WorldWideScience

Sample records for biological tissues irradiated

  1. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  2. Biological Activity Alterations of Human Amniotic Membrane Pre and Post Irradiation Tissue Banking.

    Science.gov (United States)

    Nemr, Waleed; Bashandy, A S; Araby, Eman; Khamiss, O

    Innate immunity of Human Amniotic Membrane (HAM) and its highly active secretome that rich with various types of growth factors and anti-inflammatory substances proposed it as a promising material for many medical studies and applications. This study evaluate the biological activity of cultivated HAM pre and post tissue banking process in which freeze-dried HAM was sterilized by 25 KGray (kGy) dose of γ radiation. The HAM's antimicrobial activity, viability, growth of isolated human amniotic epithelial cells (HAECs), hematopoietic stimulation of co-cultivated murine bone marrow cells (mammalian model), scaffold efficiency for fish brain building up (non-mammalian model) and self re-epithelialization after trypsin denuding treatment were examined as supposed biological activity features. Native HAM revealed viability indications and was active to kill all tested microorganisms; 6 bacterial species (3 Gram-positive and 3 Gram-negative) and Candida albicans as a pathogenic fungus. Also, HAM activity promoted colony formation of murine hematopoietic cells, Tilapia nilotica brain fragment building-up and self re-epithelialization after trypsin treatment. In contrary, radiation-based tissue banking of HAM caused HAM cellular death and consequently lacked almost all of examined biological activity features. Viable HAM was featured with biological activity than fixed HAM prepared by irradiation tissue banking.

  3. Thermal Damage Analysis in Biological Tissues Under Optical Irradiation: Application to the Skin

    Science.gov (United States)

    Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Solana-Quirós, José Ramón; Arce-Diego, José Luis

    2009-07-01

    The use of optical sources in medical praxis is increasing nowadays. In this study, different approaches using thermo-optical principles that allow us to predict thermal damage in irradiated tissues are analyzed. Optical propagation is studied by means of the radiation transport theory (RTT) equation, solved via a Monte Carlo analysis. Data obtained are included in a bio-heat equation, solved via a numerical finite difference approach. Optothermal properties are considered for the model to be accurate and reliable. Thermal distribution is calculated as a function of optical source parameters, mainly optical irradiance, wavelength and exposition time. Two thermal damage models, the cumulative equivalent minutes (CEM) 43 °C approach and the Arrhenius analysis, are used. The former is appropriate when dealing with dosimetry considerations at constant temperature. The latter is adequate to predict thermal damage with arbitrary temperature time dependence. Both models are applied and compared for the particular application of skin thermotherapy irradiation.

  4. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].

    Science.gov (United States)

    Wei, Hua-jiang; Xing, Da; Wu, Guo-yong; Jin, Ying; Gu, Huai-min

    2004-05-01

    A double-integrating-spheres system, basic principle of measuring technology of ray radiation, and optical model of biological tissues were used for the study. Optical properties of human normal small intestine tissue at 476.5, 488, 496.5, 514.5 and 532 nm laser and their linearly polarized laser irradiation were studied. The results of measurement showed that the total attenuation coefficient and scattering coefficient of the tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. And obviously there was a distinction at 514.5 to 532 nm wavelength between lasers and their linearly polarized laser irradiation. Absorption coefficient of tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. Absorption coefficient of tissue at 514.5 to 532 nm wavelength of laser was obviously decreasing, which was independent of these wavelengths of laser or their linearly polarized laser irradiation. Mean cosine of scattering of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with decreasing wavelengths. But penetration depth of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with increasing of wavelengths. Refractive index of tissue between these wavelengths of laser was within 1.38 to 1.48. Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at the same wavelength of laser and their linearly polarized laser irradiation showed no prominent distinction (P>0.01). Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at different wavelength of laser and their linearly polarized laser irradiation showed obvious distinction. Optical properties of tissue

  5. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    Science.gov (United States)

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  6. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Picou, Laura; McMann, Casey; Boldor, Dorin [Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, 149 E B Doran Building, Baton Rouge, LA 70803-4505 (United States); Elzer, Philip H; Enright, Frederick M [Department of Veterinary Sciences, Louisiana State University Agricultural Center, 111 Dalrymple Building, Baton Rouge, LA 70803 (United States); Biris, Alexandru S, E-mail: DBoldor@agcenter.lsu.edu [Nanotechnology Center, University of Arkansas-Little Rock, 2801 South University Avenue, ETAS 151, Little Rock, AR 72204-1099 (United States)

    2010-10-29

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  7. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)

    2015-04-30

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes of light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)

  8. Taurine content of tissues of irradiated rats

    International Nuclear Information System (INIS)

    Akhalaya, M.Ya.; Bogatyrev, G.P.; Kudryashov, Yu.B.; Yartsev, E.I.

    1976-01-01

    The taurine content of tissues (liver, stomach, small intestine and spleen) of rats irradiated with doses of 700 and 450 rads has been studied. Phase changes have been found in the taurine content of radiosensitive tissues in the course of radiation injury development

  9. Irradiation chamber and sample changer for biological samples

    International Nuclear Information System (INIS)

    Kraft, G.; Daues, H.W.; Fischer, B.; Kopf, U.; Liebold, H.P.; Quis, D.; Stelzer, H.; Kiefer, J.; Schoepfer, F.; Schneider, E.

    1980-01-01

    This paper describes an irradiaton system with which living cells of different origin are irradiated with heavy ion beams (18 <- Z <- 92) at energies up to 10 MeV/amu. The system consists of a beam monitor connected to the vacuum system of the accelerator and the irradiation chamber, containing the biological samples under atmospheric pressure. The requirements and aims of the set up are discussed. The first results with saccharomyces cerevisiae and Chinese Hamster tissue cells are presented. (orig.)

  10. Biological Effects after Prenatal Irradiation

    International Nuclear Information System (INIS)

    Streffer, C.

    2004-01-01

    A Task Group of the International Commission on Radiological Protection (ICRP) has finished a report Biological Effects after Prenatal Irradiation (Embryo and Fetus) which has been approved by the Main Commission and Will be Published. Some new important scientific data shall be discussed in this contribution. During the preimplantation period lethality of the mammalian embryo is the dominating radiation effect. However, in mouse strains with genetic predispositions it has been shown that also malformations can be caused. This effect is genetically determined and its mechanisms is different from the induction of malformations during major organogenesis. Radiation exposures during this prenatal period leads ato an increase of genomic instability of cells in the normal appearing fetuses. These radiation effects can be transmitted to the next generation. A renewed analysis of individuals with severe mental retardation after exposures during the 8th to 15th week post conception in Hiroshima and Nagasaki gives evidence that a threshold dose exists for this effect around 300 mGy. This is supported by a number of experimental animal data which have been obtained from cellular and molecular investigations during the brain development. The data show the high radiosensitivity of the developing brain but also the various compensatory mechanisms and the enormous plasticity of these processes. The radiosensitivity varies strongly during the prenatal development. The highest sensitivity is found during the early and mid fetal period which is coinciding with weeks 8-15 post conception in humans. The lowest doses causing persistent damage are in the range of 100 to 300 mGy. For intelligence quotient scores a linear dose response model provides a satisfactory fit. From the experimental data it can be concluded that the fetal stage is most sensitive to the carcinogenic effect in comparison to the other prenatal stages. Such as clear situation cannot be obtained from the

  11. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  12. Differential superiority of heavy charged-particle irradiation to x-rays: Studies on biological effectivenes and side effect mechanisms in multicellular tumor and normal tissue models

    Directory of Open Access Journals (Sweden)

    Stefan eWalenta

    2016-02-01

    Full Text Available This review is focused on the radiobiology of carbon ions compared to x-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review deals with radiation-induced cell migration and mucositis.Multicellular spheroids (MCS from V79 hamster cells were irradiated with x-rays or carbon ions under ambient or restricted oxygen supply conditions. Oxygen enhancement ratios (OER were 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. A relative biological effectiveness (RBE of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M, and a dose-dependent massive induction of apoptosis. Clinically relevant doses (3 Gy of x-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in 1 integrin expression. Unlike with particles, the photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor (EGFR and AKT-ERK1/2 pathway. Comparing the gene toxicity of x-rays with that of particles using the gamma-H2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a two-fold higher number of foci per nucleus. Pro-inflammatory signs, however, were similar for both treatment modalities, e. g., the activation of NFkappaB, and the release of IL

  13. Quantification of biologically effective environmental UV irradiance

    Science.gov (United States)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  14. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  15. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models

    Science.gov (United States)

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the

  16. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models.

    Science.gov (United States)

    Walenta, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, (12)C(+6) in the plateau region, and (12)C(+6) in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during (12)C(+6) irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral

  17. Sterilization of biological tissues with ionizing radiation

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D.

    1997-01-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  18. Biological effects of prenatal irradiation

    International Nuclear Information System (INIS)

    Streffer, Christian

    1997-01-01

    After large releases of radionuclides, exposure of the embryo or fetus can take place by external irradiation or uptake of radionuclies. The embryo and fetus are radiosensitive throughout prenatal development. The quality and extent of radiation effects depend on the development stage. During the preimplantation period (one to 10 days postconception, p.c.) a radiation exposure of at least 0.2 Gy can cause the death of the embryo. Malformations are only observed in rare cases when genetic predisposition exist. Macroscopic, anatomical malformations are induced only after irradiation during the major organogenesis (two to eight weeks p.c.). A radiation dose of about 0.2 Gy is a doubling dose for the malformation risks as extrapolated from experiments with rodents. The human embryo may be more radioresistant. During early fetogenesis (8-15 weeks p.c.) a high radiosensitivity exists for the developmental of the brain. Radiation doses of 1.0 Gy cause severe mental retardation in about 40% of the exposed fetuses. It must be taken into account that a radiation exposure during the fetal period can also induce cancer. It is generally assumed that the risk exists at about the same level as for children. (Author)

  19. Tracing molecular dephasing in biological tissue

    Science.gov (United States)

    Mokim, M.; Carruba, C.; Ganikhanov, F.

    2017-10-01

    We demonstrate the quantitative spectroscopic characterization and imaging of biological tissue using coherent time-domain microscopy with a femtosecond resolution. We identify tissue constituents and perform dephasing time (T2) measurements of characteristic Raman active vibrations. This was shown in subcutaneous mouse fat embedded within collagen rich areas of the dermis and the muscle connective tissue. The demonstrated equivalent spectral resolution (methods for characterization of biological media. This provides with the important dimensions and parameters in biological media characterization and can become an effective tool in detecting minute changes in the bio-molecular composition and environment that is critical for molecular level diagnosis.

  20. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  1. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  2. Nonlinear spectral imaging of biological tissues

    NARCIS (Netherlands)

    Palero, J.A.

    2007-01-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.

  3. Biological effects of low-dose irradiation

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1979-01-01

    For a long time, radiation, biological research concentrated on the diagnosis and the effect chains to be taken into consideration in the case of acute and chronic radiation effects due to intensive irradiation. Approximately at the beginning of the Thirties, the research results of the geneticist Mueller and the radiation-biologists Oliver and Timofeef-Ressovsky brought a fundamental change in the way of looking at things in radiation biology. From the results then obtained it can be deduced that even the smallest quantities of radiation can cause effects. Basically, two processes leading to different radiation reactions have to be recognized: 1) A change in the genetical code, especially by direct irradiation of the nucleus. The effects thus arising are called stochastic effects. 2) A change of the cell in total by inactivation of the cell division or by cell death. These are called non-stochastic effects. Here, a threshold dose is existent. In these cases, the degree of the effects depends on the quantity of the dose. Therefore, the stochastic effects are paid special attention when determining radiation effects with low doses. Here, the emphasis of the research was moved from the genetic effects to the generation of somatic effects, especially the generation of malign neoformations and the shortening of the life connected with them. In the generation of malign neoformations by ionising radiation, probably only the transformation of a single cell is necessary, however only then when ionising radiation is absorbed in the nucleus several times (multi-hit theory). This leads to the assumption that the induction of malignant neoformations possesses a linear quadratic function, at least in the region of medium doses. (orig./MG) [de

  4. Biologic comparison of partial breast irradiation protocols

    International Nuclear Information System (INIS)

    Rosenstein, Barry S.; Lymberis, Stella C.; Formenti, Silvia C.

    2004-01-01

    Purpose: To analyze the dose/fractionation schedules currently used in ongoing clinical trials of partial breast irradiation (PBI) by comparing their biologically effective dose (BED) values to those of three standard whole breast protocols commonly used after segmental mastectomy in the treatment of breast cancer. Methods and materials: The BED equation derived from the linear-quadratic model for radiation-induced cell killing was used to calculate the BEDs for three commonly used whole breast radiotherapy regimens, in addition to a variety of external beam radiotherapy, as well as high-dose-rate and low-dose-rate brachytherapy, PBI protocols. Results: The BED values of most PBI protocols resulted in tumor control BEDs roughly equivalent to a 50-Gy standard treatment, but consistently lower than the BEDs for regimens in which the tumor bed receives a total dose of either 60 Gy or 66 Gy. The BED values calculated for the acute radiation responses of erythema and desquamation were nearly all lower for the PBI schedules, and the late-response BEDs for most PBI regimens were in a similar range to the BEDs for the standard treatments. Conclusion: Biologically effective dose modeling raises the concern that inadequate doses might be delivered by PBI to ensure optimal in-field tumor control

  5. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  6. Desiccation tolerance in biological tissue

    International Nuclear Information System (INIS)

    Lenne, T.; Bryant, G.

    2003-01-01

    Full text: Severe dehydration is lethal for most biological species. However, there are a number of organisms or organelles which have evolved mechanisms to avoid damage during dehydration. One of these mechanisms is the accumulation of small solutes (such as sugars), which has been shown to preserve membranes by inhibiting deleterious phase changes at low hydration. The aim of this project is to use small angle x-ray scattering (SAXS) to investigate the effects of small solutes on the phase behaviour and packing parameters of multilamellar membranes as a function of hydration. In the experiment a synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3- phosphatidylcholine (DPPC) will be used as a model system, as it is the most well characterized phospholipid. Hence the repeat spacings (distance between consecutive bilayers ∼50 Angstroms) and the intra-lipid spacing (distance between a lipid and its neighbor ∼5 Angstroms) are well documented. An appropriate solute, and solute concentration range will be chosen, and its effect on the freezing temperature of DPPC will be observed. To determine the effectiveness of the added solute the repeat spacings need to be measured. Experiments will be conducted at a number of hydrations to accurately model the phase behavior for DPPC over the entire range of hydrations and solute concentrations. Experiments using an alternate configuration of the SAXS may be attempted if time permits to measure the interlipid spacing to obtain more information regarding the phase transition. Although SAXS has been performed extensively on DPPC, experiments with solutes over a range of hydrations, particularly very low hydrations, have not been attempted

  7. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  8. Effect of whole body irradiation on different tissues

    International Nuclear Information System (INIS)

    Casati, V.; Nardino, A.; Tomassi, I.; Becciolini, A.; Rizzi, M.; Martelli, T.

    1979-01-01

    The uptake and elimination of 14 C leucine were analysed in controls and in rats irradiated 2 h before injection with 8 Gy whole-body irradiation. Plasma, small intestine, kidney and skin were assayed after homogenization for TCA soluble and insoluble activity curves. In highly differentiated tissues with poor proliferative activity and low protein turnover, the uptake and elimination of the tracer did not appear to be affected by irradiation. In the small intestine differences between control and irradiated animals seemed significant. (Auth.)

  9. Physical and Biological Characterization of the Gamma-Irradiated Human Cornea.

    Science.gov (United States)

    Chae, J Jeremy; Choi, Joseph S; Lee, Justin D; Lu, Qiaozhi; Stark, Walter J; Kuo, Irene C; Elisseeff, Jennifer H

    2015-10-01

    To compare the physical and biological characteristics of commercial gamma-irradiated corneas with those of fresh human corneas and to determine suitability for transplantation. The physical properties of gamma-irradiated and fresh corneas were evaluated with respect to light transmittance, hydration (swelling ratio), elastic modulus (compressive modulus by the indentation method), matrix organization (differential scanning calorimetry), and morphology (light and transmission electron microscopy). The biological properties of the gamma-irradiated cornea, including residual cell content and cellular biocompatibility, were evaluated by quantifying DNA content and measuring the proliferation rate of human corneal epithelial cells, respectively. The hydration, light transmittance, elastic modulus, and proliferation rate of human corneal epithelial cells were not significantly different between fresh and gamma-irradiated corneas. However, differences were observed in tissue morphology, DNA content, and thermal properties. The density of collagen fibrils of the gamma-irradiated corneal sample (160.6 ± 33.2 fibrils/μm) was significantly lower than that of the fresh corneal sample (310.0 ± 44.7 fibrils/μm). Additionally, in the gamma-irradiated corneas, cell fragments-but not viable cells-were observed, supported by lower DNA content of the gamma-irradiated cornea (1.0 ± 0.1 μg/mg) than in fresh corneas (1.9 μg/mg). Moreover, the denaturation temperature of gamma-irradiated corneas (61.8 ± 1.1 °C) was significantly lower than that of fresh corneas (66.1 ± 1.9 °C). Despite structural changes due to irradiation, the physical and biological properties of the gamma-irradiated cornea remain similar to the fresh cornea. These factors, combined with a decreased risk of rejection and longer shelf life, make the gamma-irradiated tissue a viable and clinically desired option in various ophthalmic procedures.

  10. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  11. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  12. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  13. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  14. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  15. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  16. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

    2011-01-01

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5 ) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal. - Research highlights: → This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewagesludge. → The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. → It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  17. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    Science.gov (United States)

    Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

    2011-12-01

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  18. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  19. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  20. Nonlinear Rheology in a Model Biological Tissue.

    Science.gov (United States)

    Matoz-Fernandez, D A; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-14

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  1. The sensitivity of biological tissue to ultrasound.

    Science.gov (United States)

    Barnett, S B; Rott, H D; ter Haar, G R; Ziskin, M C; Maeda, K

    1997-01-01

    Mammalian tissues have differing sensitivities to damage by physical agents such as ultrasound. This article evaluates the scientific data in terms of known physical mechanisms of interaction and the impact on pre- and postnatal tissues. Actively dividing cells of the embryonic and fetal central nervous system are most readily disturbed. As a diagnostic ultrasound beam envelopes a small volume of tissue, it is possible that the effects of mild disturbance may not be detected unless major neural pathways are involved. There is evidence that ultrasound can be detected by the central nervous system; however, this does not necessarily imply that the bioeffect is hazardous to the fetus. Biologically significant temperature increases can occur at or near to bone in the fetus from the second trimester, if the beam is held stationary for more than 30 s in some pulsed Doppler applications. In this way, sensory organs that are encased in bone may be susceptible to heating by conduction. Reports in animals and humans of retarded growth and development following frequent exposures to diagnostic ultrasound, in the absence of significant heating, are difficult to explain from the current knowledge of ultrasound mechanisms. There is no evidence of cavitation effects occurring in the soft tissues of the fetus when exposed to diagnostic ultrasound; however, the possibility exists that such effects may be enhanced by the introduction of echo-contrast agents.

  2. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    International Nuclear Information System (INIS)

    Wang, Shizong; Wang, Jianlong

    2017-01-01

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  3. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizong [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2017-01-05

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  4. Biological dosimetry of irradiation accidents; La dosimetrie biologique des accidents d`irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Durand, V.; Chambrette, V.; Le Roy, A.; Paillole, N.; Sorokine, I.; Voisin, P.

    1994-12-31

    The biological dosimetry in radiation protection allows to evaluate the received dose by a potentially irradiated person from biological markers such chromosomal abnormalities. The technologies of Hybridization In Situ by Fluorescence (F.I.S.H) allow the detection of steady chromosomal aberrations of translocation type.

  5. Quality control of X-ray irradiator by biological markers

    International Nuclear Information System (INIS)

    Miura, Miwa; Lukmanul Hakkim, F.; Yoshida, Masahiro; Matsuda, Naoki; Morita, Naoko

    2011-01-01

    The exposure of animals or cultured cells to radiation is the essential and common step in experimental researches to elucidate biological effects of radiation. When an X-ray generator is used as a radiation source, physical parameters including dose, dose rate, and the energy spectrum of X-ray play crucial roles in biological outcome. Therefore, those parameters are the important points to be checked in quality control and to be carefully considered in advance to the irradiation to obtain the accurate and reproductive results. Here we measured radiation dose emitted from the X-ray irradiator for research purposes by using clonogenic survival of cultured mammalian cells as a biological marker in parallel with physical dosimetry. The results drawn from both methods exhibited good consistency in the dose distribution on the irradiation stage. Furthermore, the close relationship was observed between cell survival and the photon energy spectrum by using different filter components. These results suggest that biological dosimetry is applicable to quality control of X-ray irradiator in adjunct to physical dosimetry and that it possibly helps better understanding of the optimal irradiating condition by X-ray users in life-science field. (author)

  6. The irradiation action on human dental tissue by X-rays and electrons. A nanoindenter study

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, Wolfgang [Halle-Wittenberg Univ., Halle (Germany). Dept. of Physics; Gerlach, Reinhard [Halle-Wittenberg Univ., Halle (Germany). Clinic of Radiation Therapy

    2009-07-01

    It is known that ionizing radiation is used in medicine for Roentgen diagnostics and for radiation therapy. The radiation interacts with matter, in particular with biological one, essentially by scattering, photoelectric effect, Compton effect and pair production. To what extent the biological material is changed thereby, depends on the type and the amount of radiation energy, on the dose and on the tissue constitution. In modern radiation therapy two different kinds of radiation are used: high energy X-rays and electron radiation. In the case of head-neck tumors the general practice is an irradiation with high energy X-rays with absorbed dose to water up to 70 Gy. Teeth destruction has been identified as a side effect during irradiation. In addition, damage to the salivary glands is often observed which leads to a decrease or even the complete loss of the salivary secretion (xerostomia). This study shows how the different energy and radiation types damage the tooth tissue. The effects of both, high X-ray energy and high energy electrons, on the mechanical properties hardness and elasticity of the human dental tissue are measured by the nanoindentation technique. We compare these results with the effect of the irradiation of low X-ray energy on the dental tissue. (orig.)

  7. The irradiation action on human dental tissue by X-rays and electrons. A nanoindenter study

    International Nuclear Information System (INIS)

    Fraenzel, Wolfgang; Gerlach, Reinhard

    2009-01-01

    It is known that ionizing radiation is used in medicine for Roentgen diagnostics and for radiation therapy. The radiation interacts with matter, in particular with biological one, essentially by scattering, photoelectric effect, Compton effect and pair production. To what extent the biological material is changed thereby, depends on the type and the amount of radiation energy, on the dose and on the tissue constitution. In modern radiation therapy two different kinds of radiation are used: high energy X-rays and electron radiation. In the case of head-neck tumors the general practice is an irradiation with high energy X-rays with absorbed dose to water up to 70 Gy. Teeth destruction has been identified as a side effect during irradiation. In addition, damage to the salivary glands is often observed which leads to a decrease or even the complete loss of the salivary secretion (xerostomia). This study shows how the different energy and radiation types damage the tooth tissue. The effects of both, high X-ray energy and high energy electrons, on the mechanical properties hardness and elasticity of the human dental tissue are measured by the nanoindentation technique. We compare these results with the effect of the irradiation of low X-ray energy on the dental tissue. (orig.)

  8. On redistribution of alimentary vitamin E within irradiated rat tissues

    International Nuclear Information System (INIS)

    Paranich, A.V.; Chajkina, L.A.

    1992-01-01

    The data were presented concerning the content of lipopigments, vitamin E and malondialdehyde (MDA) in the brain and liver of rats. Excess vitamin E delivered with food was shown to be bound in tissues into complex with MDA. It was suggested that it was a labile form that reserves vitamin E. Irradiation of rats caused impairment of these complex and release of vitamin E, as well a decrease in the lipopigment fluorescence and increase in the MDA content

  9. Light ion irradiation for unfavorable soft tissue sarcoma

    International Nuclear Information System (INIS)

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation

  10. Scattered and Fluorescent Photon Track Reconstruction in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    Maria N. Kholodtsova

    2014-01-01

    Full Text Available Appropriate analysis of biological tissue deep regions is important for tumor targeting. This paper is concentrated on photons’ paths analysis in such biotissue as brain, because optical probing depth of fluorescent and excitation radiation differs. A method for photon track reconstruction was developed. Images were captured focusing on the transparent wall close and parallel to the source fibres, placed in brain tissue phantoms. The images were processed to reconstruct the photons most probable paths between two fibres. Results were compared with Monte Carlo simulations and diffusion approximation of the radiative transfer equation. It was shown that the excitation radiation optical probing depth is twice more than for the fluorescent photons. The way of fluorescent radiation spreading was discussed. Because of fluorescent and excitation radiation spreads in different ways, and the effective anisotropy factor, geff, was proposed for fluorescent radiation. For the brain tissue phantoms it were found to be 0.62±0.05 and 0.66±0.05 for the irradiation wavelengths 532 nm and 632.8 nm, respectively. These calculations give more accurate information about the tumor location in biotissue. Reconstruction of photon paths allows fluorescent and excitation probing depths determination. The geff can be used as simplified parameter for calculations of fluorescence probing depth.

