranium deposits and the companies involved in uranium mining and exploration in Australia are listed. The status of the development of the deposits is outlined and reasons for delays to mining are given

  8. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  9. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  10. Price of military uranium

    International Nuclear Information System (INIS)

    Klimenko, A.V.

    1998-01-01

    The theoretical results about optimum strategy of use of military uranium confirmed by systems approach accounts are received. The numerical value of the system approach price of the highly enriched military uranium also is given

  11. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  12. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  13. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  14. Brazilian uranium deposits

    International Nuclear Information System (INIS)

    Santos, L.C.S. dos.

    1985-01-01

    Estimatives of uranium reserves carried out in Figueira, Itataia, Lagoa Real and Espinharas, in Brazil are presented. The samples testing allowed to know geological structures, and the characteristics of uranium mineralization. (M.C.F.) [pt

  15. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The mining of uranium in Australia is criticised in relation to it's environmental impact, economics and effects on mine workers and Aborigines. A brief report is given on each of the operating and proposed uranium mines in Australia

  16. Some potential strategies for the treatment of waste uranium metal and uranium alloys

    International Nuclear Information System (INIS)

    Burns, C.J.; Frankcom, T.M.; Gordon, P.L.; Sauer, N.N.

    1993-01-01

    Large quantities of uranium metal chips and turnings stored throughout the DOE Complex represent a potential hazard, due to the reactivity of this material toward air and water. Methods are being sought to mitigate this by conversion of the metal, via room temperature solutions routes, to a more inert oxide form. In addition, the recycling of uranium and concomitant recovery of alloying metals is a desirable goal. The emphasis of the authors' research is to explore a variety of oxidation and reduction pathways for uranium and its compounds, and to investigate how these reactions might be applied to the treatment of bulk wastes

  17. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  18. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Eun Su; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Objective Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. Methods The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. Results The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. Conclusion Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic

  19. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  20. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method