  11. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collap...... of calculations for typical (transient) exposure conditions from pulse-echo equipment are presented, indicating that rectified diffusion and stable cavitation are improbable phenomena in these circumstances....

  12. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    Science.gov (United States)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  13. Engineering Biology by Controlling Tissue Folding.

    Science.gov (United States)

    Hookway, Tracy A

    2018-04-01

    Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Does Three-Dimensional External Beam Partial Breast Irradiation Spare Lung Tissue Compared With Standard Whole Breast Irradiation?

    International Nuclear Information System (INIS)

    Jain, Anudh K.; Vallow, Laura A.; Gale, Ashley A.; Buskirk, Steven J.

    2009-01-01

    Purpose: To determine whether three-dimensional conformal partial breast irradiation (3D-PBI) spares lung tissue compared with whole breast irradiation (WBI) and to include the biologically equivalent dose (BED) to account for differences in fractionation. Methods and Materials: Radiotherapy treatment plans were devised for WBI and 3D-PBI for 25 consecutive patients randomized on the NSABP B-39/RTOG 0413 protocol at Mayo Clinic in Jacksonville, Florida. WBI plans were for 50 Gy in 25 fractions, and 3D-PBI plans were for 38.5 Gy in 10 fractions. Volume of ipsilateral lung receiving 2.5, 5, 10, and 20 Gy was recorded for each plan. The linear quadratic equation was used to calculate the corresponding dose delivered in 10 fractions and volume of ipsilateral lung receiving these doses was recorded for PBI plans. Ipsilateral mean lung dose was recorded for each plan and converted to BED. Results: There was a significant decrease in volume of lung receiving 20 Gy with PBI (median, 4.4% vs. 7.5%; p 3 vs 4.85 Gy 3 , p = 0.07). PBI plans exposed more lung to 2.5 and 5 Gy. Conclusions: 3D-PBI exposes greater volumes of lung tissue to low doses of radiation and spares the amount of lung receiving higher doses when compared with WBI.

  15. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    Science.gov (United States)

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Depth-resolved fluorescence of biological tissue

    Science.gov (United States)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  17. Transportation of reactive oxygen species in a tissue phantom after plasma irradiation

    Science.gov (United States)

    Kawasaki, Toshiyuki; Kuroeda, Gouya; Sei, Ryuhei; Yamaguchi, Masaaki; Yoshinaga, Reishi; Yamashita, Riho; Tasaki, Hikaru; Koga, Kazunori; Shiratani, Masaharu

    2018-01-01

    The transportation of reactive oxygen species (ROSs) in a tissue phantom after plasma irradiation was studied using a two-layered target consisting of a KI-starch gel reagent and an agarose tissue phantom. The two-layered target can visualize the two-dimensional concentration distribution of ROSs after passing through the tissue phantom. ROSs were accumulated in the tissue phantom by the plasma irradiation, and they continued to be transported in the depth direction with the standing time after the plasma irradiation. The amount of ROS after passing through the tissue phantom increased in proportion to both plasma irradiation time and standing time. In this case, the ROS distribution patterns did not depend on these times. The ROS transportation speed after plasma irradiation was 0.05 mm/min in the tissue phantom. The ROS penetration rate depended on the standing time, not on the plasma irradiation time, and it was less than 1%.

  18. Dose effect comparisons between HFR and BMRR irradiated dogs with respect to healthy tissue tolerance

    International Nuclear Information System (INIS)

    Huiskamp, R.; Philipp, K.H.I.; Gavin, P.R.; Wheeler, F.J.; Siefert, A.

    1993-01-01

    Epithermal neutron beams are being developed for the application of boron neutron capture therapy (BNCT) of deep seated tumors, like glioblastoma and astrocytomas, through the intact skin. Epithermal neutrons will be moderated by the tissue mass between skin and tumour to produce the thermal neutrons necessary for the 10 B(n,α) 7 Li reaction in the target tissue. Although the neutron capture cross-sections of elements in normal tissue are several orders of magnitude lower that for boron, the high abundance of hydrogen and nitrogen will cause a significant contribution to the total absorbed radiation dose through the 1 H(n,γ) 2 H and the 14 N(n,p) 14 C reaction, respectively. Due to inevitable incomplete filtration, an epithermal beam will also contain a fast neutron component, i.e. neutrons with energies ≥ 10 keV, and a γ-photon component originating from the reactor and produced in structural and filter materials. Therefore, the resultant radiation consists of a complex of low and high LET radiation of which the constitutents vary rapidly with depth in tissue. Based on the ongoing canine healthy tissue tolerance study at the Brookhaven Medical Research Reactor (BMRR) using the epithermal beam without BSH, the relative biological effectiveness (RBE) of the fast neutron beam component has been determined for skin reactions. In addition, a open-quotes compound factorclose quotes, i.e geometry x RBE, for the 10 B(n,α) 7 Li reaction was derived for dogs irradiated at the BMRR with the epithermal beam and BSH (Gavin et al.). Currently, a healthy tissue tolerance study with BSH is being carried out at the HB11 epithermal beam of the High Flux Reactor at Petten. The present paper describes preliminary dose effect comparisons between High Flux Reactor (HFR) and BMRR irradiated dogs with respect to healthy tissue tolerance in order to refine the BSH compound factors and the fast neutron RBE for skin and brain

  19. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    International Nuclear Information System (INIS)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion

  20. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion. (ERB)

  1. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    Science.gov (United States)

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Aitasalo, K.; Aro, H.

    1986-02-01

    Bone marrow and subcutaneous tissue pO/sub 2/ and pCO/sub 2/ were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO/sub 2/ changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO/sub 2/ decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO/sub 2/, although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO/sub 2/ to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO/sub 2/, and the marrow pO/sub 2/ decreased with time during the chronic phase of irradiation injury. The marrow pO/sub 2/ responded slowly and marginally to an increment of arterial pO/sub 2/ during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia.

  3. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    International Nuclear Information System (INIS)

    Aitasalo, K.; Aro, H.

    1986-01-01

    Bone marrow and subcutaneous tissue pO 2 and pCO 2 were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO 2 changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO 2 decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO 2 , although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO 2 to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO 2 , and the marrow pO 2 decreased with time during the chronic phase of irradiation injury. The marrow pO 2 responded slowly and marginally to an increment of arterial pO 2 during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia

  4. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  5. Electron beam irradiation for biological decontamination of Spirulina platensis

    Science.gov (United States)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  6. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  7. Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kang, Ho Duk; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups : control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. This experiment suggest that dilatation of the capillaries in the dental pulp tissue is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  8. Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Duk; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2005-03-15

    To observe the histological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups : control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. This experiment suggest that dilatation of the capillaries in the dental pulp tissue is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  9. Biological effects in lymphocytes irradiated with 99mTc: determination of the curve dose-response

    International Nuclear Information System (INIS)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with 99m Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with 99m Tc were used, allowing the irradiation of blood with different administered activities of 99m Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with 99m Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with 99m Tc was best fitted by the curve Y=(8,99 ±2,06) x 1- -4 + (1,24 ±0,62) x 10 -2 D + (5,67 ± 0,64) x 10 -2 D 2 . (author)

  10. Influence Of Sucralose On Some Biological Aspects In Irradiated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eldawy, H.A.; Abo El Aal, A.F.; Meky, N.H.

    2012-01-01

    Sucralose, an artificial sweetener derived from sucrose by replacing 3 hydroxyl groups with 3 chloride groups, has been approved by the Food and Drug Administration (FDA) in 1998, and made available to the consumer under the trade name splenda. The aim of the present study was to evaluate the outcome of sucralose administration in rats exposed to ionizing radiation. Sucralose was administered by oral gavage to male albino rats at a dose of 11 mg/kg daily during the period of exposure to gamma ray 1 Gy/week up to 6 Gy. Biochemical analysis in testis tissues showed that administration of sucralose has no effect on the increase of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glucose-6-phophate dehydrogenase (G-6-PDH) while significantly decreased the amount of malondialdehyde (MDA) as compared to their respective values in the testis of irradiated rats. Cytogenetic analysis in testis tissues revealed that administration of sucralose has no effect on the radiation-induced increase of sperm head abnormalities. Moreover, the administration of sucralose to male albino rats during the irradiation period depressed glucose, glycated hemoglobin (HbA1c) and triglycerides levels while increased total cholesterol level as compared to their respective values in irradiated rats. On the other hand, sucralose has no effect on the increase of insulin, the decrease of calcium (Ca 2+ ) as well as the decrease of blood cells count; red blood cells (RBC), white blood cells (WBC), lymphocytes and neutrophils. According to these preliminary results, it could be concluded that sucralose didn't induce oxidative stress, has no effect on sperm head abnormality, has no effect on insulin, blood cells count and calcium level, while might interfere with glucose absorption and predispose to hypercholesterolemia. Further studies are needed on a larger scale to give more information about the effect of sucralose.

  11. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  12. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  13. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  15. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    Science.gov (United States)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  16. An Error Analysis of Structured Light Scanning of Biological Tissue

    DEFF Research Database (Denmark)

    Jensen, Sebastian Hoppe Nesgaard; Wilm, Jakob; Aanæs, Henrik

    2017-01-01

    This paper presents an error analysis and correction model for four structured light methods applied to three common types of biological tissue; skin, fat and muscle. Despite its many advantages, structured light is based on the assumption of direct reflection at the object surface only....... This assumption is violated by most biological material e.g. human skin, which exhibits subsurface scattering. In this study, we find that in general, structured light scans of biological tissue deviate significantly from the ground truth. We show that a large portion of this error can be predicted with a simple......, statistical linear model based on the scan geometry. As such, scans can be corrected without introducing any specially designed pattern strategy or hardware. We can effectively reduce the error in a structured light scanner applied to biological tissue by as much as factor of two or three....

  17. Design of matrix irradiation system for external tissue phototherapy with temperature control

    Science.gov (United States)

    López S., F. Yonadab; Stolik Isakina, Suren; de La Rosa Vázquez, José Manuel

    2013-11-01

    This paper presents the design and development of a matrix irradiation system for studies and application of dermatological phototherapies with temperature control. The developed system has a power control to irradiate the target tissue with an adequate power density. Also, the irradiation time it is automated. Temperature infrared sensor is used in the irradiated sample to control the temperature. The temperature control allows the study of photodynamic therapy effects in synergy with the thermotherapy effects in the treatment of different diseases in external tissue.

  18. External irradiation facilities open for biological studies - progress in july 2005

    International Nuclear Information System (INIS)

    Gaillard-Lecanu, E.; Authier, N.; Verrey, B.; Bailly, I.; Bordy, J.M.; Coffigny, H.; Cortela, L.; Duval, D.; Leplat, J.J.; Poncy, J.L.; Testard, I.; Thuret, J.Y.

    2005-01-01

    The Life Science Division of the Atomic Energy Commission is making an inventory of the various radiation sources accessible for investigation on the biological effects of ionizing radiation. In this field, a wide range of studies is being carried out at the Life Science Division, attempting to characterize the kind of lesions with their early biological consequences (on the various cell compartments) and their late biological consequences (deterministic or stochastic effects), in relation to the radiation type and dose, especially at low doses. Several experimental models are available: plants, bacteria, eukaryotic cells from yeast up to mammalian cells and in vivo studies, mostly on rodents, in order to characterize the somatic late effects and the hereditary effects. Due to the significant cost of these facilities, also to their specific properties (nature of the radiation, dose and dose rate, possible accuracy of the irradiation at the molecular level), the closeness is no longer the only criteria for biologists to make a choice. The current evolution is to set up irradiation infrastructures combining ionizing radiation sources themselves and specific tools dedicated to biological studies: cell or molecular biology laboratories, animal facilities. The purpose, in this new frame, is to provide biologists with the most suitable facilities, and, if possible, to change these facilities according to requirements in radiobiology. In this report, the basics of interactions of ionizing radiation with biological tissues are briefly introduced, followed by a presentation of some of the facilities available for radiobiological studies especially at CEA. This panorama is not a comprehensive one, new data will be included as they advance, whether reporting existing facilities or if a new one is developed. (authors)

  19. Applying elastic fibre biology in vascular tissue engineering

    OpenAIRE

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C. Adrian

    2007-01-01

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and pate...

  20. Application of Biological Tissue Grafts for Burns in Zambia

    International Nuclear Information System (INIS)

    Chishimba, Gershom

    2001-01-01

    The author discusses the advances made in the use of Biological Tissue Grafts for the treatment of burns.The paper outlines research activities and clinical trials done in the use of gamma radiation sterilised Amnion membranes and Pig skin grafts in the zambian Heath Care System for treatment of Burns.Ethical issues of Tissue Banking are also discussed in relation to religious and cultural beliefs and Good Manufacturing Practices

  1. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  2. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  3. Histological observation on dental hard tissue irradiated by ultrashort-pulsed laser

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2006-04-01

    In the field of dentistry, effectiveness of USPL irradiation is researched because USPL has less thermal side effect to dental hard tissue. In this paper, we observed morphological change and optical change of dental hard tissue irradiated by USPL for discussing the safety and effectiveness of USPL irradiation to dental hard tissues. Irradiated samples were crown enamel and root dentin of bovine teeth. Lasers were Ti:sapphire laser, which had pulse duration (P d)of 130 fsec and pulse repetition rate (f) of 1kHz and wavelength (l) of 800nm, free electron laser (FEL), which had P d of 15 μsec and f of 10Hz and wavelength of 9.6μm, and Er:YAG laser, which had P d of 250 μsec and f of 10Hz and wavelength of 2.94μm. After laser irradiation, the sample surfaces and cross sections were examined with SEM and EDX. The optical change of samples was observed using FTIR. In SEM, the samples irradiated by USPL had sharp and accurate ablation with no crack and no carbonization. But, in FEL and Er:YAG laser, the samples has rough ablation with crack and carbonization. It was cleared that the P/Ca ratio of samples irradiated by USPL had same value as non-irradiated samples. There was no change in the IR absorption spectrum between samples irradiated by USPL and non-irradiated sample. But, they of samples irradiated by FEL and Er:YAG laser, however, had difference value as non-irradiated samples. These results showed that USPL might be effective to ablate dental hard tissue without thermal damage.

  4. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    International Nuclear Information System (INIS)

    Fraenzel, W.; Gerlach, R.; Hein, H.J.; Schaller, H.G.

    2006-01-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 registered or elmex gelee registered . The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 registered or elmex gelee registered led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  6. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  7. Liver tissue tolerance for irradiation : Experimental and clinical investigations

    NARCIS (Netherlands)

    Cromheecke, M; Konings, AWT; Szabo, BG; Hoekstra, HJ

    2000-01-01

    Radiation treatment of the liver for malignant disease has gained renewed interest due to newly developed treatment modalities. Still limited specific knowledge is available concerning liver damage following irradiation. Inconsistencies between reported animal experimental studies are largely due to

  8. A theoretical framework for jamming in confluent biological tissues

    Science.gov (United States)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  9. Wound healing after irradiation of bone tissues by Er:YAG laser

    Science.gov (United States)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  10. Predictive analysis of thermal distribution and damage in thermotherapy on biological tissue

    Science.gov (United States)

    Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2007-05-01

    The use of optical techniques is increasing the possibilities and success of medical praxis in certain cases, either in tissue characterization or treatment. Photodynamic therapy (PDT) or low intensity laser treatment (LILT) are two examples of the latter. Another very interesting implementation is thermotherapy, which consists of controlling temperature increase in a pathological biological tissue. With this method it is possible to provoke an improvement on specific diseases, but a previous analysis of treatment is needed in order for the patient not to suffer any collateral damage, an essential point due to security margins in medical procedures. In this work, a predictive analysis of thermal distribution in a biological tissue irradiated by an optical source is presented. Optical propagation is based on a RTT (Radiation Transport Theory) model solved via a numerical Monte Carlo method, in a multi-layered tissue. Data obtained are included in a bio-heat equation that models heat transference, taking into account conduction, convection, radiation, blood perfusion and vaporization depending on the specific problem. Spatial-temporal differential bio-heat equation is solved via a numerical finite difference approach. Experimental temperature distributions on animal tissue irradiated by laser radiation are shown. From thermal distribution in tissue, thermal damage is studied, based on an Arrhenius analysis, as a way of predicting harmful effects. The complete model can be used for concrete treatment proposals, as a way of predicting treatment effects and consequently decide which optical source parameters are appropriate for the specific disease, mainly wavelength and optical power, with reasonable security margins in the process.

  11. Effect of irradiation on the periodontal tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Park, Dong Sin; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histopathological changes in the periodontal tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups; control, diabetes, irradiation, and diabetes - irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes - irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, osteoclastic activity was observed in the alveolar bone and the root throughout the period of experiment. Also, osteoblastic and fibroblastic activities were markedly decreased. In the irradiation group, the osteoclasts were observed in the alveolar bone and the dilated capillaries were increased in the early experimental phases. However, vigorous osteoblastic activity was noted in the late experimental phases. In the diabetes- irradiation group, osteoblastic activity in the alveolar bone and the root was observed in the early experimental phases. However, there were no resorption and osteoblastic activity in the alveolar bone and the root in the late experimental phases, and obvious atrophic change of fibrous tissues was noted. This experiment suggests that osteoblastic activity was caused by irradiation in the late experimental phases, but atrophic change of the periodontal ligament tissues was induced after irradiation in diabetic state.

  12. Response of tissue lysosomes in Gamma-irradiated rats and possible modulation through diclofenac treatment

    International Nuclear Information System (INIS)

    Hassan, S.H.S.; Abu-Ghadeer, A.R.M.; Osman, S.A.A.

    1995-01-01

    The effect of pre and post-irradiation treatment of rats with diclofenac (5 mg kg-1) for modulating the damaging effect of radiation on tissue lysosomes was investigated. The parameters used for this study were the activity level of acid phosphatase (ACP) and acid ribonuclease (RNase) activities, both being hydrolytic enzymes of lysosomes. The activities of ACP and RNase in liver, spleen, intestine, kidney, lung and brain were determined at different times up to 14 days after irradiation (4(Gy). Lysosomal affection was represented by time dependent significant increase in ACP activity in all the tissue homogenates of the investigated organs 3, 7 and 14 days after irradiation at 4 Gy. Gamma irradiation at 4 Gy resulted also in a significant rise in RNase activity of all the tissue organs 3 days post-irradiation. However, gradual decrease in the enzyme activity was recorded 7 and 14 days following irradiation. Diclofenac, pre (as prophylactic) and post (as therapeutic) irradiation treatment of rats successfully restored the increase in the enzymatic activities of ACP and RNase nearly to their normal levels in all the investigated organs. The beneficial effect of diclofenac inhibited completely the effect of irradiation at 14 days post-exposure. 2 figs., 2 tabs

  13. The model of drugs distribution dynamics in biological tissue

    Science.gov (United States)

    Ginevskij, D. A.; Izhevskij, P. V.; Sheino, I. N.

    2017-09-01

    The dose distribution by Neutron Capture Therapy follows the distribution of 10B in the tissue. The modern models of pharmacokinetics of drugs describe the processes occurring in conditioned "chambers" (blood-organ-tumor), but fail to describe the spatial distribution of the drug in the tumor and in normal tissue. The mathematical model of the spatial distribution dynamics of drugs in the tissue, depending on the concentration of the drug in the blood, was developed. The modeling method is the representation of the biological structure in the form of a randomly inhomogeneous medium in which the 10B distribution occurs. The parameters of the model, which cannot be determined rigorously in the experiment, are taken as the quantities subject to the laws of the unconnected random processes. The estimates of 10B distribution preparations in the tumor and healthy tissue, inside/outside the cells, are obtained.

  14. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effect of irradiation on the subcutaneous fatty layer and the perirectal tissue by computed tomography

    International Nuclear Information System (INIS)

    Komatsu, Takashi

    1987-01-01

    Although it has been suggested that the subcutaneous fatty layer is affected by irradiation, the available reports have not been able to find out yet. While, it is reported that the intrapelvic fat increases in volume after whole pelvic irradiation. This paper report a study about the effect of irradiation on subcutaneous fatty layer and intrapelvic fat. The subjects studied were 20 cases treated by whole pelvic irradiation. The x-ray CT film was used to measure the subcutaneous fatty layer and the intrapelvic fat. Three slices, the lower end of sacro-iliac joint, upper end of the femoral head and upper rim of the pubic symphysis, were chosen as the cross section level, and the thickness of subcutaneous fatty layer on 6 points of the body and the presacral space (PS) were measured. Irradiation group was followed by measuring the thickness of fatty layer; before irradiation, 1 month, 3 or 4 months, 6 or 7 months and 12 months after irradiation. At the three of four points, which are included within the irradiation area, the thickness of subcutaneous fatty layer tended to increase after irradiation, though it showed increase or decrease at each period. This tendency was prominent at the lower than the upper slice of the pelvis. The other points, which are out of the irradiation field, showed no significant change and some of them even showed the tendency of decrease. Fatty layer of the presacral space tended to increase following irradiation, but there was no correlation with the irradiation dose. It is considered that the injury of subcutaneous tissue by irradiation results in the disturbance of blood flow and then it accelerates deposition of fat to the irradiated area. (author)

  16. Effect of UV irradiation and Nigella sativa protective role on the mice liver tissues

    International Nuclear Information System (INIS)

    El-Bahy, G.M.S.; Ismail, Z.M.K.

    1997-01-01

    The effect of UV irradiation on liver tissues of mice before and after feeding on the Nigella sativa L. for 4 and 7 days were investigated by following the variations in their infrared spectral features. The results showed that the exposure of experimental animals to UV radiations causes considerable changes in both proteins and PO 2 contents in the liver and the extent of changes depends on the energy of the source and time exposure. It was found that feeding of Nigella sativa L. during exposure for 4 days causes no significant effect on the UV induced changes in the liver tissues, while feeding for 7 days reduces the extent of the UV induced changes. Histological findings denoted that UV-Radiation causes different grades of damage in liver cells depending on the duration and type of radiation. Alcoholic extract of Nigella sativa seeds protected liver cells from being subjected to the degenerative changes. The present work investigates the possibility of applying Nigella sativa as a natural biological substance for curative purpose after UV radiation damage

  17. Pollen and spores as biological recorders of past ultraviolet irradiance

    NARCIS (Netherlands)

    Jardine, P.E.; Fraser, W.T.; Lomax, B.H.; Sephton, M.A.; Shanahan, T.M.; Miller, C.S.; Gosling, W.D.

    2016-01-01

    Solar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our

  18. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  19. Study on biologically active substances in irradiated apple juice

    International Nuclear Information System (INIS)

    Tencheva, S.

    1975-01-01

    The radiochemical changes proceeding by irradiation of foodstuffs rich in carbohydrates are studied. For the purpose pure solutions of D-glucose, D-fructose and sucrose and fresh apple juice, irradiated with 0,5 and 1,0 Mrad are investigated. Changes set in UV-spectra of the irradiated foodstuffs, the specific reaction of malonic dialdehyde formation with 2-thiobarbituric acid and the formation of carbonyl compounds reacting with 2,4-dinitro phenylhydrazine are studied. Results show that in the irradiated sample solutions of sugars and apple juice two peaks are formed. The malonic dialdehyde formation depends on the dose of irradiation applied. The newly formed carbonyl compounds both in the sample solutions and in the juice are 8 to 9 in number. (author)

  20. Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues.

    Science.gov (United States)

    Licursi, Valerio; Cestelli Guidi, Mariangela; Del Vecchio, Giorgia; Mannironi, Cecilia; Presutti, Carlo; Amendola, Roberto; Negri, Rodolfo

    2017-09-01

    Leptin (LEP) is a peptide hormone with multiple physiological functions. Besides its systemic actions, it has important peripheral roles such as a mitogen action on keratinocytes following skin lesions. We previously showed that LEP mRNA is significantly induced in response to neutron irradiation in mouse skin and that the protein increases in the irradiated epidermis and in the related subcutaneous adipose tissue. In this work, we investigated the post-transcriptional regulation of LEP by miRNAs and the conservation of LEP's role in radiation response in human cells. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to analyze modulation of miRNAs potentially targeting LEP in mouse skin following irradiation and bioinformatic analysis of transcriptome of irradiated human cell lines and cancer tissues from radiotherapy-treated patients to evaluate LEP expression. We show that a network of miRNAs potentially targeting LEP mRNA is modulated in irradiated mouse skin and that LEP itself is significantly modulated by irradiation in human epithelial cell lines and in breast cancer tissues from radiotherapy-treated patients. These results confirm and extend the previous evidence that LEP has a general and important role in the response of mammalian cells to irradiation.

  1. Applying elastic fibre biology in vascular tissue engineering.

    Science.gov (United States)

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C Adrian

    2007-08-29

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.

  2. Investigation of anisotropic scattering for optical tomography in biological tissues

    International Nuclear Information System (INIS)

    Mercimek, M.; Yildirim, H.; Geckinli, M.; Aydin, M.; Aydin, E. D.

    2009-01-01

    Photons with wavelengths in near infrared region are used in optical tomography. Radiation transport theory should be preferred instead of diffusion theory for numerical modelling of photon migration in biological tissues, where diffusion theory is invalid. For example, diffusion theory is not sufficient in the regions of close to boundaries, sources or sinks and highly absorbing or void-like media. Also anisotropic scattering must be considered in the numerical models since scattering is generally highly anisotropic in biological tissues. In addition to the absorption and scattering coefficients, a suitable phase function must be known in anisotropic scattering study. Here we have compared scattering phase functions for anisotropy. Then we have calculated Legendre moments which are necessary for the implementation of anisotropy factors into the transport code, PARTISN. Discrete ordinates method (SN) has been used in the transport calculations. We have obtained solutions first a homogeneous and then heterogeneous medium.

  3. Sterilization of biological tissues with ionizing radiation; Esterilizacion de tejidos biologicos con radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  4. A measurement of biomechanical properties of soft biological tissues

    Science.gov (United States)

    Sauer, Piotr; Kozłowski, Krzysztof; Majchrzak, Jarosław; Waliszewski, Wojciech

    2007-12-01

    We present a method to determine the mechanical behaviour of soft biological tissues. This work presents ex vivo force response between laparoscopic tool and the pig liver. We used measurement system which is based on Staubli robot RX60 and a force sensor mounted at its end. Results of measurement will be used in surgery telerobotic system to create the force feedback to secure additionally the surgery.

  5. In vitro gamma irradiation of some purified polypeptide hormones and their biological and radioimmunological activity

    International Nuclear Information System (INIS)

    Hromadova, M.; Macho, L.; Strbak, V.; Vigas, M.; Mikulaj, L.

    1979-01-01

    Some polypeptide hormones (adrenocorticotropin - ACTH, human and bovine growth hormone - GH, human menopausal gonadotropin - HMG, human luteinizing hormone - LH, and bovine thyrotropin - TSH) were irradiated either with 2.5 or 12.5 Mrad (1.1 Mrad/h) or both and their biological activity or immunoreactivity was tested within few days or 3 to 5 months after irradiation. Biological activity of irradiated ACTH (estimation of corticosterone released into medium by incubated adrenals - Saffran and Schally 1955) was not decreased in both time intervals tested. Ten days after irradiation of bovine GH no changes in biological activity (tibia test - Wilhelmi 1973) were found. No decrease of biological activity of irradiated HMG (augmentation of ovarian and uterine weight - Butt 1973) was found 4 months after irradiation and, finaly, no decrease of bovine TSH activity (radioiodine release from prelabelled thyroid in mice - McKenzie 1958) was found 2 to 30 days after irradiation with 2.5 Mrad, while a decrease was observed after 12.5 Mrad. Three to five months after irradiation, however, there was a decrease of biological activity after both doses. The immunological reactivity of irradiated HMG and LH did not differ from that of nonirradiated samples. The same was found with human GH after 2.5 Mrad, while a decrease of reactivity after 12.5 Mrad was detected. It was concluded that, in most of cases, the sterilizing dose of gamma radiation (2.5 Mrad) did not affect the biological activity of polypeptide hormones and that their sensitivity to irradiation appears to differ. (author)

  6. Universal strain stiffening in biological gels and tissues

    Science.gov (United States)

    Storm, Cornelis; Pastore, Jennifer; Mackintosh, Fred; Lubensky, Tom; Janmey, Paul

    2003-03-01

    Unlike most synthetic materials, many biological materials get stiffer as they are deformed. This nonlinear elastic response, critical for physiologic function of tissues such as the blood vessel wall, has been documented since at least the 19th century but the molecular structure and the design principles responsible for it are unknown. In various systems, different hypotheses ranging from complex multiphase structures to tensegrity models have been proposed to explain strain-stiffening in biological gels and tissues, and in these cases the specific viscoelastic properties depend critically on the detailed assembly and geometry of the highly ordered material. In this presentation we show that a much simpler molecular theory accounts for the most dramatic forms of strain stiffening found in a wide range of molecularly distinct biopolymer gels ranging from purified cytoskeletal and extracellular matrix gels to intact tissues such as the mesentery. The theory shows that the physics of semi flexible chains arranged in an open crosslinked meshwork invariably stiffen at low strains independent of the need for a specific architecture or multiple elements with different intrinsic stiffness. These findings explain why stiff polymers are chosen over more flexibler ones in tissues where only a limited range of deformation is appropriate.

  7. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  8. Some features of irradiated chitosan and its biological effect

    International Nuclear Information System (INIS)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G d ) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  9. Minimal heating dose: a novel biological unit to measure infrared irradiation.

    Science.gov (United States)

    Lee, Hyoun Seung; Lee, Dong Hun; Cho, Soyun; Chung, Jin Ho

    2006-06-01

    Infrared (IR) rays, which comprise approximately 40% of the solar radiation which reaches the earth's surface, have received relatively scant attention. As no standard method has yet been agreed upon for the biological evaluation of IR irradiation, the objective of this study is to suggest a new unit for IR irradiation. The skin temperature of 38 Korean volunteers was measured after IR irradiation with varying irradiance. Skin temperature after IR irradiation at an irradiance of 2.02 W/cm2 remained unchanged after 652+/-22 s (mean+/-standard error), which corresponds, in this case, to a total radiation dose of IR 1317.3+/-44.84 J/cm2. This quantity was designated as the minimal heating dose (MHD). We also demonstrated that MHD increased with increasing IR irradiance at lower IR irradiance (1.17 and 2.02 W/cm2), whereas it became constant at higher irradiance (2.87 and 3.22 W/cm2). No statistically significant correlations were detected between MHD and volunteers' ages, erythema index, or melanin index. We propose 'MHD' as a biological unit for the measurement of IR irradiation.

  10. Proton Irradiation Impacts Age Driven Modulations of Cancer Progression Influenced by Immune System Transcriptome Modifications from Splenic Tissue

    Data.gov (United States)

    National Aeronautics and Space Administration — Age plays a crucial role in the interplay between tumor and host; with further perturbations induced by irradiation. Proton irradiation on tumors induces biological...

  11. Modulatory Role of Aloe vera on Gamma Irradiation Induced Histological Changes in Different Tissues of Rats

    International Nuclear Information System (INIS)

    Rezk, R.G.

    2005-01-01

    Aloe Vera is known for its wide medicinal properties. This study was performed to evaluate the role of Aloe vera (Aloe barbadensis Miller) in the amelioration of the histological disorders that occurr in different tissues of albino rats exposed to 7 Gy whole body gamma irradiation, delivered as a single dose. Aloe vera (leaf juice filtrate) was supplemented daily to rats (0.25 ml/kg b wt/day) by gavage, 5 days before irradiation and 10 days after irradiation. Experimental investigations performed 7 and 10 days after exposure to radiation showed that Aloe vera treatment has significantly improved the radiation-induced inflammation, haemorrhage, widening and dilated blood vessela, necrosis, atrophy sloughing in liver, spleen and small intestine (jejenum) tissues of irradiated rats. It is concluded that the synergistic relationship between the elements found in the leaf of Aloe vera could be a useful adjunct for maintaining the integrity of histological architecture

  12. Biological changes in experimental animals after irradiation with sublethal doses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seong; Park, Yong Dae; Jin, Chang Hyun; Byun, Myung Woo; Jeong, Il Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-05-15

    The objective of the present study was to investigate general clinical aspects such as weekly body weight and blood changes, and weekly food intake in gamma-irradiated C57BL/6j male mice fed AIN-76A purified rodent diet for 14 weeks. The mice were whole-body irradiated with 0, 2, 4 and 6 Gy of gamma-rays (Gammacell 40 Exactor, {sup 137}Cs, MDS Nordion) at a dose rate of 1.8 {sub c}Gy per second. The mean body weight change of 6 Gy-irradiated mice significantly decreased when compared to that of the non-irradiated control mice. Moreover, high dose of radiation resulted in decreased levels of AST, ALT, but in increased levels of total cholersterol, triglyceride, HDL-C in mice.

  13. Studies of toxocariasis in tissues of rats infected with irradiated toxocara canis eggs

    International Nuclear Information System (INIS)

    Abd El Maguid, A

    2010-01-01

    The aim of the present study is to investigate the level of the resistance of rats when infected with two doses of irradiated infective eggs of Toxocara canis and challenged with normal non-irradiated Toxocara canis eggs. The level of resistance was assessed in comparison with control group by the histopathological changes in liver, kidney, lung and spleen of these rats. Thirty rats were divided into three groups, the first and the second groups were infected with the infective stage of Toxocara canis irradiated at 40 and 80 Gy respectively. The third group was infected with non irradiated eggs of Toxocara canis representing the control group. The histopathological changes in the tissues of the infected liver, kidney, lung and spleen were examined. The histopathological changes caused by infection with Toxocara canis decreased by increasing the dose of irradiation of the infected stage. Radiation exposure attenuated the larval migration from the gastrointestinal tract to liver and from liver to other organs.

  14. Motility-driven glass and jamming transitions in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  15. Development of an algorithm for quantifying extremity biological tissue

    International Nuclear Information System (INIS)

    Pavan, Ana L.M.; Miranda, Jose R.A.; Pina, Diana R. de

    2013-01-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab ® software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom

  16. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  18. Effects of x-ray irradiation on mast cells and mastocalcergy in the connective tissue

    International Nuclear Information System (INIS)

    Song, H. Y.; Rhee, S. J.; Son, M. H.; Choi, K. C.

    1982-01-01

    Experiments were performed to observe the influence of x-ray irradiation on mast cells and mastocalcergy in rats. Animals were irradiated single dose of x-ray. X-ray irradiation was applied to the whole body in doses either 100 rads or 150 rads (Cobalt-60 Teletherapy Unit). One day after irradiation the rats were injected lead acetate intravenously, followed by injection of compound 48/80 in the back subcutaneously. Animals were killed by decapitation at intervals, 1 hour, 5 hours, 1 day and 6 day after subcutaneous injection. Specimens of the abdominal and back skin were fixed in alcohol formol solution and stained with the following methods; H-E for observation of pathological changes of tissues, toluidine blue for demonstration of mast cells, von Kossa-azure A for demonstration of carbonate and phosphate, and chloranilic acid for demonstration of calcium. The following conclusions were obtained. Calciphylatic wheals are large size in the control group, medium size in 100 rads irradiation group and small size in 150 rads irradiation group. In x-ray irradiation groups the number of mast cells decreases more in the 150 rads than in the 100 rads irradiation. In the 100 rads x-ray irradiation group, histochemical study of the injection sites showed that calcium impregnated to mast cell granules and connective tissue fibers in 1 days after subcutaneous injection. The morphogenesis of this calcinosis was the same in the rat of 5 hour after subcutaneous injection of the control group. Whereas, 1 day after subcutaneous injection in 150 rads x-ray irradiation group calcium deposited more slightly than other groups

  19. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  20. Gamma irradiation enhances biological activities of mulberry leaf extract

    Science.gov (United States)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-04-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE2, and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods.

  1. The Influence of Tissue Lyophilization and Gamma Irradiation on the Solubility of Proteins

    International Nuclear Information System (INIS)

    Komender, J.; Jendyk, J.; Leibschang, J.

    1967-01-01

    Most recent methods of tissue preservation are based on lyophilization and sterilization with gamma rays. Unfortunately the tissues preserved by this method lose their viability, this being connected with protein denaturation. The denaturing influence either of lyophilization or sterilization with gamma rays on different materials has been described. However, no observations on denaturation of proteins in prepared grafts are known. The work aimed at establishing the influence of individual stages of the procedure used in a tissue bank on the solubility of proteins. An experiment was performed using rat liver as a model tissue. Solubility of protein was determined in five groups of material, as follows: (1) fresh tissue, used as a control, (2) frozen tissue, (3) frozen and lyophilized tissue, (4) frozen, lyophilized and irradiated tissue, and (5) fresh irradiated tissue. Folin's method was used for determination of protein in water extracts of tissues. It was found that: (1) the whole procedure considerably diminished the protein solubility, (2) freezing diminishes the protein solubility by 35% on average, (3) lyophilization causes no further protein denaturation, (4) protein solubility is reduced most (by about 65%) by sterilization with gamma rays. (author)

  2. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  3. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    Science.gov (United States)

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  4. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  5. Modeling biological tissue growth: discrete to continuum representations.

    Science.gov (United States)

    Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A

    2013-09-01

    There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.

  6. Biologic fixation of nitrogen in irradiated rhizobium strips

    International Nuclear Information System (INIS)

    Caribe, Rebeka Alves; Colaco, Waldeciro

    2002-01-01

    Native Rhizobium sp. and Bradyrhizobium sp. isolates from the root nodules of bean and cowpea were selected. Six isolates, and the SEMIA 4077 (R. leguminosarum bv. phaseolus) and SEMIA 6145 (Bradyrhizobium sp) strains used as references, were irradiated with ultraviolet light (R-uv) and gamma rays (R-γ). The D 37 values for the rhizobial strain SEMIA 4077 were 43 J.m -2 (UV) and 32 Gy (R-γ) and for the SEMIA 6145 were 45 J.m -2 (UV) and 35 Gy (R-gamma). Through a greenhouse experiment the irradiated isolates were inoculated on bean (P. vulgaris L., cv. Princesa) and on cowpea [Vigna unguiculata, (L.) Walp, cv. IPA-206] seedlings, in an attempt to evaluate the sensitivity of the host plants, and possible effects on their nodulation. Differences in responses to nodulation due to the effect of irradiation were observed for the isolates tested. Significantly differences were observed only for nodules dry matter yield of the IPA-206 cultivar. Gamma irradiated treatment were statistically superior to treatments with ultraviolet light in relation. (author)

  7. The Edinburgh experience of treating sarcomas of soft tissues and bone with neutron irradiation

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Jack, W.J.L.

    1986-01-01

    The experience of treating 30 patients with sarcomas of soft tissue and bone with d(15)+Be neutron irradiation is reported. The local control of measurable soft-tissue sarcomas was 38.5% (minimum follow-up 2 years), which is similar to that expected after photon therapy. The radiation morbidity was unacceptably high (50%). Bone tumours did not respond well; in only one out of nine was lasting local tumour control achieved. (author)

  8. Long-term histological comparison between near-infrared irradiated skin and scar tissues

    Directory of Open Access Journals (Sweden)

    Yohei Tanaka

    2010-11-01

    Full Text Available Yohei Tanaka1,2, Kiyoshi Matsuo1, Shunsuke Yuzuriha11Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan; 2Clinica Tanaka Plastic and Reconstructive Surgery and Anti-aging Center, Matsumoto, JapanBackground and objective: Our previous histological studies indicated that near-infrared (NIR irradiation stimulates collagen proliferation in rat and human skin for 3 months. High collagen density in the dermis and smoothing of the epidermis were observed in irradiated rat skin, and appeared to last up to 6 months. Epidermal smoothness in irradiated rat skin seems to resemble scarring. Here, we performed a long-term histological comparison between NIR (1100 to 1800 nm irradiated skin and scar tissues.Materials and methods: Rat skin was irradiated using a NIR device. Scar tissues were harvested from wounded areas and were compared with irradiated skin. Histological changes up to 180 days post-treatment were evaluated with hematoxylin and eosin, Azan-Mallory staining, and collagen type I and III staining.Results: In nonirradiated control skin, the dermis showed a low density of type I and III collagen, the surface of the epidermis was rough, and no significant changes were observed over time. In irradiated skin, both type I and III collagen increased significantly, and persisted up to 180 days. The density of type I collagen was significantly higher than that of type III collagen, whereas type I and III collagen of the control group did not differ significantly. Epidermis was thickened for 30 days, and epidermal smoothness persisted up to 180 days. In scar tissues, the density of type III collagen was higher than that of type I collagen. The number of fibroblasts remained high and the glial fibrils were dense until 180 days after injury compared with irradiated skin. Significant increases in both type I and III collagen and epidermal flattering persisted until 180 days.Conclusions: NIR irradiation

  9. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation. Consequences for dosimetry

    International Nuclear Information System (INIS)

    Oehme, L.; Kotzerke, J.; Doerr, W.; Wust, P.

    2008-01-01

    Aim: The biological effectiveness of irradiation is influenced not only by the total dose but also the rate at which this dose is administered. Tolerance dose estimates from external radiation therapy with a conventional fractionation protocol require adaptation for application in targeted radionuclide therapy. Methods: The linear-quadratic model allows for calculation of the biologically effective dose (BED) and takes into consideration tissue specific factors (recovery capacity) as well as dose rate effects (recovery kinetics). It can be applied in radionuclide therapy as well. For relevant therapeutic radionuclides (e. g. 188 Re, 90 Y, 177 Lu, and 131 I), the effect of different physical decay times and variable biological half-lives on BED was calculated for several organs. Results: BED is markedly increased using 188 Re compared to longer-lived radionuclides. The effect is dose-dependent and tissue-specific, resulting, for example, in higher effects on the kidneys compared to bone marrow. Therefore, in unfavourable conditions (e. g. reduced recovery capacity due to concomitant diseases or previous therapy), the BED may exceed organ dose tolerance. Conclusion: Time-dose-relationships have to be taken into consideration by the calculation of BED for internal radionuclide therapy. The biological effectiveness depends on dose- and tissue-specific factors and is much more pronounced in 188 Re than in 90 Y and other longer living radionuclides. Determination of organ tolerance dose values should take into account these radiobiological differences, since it is currently not considered in dosimetry programs. (orig.)

  10. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  11. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  12. Hematopoietic tissue repair under chronic low daily dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1994-12-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3{minus}26.3 cGy d{sup {minus}1}). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 & 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity.

  13. Hematopoietic tissue repair under chronic low daily dose irradiation

    International Nuclear Information System (INIS)

    Seed, T.M.

    1994-01-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d -1 ). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 ampersand 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity

  14. Hematopoietic tissue repair under chronic low daily dose irradiation

    Science.gov (United States)

    Seed, T. M.

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). In our laboratory we have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d^-1). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific (three major responding subgroups identified) and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup 1), the failure to augment basic repair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments (particularly marked within erythroid compartments) that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccommodated and either prone- or not prone to ML, subgroup 2 & 3) appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high-tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity. The kinetics of these repair-mediated, regenerative hematopoietic

  15. Some cytological modifications and changes in peroxidase and IAA-oxidase activity in pea calus tissues following gamma-irradiation

    International Nuclear Information System (INIS)

    Izvorska, N.; Bakyrdzhieva, N.

    1975-01-01

    The reaction of calus tissue obtained from peas root-, stem- and leaf tissues gamma-irradiated with varying doses was observed. Some cytomorphological and cytochemical changes as well as the peroxidase and IAA-oxidase activities were studied. Cytochemical investigations and an assay of the enzyme activity were made for the control and the irradiated calus tissues of second passage about 130 days after the irradiation. No cytomorphological modifications were observed in low dose irradiated calus tissues. Cells possessing two or three nuclei were more frequent only in leaf- and root-calus tissue irradiated with high doses (3500 and 5000 R gamma-rays). The cytochemical investigations for the assay of nuclei acids showed a considerably weaker Foelgen reaction and intensive Methylgruenpironin staining which demonstrated the proof of functional changes in the nucleic acids. The nucleic acid content was reduced by rising the gamma-ray doses. A similar reaction was observed also for the cytochemical protein assay in the irradiated calus tissues. The changes in peroxidase- and IAA-oxidase activity were least pronounced in irradiated stem calus, which was an evidence of a certain radioresistance of this tissue. The higher resistance of the stem calus was confirmed by the cytomorphological and cytochemical observations. Peroxidase activation was established in root and stem calus tissues at the lowest doses of irradiation. The high irradiation doses, which greatly inhibited the growth of the three types of tissue produced a considerable secondary activation of peroxidase activity. In this case, nevertheless, IAA-oxidation was significantly inhibited. The above mentioned data showed that gamma-irradiation produced durable changes in peroxidase and IAA-oxidase activity, which depended on the kind of tissue irradiated and were in relation to its radioresistance. (author)

  16. Results of total lung irradiation and chemotherapy in comparison with partial lung irradiation in metastatic undifferentiated soft tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Zamboglou, N.; Fuerst, G.; Pape, H.; Bannach, B.; Schmitt, G.; Molls, M.

    1988-07-01

    The poor prognosis of patients with unresectable pulmonary metastases of soft tissue sarcoma is well known. In order to evaluate the beneficial effect of radiotherapy, we have treated 44 patients with pulmonary metastases of grade 3 soft tissue sarcoma from 1980 to 1986. In 36 patients the treatment volume was restricted to the single metastases up to a dose of 50 to 60 (9 to 10 Gy/week). The survival rate at one year was 18% and at two years 6%. Eight patients were treated with a combined regimen, consisting of cisplatin and ifosfamide with simultaneous whole lung irradiation. Irradiation was performed with 8 or 16 MV photons at a hyperfractionation of 2x0,8 Gy/day (8 Gy/week). After a dose of 12 Gy, the single metastases were boosted up to 50 to 60 Gy, with a second course of chemotherapy. In six of eight patients complete remissions were achieved, one patient showed a partial remission. The survival rate at 27 months was 50%. The patients with partial remission died from pulmonary progression at 23 months. One patient died after twelve months from a loco-regional recurrence in the tonsillar fossa without evidence of pulmonary disease. Side effects included alopecia and moderate bone marrow suppression approximately twelve days after each chemotherapy cycle. Pulmonary fibrosis was observed only at the high dose volume without impairment of respiratory function. From these observations the conclusion is drawn that whole lung irradiation simultaneously with cisplatin and ifosfamide chemotherapy provides good palliative results without relevant morbidity in patients with high grade unresectable pulmonary metastases of soft tissue sarcomas.

  17. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  18. The study on the biological effect of armillaria mellea irradiated with 60Co γ-ray

    International Nuclear Information System (INIS)

    Wang Chutao; Liu Dayong; Zhu Liquan

    2002-01-01

    The biological effects of 60 Co γ-ray irradiation on Armillaria mellea were studied. The results showed that the lower dose (10-80 Gy) irradiation stimulated the growth and increased the content of soluble protein. The irradiation effects were most significant in the treatment of 20 Gy with growth mass of 31.20% higher and MDA content of 27.4% lower than those of control. At higher dose (above 80 Gy) the growth was inhibited with the increasing of irradiation dose. The lower dose of irradiation increased the activities of POD with the increasing of dose and the activities of POD were proportional to the content of MAD with relative coefficient of 0.987. The content of DNA and RNA in the mycelia increased when treated with 60 Co γ-ray and became higher with the increasing of irradiation dose. At the dose of 20 Gy, the content of DNA and RNA increased, while the content of soluble protein decreased with relative coefficients of - 0.8389 and - 0.7340, respectively. The electrophoresis of DNA showed that lower dose (20 Gy) irradiation made little influence on the DNA of armillaria, while higher dose (200 Gy) irradiation resulted in a lot of breaks of DNA strands and these breaks mostly appeared in the 6 hours after irradiation and could be self-repaired gradually

  19. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    Science.gov (United States)

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lipid metabolism in rat tissues exposed to the chronic effects of γ-irradiation and ubiquinone Q9

    International Nuclear Information System (INIS)

    Novoselova, E.G.

    1992-01-01

    Chronic γ-irradiation of rats with the daily dose of 0.129 Gy activates the synthesis of various classes of lipids in the thymus, spleen and bone marrow cells and induces lipid accumulation in these tissues. Feeding of rats with the antioxidant, ubiquinone Q-9, under conditions of chronic irradiation causes a considerable normalization of lipogenesis and levels of the lipid concentration in the tissues of animals irradiated with the dose of 20 Gy

  1. Resistance of gamma-irradiated sapwood of Cryptomeria japonica to biological attacks

    International Nuclear Information System (INIS)

    Katsumata, N.; Yoshimura, T.; Tsunoda, K.; Imamura, Y.

    2007-01-01

    Any means helpful for the promotion of termite feeding activity has potential for use in a matrix in termite bait application. Therefore, energy transfer by gamma irradiation is worthy of consideration for converting wood into termite-accessible material. Wood specimens gamma-irradiated at 100 kGy and at lower levels were tested for their degrees of polymerization (DP) of cellulose and biological resistance. The DP of cellulose adversely decreased with increased doses of gamma irradiation. Termite wood consumption rates, which were determined by laboratory tests using undifferentiated larvae (workers) of Coptotermes formosanus Shiraki, were significantly higher at 100 kGy than at other doses. On the other hand, the decay resistance of gamma-irradiated wood against the fungi Fomitopsis palustris (Berkeley et Curtis) Murrill and Trametes versicolor (L. ex Fr.) Quel did not vary by irradiation dose. (author)

  2. Study of temperature increase and optic depth penetration in photo irradiated human tissues

    International Nuclear Information System (INIS)

    Stolik, Suren; Delgado, Jose A.; Perez, Arllene M.; Anasagasti, Lorenzo

    2009-01-01

    Optical radiation is widely applied in the treatment and diagnosis of different pathologies. If the power density of the incident light is sufficiently high to induce a significant temperature rise in the irradiated tissue, then it is also needed the knowledge of the thermal properties of the tissue for a complete understanding of the therapeutic effects. The thermal penetration depth of several human tissues has been measured applying the diffusion approximation of the radiative transfer equation for the distribution of optical radiation. The method, the experimental setup and the results are presented and discussed. (Author)

  3. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Su, Long-Jyun; Ren, Shenqiang; Chang, Huan-Cheng; Yang, Xinmai; Forrest, M Laird

    2013-02-01

    Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength.

  4. Radiation carcinogenesis in context: how do irradiated tissues become tumors?

    Science.gov (United States)

    Barcellos-Hoff, Mary Helen; Nguyen, David H

    2009-11-01

    It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed.

  5. Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays.

    Science.gov (United States)

    Yi, Lan; Hu, Nan; Yin, Jie; Sun, Jing; Mu, Hongxiang; Dai, Keren; Ding, Dexin

    2017-01-01

    The biological effects of low-dose or low-dose-rate ionizing radiation on normal tissues has attracted attention. Based on previous research, we observed the morphology of liver tissues of C57BL/6J mice that received irradiation dose rates increased. Additionally, differential protein expression in liver tissues was analyzed using a proteomics approach. Compared with the matched group in the 2D gel analysis of the irradiated groups, 69 proteins had ≥ 1.5-fold changes in expression. Twenty-three proteins were selected based on ≥2.5-fold change in expression, and 22 of them were meaningful for bioinformatics and protein fingerprinting analysis. These molecules were relevant to cytoskeleton processes, cell metabolism, biological defense, mitochondrial damage, detoxification and tumorigenesis. The results from real-time PCR and western blot (WB) analyses showed that calreticulin (CRT) was up-regulated in the irradiated groups, which indicates that CRT may be relevant to stress reactions when mouse livers are exposed to low-dose irradiation and that low-dose-rate ionizing radiation may pose a cancer risk. The CRT protein can be a potential candidate for low-dose or low-dose-rate ionizing radiation early-warning biomarkers. However, the underlying mechanism requires further investigation.

  6. On fibrinolytic phenomenon in the cancerous tissue of cervical carcinoma with special reference to irradiation changes

    International Nuclear Information System (INIS)

    Nakamura, Kazuyoshi

    1978-01-01

    In a study undertaken to investigate alterations of fibrinolytic enzymes in cancerous tissue of the cervix under radiotherapy, specimens were taken from malignant tissues of cervical cancer patients during irradiation therapy with Linac x-ray at 1000, 2000 and 3000 rads and were subsequently assayed for fibrinolytic enzyme activities using the fibrin plate method. No plasmin activity was demonstrable in the normal mucosa of the uterine cervix. Cancerous tissue of the uterine cervix also showed no demonstrable plasmin activity. The malignant tissue, as compared to the normal mucosa of the cervix, was found to have a lower activator activity, a higher proactivator activity and lower activities of both antiplasmin inhibitors. During radiotherapy for cervical cancer, plasmin activity was demonstrable in the cancerous tissue and in patients with malignant neoplasm, demonstrating that plasmin activity increased as the radiation dose was increased. A relationship seemed to exist between morphological changes and alterations in the fibrinolytic system of cancerous tissue of the cervix. From these findings it seems that the altered fibrinolytic enzyme system in cancerous tissue may have a close relationship with the growth and development of malignancy and may also have an important role in the occurrence of metastasis. There were some cases, in which an abnormal increase in activator activity occurred during irradiation therapy, leading to the death of the patients. This fact points to the possibility that activator activity might provide a useful index for evaluating the prognosis of cervical cancer. (author)

  7. Models for radiation-induced tissue degeneration and conceptualization of rehabilitation of irradiated tissue by cell therapy

    International Nuclear Information System (INIS)

    Phulpin, Berengere

    2011-01-01

    Radiation therapy induced acute and late sequelae within healthy tissue included in the irradiated area. In general, lesions are characterized by ischemia, cell apoptosis and fibrosis. In this context, cell therapy using bone marrow mesenchymal stem cells (BMSC) might represent an attractive new therapeutic approach, based partly on their angiogenic ability and their involvement in the natural processes of tissue repair. The first part of this work consisted in the development of experimental mouse model of radio-induced tissue degeneration similar to that occurring after radiotherapy. The aim was to better understand the physiopathological mechanisms of radiation-induced tissue damage and to determine the best treatment strategy. The second part of this work investigated the feasibility of autologous BMSC therapy on the murine model of radiation previously established with emphasis on two pre-requisites: the retention of the injected cells within the target tissue and the evaluation of the graft on bone metabolism. This preclinical investigation in a mouse model constitutes an essential step allowing an evaluation of the benefit of cell therapy for the treatment of radiation-induced tissue injury. Data from these studies could allow the proposal of clinical studies [fr

  8. Computation of forces from deformed visco-elastic biological tissues

    Science.gov (United States)

    Muñoz, José J.; Amat, David; Conte, Vito

    2018-04-01

    We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of an L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.

  9. Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues

    International Nuclear Information System (INIS)

    Tawa, Riichi; Sakurai, Hiromu; Kimura, Yutaka; Komura, Jun-ichiro; Miyamura, Yoshinori; Kurishita, Akihiro; Sasaki, Masao S.; Ono, Tetsuya

    1998-01-01

    Effects of ionizing radiation on the level of genomic DNA methylation in liver, brain and spleen of mouse as well as in two kinds of cultured cells were examined by high-performance liquid chromatography. Ten Gy of whole body X-radiation reduced the 5-methyldeoxycytidine contents by about 40% within 8 hours after irradiation in liver. Similar effects were observed at 4 or 7 Gy of X-ray irradiation. However, no such change was detected in brain, spleen and cultured cells. The data indicate that radiation-induced alteration in genomic DNA methylation is not ubiquitous among different tissues and cells. (author)

  10. The effects of irradiation on the periodontal tissues of rats with the low calcium diet

    International Nuclear Information System (INIS)

    Choi, Mun Cheol; Lee, Sang Rae

    1992-01-01

    The purpose of this study was to investigate the changes of periodontal tissues in the irradiated mandibular bone in rats which were fed normal diet and low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague-Dawley strain rats weighing about 150 gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the control group were then subdivided into two groups when the rats reached the age of 10 weeks, 16 rats were allotted for each subdivided group was composed of 16 rats and exposed to irradiation. The two groups were irradiated a single dose of 20 Gy on the only jaw area and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were warily dissected by fours on the 3rd, 7th, the 14th, and the 21st day after irradiation. After each dissection, both sides of the dead rat mandibular bodies were removed and fixed with 10% neutral formalin. The specimens sectioned and observed in histopathological, histochemical, and immunocellular chemical methods. The obtained results were as follows: 1. In the mandibles of rats with low calcium diet the increased number of fibroblasts of periodontal ligaments, many small capillaries and irregular arrangement of loose collagen fibers were detected and the partial resorption of dentin and cementum could be found by the microscopic studies. 2. In the group of irradiated rats, deaerated periodontal tissues led to the condition of irregular arrangement of collagen fibers and the decreased number of fibroblasts. But this condition was somewhat restored after 21 days of experiment. 3. Periodontal tissues of the irradiated rat group with low calcium diet were destroyed earlier than those of the irradiated rat group with normal diet. Soon this condition was restored and then high cellularity and dense collagen fibers were observed. 4. Many periodontal cells bearing tumor necrosis factor

  11. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    Science.gov (United States)

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  12. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2014-01-01

    Full Text Available Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC, thermal behavior (DSC, wettability (contact angle, cell viability (MTT assay, and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial.

  13. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Science.gov (United States)

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  14. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    International Nuclear Information System (INIS)

    Weinmann, M.; Becker, G.; Einsele, H.; Bamberg, M.

    2001-01-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [de

  15. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  16. Studies on Microbiological and Biological Methods for Detection of Irradiated Food

    International Nuclear Information System (INIS)

    Ibrahim, H.M.A.

    2013-01-01

    The main aim of this study is to evaluate a microbiological and biological methods used for the detection of irradiated foods in Egypt. The microbiological methods included were shift in microflora load and direct epifluroescent filter technique compared with aerobic plate count (DEFT/APC), while the biological method was DNA comet assay. The selected foods were black, strawberry, fresh-and frozen-de boned chicken. The samples of these foods were exposed to different doses of gamma radiation according to the purpose of irradiation for each food. The results indicated that the characteristics of microbial population of all irradiated samples have been changed. The very lower count of viable bacterial count (APC) and mold and yeasts counts in the samples than the reported normal count as well as the absence of Gram- negative bacteria and Enterobacteriaceae group from these samples could be used as an indication for radiation treatment of these foods. The large difference between microbial counts obtained by DEFT test and that obtained by APC test could also be used for screening radiation treatment of these foods. Photographic and image analysis of DNA comet assay showed that irradiation of these foods caused damage to the food cells DNA (fragmentation) at different levels according to the doses used and kind of foods. This DNA damage can be followed or described by DNA comet assay test. On the basis of comet assay, the discrimination between unirradiated and irradiated food samples was very possible. In general the results showed that DEFT/APC method had the potential to detect irradiated food samples either at zero time of storage or throughout the storage period post- irradiation. DNA comet assay as a rapid, simple and inexpensive screening test approved to be successful for detection of irradiated food samples under investigation. Determination of rough applied irradiation dose is possible if photographic analysis is combined with image analysis

  17. Outcomes of microvascular free tissue transfer in twice-irradiated patients.

    Science.gov (United States)

    Clancy, Kate; Melki, Sami; Awan, Musaddiq; Li, Shawn; Lavertu, Pierre; Fowler, Nicole; Yao, Min; Rezaee, Rod; Zender, Chad A

    2017-09-01

    Patients may require microvascular free tissue transfer (MFTT) following re-irradiation for recurrent cancer or radiation complications. The objective of this study was to describe the indications for and outcomes of free flaps performed in twice-radiated patients. A retrospective chart review identified the indications for and outcomes of 36 free flaps performed on 29 twice-irradiated patients. The free flap success rate was 92%. The most common indications requiring MFTT were cancer recurrence and osteoradionecrosis. Sixty-one percent experienced postoperative complications, most commonly wound infection (33%). Twenty-five percent of the procedures required return to the operating room due to postoperative complication. MFTT can be successfully performed in the twice-irradiated patient population with a success rate comparable to singly-radiated patients. Despite a high success rate, there is also a high rate of surgical site complications, especially infection. © 2017 Wiley Periodicals, Inc.

  18. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  19. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland

    International Nuclear Information System (INIS)

    Nanduri, Lalitha S.Y.; Lombaert, Isabelle M.A.; Zwaag, Marianne van der; Faber, Hette; Brunsting, Jeanette F.; Os, Ronald P. van; Coppes, Robert P.

    2013-01-01

    Introduction: During radiotherapy salivary glands of head and neck cancer patients are unavoidably co-irradiated, potentially resulting in life-long impairment. Recently we showed that transplantation of salisphere-derived c-Kit expressing cells can functionally regenerate irradiated salivary glands. This study aims to select a more potent subpopulation of c-Kit + cells, co-expressing stem cell markers and to investigate whether long-term tissue homeostasis is restored after stem cell transplantation. Methods and results: Salisphere derived c-Kit + cells that co-expressed CD24 and/or CD49f markers, were intra-glandularly injected into 15 Gy irradiated submandibular glands of mice. Particularly, c-Kit + /CD24 + /CD49f + cell transplanted mice improved saliva production (54.59 ± 11.1%) versus the irradiated control group (21.5 ± 8.7%). Increase in expression of cells with differentiated duct cell markers like, cytokeratins (CK8, 18, 7 and 14) indicated functional recovery of this compartment. Moreover, ductal stem cell marker expression like c-Kit, CD133, CD24 and CD49f reappeared after transplantation indicating long-term functional maintenance potential of the gland. Furthermore, a normalization of vascularization as indicated by CD31 expression and reduction of fibrosis was observed, indicative of normalization of the microenvironment. Conclusions: Our results show that stem cell transplantation not only rescues hypo-salivation, but also restores tissue homeostasis of the irradiated gland, necessary for long-term maintenance of adult tissue

  1. Effect of propolis feeding on rat tissues damaged by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Seo, Eul Won [Andong National Univ., Andong (Korea, Republic of); Ji, Tae Jeong [Kaya Univ., Goryeong (Korea, Republic of)

    2007-06-15

    Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.

  2. Post-radiation changes in oral tissues - An analysis of cancer irradiation cases

    Directory of Open Access Journals (Sweden)

    Jay Ashokkumar Pandya

    2014-01-01

    Full Text Available Introduction: Radiation, commonly employed as neoadjuvant, primary, and adjuvant therapy for head and neck cancer causes numerous epithelial and stromal changes, prominent among which is fibrosis with its early and late consequences. Very little is known about the true nature of the fibrosed tissue and the type of fibers accumulated. Radiotherapy affects the supporting tumor stroma often resulting in a worsening grade of tumor post-radiation. Aim: To study epithelial, neoplastic, stromal, and glandular changes in oral cavity induced by radiation therapy for oral squamous cell carcinoma (OSCC using special stains. Materials and Methods: The study included 27 samples of recurrent OSCC following completion of radiotherapy (recurrence within an average span of 11 months, and 26 non-irradiated cases of OSCC. Patients with a history of combined radiotherapy and chemotherapy were not included in the study. The epithelial changes assessed included epithelial atrophy, apoptosis, necrosis, dysplasia, and neoplasia. The connective tissue was evaluated for amount of fibrosis, quality of fibers (using picrosirius red staining, fibrinous exudate, necrosis, pattern of invasion, vessel wall thickening, and salivary gland changes. The aforementioned changes were assessed using light and polarizing microscopy and tabulated. Statistical Analysis: Epithelial and connective tissue parameters were compared between the irradiated and non-irradiated cases using chi square and t-tests. Results: Epithelial and connective tissue parameters were found to be increased in irradiated patients. Pattern of invasion by tumor cells varied from strands and  cords between the two groups studied. The effect of radiation was seen to reflect on the maturity of fibers and the regularity of their distribution.

  3. Effect of gamma irradiation at various temperatures and packaging conditions on chicken tissues

    International Nuclear Information System (INIS)

    Rady, A.H.; Maxwell, R.J.; Wierbicki, E.; Phillips, J.G.

    1988-01-01

    A lipid composition study on irradiated chicken muscle is reported. All muscle samples, packed either under air or vacuum, were gamma irradiated (-20 0 C) at 0, 1, 3, 6 and 10 kGy using 137 Cs (dose rate 0.1 kGy/min). Lipids were isolated from the muscle using a dry column extraction method with concomitant isolation of separated neutral and polar fractions. Lipid isolates were converted to their methyl esters and analyzed by capillary column gas chromatography with computer assisted data storage, followed by data consolidation and statistical computer analysis. Separated fatty acid profiles for neutral and polar lipids were obtained as normalized reports (each fatty acid as percentage of total fatty acids) and as gravimetric reports (mg of each fatty acid/100 g tissue). Normalized reports showed only negligible occurrence of significant changes in fatty acid profiles of neutral muscle lipid fractions regardless of irradiation doses (0 to 10 kGy) in either air and vacuum packaging. These differences were not apparent when the data were compiled as gravimetric reports. The polar lipid fractions containing the nutritionally significant ω3 and ω6 fatty acids showed only slight changes in normalized and gravimetric reports and were similarly unaffected with increasing levels of irradiation. Additionally, no new fatty acids or other artifacts due to gamma-irradiation were observed in detectable amounts by gas chromatography in any lipid fractions. (author)

  4. Effects of tissue inhomogeneities on dose patterns in cylinders irradiated by negative pion beams

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.

    1975-10-01

    Effects of the presence of inhomogeneities in tissue irradiated by negative pion beams are investigated. Soft-tissue targets are considered with embedded regions of bone and cavities of air. The absorbed dose is calculated as a function of position in the targets for parallel and converging beams and for two parallel beams that enter the target from opposite sides. Isodose contours are calculated and displayed in each case. While these studies show expected trends, they indicate that specific calculations are needed for other beam parameters and target geometries. The contributions of neutrons to the dose contours can be seen from several calculations made both with and without neutrons

  5. Application of gamma irradiation knowledge in tissue sterilisation: inactivation of malaria parasite.

    Science.gov (United States)

    Myint, Peter

    2018-01-16

    Malaria is one of the exclusion criteria used in selecting tissue donors and the absence of this information can lead to rejection of tissues for transplant. The studies on the malaria parasite have been confined to low dose attenuation of parasites in blood for transfusion purposes. There is no published information relating to the inactivation of malaria parasites with irradiation for the sterilisation of tissues. A dose-surviving parasite population following radiation was replotted using D 0 value from a published paper whereby D 10 value of 41 Gy was obtained. Calculation of sterilisation dose for achieving SAL 10 -6 of malaria parasites demonstrated the effectiveness of the sterilisation dose of 25 kGy being used in tissue banking.

  6. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Lee, Kang Kyoo [Dept. of Radiation Oncology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-03-15

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  7. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    International Nuclear Information System (INIS)

    Lee, Wan; Lee, Byung Do; Lee, Kang Kyoo; Koh, Kwang Joon

    2014-01-01

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  8. Xenografted tissue models for the study of human endometrial biology.

    Science.gov (United States)

    Kuokkanen, Satu; Zhu, Liyin; Pollard, Jeffrey W

    The human endometrium undergoes extensive morphological, biochemical and molecular changes under the influence of female sex steroid hormones. Besides the fact that estrogen stimulates endometrial cell proliferation and progesterone inhibits this proliferation and induces differentiation, there is limited knowledge about precise molecular mechanisms underlying human endometrial biology. The importance of paracrine signaling in endometrial physiology explains why in vitro culture of endometrial cells has been challenging. Researchers, therefore, have developed alternative experimental in vivo models for the study of endometrial biology. The objective of this review is to summarize the recent developments and work on these in vivo endometrial research models. The in vivo recombinant tissue models in which wild-type endometrial cells are combined with endometrial cells from a gene-targeted mouse strain followed by xenografting to host mice have been critical in confirming the significance of paracrine signaling between the epithelium and stroma in the growth regulation of the endometrium. Additionally, these studies have uncovered differences between the mouse and human, emphasizing the need for the development of experimental models specifically of the human endometrium. Recently, xenotransplants of human endometrial fragments into the subcutaneous space of host mice and endometrial xenografts of dissociated and recombined epithelial and stromal cells beneath the kidney capsule of immunodeficient host mice have proven to be highly promising tools for in vivo research of endometrial functions. For the first time, the latter approach provides an immense opportunity for the application of genome engineering, such as targeted ablation of endometrial genes for example by using CRISPR/CAS9 system. This research will begin to elucidate the functional role of specific genes in this complex tissue. Another advantage of xenotransplantation and xenograft models of the human

  9. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  10. Pressure and temperature distribution in biological tissues by focused ultrasound

    Science.gov (United States)

    Mal, Ajit K.; Feng, Feng; Kabo, Michael; Wang, Jeffrey; Bar-Cohen, Yoseph

    2003-07-01

    The interaction between ultrasound and biological tissues has been the subject of a number of investigators for nearly half a century and the number of applications of high intensity, focused ultrasound for therapeutic purposes continues to grow. This paper is motivated by possible medical applications of focused ultrasound in minimally invasive treatment of a variety of musculoskeletal disorders that are responsive to thermal treatment. The mechanical and thermal effects in a subject"s body induced by high-frequency ultrasound are simulated using PZFlex, a finite element based program. The FEM model described in this report is of a transverse section of the body at the level of the second lumbar vertebra (L2) extracted from a CT image. In order to protect the nerves inside the spinal canal as well as to obtain an effective heating result at the focal region within the intervertebral disk, a suitable orientation of axis of the focused ultrasound lens have to be determined in advance. The pressure, energy loss distribution and temperature distribution are investigated in this paper with the different orientations of the axis and different transverse diameter of the spherical ultrasound lens. Since nonlinear effects are expected to be important in the therapeutic application in some literatures, this paper also demonstrates the effects of nonlinearities on the pressure and temperature distribution induced by focused ultrasound in a two dimensional model. Finally, a comparison of the results between linear and nonlinear cases is reported.

  11. Low angle X-ray scattering in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@lin.ufrj.br; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic K{alpha} radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode ({theta}-2{theta} geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  12. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  13. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  14. Elemental analysis of biological tissues of animal models in muscular dystrophies investigation

    International Nuclear Information System (INIS)

    Sabrina Metairon; Zamboni, C.B.; Suzuki, M.F.; Bueno, Jr.C.R.; Sant'Anna, O.A.

    2012-01-01

    Element concentrations in biological tissues of Dmd mdx /J and C57BL/6 J mice strains were determined using the neutron activation analysis technique. Samples of whole blood, bones and organs (heart and muscle) of these strains were irradiated in the IEA-R1 nuclear reactor at IPEN-CNEN/SP (Brazil). To perform this investigation biological samples of two-month-old adult females (n = 10) and males (n = 9) for Dmd mdx /J (dystrophic mice), and males (n 12) for C57BL/6 J (control group), originally obtained from the Jackson Laboratory (Maine, USA) and further inbred at IPEN-CNEN/SP (Sao Paulo, Brazil), were used. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. These data may, in the future, contribute to the healthcare area, in veterinary medicine and in the pharmaceutical industry allowing the evaluation of the best procedures in diagnosis, treatment and investigations of neuromuscular diseases (muscular dystrophy) of patients through the use of animal models. (author)

  15. Degradation of chlorinated paraben by integrated irradiation and biological treatment process.

    Science.gov (United States)

    Wang, Shizong; Wang, Jianlong; Sun, Yuliang

    2017-03-15

    Chlorinated paraben, namely, methyl 3, 5-dichloro-4-hydroxybenzoate (MDHB) is the by-product of chlorination disinfection of paraben and frequently detected in the aquatic environments, which exhibited higher persistence and toxicity than paraben itself. In this paper, the combined irradiation and biological treatment process was employed to investigate the removal of MDHB from aqueous solution. The results showed that the removal efficiency of MDHB and total organic carbon (TOC) by irradiation process increased with radiation dose no matter what the initial concentration of MDHB was. The maximum removal efficiency of MDHB was 100%, 91.1%, 93%, respectively, for the initial concentration of MDHB of 1 mg/L, 5 mg/L and 10 mg/L with the radiation dose of 800 Gy. However, the maximum removal efficiency of TOC among all the experimental groups was only 15.3% obtained with the initial concentration of 1 mg/L at dose of 800 Gy. The subsequent biological treatment enhanced the mineralization of MDHB. The suitable radiation dose for the subsequent biological treatment was determined to be 600 Gy. In this case the removal efficiency of TOC increased to about 70%. Compared to the single biological treatment, the integrated irradiation and biological treatment significantly increase the degradation and mineralization of MDHB. Moreover, the dechlorination efficiency reached 77.4% during the integrated irradiation and biological treatment process. In addition, eight intermediates were identified during the combined process and the possible degradation pathway was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The influence of urban area opacity on biologically active UV-B irradiance

    Science.gov (United States)

    Chubarova, Nataly; Rozental', Victor

    2013-04-01

    The study of UV irradiance changes in urban area is an essential problem due to the significant effect of UV irradiance on human health which can be positive (vitamin D synthesis) and negative (erythema, skin cancer, eye damage). According to the results of several experiments within the Moscow megacity we studied the effects of urban area opacity on the different types of biologically active UV-B irradiance on the base of a specially developed mobile photometric complex snd additional measurements of the urban opacity by Nikon Fisheye Converter FC-E8. We analyzed both the level of erythemally-active irradiance and the UV eye damaging radiation using the broadband UVB-1 YES pyranometer calibrated against ultraviolet spectroradiometer Bentham DTM-300 of the Medical University of Innsbruck (courtesy of Dr. M.Blumthaler). In order to estimate the effects of the urban opacity the measurements were normalized on similar measurements at the Meteorological Observatory of Moscow State University with zero opacity. This ratio is defined as an urban radiative transmittance (URT). Different atmospheric conditions were considered. In cloudy conditions the effect of opacity on URT is much less than that in conditions when the sun disk is open from clouds. We revealed some spectral features in transmittance of biologically active UV-B irradiance which is characterized by higher URT variations in overcast cloudy conditions due to more intensive scattering and smaller direct solar radiation component. In the absence of cloudiness the effect of opacity was studied for open and screening solar disk conditions. We obtained much higher URT in UVB spectral region compared with that for total solar irradiance for screening solar disk conditions with a significant URT dependence on the opacity only in UVB spectral region. No URT dependence was obtained for total solar irradiance in these conditions. Some model calculations were fulfilled to match the experimental results.

  17. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  18. Biological effectiveness of neutron irradiation on animals and man

    International Nuclear Information System (INIS)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, 252 Cf-fission, and 15 MeV neutrons, compared with that by 60 Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use

  19. The biological basis for the control of prenatal irradiation

    International Nuclear Information System (INIS)

    1988-01-01

    The embryo and fetus have been generally considered to be more sensitive than the adult to the detrimental effects of radiation exposure. In particular, recent re-evaluations of epidemiological data on human population exposed to radiation have suggested that there may be greater sensitivity than heretofore recognized to the induction of mental retardation and reduced intelligence by exposure during gestation. To assist national authorities in evaluating this problem and establishing appropriate protection measures for limiting the dose to the embryo and fetus and, thus, to pregnant or potentially pregnant women, the Nuclear Energy Agency has appointed a Group of Consultants to assemble and evaluate the biological data relevant to the protection of the human conceptus, and to make recommendations for achieving this in the operational practice. The Group has surveyed the human data dealing with the biologcal effects of radiation exposure at low doses, and has supplemented this with information derived from animal studies. The Group has also taken full account of the studies and recommendations issued in this area by other international organizations, primarily the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the International Commission on Radiological Protection (ICRP). This report is published under the responsibility of the Secretary General of the OECD, and does not commit Member governments of the Organization

  20. Gamma-irradiated onions as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Vaijapurkar, S.G.; Agarwal, Deepshikha; Chaudhuri, S.K.; Ram Senwar, Kana; Bhatnagar, P.K.

    2001-01-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied

  1. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  2. Iso-effect tables for tolerance of irradiated normal human tissues

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on a radiation injury to human tissues (lung, brain, kidney and intestine) was surveyed. A parameter search program (RAD3) was used to derive best-fitting cell kinetic parameters, on the assumption that radiation injury arises from depletion of parenchymal cells in the irradiated organs. From these parameters iso-effect tables were constructed for a wide range of treatment schedules, including daily treatment as well as fractionation at longer intervals, for each tissue. The tables provide a set of limiting doses, above which the risk of radiation injury becomes substantial. Tolerance limits and dose-time-factors were substantially different in the four tissues. It is concluded that computed iso-effect tables provide a more reliable guide to treatment than conventional time-dose equations

  3. Fibrocellular tissue responses to endovascular and external beam irradiation in the porcine model of restenosis

    International Nuclear Information System (INIS)

    Marijianowski, Monique M.H.; Crocker, Ian R.; Styles, Terry; Forestner, Donna M.; Waksman, Ron; Cipolla, Gustavo D.; King, Spencer B.; Robinson, Keith A.

    1999-01-01

    Purpose: Endovascular radiation has reduced postangioplasty restenosis in preclinical and early clinical studies. External radiation treatment may have advantages over endovascular therapy. We examined vascular and perivascular tissue responses to endovascular and external irradiation in pig coronary arteries. Methods and Materials: Ninety-one animals received endovascular or external radiation following balloon injury and were sacrificed at 14, 30, or 180 days. Injured segments of coronary vessels including perivascular and myocardial tissues were evaluated with histochemistry. Results: Endovascular radiation was associated with delayed arterial wound healing as late as 6 months, evidenced by paucity of smooth muscle α-actin in neointimal cells compared to control. External treatment was associated with increased collagen in neointima and adventitia, and focal interstitial necrosis in adjacent myocardium. Conclusions: These investigations showed whole-heart 14 Gy external radiation treatment following coronary injury exacerbated certain aspects of arterial healing. In addition focal myocardial necrosis and fibrosis was observed following external but not endovascular irradiation. Endovascular radiation has some advantages over external irradiation; however the persistence of a synthetic smooth muscle cell phenotype in the neointima at 6 months suggests ionizing radiation in general may have profound effects on vessel architecture over the long term

  4. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.

    Science.gov (United States)

    Jiang, W G; Sanders, A J; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, S K; Zollo, M; Spano, D; Dhawan, P; Sliva, D; Subbarayan, P R; Sarkar, M; Honoki, K; Fujii, H; Georgakilas, A G; Amedei, A; Niccolai, E; Amin, A; Ashraf, S S; Ye, L; Helferich, W G; Yang, X; Boosani, C S; Guha, G; Ciriolo, M R; Aquilano, K; Chen, S; Azmi, A S; Keith, W N; Bilsland, A; Bhakta, D; Halicka, D; Nowsheen, S; Pantano, F; Santini, D

    2015-12-01

    Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    Science.gov (United States)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  6. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  7. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  8. Biological effect of 60Co chronic irradiation on different development stage in common wheat (T. aestivum L.)

    International Nuclear Information System (INIS)

    Chen Youliang; Yang Pinghua; Xie Yukang

    1991-01-01

    Common wheats were irradiated in 60 Co garden at the stages of plant mature sporophyte, gametophyte and zygote-young embryo during the growing cycle. The biological effects of M 1 and M 2 was significantly related to the development stage of irradiation. When irradiated in the phase of zygote-young embryo, the emergence rate of M 2 was greatly influenced, but the irradiation had a little effect on the fertility of M 1 . The rate of seedling emergence in M 2 can be used for determining optimal dose of irradiation. The rate of micro-nuclei cells were low in the root tip cells of M 1 and seedling cells of M 2 . The M 1 is the major generation of irradiation injury. The irradiation injury of M 2 is minor. M 2 is the first generation for mutant selection. The generation gradation of chronic irradiation was discussed

  9. Definition of the dose(tempo)-distribution in the biological irradiation-facility of the RIVM

    International Nuclear Information System (INIS)

    Bader, F.J.M.

    1990-02-01

    The RIVM biological irradiation facility (BBF) for the irradiation of biological samples and small animals is a self shielded device and can be safely operated in an existing laboratory environment. There are two 137 Cs sources (15TBq) in a bilateral geometry to give maximum dose uniformity. The easily accessible irradiation chamber is housed in a rotating lead shielding. The dosimetry of BBF was performed by the Dosimetry Section of the RIVM. Experiments were made to determine the absorbed dose in plastic tubes filled with water and the dose distribution over the tube-holder. Separate experiments were made to determine the absorbed dose during the rotation of the irradiation chamber and to check the irradiation timer. For the experiments LiF:Mg,Ti (TLD-100) extruded ribbons were used. The TLDs were calibrated in a collimated beam of 137 Cs gamma rays. The determination of the absorbed dose in water was based on a users biological irradiation set up. The TLDs were individually sealed in thin plastic foil and put in plastic tubes filled for 1/3 with water. The tubes were vertically placed in the tube-holder and placed in the centre of the irradiation chamber. The results show that the absorbed dose in water (determined on January 1, 1990) is equal to 0.97 Gy/timer-unit, with a total uncertainty of 7 percent (1σ). During the rotation of the irradiation chamber the absorbed dose (determined on January 1, 1990) is equal to 0.38 Gy, with a total uncertainty of 15 percent (1σ). The variation of the dose distribution was determined at 15 different measurement points distributed over the tube-holder. The dosis in the measurement point in the centre of the tube-holder was taken as reference value. The maximum observed deviation over the other 14 measurement points amounts to -16 percent of it. The BBF-timer was checked against a special timer. The results indicate that within a range from 2-11 'timer-units' no differences are present. (author). 6 refs.; 6 figs.; 3 fotos

  10. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    Science.gov (United States)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  11. Temperature rise and tissue damage in the primate retina from argon laser irradiation

    International Nuclear Information System (INIS)

    Polhamus, G.D.

    1976-01-01

    Temperatures from argon laser irradiation were measured in vivo in Macaca mulatta retinae for exposure durations .002s to 100s with a microthermocouple probe specially designed for measuring transient tissue temperatures. Measured temperatures were compared to predicted temperatures from a mathematical model of temperature for the retina and choroid. Radiant energy levels required to produce retinal lesions were determined by both ophthalmoscopic and microscopic examination of the ocular fundus. Temperatures associated with retinal lesion formation were measured, for macular and paramacular exposures. Measured temperatures were used to improve a rate process model for predicting thermal damage to the retina

  12. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  13. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    receiving only 2 Gy of protons. Tissue of the gastrointestinal tract was also homogenized and RNA was isolated for cDNA synthesis and real-time PCR analysis. Inspecting apoptotic lesions of the duodenum of the small intestine as an endpoint of damage did not reveal a radio-adaptive response in C57BL/6 mice at the four hour time point. Results of gene expression changes showed consistent up or down regulation of a number of genes for all of the exposure doses that may play a role in proton-induced apoptosis. Preliminary results of gene expression alterations as a result of gamma-irradiation revealed a wealth of genes involved in oxidative stress and antioxidant defense processes being up- or down-regulated only at the highest exposure dose of 6 Gy and the combined dose of 5 cGy with 6 Gy. Those animals undergoing only 5 cGy of gamma-irradiation showed very little modification of gene expression. Taken together these results lead us to conclude that protons cause more severe morphologic damage to the duodenum of the small intestine at a dose of 2 Gy than a higher dose of 6 Gy of gamma rays to the same organ. Both protons and gamma rays lead to significant variation in gene expression at high doses in the small intestine and these changes may provide insight into the mechanism of injury seen in the gastrointestinal tract following radiation exposure. Astronauts experiencing prolonged exposure to protons in the low Earth orbit and in deep space, and experiencing acute exposure to protons from solar particle events, may face biological consequences that will impact a mission s success. We will continue this work by studying, quantifying, and comparing damage due to protons and gamma rays in the small intestine as well as other organs in a time-dependent manner.

  14. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  15. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup; Lee, In Chul

    2011-01-01

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  16. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  17. Corrections for inhomogeneities in biological tissue caused by blood vessels

    NARCIS (Netherlands)

    Talsma, A; Chance, B; Graaff, R

    In tissue optics, the assumption that blood is homogeneously distributed in tissue can give rise to miscalculations because blood is found only in blood vessels. In our paper randomly oriented blood vessels are treated as particles for which we obtained apparent absorption and scattering

  18. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle...

  19. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  20. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Pozzi, Emiliano; Miller, Marcelo; Thorp, Silvia I.; Heber, Elisa M.; Trivillin, Veronica A.; Zarza, Leandro; Estryk, Guillermo; Schwint, Amanda E.; Nigg, David W.

    2007-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7 Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6 Li 2 CO 3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author) [es

  1. Regeneration Approaches for Dental Pulp and Periapical Tissues with Growth Factors, Biomaterials, and Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Shizu Hirata

    2011-10-01

    Full Text Available In current dental practice, restorative and endodontic procedures have been developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli such as caries infection. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Furthermore, dentists sometimes extract non-vital teeth because of severe caries progression, critical size of periapical lesion, and tooth fracture. To overcome the limitations of presently available therapies, it is important to develop regeneration therapy for dental pulp and periapical tissues. In this review, we focus on the regeneration of dental pulp and periapical tissues by application of exogenous growth factors and scaffolds, as well as low-intensity laser irradiation as an auxiliary therapy for regeneration therapy.

  2. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  3. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  4. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  5. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cornforth, Michael N. [The University of Texas Medical Branch at Galveston, TX (United States)

    2013-05-03

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  6. Biological and Histological Studies on the F1 Progeny of the Black Cutworm, Agrotis ipsilon Treated with Gamma Irradiation and / or Bacillus Thuringiensis

    International Nuclear Information System (INIS)

    El-Naggar, S.E.M.; El-Shall, S.S.A.; Mohamed, H.F.

    2006-01-01

    Full grown male pupae of black cutworm, Agrotis ipsilon (Hufn) were gamma irradiated with two sub sterilizing doses (50 and 100 Gy). the resulting F1 larvae were treated t the fourth instar larvae with six different concentrations (12.5,25,50,100,200 and 400 ppm.) of bacillus thuringiensis aizawai HD-112(Bta). the effect of radiation and / or B.t.on certain biological aspects in addition to histological effects on larval midgut were studied. the obtained results indicated that B.t. or irradiation treatments either alone or combined with each other decreased the number of F1 larvae that reached the adult stage as compared to the control. also the reduction in survived individuals was obvious at dose level 100 Gy than 50 Gy. the larval duration , percent pupation, percent emergence decreased gradually by increasing the concentration of B.t. especially at the combined treatments. as well percentage of adult malformations increased by increasing the irradiation dose or B.t. concentrations at separate or combined treatments. the sex ratio was altered in favor of male at either B.t. and / or irradiation treatments. certain histological changes through transverse section of the midgut tissues of F1 larvae due to irradiation and / or B.t. treatments were detected. the damage of the tissue increased by increasing the dose of irradiation and /or concentration of B.t. the cytoplasmic extrusion appeared as the apical margin of cells as a confluent mass and the muscular layers are broken in some parts, large amount of secretions released in the lumen of the midgut while a few amount were attached to the apical margin of the cells. Much destruction of the midgut took place when the B.t. treatments were combined with gamma irradiation where, large number of epithelial cells became vacuolated and the cytoplasm appeared as confluent masses because of the hydropic analysis of the epithelium

  7. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  8. Chemical and physical analysis on hard tissues after irradiation with short pulse Nd:YAG laser

    International Nuclear Information System (INIS)

    Pereira, Andrea Antunes

    2003-01-01

    This work reports on a study that was designed to investigate chemical, physical and morphological alterations in the dental enamel surface. The influence of application of laser in enamel surface by microscopic technical, X-ray fluorescence for chemical analysis, physical property as well as hardness and thermal analysis with Nd:YAG laser is also pointed out. A prototype of Nd:YAG (Q-switched) laser developed at the Center of Lasers and Applications - Institute of Energetic and Nuclear Research, aiming applications in the Medical Sciences that typical wavelength of 1.064 nm was used. The modifications in human dental enamel chemical composition for major and trace elements are here outlined. The accuracy of procedures was performed by analysis of natural hydroxyapatite as standard reference material. The identification and quantification of the chemical elements presented in the dental tissue samples were performed trough EDS, XRF and INAA. We determined the rate Calcium/Phosphorus (Ca/P) for different techniques. We performed an analysis in different regions of the surface and for different areas allowing a description of the chemical change in the total area of the specimen and the assessment of the compositional homogeneity of the each specimen. A comparison between XRF and INAA is presented. Based on morphological analysis of the irradiated surfaces with short pulse Nd:YAG laser we determined the area surrounded by the irradiation for the parameters for this thesis, and this technique allowed us to visualize the regions of fusion and re-solidification. The energy densities ranged from 10 J/cm 2 to 40 J/cm 2 , with pulse width of 6, 10 e 200 ns, and repetition rates of 5 and 7 Hz. In this thesis, FTIR-spectroscopy is used to analyze powder of mineralized tissue as well as enamel, dentine, root and cementum for human and bovine teeth after irradiation with short-pulse Nd:YAG laser. Characteristic spectra were obtained for the proteins components and mineral

  9. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Y Al-Hadeethi

    Full Text Available Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM. Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX. The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  10. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Science.gov (United States)

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  11. Relative biological effectiveness of 125I seeds for low-dose-rate irradiation of PANC-1

    International Nuclear Information System (INIS)

    Wang Jidong; Wang Junjie; Zhuang Hongqing; Liao Anyan; Zhao Yong

    2008-01-01

    Objective: To investigate the relative biological effectiveness(RBE) of National Model 6711 125 I seeds and the response patterns of PANC-1 exposed to 125 I seeds irradiation. Methods: PANC-1 cells in exponential growth were irradiated at initial dose rate of 2.59 cGy/h in vitro and exposed to 1, 2, 4, 6, 8 and 10 Gy. Meanwhile, the other part of cells were exposed to the same doses by 60 Co at dose rate of 2.21 Gy/min. After irradiation, the cells were stained by trypan blue to measure the cellular mortality rate and to compare the changes along with plating times of 12, 24, 48 and 72 h after 4 Gy. The colonies were counted to obtain the plating efficiencies by colony-forming assay and the cell surviving faction was calculated to plot cell survival curves, and RBE of 125 I seeds relative to 60 Co was determined. Results: The cell death rate for continuous low- dose-rate (LDR) irradiation by 125 I seeds was greater than 60 Co at the same doses above or equal to 4 Gy. After 4 Gy irradiation, the cellular mortality rates were increased with times. The difference was significant between 125 I seeds and 60 Co. The survival fractions of 125 I were lower than those of 60 Co, and the RBE of 125 I relative to 60 Co was determined to be 1.45. Conclusion: The cell-killing effects for continuous low-dose-rate (LDR) irradiation by 125 I seeds are greater than acute high-dose-rate of 60 Co. (authors)

  12. Biological tissue magnetism in the frame of iron overload diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Francisco J. [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, Zaragoza 50018 (Spain) and Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Zaragoza 50009 (Spain)]. E-mail: osoro@unizar.es; Gutierrez, Lucia [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, Zaragoza 50018 (Spain); Abadia, Ana R. [Departamento de Farmacologia y Fisiologia, Universidad de Zaragoza, Zaragoza 50013 (Spain); Romero, Maria S. [Departamento de Medicina y Psiquiatria, Universidad de Zaragoza, Zaragoza 50009 (Spain); Lopez, A. [CNAM-Salesianos Zaragoza, Zaragoza 50009 (Spain)

    2007-09-15

    The conspicuous magnetic properties of iron, paradoxically, rarely participate in the methods routinely employed in the clinical environment to detect iron containing species in tissues. In the organism iron is just a trace metal and it mostly occurs as part of haemoproteins or ferritin, which show paramagnetic, diamagnetic or antiferromagnetic behaviour, hence resulting in a very low contribution to the tissue susceptibility. Detailed magnetic measurements make it nowadays possible to identify such species in tissues that correspond to individuals with iron overload pathologies. Since, as alternatives to the conventional biopsy, magnetism-based noninvasive techniques to diagnose and manage such diseases are recently under development, the deep knowledge of the magnetic properties of the different forms of iron in tissues is of high applied interest.

  13. Biological tissue magnetism in the frame of iron overload diseases

    Science.gov (United States)

    Lázaro, Francisco J.; Gutiérrez, Lucía; Abadía, Ana R.; Romero, María S.; López, A.

    2007-09-01

    The conspicuous magnetic properties of iron, paradoxically, rarely participate in the methods routinely employed in the clinical environment to detect iron containing species in tissues. In the organism iron is just a trace metal and it mostly occurs as part of haemoproteins or ferritin, which show paramagnetic, diamagnetic or antiferromagnetic behaviour, hence resulting in a very low contribution to the tissue susceptibility. Detailed magnetic measurements make it nowadays possible to identify such species in tissues that correspond to individuals with iron overload pathologies. Since, as alternatives to the conventional biopsy, magnetism-based noninvasive techniques to diagnose and manage such diseases are recently under development, the deep knowledge of the magnetic properties of the different forms of iron in tissues is of high applied interest.

  14. Beyond Turing: mechanochemical pattern formation in biological tissues.

    Science.gov (United States)

    Mercker, Moritz; Brinkmann, Felix; Marciniak-Czochra, Anna; Richter, Thomas

    2016-05-04

    During embryogenesis, chemical (morphogen) and mechanical patterns develop within tissues in a self-organized way. More than 60 years ago, Turing proposed his famous reaction-diffusion model for such processes, assuming chemical interactions as the main driving force in tissue patterning. However, experimental identification of corresponding molecular candidates is still incomplete. Recent results suggest that beside morphogens, also tissue mechanics play a significant role in these patterning processes. Combining continuous finite strain with discrete cellular tissue models, we present and numerically investigate mechanochemical processes, in which morphogen dynamics and tissue mechanics are coupled by feedback loops. We consider three different mechanical cues involved in such feedbacks: strain, stress, and compression. Based on experimental results, for each case, we present a feedback loop spontaneously creating robust mechanochemical patterns. In contrast to Turing-type models, simple mechanochemical interaction terms are sufficient to create de novo patterns. Our results emphasize mechanochemical processes as possible candidates controlling different steps of embryogenesis. To motivate further experimental research discovering related mechanisms in living tissues, we also present predictive in silicio experiments. Reviewer 1 - Marek Kimmel; Reviewer 2 - Konstantin Doubrovinski (nominated by Ned Wingreen); Reviewer 3 - Jun Allard (nominated by William Hlavacek).

  15. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C.

    Science.gov (United States)

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    In this work we present a methodology to produce an "imprint" of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. The distribution and concentration of (10)B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake.

  16. Chemical and biological studies on producing high quality biscuits with irradiated tomato wastes

    International Nuclear Information System (INIS)

    Nassef, A.E.

    2005-01-01

    The present investigation has been carried out to produce high quality biscuits for treatment of some special diseases. In this study, the total tomato processing wastes were used as new source of protein in which the most predominate elements were found to be phosphorus, potassium and magnesium. Phenyl alanine was found to be the first limiting amino acid, while lysine was the second limiting amino acid. It was found to contain about 30.66% fiber and 28.1% protein. The total tomato processing wastes remain unutilized and they not only add to the disposal problem, but also aggravate environmental pollution. Tomato wastes were irradiated in two doses (1.5 and 2.5 KGy) for preservation. Biscuits were made with supplementation of 5, 10 and 15% tomato wastes. All samples of biscuits were examined for chemical composition and organoleptic evaluation. Biological assay was carried out on rats fed biscuits containing 15% irradiated and non-irradiated tomato wastes. The weight gain, serum cholesterol and triglycerides were determined. Internal organs were also followed. The results obtained showed that 15% tomato wastes biscuit had the highest content of lysine, isoleucine and fiber (6.36, 2.72 and 24.80, respectively) and also scored a good grade. Weight gain, cholesterol and triglycerides were reduced comparable to control and there was no effect of irradiation on the rats internal organs

  17. Chemical and biological studies on sweet biscuits produced from irradiated phaseolus beans flour

    International Nuclear Information System (INIS)

    Nassef, A.E.

    2005-01-01

    This study was carried out to evaluate the chemical composition of beans such as minerals, amino acids, total carbohydrates and fiber to produce high quality sweet biscuits for treating some special diseases. In this study, the Phaseolus beans flour was used as a new source of very important composition. Beans flour was irradiated at two doses (0.5 and 1.0 KGy) for preservation. Sweet biscuits were made with supplementation of 5, 10, 15% beans flour. All samples of sweet biscuits were examined for chemical composition and organoleptic characteristics. Biological assay was carried out in rats maintained on 15% either irradiated or non-irradiated beans flour sweet biscuits through determining the weight gain, serum cholesterol and triglycerides and investigating the internal organs. The results obtained showed that sweet biscuits containing 15% Phaseolus beans flour had highest content of protein, minerals and fiber and scored a good grade. Weight gain, cholesterol and triglycerides levels were reduced comparable to control and there was no effect of irradiated beans flour on the internal organs

  18. Reduced Levels of Tissue Inhibitors of Metalloproteinases in UVB-Irradiated Corneal Epithelium

    Czech Academy of Sciences Publication Activity Database

    Ardan, Taras; Němcová, Lucie; Bohuslavová, Božena; Klezlová, A.; Popelka, Štěpán; Studenovská, Hana; Hrnčiarová, Eva; Čejková, Jitka; Motlík, Jan

    2016-01-01

    Roč. 92, č. 5 (2016), s. 720-727 ISSN 0031-8655 R&D Projects: GA ČR GPP302/10/P155; GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 ; RVO:61389013 ; RVO:68378041 Keywords : tissue inhibitors of metalloproteinases * matrix metalloproteinases Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.121, year: 2016

  19. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better

  20. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    Science.gov (United States)

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the

  1. Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zone

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Jamaliah Sharif; Selambakkanu, S.; Ming, T.M.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2014-01-01

    In this work, activated sludge process and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives of this study to analyze the effect of mix liquor volatile suspended solid (MLVSS) concentration on the properties of wastewater and duration of time taken to achieve steady stage condition for biological treatment. Besides that, effect of electron beam energy on the characteristic of wastewater after irradiation with electron beam machine EPS 3000 was studied as well. The result shows removal percentage of COD, suspended solid and color was linearly proportional with MLVSS. Maximum reduction values recorded for COD, suspended solid and color removal was 69.4, 73.0 and 43.7 % respectively with 3500 mg/l MLVSS at 48 h HRT. In irradiation treatment, significant reduction of COD was obtained with the increase of electron beam energy but the results for suspended solid and color was not favorable. (author)

  2. Effects of sub-lethal dose of γ-irradiation on lysosomal enzymes in tissue of pigeon

    International Nuclear Information System (INIS)

    Shah, V.C.; Gadhia, P.K.

    1979-01-01

    Effects of total body γ-irradiation with sub-lethal dose (300 rad) on three lysosomal enzymes namely acid phosphatase, ribonuclease-II and deoxyribonuclease-II have been studied in pigeons. Liver, kidney and spleen were the tissues studied at different intervals like 1-h, 24-h, 48-h, and 72-h of irradiation. The specific activities ('crude' fraction) of acid phosphatase and ribonuclease-II increased significantly in spleen and liver at 48-h of irradiation. The activity of deoxyribonuclease-II in liver and spleen was increased only at 72-h post-irradiation. On the other hand, the total activities of three lysosomal enzymes did not show remarkable change throughout 72-h of irradiation. (author)

  3. Project on production of mutants by irradiation of in vitro cultured tissues of coconut and banana and their mass propagation by the tissue culture technique

    International Nuclear Information System (INIS)

    Guzman, E.V. de

    1975-01-01

    Fruit pulp tissue, ovary segments with or without ovules and sections from shoot tips of banana were used for studies on growth stimulating or morphogenetic effects of irradiation. Irradiation at 0.1-1.0 kR tended to induce faster callus growth in the otherwise slow-growing cultures. The physical condition and composition of the culture media especially with respect to growth regulators were studied, as were techniques to overcome discoloration of explants, the best choice of plant tissue for explant, and radiation effects on growth and morphogenesis. Due to the difficulty of callus induction with coconut, only the effects of irradiation on embryos cultured in vitro were studied. They were irradiated at various stages of development, i.e. during the early and final stage of liquid culture, and several days after transfer to a solid medium. Adverse effects of irradiation became evident only during the subsequent growth in solid, during the latter stage of which morphological changes were observed. Whereas irradiation of the liquid as well as solid media up to 50 kR had no adverse effect; survival and development became adversely affected at a dose of 1 kR

  4. On the steady state temperature profiles of biological tissues during ...

    African Journals Online (AJOL)

    The Maxwell equations are solved together with the Pennes Bio-heat equation analytically. The procedure of solution is provoked by the solution to the Maxwell equation. The result revealed the effect of the model parameters such as: the thermal conductivity, blood perfusion coefficient, and the thickness of the tissues and ...

  5. Biological response to the synergistic effect of synthetic colour additives and gamma irradiation on rats

    International Nuclear Information System (INIS)

    Ashry, O.M.; Kafafy, Y.A.; Salama, S.F.

    2007-01-01

    This Study was conducted to determine the effect of the inevitable intake of synthetic colour additives in our everyday life and radiation exposure on the levels of some physiological parameters. Female rats were divided into: I- Control group. 2- Group administrated an azo dye mixture of tartrazine and brilliant blue orally for 2 weeks (100 mg/Kg body wt). 3- Group received gamma radiation of 5 Gy. 4- Animals received the dyes mixture for 2 weeks and irradiation. Rats were examined on the 1st, 3rd and 7th days post irradiation or dyes treatment followed by irradiation. Dyes treatment induced significant decreases in hemoglobin (Hb), hematocrit (Ht), red blood cells (RBCs), alkaline phosphatase (ALP) activity. Significant increases of plasma total proteins and albumin levels were recorded. No significant changes of alanine aminotransferase (ALT) activity, iron (Fe), cupper (Cu) and zinc (Zn) levels were noted. Irradiation induced significant decline in Hb, Ht, RBCs, Cu and Fe levels. Significant increases of glucose (7th day), uric acid (3rd and 7 days), total proteins (3rd day) levels, and ALT activity, while no changes were recorded in ALP, albumin or Zn levels. Dual treatment of irradiation and dyes aggravated the radiation-induced changes. Bearing in mind that safety concerns overweighed the approval of use of synthetic colors, the utilization of these colors in drug and food manufacturing should be limited to minimize the physiological disturbances and the risk concomitant to environmental oxidative stress. During the last decade, extensive studies on the use of colors in processed foods, drinks, drugs and cosmetics confirmed that they may act as xenobiotics (Guengerich, 1995). With the increasing awareness of possible health hazards associated with their use more attention has been focused on the biological

  6. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2016-01-01

    Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 Me

  7. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  8. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  9. Interaction of a pulsed alexandrite laser with hard and soft biological tissue

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.; Watts, David C.

    1994-02-01

    An alexandrite laser has been used in the fixed-Q and Q-switched modes, at the fundamental and frequency doubled wavelengths on a selection of hard and soft tissue. In an investigation into the potential use of the laser for the removal of deep lying lesions such as cutaneous vascular lesions and tatoos, studies have been carried out to characterize the depth and extent of the laser/tissue interaction in samples of tissue which greatly absorb the 750 nm radiation. The interaction of the laser radiation with extracted teeth was investigated looking at healthy enamel and dentine, and caries. Surface profile measurements of the enamel and dentine before and after irradiation show little physical effect of the laser irradiation, whereas caries appear to be ablated.

  10. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, M.; Becker, G. [Tuebingen Univ. (Germany). Abt. fuer Strahlenonkologie; Einsele, H.; Bamberg, M. [Tuebingen Univ. (Germany). Abt. fuer Innere Medizin 2

    2001-02-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [German] Hintergrund: Die Bestrahlung der Milz zur Behandlung von haematologischen

  11. Extraction and Simultaneous Quantification of Endocannabinoids and Endocannabinoid-Like Lipids in Biological Tissues.

    Science.gov (United States)

    Bindila, Laura; Lutz, Beat

    2016-01-01

    Extraction and quantification of endocannabinoids (eCBs) from biological tissues are essential to unravel their changes in physiological and pathophysiological conditions. We describe here an analytical protocol for extraction of endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), endocannabinoid-like lipids such as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA), as well as arachidonic acid (AA) from biological tissues using liquid-liquid extraction method and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM).

  12. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  13. Biological Properties and Therapeutic Value of Cryopreserved Fat Tissue.

    Science.gov (United States)

    Mashiko, Takanobu; Wu, Szu-Hsien; Kanayama, Koji; Asahi, Rintaro; Shirado, Takako; Mori, Masanori; Sunaga, Ataru; Sarukawa, Shunji; Uda, Hirokazu; Yoshimura, Kotaro

    2018-01-01

    Fat grafting frequently requires multiple treatments and thus repeated liposuction to achieve treatment goals. The purpose of this study was to evaluate whether cryopreservation of adipose tissue may facilitate future fat grafting. Lipoaspirates were harvested from six women and preserved using two cryopreservation methods: (1) simple cooling to -80°C (cryo-1); or (2) programmed cooling to -196°C (cryo-2). Fresh fat, cryo-1 fat, and cryo-2 fat were analyzed both in vitro and in vivo. Immunohistochemistry of both types of cryopreserved adipose tissue revealed that most adipocytes were necrotic. The cell number and viability of stromal vascular fraction cells were significantly decreased in cryo-1 fat (1.7 × 10 cells, 42.6 percent viable) and cryo-2 fat (2.0 × 10 cells, 55.4 percent viable), compared with fresh fat (3.9 × 10 cells, 90.6 percent viable). Although adipose-derived stem cells were cultured successfully from all fats, functional adipose-derived stem cells from cryopreserved fats were much fewer, with comparable multilineage differentiating capacity. In vivo studies using human fat grafted into immunocompromised mice revealed that, 3 months after transplantation, all of the cryopreserved fats maintained their volume to some extent; however, the cryopreserved fats were mostly filled with dead tissue and produced significantly lower engraftment scores than fresh fat. Most adipocytes were killed in the process of cryopreservation and thawing. Adipose-derived stem cells were isolated from cryopreserved fat, but the number of functional adipose-derived stem cells was very limited in both cryopreservation methods. After grafting, cryopreserved fat was retained as dead and fibrous tissue, suggesting a risk of clinical complications such as oil cysts.

  14. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    International Nuclear Information System (INIS)

    Makambila, C.

    1997-01-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab

  15. Post-irradiation modification of normal-tissue injury: lessons from the clinic

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, A.S. (Hammersmith Hospital, London (United Kingdom). M.R.C. Cyclotron Unit)

    1993-02-01

    The authors concludes that: (1) Glucocorticoids and non-steroidal anti-inflammatory drugs substantially ameliorate acute and chronic radiation injuries to a number of organs. Although in some trials the drugs were administered simultaneously with fractionated irradiation, this was by no means always the case and the drugs were therefore more likely to display a genuine therapeutic influence than to act as radioprotectors (i.e. by lowing the intrinsic radio-responsiveness of the exposed structures). (2) The therapeutic efficacy of anti-inflammatory drugs suggests the development of radiation damage to many tissues and organs includes detrimental inflammatory reactions unaccounted for by cellular radiobiology but shared with a large number of other ailments. Such a possibility should be critically and systematically explored while taking advantage of the rapid progress of research on inflammatory processes and molecular pharmacology of inflammation. Anti-inflammatory drugs have never been shown to exert a deleterious effect on tumour cell sterilization. (author).

  16. Hydraulic fracturing in cells and tissues: fracking meets cell biology.

    Science.gov (United States)

    Arroyo, Marino; Trepat, Xavier

    2017-02-01

    The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cannabinoid Markers in Biological Fluids and Tissues: Revealing Intake.

    Science.gov (United States)

    Huestis, Marilyn A; Smith, Michael L

    2018-02-01

    Understanding cannabis and synthetic cannabinoid intake history is vital for treating drug dependence, investigating cannabinoid effects, and providing information to healthcare personnel, medical examiners, and public health officials; this is particularly relevant today with cannabis medicalization and legalization. Required information includes identifying exposure, time of use, frequency of use, relapse, withdrawal, and predicting cannabinoid effects. Recent controlled cannabinoid administration studies enable the development of models and markers to better identify patterns of intake and exposure. Future challenges include developing behavioral markers of cannabis impairment, bringing to market breathalyzers for cannabinoid detection, and identifying markers of recent cannabis intake in diverse biological matrices. We posit that biological monitoring of cannabinoids and metabolites will improve the characterization of cannabis and synthetic cannabinoid intake history. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies on the use of gamma irradiation and tissue culture in improving brassica napus

    International Nuclear Information System (INIS)

    Khedr, E.K.A.

    2012-01-01

    The objectives of this study were to:1- Studying the effect of different doses of gamma rays on some growth and yield component traits of three Brassica napus cultivars (Serow6, Serow4 and Pactol) during four consecutive generations aiming to create new genotypes characterized with high yielding traits. 2- Studying the effect of different doses of gamma rays on in vitro biotechnology technique (tissue culture) used in improving Brassica napus. Seeds of three Brassica napus cultivars were irradiated with different gamma ray doses then sown for four consecutive seasons. Data were collected and recorded to clarify the effect gamma irradiation on some yield component traits which were days to flowering , plant height, number of main branches per plant, number of secondary branches per plant, number of pods per plant, number of seeds per pod, weight of 1000-seed, weight of grain yield/plant and oil content of seeds). Results showed that high doses of gamma radiation had enhanced all of the studied traits for each of the three tested cultivars (except the plant height trait for Serow6 and Pactol cultivars). Seven new mutant lines were selected for their superiority in one or more of the studied yield component traits. Regarding the effect of gamma rays on tissue culture techniques, the applied gamma radiation doses did not affect the percentage of seed germination of the three studied cultivars, whereas the percentage of callus induction decreased by increasing the dose of gamma rays for each of the three cultivars and in both types of explants (hypocotyl and cotyledons) used in this experiment.

  19. The effect of gamma irradiation on the biology of the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae)

    International Nuclear Information System (INIS)

    Osae, M. Y.; Adabie-Gomez, D. A.; Annoh, C. E.; Awusie, E. A.; Wilson, D. D.; Kluvitse, F.

    2006-01-01

    A study was carried out in the Entomology Laboratory of the Biotechnology and Nuclear Agriculture Research Institute of the Ghana Atomic Energy Commission to determine the effect of gamma irradiation on the biology of the cigarette beetle, Lasioderma serricorne. Eggs, larvae, pupae and adults were exposed to varying doses (0-0.25 kGy and 0-0.3 kGy for eggs and larvae respectively and 0-1.0kGy for pupae and adults) of gamma irradiation at a dose rate of 2.36 kGy/h from a cobalt-60 source. Emergence of adults from irradiated immatures, mortality of irradiated adults and progeny production by irradiated adults and adults emerging from irradiated pupae were used as criteria for determine radiation sensitivity. Results show that irradiating at 0.05kGy completely inhibited eggs hatching and significantly reduced adult emergence from irradiated larvae to 0.3 ± 0.0% as compared to 83.5± 6% in the control. Irradiating matured pupae at 1.0kGy did not prevent adult emergence but 0.1 kGy sterilised adults and pupae. Treating stored products with a dose of 0.1 kGy would kill eggs and larvae and sterilise pupae and adults. Such commodity must however be protected from reinfestation since irradiation leaves on residual effect. (au)

  20. Study on Dental Treatment with YAG Laser (1st Report): Temperature of Dental Tissue Irradiated with Laser Beam

    OpenAIRE

    上田, 隆司; 山田, 啓司; 古本, 達明

    2000-01-01

    The flash temperature of a dental hard tissue irradiated with pulsed Nd:YAG laser is measured using a two-color pyrometer with an optical fiber. This pyrometer consists of a chalcogenide optical fiber and a laminated infrared detector. The influence of the laser power on the temperature of the dental tissue is investigated, and the relationship between the laser power and the removal volume of the dental tissue is obtained. In order to examine the thermal damage on the dental tissue, hardness...

  1. ASPIRE: An automated sample positioning and irradiation system for radiation biology experiments at Inter University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Kothari, Ashok; Barua, P.; Archunan, M.; Rani, Kusum; Subramanian, E.T.; Pujari, Geetanjali; Kaur, Harminder; Satyanarayanan, V.V.V.; Sarma, Asitikantha; Avasthi, D.K.

    2015-01-01

    An automated irradiation setup for biology samples has been built at Inter University Accelerator Centre (IUAC), New Delhi, India. It can automatically load and unload 20 biology samples in a run of experiment. It takes about 20 min [2% of the cell doubling time] to irradiate all the 20 samples. Cell doubling time is the time taken by the cells (kept in the medium) to grow double in numbers. The cells in the samples keep growing during entire of the experiment. The fluence irradiated to the samples is measured with two silicon surface barrier detectors. Tests show that the uniformity of fluence and dose of heavy ions reaches to 2% at the sample area in diameter of 40 mm. The accuracy of mean fluence at the center of the target area is within 1%. The irradiation setup can be used to the studies of radiation therapy, radiation dosimetry and molecular biology at the heavy ion accelerator. - Highlights: • Automated positioning and irradiation setup for biology samples at IUAC is built. • Loading and unloading of 20 biology samples can be automatically carried out. • Biologicals cells keep growing during entire experiment. • Fluence and dose of heavy ions are measured by two silicon barrier detectors. • Uniformity of fluence and dose of heavy ions at sample position reaches to 2%

  2. Wound Complications in Preoperatively Irradiated Soft-Tissue Sarcomas of the Extremities

    International Nuclear Information System (INIS)

    Rosenberg, Lewis A.; Esther, Robert J.; Erfanian, Kamil; Green, Rebecca; Kim, Hong Jin; Sweeting, Raeshell; Tepper, Joel E.

    2013-01-01

    Purpose: To determine whether the involvement of plastic surgery and the use of vascularized tissue flaps reduces the frequency of major wound complications after radiation therapy for soft-tissue sarcomas (STS) of the extremities. Methods and Materials: This retrospective study evaluated patients with STS of the extremities who underwent radiation therapy before surgery. Major complications were defined as secondary operations with anesthesia, seroma/hematoma aspirations, readmission for wound complications, or persistent deep packing. Results: Between 1996 and 2010, 73 patients with extremity STS were preoperatively irradiated. Major wound complications occurred in 32% and secondary operations in 16% of patients. Plastic surgery closed 63% of the wounds, and vascularized tissue flaps were used in 22% of closures. When plastic surgery performed closure the frequency of secondary operations trended lower (11% vs 26%; P=.093), but the frequency of major wound complications was not different (28% vs 38%; P=.43). The use of a vascularized tissue flap seemed to have no effect on the frequency of complications. The occurrence of a major wound complication did not affect disease recurrence or survival. For all patients, 3-year local control was 94%, and overall survival was 72%. Conclusions: The rates of wound complications and secondary operations in this study were very similar to previously published results. We were not able to demonstrate a significant relationship between the involvement of plastic surgery and the rate of wound complications, although there was a trend toward reduced secondary operations when plastic surgery was involved in the initial operation. Wound complications were manageable and did not compromise outcomes.

  3. Wound Complications in Preoperatively Irradiated Soft-Tissue Sarcomas of the Extremities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Lewis A. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Esther, Robert J. [Department of Orthopedics, University of North Carolina, Chapel Hill, North Carolina (United States); Erfanian, Kamil [Department of Surgery, University of North Carolina, Chapel Hill, North Carolina (United States); Green, Rebecca [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Kim, Hong Jin; Sweeting, Raeshell [Department of Surgery, University of North Carolina, Chapel Hill, North Carolina (United States); Tepper, Joel E., E-mail: tepper@med.unc.edu [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States)

    2013-02-01

    Purpose: To determine whether the involvement of plastic surgery and the use of vascularized tissue flaps reduces the frequency of major wound complications after radiation therapy for soft-tissue sarcomas (STS) of the extremities. Methods and Materials: This retrospective study evaluated patients with STS of the extremities who underwent radiation therapy before surgery. Major complications were defined as secondary operations with anesthesia, seroma/hematoma aspirations, readmission for wound complications, or persistent deep packing. Results: Between 1996 and 2010, 73 patients with extremity STS were preoperatively irradiated. Major wound complications occurred in 32% and secondary operations in 16% of patients. Plastic surgery closed 63% of the wounds, and vascularized tissue flaps were used in 22% of closures. When plastic surgery performed closure the frequency of secondary operations trended lower (11% vs 26%; P=.093), but the frequency of major wound complications was not different (28% vs 38%; P=.43). The use of a vascularized tissue flap seemed to have no effect on the frequency of complications. The occurrence of a major wound complication did not affect disease recurrence or survival. For all patients, 3-year local control was 94%, and overall survival was 72%. Conclusions: The rates of wound complications and secondary operations in this study were very similar to previously published results. We were not able to demonstrate a significant relationship between the involvement of plastic surgery and the rate of wound complications, although there was a trend toward reduced secondary operations when plastic surgery was involved in the initial operation. Wound complications were manageable and did not compromise outcomes.

  4. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Biological effects in lymphocytes irradiated with {sup 99m}Tc: determination of the curve dose-response; Efeitos biologicos em linfocitos irradiados com {sup 99m}Tc: determinacao da curva dose-resposta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with {sup 99m} Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with {sup 99m} Tc were used, allowing the irradiation of blood with different administered activities of {sup 99m} Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with {sup 99m} Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with {sup 99m} Tc was best fitted by the curve Y=(8,99 {+-}2,06) x 1-{sup -4} + (1,24 {+-}0,62) x 10{sup -2} D + (5,67 {+-} 0,64) x 10{sup -2} D{sup 2}. (author)

  6. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker? Pre-analytical considerations

    DEFF Research Database (Denmark)

    Lomholt, Anne Fog; Frederiksen, Camilla; Christensen, Ib Jarle

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  7. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Admin

    calculated by using finite difference method to predict the effects of thermal physical properties on the transient temperature of biological tissues. This prediction of the temperature evolution in biological bodies can be used as an effective tool for thermal diagnostics in medical practices. Key words: Microwave heating, ...

  8. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation.

    Science.gov (United States)

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-09-07

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from (12)C (4.44 MeV) and (16)O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10(7) oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from (16)O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring (16)O PG emission.

  9. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    International Nuclear Information System (INIS)

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; Beddar, Sam; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water–sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12 C (4.44 MeV) and 16 O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10 7 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16 O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16 O PG emission. (paper)

  10. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  11. A mechano-biological model of multi-tissue evolution in bone

    Science.gov (United States)

    Frame, Jamie; Rohan, Pierre-Yves; Corté, Laurent; Allena, Rachele

    2017-12-01

    Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading

  12. Effect of repeated irradiation on biological characteristics of lung adenocarcinoma cell line Anip973 in vitro

    International Nuclear Information System (INIS)

    Xu Qingyong; Xu Xiangying; Yang Zhiwei

    2008-01-01

    Objective: To study the effect of repeated irradiation on biological characteristics of human lung adenocarcinoma cell line Anip973 in vitro. Methods: Anip973 cells were treated with high energy X-ray to a total dose of 60 Gy at 4 Gy fractions. The radiosensitivity of Anip973R and its parental cell were measured by clonogenic assay. The biological parameters were fitted to the single hit multitarget formula. Furthermore, the population double time(PDT) and cell cycle distribution were measured by cell growth curve and flow cytometry, respectively. Results: Comparing with its parental cell, Anip973 R acquired radioresistance showing increased D 0 , D q and SF 2 and a broader shoulder. PDT of Anip973R extended 3 h more than that of Anip973. The Anip973R also showed higher and lower percentage of cells in G 1 and S phase (P 2 /M distribution (P>0.05). Conclusions: A radioresistant lung adenocarcinoma cell line Anip973R is established by repeatedly irradiation. Its radioresistance displays obviously in lower dose area. However, its characteristic of cell cycle is not completely coincident with the classical radiobiological theory. (authors)

  13. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  14. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  15. Dosimetric evaluation in heterogeneous tissue of anterior electron beam irradiation for treatment of retinoblastoma

    International Nuclear Information System (INIS)

    Kirsner, S.M.; Hogstrom, K.R.; Kurup, R.G.; Moyers, M.F.

    1987-01-01

    A dosimetric study of anterior electron beam irradiation for treatment of retinoblastoma was performed to evaluate the influence of tissue heterogeneities on the dose distribution within the eye and the accuracy of the dose calculated by a pencil beam algorithm. Film measurements were made in a variety of polystyrene phantoms and in a removable polystyrene eye incorporated into a tissue substitute phantom constructed from a human skull. Measurements in polystyrene phantoms were used to demonstrate the algorithm's ability to predict the effect of a lens block placed in the beam, as well as the eye's irregular surface shape. The eye phantom was used to measure dose distributions within the eye in both the sagittal and transverse planes in order to test the algorithm's ability to predict the dose distribution when bony heterogeneities are present. Results show (1) that previous treatment planning conclusions based on flat, uniform phantoms for central-axis depth dose are adequate; (2) that a three-dimensional heterogeneity correction is required for accurate dose calculations; and (3) that if only a two-dimensional heterogeneity correction is used in calculating the dose, it is more accurate for the sagittal than the transverse plane

  16. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  17. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  18. Effective Permittivity of Biological Tissue: Comparison of Theoretical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Li Gun

    2017-01-01

    Full Text Available Permittivity of biological tissue is a critical issue for studying the biological effects of electromagnetic fields. Many theories and experiments were performed to measure or explain the permittivity characteristics in biological tissue. In this paper, we investigate the permittivity parameter in biological tissues via theoretical and experimental analysis. Firstly, we analyze the permittivity characteristic in tissue by using theories on composite material. Secondly, typical biological tissues, such as blood, fat, liver, and brain, are measured by HP4275A Multi-Frequency LCR Meter within 10 kHz to 10 MHz. Thirdly, experimental results are compared with the Bottcher-Bordewijk model, the Skipetrov equation, and the Maxwell-Gannett theory. From the theoretical perspective, blood and fat are regarded as the composition of liver and brain because of the high permittivity in blood and the opposite in fat. Volume fraction of blood in liver and brain is analyzed theoretically, and the applicability and the limitation of the models are also discussed. These results benefit further study on local biological effects of electromagnetic fields.

  19. Observation of dehydration dynamics in biological tissues with terahertz digital holography [Invited].

    Science.gov (United States)

    Guo, Lihan; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Zhang, Yan

    2017-05-01

    A terahertz (THz) digital holographic imaging system is utilized to investigate natural dehydration processes in three types of biological tissues, including cattle, mutton, and pork. An image reconstruction algorithm is applied to remove the diffraction influence of THz waves and further improve clarity of THz images. From THz images of different biological specimens, distinctive water content as well as dehydration features of adipose and muscle tissues are precisely distinguished. By analyzing THz absorption spectra of these samples, temporal evolution characteristics of the absorbances for adipose and muscle tissues are described and compared in detail. Discrepancies between water retention ability of different animal tissues are also discussed. The imaging technique provides a valuable measurement platform for biological sensing.

  20. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    La Cadena, A. de; La Rosa, J. de; Stolik, S.

    2012-01-01

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  1. Heart Valves from Polyester Fibers vs. Biological Tissue: Comparative Study In Vitro.

    Science.gov (United States)

    Yousefi, Atieh; Vaesken, Antoine; Amri, Amna; Dasi, Lakshmi Prasad; Heim, Frederic

    2017-02-01

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 100,000 implantations to date. However, with only 6 years follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. Textile polyester is one such material which provides outstanding folding and strength properties combined with proven biocompatibility, and could therefore be considered as a candidate to replace the biological valve leaflets in TAVI procedures. For that purpose, in addition to the mechanical properties, the hemodynamic properties of the synthetic material should be comparable to the properties of biological tissue. An ideal replacement heart valve would provide low static and dynamic regurgitation, ensure laminar flow across the valve, and limit the turbidity of flow downstream of the valve. The purpose of the present work is to compare in vitro the mechanical and hemodynamic performances of textile woven polyester valves with biological ones. Testing results indicate that textile valves trade elasticity for superior mechanical strength, relative to biological tissue. Despite this, the dynamic flexibility of textile valve leaflets strongly resembled what was seen with biological leaflets. Regurgitation, as well as slightly modified turbulent patterns, in textile valves was higher than biological valves due to the increased porosity, but, rapid tissue ingrowth post-implantation would likely mitigate this effect. Together these findings provide additional evidence favoring the use of textile polyester as a synthetic heart valve leaflet material.

  2. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  3. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  4. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  5. Methods in elastic tissue biology: elastin isolation and purification.

    Science.gov (United States)

    Mecham, Robert P

    2008-05-01

    Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60-70 kDa monomer called tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin 'contaminates' are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein's extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number.

  6. Brown adipose tissue: Updates in cellular and molecular biology.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2016-10-01

    Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Research on the dose of the tissues located outside the treatment field when breast cancer was irradiated by linear accelerator

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Juying; Jiang Dezhi; Qin Songbing

    1999-10-01

    The purpose of study was to determine the dose of the tissues which located outside the treatment field, when breast cancer was irradiated by 9 MeV electron-beam and 6 MV-X ray after operation. A search for decreasing the dose of the tissues outside the treatment field was made. Clinically relevant treatment fields were simulated on a tissue-equivalent material phantom and subsequently irradiated with 9 MeV electron-beam and 6 MV-X ray. TLD were used to measure absorbed doses. The prescribed dose of breast cancer region was 50.0 Gy, region-lymph-nodes were 60.0 Gy, each exposure dose was 2.0 Gy. In breast cancer region, if only with 9 MeV electron-beam, the dose of the tissues located outside the treatment field were from 29.0 cGy to 295.5 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field may descended 9.4%-53.6%; if only with 6 MV-X ray, the doses of aforementioned tissues were from 32.0 cGy to 206.7 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7%-56.6%. In region-lymph-nodes, with 6 MV-X ray, the doses of aforementioned tissues were from 22.5 cGy to 1650.9 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7-65.6%. If mix-irradiation (9 MeV electron-beam vs. 6 MV-X ray 2:3) was used, the doses outside field would be lower than only used 9 MeV electron-beam or 6 MV-X ray were used

  8. External irradiation facilities open for biological studies - progress in july 2005; Les installations d'irradiation externe accessibles aux etudes de biologie etat d'avancement juillet 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Lecanu, E. [CEA Fontenay aux Roses (DSV/Carmin), 92 (France); Authier, N.; Verrey, B. [CEA Valduc, Dept. Recherche sur les Materiaux Nucleaires, 21 - Is-sur-Tille (France); Bailly, I. [CEA Bruyeres le Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Baldacchino, G.; Pin, S.; Pommeret, S.; Renault, J.Ph. [CEA Saclay, Dept. de Recherche sur Etat Condense, les Atomes et les Molecules, 91 - Gif sur Yvette (France); Bordy, J.M. [CEA Saclay, Dir. de la Recherche Technologique (DRT/DETECS/LNHB/LMD), 91 - Gif sur Yvette (France); Coffigny, H. [CEA Fontenay aux Roses, Dept. de Radiobiologie et de Radiopathologie, 92 (France); Cortela, L. [CEA Grenoble, ARC-Nucleart, 38 (France); Duval, D. [CEA Saclay, Schering - CIS bio International, 91 - Gif sur Yvette (France); Leplat, J.J. [CEA Saclay (DSV/DRR/LREG), 91 - Gif sur Yvette (France); Poncy, J.L. [CEA Fontenay aux Roses (DSV/DRR/SRCA), 92 (France); Testard, I. [CEA Caen (DSV/DRR/LRO-LARIA), 14 - Caen (France); Thuret, J.Y. [CEA Saclay (DSV/DBJC/SBGM), 91 - Gif sur Yvette (France)

    2005-07-01

    The Life Science Division of the Atomic Energy Commission is making an inventory of the various radiation sources accessible for investigation on the biological effects of ionizing radiation. In this field, a wide range of studies is being carried out at the Life Science Division, attempting to characterize the kind of lesions with their early biological consequences (on the various cell compartments) and their late biological consequences (deterministic or stochastic effects), in relation to the radiation type and dose, especially at low doses. Several experimental models are available: plants, bacteria, eukaryotic cells from yeast up to mammalian cells and in vivo studies, mostly on rodents, in order to characterize the somatic late effects and the hereditary effects. Due to the significant cost of these facilities, also to their specific properties (nature of the radiation, dose and dose rate, possible accuracy of the irradiation at the molecular level), the closeness is no longer the only criteria for biologists to make a choice. The current evolution is to set up irradiation infrastructures combining ionizing radiation sources themselves and specific tools dedicated to biological studies: cell or molecular biology laboratories, animal facilities. The purpose, in this new frame, is to provide biologists with the most suitable facilities, and, if possible, to change these facilities according to requirements in radiobiology. In this report, the basics of interactions of ionizing radiation with biological tissues are briefly introduced, followed by a presentation of some of the facilities available for radiobiological studies especially at CEA. This panorama is not a comprehensive one, new data will be included as they advance, whether reporting existing facilities or if a new one is developed. (authors)

  9. Regular character of chromatin degradation in lymphoid tissues after treatment with biological alkylating agents in vivo

    International Nuclear Information System (INIS)

    Matyasova, J.; Skalka, M.; Cejkova, M.

    1979-01-01

    The chromatin changes are reevaluated occurring in lymphoid tissues of mice treated with alkylating agents of the nitrogen-mustard type in relation to recent evidence on the nucleosomal organization of chromatin and to our new data on the regular character of chromatin degradation in lymphoid tissues of irradiated mice. DNA was isolated from nuclei at various intervals (1 to 18 h) after treatment of mice and subjected to gel electrophoresis in polyacrylamide gels. Thymus chromatin from treated mice has been shown to degrade in a regular fashion and to yield discrete DNA fragments, resembling those that originate in lymphoid tissues of irradiated mice or in thymus nuclei digested with micrococcal nuclease in vitro. With increasing interval after treatment higher amounts of smaller DNA fragments appear. Chromatin in spleen cells responds to treatment in a similar way, whilst no degradation in vivo takes place in liver chromatin. Chromatin of LS/BL lymphosarcoma cells in mice treated with alkylating agents or with irradiation suffers from a similar regular degradation. The results stress the significance of the action of liberated or activated endogenous nuclease(s) in the development of chromatin damage in lymphoid cells after treatment with alkylating agents. (author)

  10. Simulation on scattering features of biological tissue based on generated refractive-index model

    International Nuclear Information System (INIS)

    Wang Baoyong; Ding Zhihua

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  11. Simulation on scattering features of biological tissue based on generated refractive-index model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Baoyong; Ding Zhihua, E-mail: zh_ding@zju.edu.cn [State Key Lab of Modern Optical Instrumentation, Zhejiang University 38 Zheda Rd., Hangzhou 310027 (China)

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition{sup [1]} is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry{sup [2]}, and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  12. Study of the agroindustrial alterations induced by the irradiated tissue culture in sugar cane, variety NA 56-79

    International Nuclear Information System (INIS)

    Figueiredo Junior, O.

    1991-01-01

    The use of plant tissue culture and the application of gamma radiation as mutation inducing agents, in the sugar cane plant, variety NA 5679, are studied. The variation in the contents of brix, pol, fiber, purity, extraction, phosphorus, nitrogen, reducing sugars as well as the morphological characteristics are analysed. The 'callus' obtained by the tissue culture were irradiated with 20, 40, and 60 Gy doses. The statistical analysis indicated that the method of tissue culture may, eventually, increase the contents of the technological parameters and the dosages of gamma radiation were not efficient for such purpose. (M.A.C.)

  13. Effects of hyperthermia and X-irradiation on mouse stromal tissue

    NARCIS (Netherlands)

    Wondergem, J.; Begg, A. C.; Haveman, J.

    1986-01-01

    The sensitivity of normal stroma to heat, irradiation and heat combined with irradiation has been studied using the tumour bed effect (TBE) assay. Irradiation before implantation led to a TBE. This TBE was dose dependent below 15 Gy, the TBE remaining relatively constant above 15 Gy. The interval

  14. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-05-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  15. Effects of irradiated Ergosan on the growth performance and mucus biological components of rainbow trout Oncorhynchus mykiss

    Science.gov (United States)

    Sheikhzadeh, Najmeh; Chehrara, Fatemeh; Heidarieh, Marzieh; Nofouzi, Katayoon; Baradaran, Behzad

    2016-01-01

    Effects of irradiated and non-irradiated Ergosan extract (alginic acid) on rainbow trout growth performance and skin mucosal immunity were compared. Ergosan was irradiated at 30 kGy in a cobalt-60 irradiator. A total of 252 fish (128.03±9.4 g) were randomly divided into four equal groups, given the basal diet either unsupplemented with Ergosan (control group) or supplemented with crude Ergosan (5 g/kg), ethanol-extracted Ergosan (0.33 g/kg) or irradiated Ergosan (0.33 g/kg) according to this protocol: basal diet for 15 days, treatment diet for 15 days, basal diet for 10 days and treatment diet for 15 days. Highest growth performance was observed in fish fed irradiated Ergosan ( P <0.05). Dietary administration of different Ergosan types did not cause any changes in mucus protein level, but improved alkaline phosphatase level and hemagglutination titer compared with the control (basal diet without Ergosan) on day 55 of feeding trial ( P <0.05). Furthermore, the highest value of lysozyme activity was observed in gamma-irradiated Ergosan on day 55. In conclusion, gamma-irradiated Ergosan at 0.33 g/kg was found to improve growth performance and mucus biological components significantly in comparison with the control group (basal diet without Ergosan).

  16. The effects of gamma irradiation on the growth and cytology of carrot (Dacus Carota L.) tissue culture

    International Nuclear Information System (INIS)

    Al-Safady, B.; Simon, P.W.

    1992-01-01

    Carrot (Dacus Carota L.) tissue suspension cultures were subjected to 0.5-40 krad of gamma irradiation. Callus fresh weight was significantly increased and dry weight slightly increased by low doses (0.5 and 1 krad). Cells size increased at all doses. Cell number and colony-forming ability decreased. There was a negative correlation between radiation dose and mitotic index, and a positive correlation between dose and mitotic abnormalities (multipolar separations, lagging chromosomes, and bridges). Frequency of prophase was increased, and ana phase and telophase were reduced. Tissue culture conditions increased the incidence of aneuploidy and polyploidy in comparison to carrot root tips. Aneuploidy in tissue cultures was decreased and polyploidy was increased by gamma irradiation. Gamma irradiation stimulated shoot formation at 1 krad, and inhibited shoot formation at high doses (20-40 krads). The frequency of abnormal plants (albinos, and plants with no roots or deformation of leaves) regenerated from carrot cell cultures was increased by gamma irradiation. (authors). 30 refs., 3 figs

  17. Light scattering by irradiated cells as a method of biological dosimetry

    International Nuclear Information System (INIS)

    Ostashevsky, J.

    1984-01-01

    Light scattering (LS) parameters between 350-500 nm wavelength have been studied for 2 groups of cells: 1) blood (BL) and thymus (TL) lymphocytes of rats and mice, and 2) Ehrlich ascite tumor (EAT) cells. LS measurements of freshly prepared cell suspensions have been made 24 hrs after x-ray irradiation of rodents (250 Kev, HVL = 2 mm Cu) at doses of 50-900 cGy. A steep (30% per Gy) linear (50-800 cGy for TL and 50-400 cGy for BL) dose-dependence was obtained for the increase in 90 0 -angle LS intensity. Increase in absorption (low-angle LS) was also linear (50-800 cGy for TL and BL) but less steep (9% per Gy). Irradiated cells were the same size as unirradiated. Changes in LS for TL and BL appear to follow the appearance of additional vacuoles which may become new internal smaller-size centers of LS. This suggestion is supported by direct observations of cells with dark-field microscopy. For EAT cells, both 90 0 and low angle LS had the same slope. This slope (4% per Gy) is much shallower than that for BL and TL, and quantitatively coincides with enlargement of area of EAT cells, which could explain LS changes. The difference in LS behavior of the two cellular groups reflects a difference in their early response to irradiation: interphase death for TL and BL, vs division delay for EAT cells. The above data suggest the fast and simple method of biological dosimetry

  18. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  19. Backward Multiscattering and Transport of Photons in Biological Tissue: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Hamed Mohamed Abubaker

    2012-01-01

    Full Text Available Optical polarimetry is a mighty tool for study of transparent and translucent inorganic and organic materials. Growing interest in better health and also the quality of the food pointed the investigation of physical properties of biological turbid tissues. Due to the fact that biological tissue is complex random material showing inhomogeneity, anisotropy and nonlinearity in the structure, its rigorous characterization is almost impossible. This complexity also involves an important amount of information. Therefore, the research of polarization states of scattered light is one of emerging novel techniques in biomedical science. The paper deals with the experimental study of degree of polarization and also with simulation of the biological tissue by Monte Carlo method.

  20. Construction of tissue compensating filters for extended areas in Hodgkin-irradiation on the basis of moire topography

    International Nuclear Information System (INIS)

    Binder, W.; Cabaj, A.; Kaercher, K.H.; Windischbauer, G.; Tieraerztliche Hochschule, Vienna

    1977-01-01

    In order to obtain a homogeneous distribution of the dose over extended fields in radiotherapy of Hodgkin's disease, for an exact dose within the irradiated region it is necessary to consider the topography of the patient. The skin protective build-up effect due to the use of bolus materials would be lost with telecobalt irradiation, and therefore tissue compensating filters with a large surface are to be preferred. A simple method of making such filters by means of the moire topography is described. The way to obtain a compensation filter for extended areas is demonstrated by an example showing how to construct it from layered lead plates. (orig./HP) [de

  1. A simple method for dose measurements in a biological irradiation facility

    International Nuclear Information System (INIS)

    Zarand, P.

    1973-01-01

    Changes in dose rate were investigated caused by reactor poisoning and burning up in a biological irradiation facility. Measurements were made by a GM counter monitoring system previously described. The absorbed-dose rate in mice was calculated from the kerma rate. Absorbed neutron dose plotted versus effective neutron fluence gives a straight line even with values measured using different filters in various core configurations. Curve representing the effect of reactor poisoning on neutron dose-rate shows a maximum and the difference found after a four day period does not exceed 5%. Calculations described permit a more precise planning of experiments and their intercomparison than either activation technique or ionization method. (B.A.)

  2. Thermo-electrical equivalents for simulating the electro-mechanical behavior of biological tissue.

    Science.gov (United States)

    Cinelli, I; Duffy, M; McHugh, P E

    2015-01-01

    Equivalence is one of most popular techniques to simulate the behavior of systems governed by the same type of differential equation. In this case, a thermo-electrical equivalence is considered as a method for modelling the inter-dependence of electrical and mechanical phenomena in biological tissue. We seek to assess this approach for multi-scale models (from micro-structure to tissue scale) of biological media, such as nerve cells and cardiac tissue, in which the electrical charge distribution is modelled as a heat distribution in an equivalent thermal system. This procedure allows for the reduction in problem complexity and it facilitates the coupling of electrical and mechanical phenomena in an efficient and practical way. Although the findings of this analysis are mainly addressed towards the electro-mechanics of tissue within the biomedical domain, the same approach could be used in other studies in which a coupled finite element analysis is required.

  3. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  4. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  6. The use of tissue culture techniques with irradiation to improve potato resistance to late blight

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M.I.E.

    2004-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) resistance to late blight disease caused by Phytophthora infestans. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma ray doses 25, 30, and 35 Gy. Growing shoots were cut and re-cultured every 2 weeks until the 4 t h generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure using co-culture technique. MV 4 explants were incubated in jars, containing MS medium, with mycelia of P. infestans. Surviving plantlets were propagated and re-incubated with the pathogen for three consecutive generations. Resistant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later inoculated, at the adult stage, with sporangial suspension. Cultivar Draga produced the highest number of resistant plants. Ten plants of Draga appeared to be resistant to late blight whereas only one plant from each of the other 2 cultivars was resistant. Mutant plants varied in number of produced minitubers from 13 to 70, Also, weight of these minitubers varied from less than 1 to 35 grams. Selected mutant lines will undergo further testing under field conditions for P. infestans resistance and other agronomic characteristics. (author)

  7. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2005-06-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy.Growing shoots were cut and re-cultured every 2 weeks until the 4th generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on MS medium supplemented with the NaCl in varying concentrations ranging between 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Tolerant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later subjected to another selection pressure, by irrigating them using water containing NaCl in concentrations ranging between 50-250 mM in addition to controls irrigated with normal water. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant and was tolerant and no plants from cultivar Draga were tolerant. Mutant plants varied in number of produced minitubers from 8 - 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  8. Chemical And Physiological Studies On Drought Stress Tolerance Of Irradiated Communis Pear Using Tissue Culture

    International Nuclear Information System (INIS)

    Zaied, N.S.; Ragab, E.A.

    2007-01-01

    The rooted in vitro irradiated pear rootstocks (Pyrus communis) were subjected to drought stress by using different concentrations of mannitol (20, 40, 60, 80 and 100 gm/l), polyethylene glycol (PEG) at concentrations 2, 4, 6, 8 and 10 % to culture medium and also agar at concentrations 6, 8, 10, 12 and 14 gm/l to study their effects on tissue culture and chemical analysis and their tolerance to drought stress. The obtained results showed that the number of shoots, shoot length and number of leaves were higher at 20 and 40 gm/l mannitol. Increasing mannitol concentration enhanced the increase of chlorophyll b, reducing sugars, total indoles and total phenols up to the highest level at 100 gm/l. Adding PEG at concentration 2% to the culture medium encouraged significant increases in the number of shoots and number of leaves and increase chlorophyll a, and non-reducing sugars as well as significant decrease in number of shoots, shoots length, number of leaves, root length and number of roots with increasing agar concentrations to the culture medium. However, decreasing agar concentration in the culture medium induced increase in chlorophyll A and non-reducing sugar

  9. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    Science.gov (United States)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  11. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    Science.gov (United States)

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro

  12. Studies on biological effects of gamma irradiation on oat (Avena sativa L.)

    International Nuclear Information System (INIS)

    Hussain Basha, M.; Mehta, A.K.; Gour, V.K.

    2014-01-01

    The seeds of three oat varieties viz., Kent, JO 03-91 and JO-1 were exposed to different doses of gamma rays i.e. 200 Gy, 250 Gy, 300 Gy, 350 Gy, 400 Gy, 450 Gy and 500 Gy at Nuclear Research Laboratory, IARI, New Delhi. The present investigation aims to study biological effects of gamma irradiation on oat (Avena sativa L.) in the M 1 generation. After irradiation, 10 seeds were sown from each dose on paper towel by using distilled water. Germination, root and shoot length were recorded after seven days. 100 seeds of each irradiated dose along with control were sown in the field at Regional station, IARI, Wellington, Tamil Nadu. Seedling emergence and height under field conditions was recorded after 7 and 14 days. An observation for plant height and plant survival percentage was reordered at maturity stage. Seed germination (%), root length and shoot length decreased not in a linear fashion with the increase in irradiation doses. In contrast, the gamma rays had some stimulatory effects on shoot length in comparison to root length. Seedling emergence, plant height and plant survival (%) decreased with increase in radiation dose not in a linear fashion in all three varieties. Seedling emergence was recorded less in 7 DAS in comparison to 14 DAS in all three varieties. The coefficient of correlation between radiation dose and emergence and plant survival under field conditions were found to be significant and negative in all three varieties. Radiation dose of 500 Gy proved most lethal and reduced the percentage of survived plants in oat varieties JO-1 (37.36%) and JO 03-91 (43.57%) followed by 450 Gy in JO 03-91 (54.07 %) and 400 Gy in all three varieties (<68.5%). Only in the variety JO 03-91 has three morphological mutations were found at different doses i.e. 250 Gy, 350 Gy and 450 Gy and two chlorophyll mutations namely i.e. chlorina and yellow viridis was found in JO-1 (450 Gy) and Kent (250 Gy) in M 1 generation respectively. (author)

  13. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  14. Spatial transcriptomics: paving the way for tissue-level systems biology.

    Science.gov (United States)

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of x-irradiation on steroid biotransformations by testicular tissue. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Ellis, L.C.

    1975-01-01

    X irradiation of rat testicular tissue either in vivo or in vitro labilized the lysosomal membranes with a release of both acid phosphatase and phospholipase A 2 resulting in an increased lipid peroxidation. The results from these investigations suggest that the lipid endoperoxides and malonaldehyde are responsible for mediating the effects of radiation on steroid biotransformations. Estradiol, testosterone, 5α-dihydrotestosterone, prolactin, acetylcholine, cGMP, H 2 O 2 , PUFA, ethanol and vitamin A increased lysosomal fragility and initiated enzyme release while ATP, cAMP, vitamin E, theophylline, indomethacin, caffeine, cortisol, epinephrine, NADPH, NDGA, FSH and Zn ++ decreased both phenomena. An increase in catalase activity was consistently observed after irradiation and by cAMP indicative of an increase in testicular cAMP content following irradiation. Seminiferous tubules were found to be dependent on prostaglandins for their contractions. (U.S.)

  16. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    Science.gov (United States)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  17. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    Science.gov (United States)

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration. © 2015 AlphaMed Press.

  18. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    Science.gov (United States)

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  19. Pathologic characteristics of gut-associated lymphoid tissues and lymphocyte apoptosis in mouse intestine after neutron-and γ-irradiation

    International Nuclear Information System (INIS)

    Fu Kaifei; Peng Ruiyun; Gao Yabing; Wang Dewen; Chen Haoyu; Wu Xiaohong; Yang Yi; Hu Wenhua; Ma Junjie

    2004-01-01

    Objective: To compare the pathologic characteristics of gut-associated lymphoid tissues and lymphocyte apoptosis in neutron-irradiated mouse small intestines with those in γ-irradiated ones. Methods: Altogether 350 BALB/c mice were irradiated with different doses of neutrons or γ-rays, and were sacrificed on 6 h,12 h,125 d, 7 d, 14 d, 21 d and 28 d after irradiation and their total intestines were removed. Then the pathologic changes and death mode of lymphocytes in gut-associated lymphoid tissues were studied comparatively with light microscopy, electron microscopy and in situ terminal labeling method. Results: The basic pathologic changes of gut-associated lymphoid tissues after neutron irradiation included degeneration, apoptosis and necrosis of lymphocytes. The number of lymphocytes also decreased. There was no obvious regeneration after 4.0 and 5.5 Gy neutron irradiation, while after 2.5 Gy regeneration and recovery appeared, which were, there fore, dose-dependent. In the 2.5 Gy neutron group, the numbers of lymphocytes of intramucosal and submucous lymphoid tissues decreased, and karyopyknosis and a great quantity of nuclear fragments could also be observed at 6 h-3 d after irradiation. However, on the 3rd day regeneration of crypt epithelial cells appeared. On the 5th day hyperplasia of submucous lymphocytic tissues appeared, but recovery to normal level was not achieved till 14 d after irradiation. The basic pathologic changes after γ-irradiation were similar to that of neutron irradiation. Regeneration and recovery appeared in the 5.5 Gy group while no obvious regeneration in the 12.0 Gy group. The results of in situ terminal labeling indicated that at 6 h after irradiation the number of apoptotic cells in gut-associated lymphoid tissues of each group increased obviously, while in 4.0 Gy neutron group and 12.0 Gy γ-ray group it was more abundant. Conclusion: Both 2.5-5.5 Gy neutron and 5.5-12.0 Gy γ-ray irradiation can induce obvious injuries in gut

  20. [Effects of microwave acute irradiation on biomechanic properties of rabbit tissues].

    Science.gov (United States)

    Chen, H; Li, X; Zhang, F; Yu, X; Liao, X

    1999-06-01

    The rabbit body was irradiated acutely by 2.45 GHz continuous microwave. After irradiation, the values of blood viscosity, blood viscoelasticity, platelet aggregation, erythrocyte fragility, erythrocyte deformation, erythrocyte aggregation, the compressive mechanic property and flexible property of bones were tested. The data of irradiated group and unirradiated group were compared. The results showed: after microwave irradiation, the rabbit blood viscosity and viscoelasticity decreased; the rabbit platelet aggregation rate decreased and the disaggregation rate increased; the erythrocyte fragility increased; the biomechanic properties of bones did not change considerably.

  1. Investigation on the potential of thulium-fibre-laser irradiation for in-stent tissue ablation (Conference Presentation)

    Science.gov (United States)

    Sroka, Ronald; Frank, Johannes; Reichenberger, Frank; Behr, J.; Gesierich, Wolfgang

    2017-04-01

    Granulation and tumor regrowth in the area of bronchi stent implants may result in restenosis. It had been shown that by means of Thulium-Fibre-Laser (TFL) a controlled ablation and reduction of the tissue within the stent could be performed. When using Nd:YAG irradiation there is risk for explosive flames, burns of fibre and stent, ruptures of stent meshes as well as perforation of stent and cover. Therefore it was the aim to investigate the safety margin when using TFL. Four different types of clinical used stents (with/without cover) were fixed to pig trachea tissue. Irradiation was performed by fibre assisted TFL-1940nm-laser irradiation while laser power, light application duration and distance, as well as oxygen percentage and contamination were varied. In case of Nitinol-stents rupture were observed at power levels >=7W or distances of =5 mm and the power level should be <=6W. Furthermore the oxygen conc. should not exceed 30% and short term continuous irradiation of less than 15s exposition should be considered. In case of Silicon-stents light application on contaminated area should be avoided.

  2. Quantification of fibrosis and mast cells in the tissue response of endodontic sealer irradiated by low-level laser therapy.

    Science.gov (United States)

    Berbert, Fábio Luiz Camargo Villela; Sivieri-Araújo, Gustavo; Ramalho, Lizeti Toledo Oliveira; Pereira, Sanívia Aparecida Lima; Rodrigues, Denise Bertulucci Rocha; de Araújo, Marcelo Sivieri

    2011-11-01

    Low-level laser therapy (LLLT) accelerates tissue repair. Mast cells induce the proliferation of fibroblasts and the development of local fibrosis. The objective of this study was to quantify fibrosis rate and mast cells in connective tissue after endodontic sealer zinc oxide and eugenol (ZOE) was implanted and submitted to LLLT, immediately after implant and again 24 h later. Sixty mice were distributed into three groups: GI, GII, and GIII (n = 20). In GI, the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT. In GII, the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAIP) 685-nm wavelength, D = 72 J/Cm(2), E = 2 J, T = 58 s, P = 35 mW, and in GIII, the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl) 830-nm wavelength, D = 70 J/Cm(2), E = 2 J, T = 40 s, P = 50 mW. After 7 days and 30 days, the animals were killed. A series of 6-µm-thick sections were obtained and stained with Toluidine Blue and Picrosirius and analyzed under a standard light microscope using a polarized light filter for the quantification of fibrosis. The statistics were qualitative and quantitative with a significance of 5%. The irradiation with LLLT did not offer improvement in the fibrosis rate, however, it provided a significant decrease in the concentration of independent mast cells for the period studied.

  3. Combining multiset resolution and segmentation for hyperspectral image analysis of biological tissues.

    Science.gov (United States)

    Piqueras, S; Krafft, C; Beleites, C; Egodage, K; von Eggeling, F; Guntinas-Lichius, O; Popp, J; Tauler, R; de Juan, A

    2015-06-30

    Hyperspectral images can provide useful biochemical information about tissue samples. Often, Fourier transform infrared (FTIR) images have been used to distinguish different tissue elements and changes caused by pathological causes. The spectral variation between tissue types and pathological states is very small and multivariate analysis methods are required to describe adequately these subtle changes. In this work, a strategy combining multivariate curve resolution-alternating least squares (MCR-ALS), a resolution (unmixing) method, which recovers distribution maps and pure spectra of image constituents, and K-means clustering, a segmentation method, which identifies groups of similar pixels in an image, is used to provide efficient information on tissue samples. First, multiset MCR-ALS analysis is performed on the set of images related to a particular pathology status to provide basic spectral signatures and distribution maps of the biological contributions needed to describe the tissues. Later on, multiset segmentation analysis is applied to the obtained MCR scores (concentration profiles), used as compressed initial information for segmentation purposes. The multiset idea is transferred to perform image segmentation of different tissue samples. Doing so, a difference can be made between clusters associated with relevant biological parts common to all images, linked to general trends of the type of samples analyzed, and sample-specific clusters, that reflect the natural biological sample-to-sample variability. The last step consists of performing separate multiset MCR-ALS analyses on the pixels of each of the relevant segmentation clusters for the pathology studied to obtain a finer description of the related tissue parts. The potential of the strategy combining multiset resolution on complete images, multiset segmentation and multiset local resolution analysis will be shown on a study focused on FTIR images of tissue sections recorded on inflamed and non

  4. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Oller, S; Bellomo, F J; Nallim, L G; Armero, F

    2010-01-01

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  5. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    NARCIS (Netherlands)

    Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is

  6. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Effects of microwave heating on the thermal states of biological tissues. Nabil TM El-dabe, Mona AA Mohamed, Asma F El-Sayed. Abstract. A mathematical analysis of microwave heating equations in one-dimensional multi-layer model has been discussed. Maxwell's equations and transient bioheat transfer equation were ...

  7. A model for Monte Carlo simulation of low angle photon scattering in biological tissues

    CERN Document Server

    Tartari, A; Bonifazzi, C

    2001-01-01

    In order to include the molecular interference effect, a simple procedure is proposed and demonstrated to be able to update the usual cross section database for photon coherent scattering modelling in Monte Carlo codes. This effect was evaluated by measurement of coherent scattering distributions and by means of a model based on four basic materials composing biological tissues.

  8. Polarization-sensitive optical coherence tomography for imaging of biological tissues

    Science.gov (United States)

    Chen, Xiaodong; Wang, Yi; Li, Wanhui; Yu, Daoyin

    2006-09-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a new non-contact and non-invasive method for measuring the change of birefringence in biological tissues caused by pathological changes of body. It has great potential in imaging the structural properties of turbid biological media because the polarization state of light backscattered from biological tissues is influenced by the birefringence of fibrous structures. The arrangement is based on a Michelson interferometer with use of quarter-wave plates and polarimeter. Through the detection of light backscattered from biological tissues and reflected from a reference mirror, the optical phase delay between orthogonal polarization compositions propagating in the birefringence media can be measured. PS-OCT is a powerful tool for research of tendon, dentin, lesions, which have strong polarization effective. We in this paper describe the experimental scheme and its mathematical representation, along with the theory of PS-OCT imaging. Besides, we introduce a fiber-based PS-OCT system for measuring the tissue birefringence.

  9. Biological Effects of Laser Radiation. Volume IV. Optical Second Harmonic Generation in Biological Tissues.

    Science.gov (United States)

    1978-10-17

    harmonic generation in ocular tissue may be of significance to vision (Fine and Hansen, 1971). Although second-harmonic radiation was observed from...efficiency of CC1 4 . The parameter values used in this computacion are listed below. -30 9/2 -1/2a) 8-6.24 x 10 cm erg for f - 1, and assuming imaginary...sise Lt La a moorfeW, coLlsmme Usmwu ad, La imma, sight be sopmed to 1ase wediaeto. tou~saie ~ the eve am bo -~atm tow Visions (YOLIM60 eg at, * .5

  10. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Ramser

    2012-07-01

    Full Text Available This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS, polymethylmethacrylate (PMMA, polystyrene (PS, polycarbonate (PC, cyclic olefin copolymer (COC, glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.

  11. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance.

    Science.gov (United States)

    Pons, Thijs L; Poorter, Hendrik

    2014-01-01

    The carbon balance is defined here as the partitioning of daily whole-plant gross CO2 assimilation (A) in C available for growth and C required for respiration (R). A scales positively with growth irradiance and there is evidence for an irradiance dependence of R as well. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 μmol m(-2) s(-1) (1.2 mol m(-2) day(-1)) to 500 μmol m(-2) s(-1) (30 mol m(-2) day(-1)). Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area) at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light-saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies toward a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated

  12. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    Science.gov (United States)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  13. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  14. Biological effect of the irradiation of various origins on the genetic systems of plants

    International Nuclear Information System (INIS)

    Akhundova, N.I.

    2002-01-01

    Full text: Results of the irradiation of seeds of the maize breed named 'Absheronskaya mestnaya' by a flow of neutrons are being presented in this work. The dosage of the irradiation totaled to 10 krad. Emergence of low-height fast-ripening plants named 'neutron dwarf plants' has been identified. The research of posterity has showed that yet in the 2nd and 3rd generations the forms that differ from the original ones by a number of morphological signs have emerged. They were two times lower than the original form and with a smaller area of leaves. The tallest 'dwarf' was 110 cm long and the lowest was only 65 cm long. The quantity of the changed forms far exceeded the percentage of the natural mutants emergence. Low-height 'dwarfs' which are stable for blowing of the wind represent interest for the Absheron peninsular since winds are very common there. These 'dwarf plants' represent a scientific and theoretical interest as well. Along with the morphological differences, a biochemical variability has been revealed with the 'neutron dwarfs'. Two-time decrease of the amino acids content has been noted due to the effect of the irradiation. This process is expressed as in two-time decrease of the amino acids sum and so in each of these amino acids separately. The content of lysine, threonin, valine, methionine and leucine amino acids decreases by two times. The content of isoleucine and histidine amino acids decreases by three times while the amount of phenylalanine and tyrosine amino acids decreases by half. The decrease of lysine and methionine synthesis testifies to the decrease of the activity of poly ferment systems and slowing down of the metabolism processes. This results in appearance of the undersized plants of maize. The decrease of the content of the proline, alanine and tyrosine 'stressed' amino acids states reduction of their adaptation potential. Fields of different origin - physical and biological affect the genetic apparatus of the plant cell as well

  15. Active breathing control (ABC) for Hodgkin's disease: reduction in normal tissue irradiation with deep inspiration and implications for treatment

    International Nuclear Information System (INIS)

    Stromberg, Jannifer S.; Sharpe, Michael B.; Kim, Leonard H.; Kini, Vijay R.; Jaffray, David A.; Martinez, Alvaro A.; Wong, John W.

    2000-01-01

    Purpose: Active breathing control (ABC) temporarily immobilizes breathing. This may allow a reduction in treatment margins. This planning study assesses normal tissue irradiation and reproducibility using ABC for Hodgkin's disease. Methods and Materials: Five patients underwent CT scans using ABC obtained at the end of normal inspiration (NI), normal expiration (NE), and deep inspiration (DI). DI scans were repeated within the same session and 1-2 weeks later. To simulate mantle radiotherapy, a CTV1 was contoured encompassing the supraclavicular region, mediastinum, hila, and part of the heart. CTV2 was the same as CTV1 but included the whole heart. CTV3 encompassed the spleen and para-aortic lymph nodes. The planning target volume (PTV) was defined as CTV + 9 mm. PTVs were determined at NI, NE, and DI. A composite PTV (comp-PTV) based on the range of NI and NE PTVs was determined to represent the margin necessary for free breathing. Lung dose-mass histograms (DMH) for PTV1 and PTV2 and cardiac dose-volume histograms (DVH) for PTV3 were compared at the three different respiratory phases. Results: ABC was well-tolerated by all patients. DI breath-holds ranged from 34 to 45 s. DMHs determined for PTV1 revealed a median reduction in lung mass irradiated at DI of 12% (range, 9-24%; n = 5) compared with simulated free-breathing. PTV2 comparisons also showed a median reduction of 12% lung mass irradiated (range, 8-28%; n = 5). PTV3 analyses revealed the mean volume of heart irradiated decreased from 26% to 5% with deep inspiration (n = 5). Lung volume comparisons between intrasession and intersession DI studies revealed mean variations of 4%. Conclusion: ABC is well tolerated and reproducible. Radiotherapy delivered at deep inspiration with ABC may decrease normal tissue irradiation in Hodgkin's disease patients

  16. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system*

    Science.gov (United States)

    Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua

    2010-01-01

    This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system. PMID:21121071

  17. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  18. Dental pulp stem cells. Biology and use for periodontal tissue engineering

    Directory of Open Access Journals (Sweden)

    Nahid Y. Ashri

    2015-12-01

    Full Text Available Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  19. Dynamic model of thermal reaction of biological tissues to laser-induced fluorescence and photodynamic therapy.

    Science.gov (United States)

    Seteikin, Alexey Yu; Krasnikov, Ilya V; Drakaki, Eleni; Makropoulou, Mersini

    2013-07-01

    The aim of this work was to evaluate the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed ultraviolet (UV) laser (λ=337  nm) and a continuous-wave (cw) visible laser beam (λ=632.8  nm) using Monte Carlo modeling. Finite-element methodology was used for heat transfer simulation. The analysis of the results showed that heat is not localized on the surface, but is collected inside the tissue in lower skin layers. The simulation was made with the pulsed UV laser beam (used as excitation source in laser-induced fluorescence) and the cw visible laser (used in photodynamic therapy treatments), in order to study the possible thermal effects.

  20. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance

    Directory of Open Access Journals (Sweden)

    Thijs Leendert Pons

    2014-02-01

    Full Text Available Plant photosynthesis scales positively with growth irradiance. The carbon balance, defined here as the daily whole-plant gross CO2 assimilation (A partitioned in C available for growth and C required for respiration (R, is thus irradiance dependent. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 µmol m-2 s-1 (1.2 mol m-2 day-1 to 500 µmol m-2 s-1 (30 mol m-2 day-1. Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies towards a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated with a superior C

  1. Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP.

    Science.gov (United States)

    Travascio, Francesco; Gu, Wei Yong

    2011-01-01

    Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive-reactive transport in biological tissues and tissue engineered constructs.

  2. [Role of the tissue antioxidant status in response to chronic irradiation of mice during early ontogenesis].

    Science.gov (United States)

    Shishkina, L N; Zagorskaya, N G; Shevchenko, O G

    2015-01-01

    The response of the liver and blood erythrocyte lipids to the low intensity chronic γ-irradiation action of mice at the dose of 8 cGy during early ontogenesis immediately and 7 months after irradiation is studied. The maintainance of the changed structural state of the lipid component in liver and especially blood erythrocytes which are characterized by a lower antioxidant status compared with the liver lipids is revealed during a long time after the cessation of irradiation. This confirms the possibility of using blood erythrocyte lipids as a perspective model for the estimation of the effects of the weak impact of unfavorable factors on the organism.

  3. Phase-changes in cell cycle of wound tissue irradiated with 5.21 Gy soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the phase-changes in cell cycle of wound tissue which was locally irradiated with 5.21 Gy soft X-rays. Methods: Flow cytometry and PI staining were used to analyze cell cycle. Cell proliferation was determined with BrdU labeling. Results: During 3-9 days after irradiation, the percentage of the G 0 /G 1 phase cells in wound of the control side decreased while the percentage of S phase cells increased and reached the highest value on day 9. The percentage of G 2 /M phase cells also increased, and reached its peak on day 15. The percentage of G 0 /G 1 phase cell increased in wound of the irradiation side and was higher than that of the control wound, meanwhile the percentages of S and G 2 /M cells were significantly lower than those of the control wound. In the period of 12-22 days after wounding, the percentage of S phase cells increased and reached its peak value on the 22 th day. When most of cells were in S phase and arrested dramatically. Through the whole healing process, the percentage of G 2 /M in wound of the irradiation side was lower than that of the non-irradiated wound. The BrdU-positive cells were fibroblasts, endothelial cells and smooth muscle cells. Conclusion: These results suggest that G 1 block, S phase arrest, and switch of G 2 /M with suppression of mitotic activity of these cells are induced by local 5.21 Gy soft X-ray irradiation. Therefore, wound healing delay is induced partly by cell cycle arrest

  4. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    International Nuclear Information System (INIS)

    Saito, Takeshi; Fujii, Noriko

    2014-01-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid–benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10 −3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10 −5 and 5.0×10 −6 M β-carotene, and 5.0×10 −7 and 5.0×10 −8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage. - Highlights: • Gamma radiation dose-dependently increases degradation levels of α-linolenic acid. • Gamma radiation dose-dependently increases peroxidation levels of α-linolenic acid. • An optimum concentration of carotenoids inhibits degradation of α-linolenic acid. • Relatively low concentrations of carotenoids promote degradation of α-linolenic acid. • Carotenoids do not affect the peroxidation level of α-linolenic acid

  5. Statistical Modeling of Radiative Transfer and Transient Characteristics for Multilayer Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    Full Text Available The Monte-Carlo method [1] already long ago proved itself as a powerful and universal tool for mathematical modelling in various areas of science and engineering. Researchers often choose this method when it is difficult to find a solution by other ways (or impossible at all, e.g. because of sophisticated analytical dependences, area of modelling or boundary conditions. Certainly, this necessarily statistical and flexible method requires significant computation time, but a continuously increasing computation capability makes it more and more attractive for a choice in specific situation.One of the promising areas to use the method of statistical modelling is description of light propagation in the turbid (scattering media. A high motivation for development of this approach is widely used lasers in biomedicine [3]. Besides, owing to its flexibility, the Monte-Carlo method is also of importance in theoretical researches, in particular, to estimate a degree of adequacy of the offered approximation methods for solving a radiative transfer equation [4].It is known that key parameters of turbid media are an absorption coefficient (characterizes absorption probability of a photon per unit of path length and a scattering coefficient (characterizes scattering probability of a photon per unit of path length. The ratio of each of the coefficients to their sum (extinction defines a probability of "death" or "survival" of a photon, respectively, in interaction with lenses. Generally, in the scattering medium there is a non-coherent radiation component, which in turbid media such as biological tissues, already at the insignificant depth becomes prevailing over the coherent one (residual of the incident laser beam [5].The author used the Monte-Carlo method to simulate optical radiation propagation in the multilayer biological tissues with their optical characteristics corresponding to the skin and subcutaneous tissues. Such a biological tissue is the absorbing

  6. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Directory of Open Access Journals (Sweden)

    Christian Claude Lachaud

    2015-08-01

    Full Text Available Tissue engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large coelomic cavities (peritoneal, pericardial and pleural and internal organs housed inside. Interestedly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic, characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable and non-immunogenic may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

  7. Gene expression profiles of irradiated lung tissue in three mouse strains

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of our research is to clarify the mechanisms generating heterogeneity in response to C-ion irradiation that arise from individual genetic variations in...

  8. Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius) fed biologically incorporated lead

    Science.gov (United States)

    Custer, T.W.; Franson, J.C.; Pattee, O.H.

    1984-01-01

    American kestrels were fed a diet containing 0.5, 120, 212, and 448 ppm (dry wt) biologically incorporated lead (Pb) for 60 days. The diet consisted of homogenized 4-wk-old cockerels raised on feed mixed with and without lead. No kestrels died and weights did not differ among treatment groups. The control group (0.5 ppm Pb) had the lowest mean concentration of lead and the high dietary group had the highest for the following tissues: Kidney, liver, femur, brain, and blood. Concentrations of lead were significantly correlated among tissues. There were no differences among treatment groups for packed cell volume, hemoglobin concentration, or erythrocyte count.

  9. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    Energy Technology Data Exchange (ETDEWEB)

    Shanthini, G.M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Lakshmi, B.S. [Department of Biotechnology, Anna University, Chennai 600025 (India); Asokan, K.; Kanjilal, D. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2015-02-28

    Highlights: • First report of swift heavy ion irradiation on PMMA-HAp as bioceramic composite. • Augmented protein adsorption of about 400% was attained due to irradiation. • Tailored surface morphology, topography, roughness, wettability and crystallinity. • Irradiation transformed the hydrophobic surface into hydrophilic surface. • Better blood and cell–material interaction leading to improved biocompatibility. - Abstract: Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si{sup 7+} ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell–material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  10. Biological effects and ISSR analysis of 60Co γ-irradiation on edible mushroom mycelia

    International Nuclear Information System (INIS)

    Cai Weiming; Feng Weilin; Jin Qunli; Fan Lijun; Wu Yongzhi

    2009-01-01

    Mycelia of Agaricus bitorquis, Flammulina velutipes and Pleurotus eryngii were irradiated by 60 Co γ-rays at the dose of 0, 200, 500 and 800 Gy. The results showed that irradiation inhibited their mycelia growth positively. Of the three edible mushroom, Agaricus bitorquis was the most sensitive one to irradiation, its mycelia died at the dose of 800 Gy. Germination rate, growth rate and vigor of all mycelia irradiated with un-lethal doses increased along with the times of transfer of culture. Electrical conductivity (EC) analysis showed that irradiation increased EC of leaching solution of mycelia positively. The EC of leaching solution of mycelia of Flammulina velutipes and Pleurotus eryngii irradiated with 500 Gy, Agaricus bitorquis irradiated with 200 Gy, were significantly higher than CK. ISSR analysis revealed that 60 Co γ irradiation effect on DNA variation of Agaricus bitorquis, Flammulina velutipes and pleurotus eryngii mycelia in varying degrees. Number of polymorphic bands changed after irradiation. Flawing bands and increasing bands were observed in amplified bands of 14 selected ISSR primers. The ISSR variation rates of Agaricus bitorquis for 200 Gy and 599 Gy treatments were 33.3% and 50.5%; the ISSR variation rates of Flammulina velutipes for 200 Gy, 500 Gy and 800 Gy treatments were 2.3%, 2.3% and 3.1%, that of Pleurotus eryngii were 8.6%, 13.4% and 20.0%. It is possible to use 60 Co γ irradiation as a mutagen to screen new mushroom varieties. (authors)

  11. Jones-matrix tomography of biological tissues phase anisotropy in the diagnosis of uterus wall prolapse

    Science.gov (United States)

    Trifonyuk, L.; Baranovsky, V.; Dubolazov, O. V.; Ushenko, V. O.; Ushenko, O. G.; Zhytaryuk, V. G.; Prydiy, O. G.; Vanchulyak, O.

    2018-01-01

    The work consists of two parts. In the first part - we mapped a distribution of optical activity and birefringence in polycrystalline networks of biological tissues. The Jones-matrix formalism is used for accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline networks of biological tissues can be performed based on the statistical analysis of distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. In the second part we defined - practical operational characteristics, such as sensitivity, specificity and accuracy of Jones-matrix reconstruction of optical anisotropy were identified with the special emphasis on biomedical application, specifically for differentiation of two types of pathology: prolapse and albuminuria.

  12. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  13. M2 macrophages participate in the biological tissue healing reaction to mineral trioxide aggregate.

    Science.gov (United States)

    Ito, Takafumi; Kaneko, Tomoatsu; Yamanaka, Yusuke; Shigetani, Yoshimi; Yoshiba, Kunihiko; Okiji, Takashi

    2014-03-01

    This study examined the protein and messenger RNA (mRNA) expression of molecules associated with M2 (wound healing) macrophages in mineral trioxide aggregate (MTA)-implanted rat subcutaneous tissue to elucidate the involvement of M2 macrophages in the connective tissue response to MTA. Silicone tubes containing freshly mixed MTA or a calcium hydroxide cement (Life; Kerr, Romulus, MI) were subcutaneously implanted into the backs of Wistar rats. Solid silicone rods implanted in different animals served as controls. The specimens were then double immunostained for ED1 (CD68, a general macrophage marker) and ED2 (CD163, an M2 macrophage marker). Immunostaining for CD34 (a marker for vascularization and wound healing) was also performed. Expression levels of CD34, CD163, and mannose receptor c type 1 (an M2 macrophage marker) mRNAs were determined with real-time polymerase chain reaction. MTA-implanted subcutaneous tissues showed significant increases in the density of ED1+ED2+ macrophages beneath the implantation site and expression levels of CD163 and MMR mRNAs compared with Life-implanted and control tissues. MTA-implanted subcutaneous tissues also showed a significant increase of CD34-immunostained areas and up-regulation of CD34 mRNAs compared with Life-implanted and control tissues. MTA implantation induced the accumulation of M2 macrophage marker (ED2)-expressing macrophages and enhanced the expression of M2 macrophage marker genes. MTA implantation also enhanced the expression of CD34, suggesting acceleration of the healing/tissue repair process. Taken together, biological connective tissue response to MTA may involve wound healing/tissue repair processes involving M2 macrophages. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Investigation of normal tissue complication probabilities in prostate and partial breast irradiation radiotherapy techniques

    International Nuclear Information System (INIS)

    Bezak, E.; Takam, R.; Bensaleh, S.; Yeoh, E.; Marcu, L.

    2011-01-01

    Full text: Normal- Tissue-Complication Probabilities of rectum, bladder and urethra following various radiation techniques for prostate cancer were evaluated using the relative-seriality and Lyman models. NTCPs of lungs, heart and skin, their dependence on sourceposition, balloon-deformation were also investigated for HDR mammosite brachytherapy. The prostate treatment techniques included external three dimentional conformal-radiotherapy, Low-Dose-Rate brachytherapy (1-125), High-Dose-Rate brachytherapy (Ir-I92). Dose- Volume-Histograms of critical structures for prostate and breast radiotherapy, retrieved from corresponding treatment planning systems, were converted to Biological Effective Dose (BEffD)-based and Equivalent Dose(Deq)-based DVHs to account for differences in radiation delivery and fractionation schedule. Literature-based model parameters were used to calculate NTCPs. Hypofractionated 3D-CRT (2.75 Gy/fraction, total dose 55 Gy) NTCPs of rectum, bladder and urethra were less than those for standard fractionated 4-field 3D-CRT (2-Gy/fraction, 64 Gy) and dose-escalated 4- and 5-field 3D-CRT (74 Gy). Rectal and bladder NTCPs (5.2% and 6.6%) following the dose-escalated 4-field 3D-CRT (74 Gy) were the highest among analyzed techniques. The average NTCP for rectum and urethra were 0.6% and 24.7% for LDRBT and 0.5% and 11.2% for HDR-BT. For Mammosite, NTCP was estimated to be 0.1 %, 0.1 %, 1.2% and 3.5% for skin desquamation, erythema, telangiectasia and fibrosis respectively (the source positioned at the balloon centre). A 4 mm Mammosite-balloon deformation leads to overdosing of PTV regions by ∼40%, resulting in excessive skin dose and increased NTCP. Conclusions Prostate brachytherapy resulted in NTCPs lower compared to external beam techniques. Mammosite-brachytherapy resulted in no heart/lung complications regardless of balloon deformation. However, 4 mm deformation caused 0.6% increase in tissue fibrosis NTCP.

  15. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    Science.gov (United States)

    Foster, B. R.

    1974-01-01

    Cellular response and cell population kinetics were studied during lymphopoiesis in the thymus of the mouse under continuous gamma irradiation using autoradiographic techniques and specific labeling with tritiated thymidine. On the basis of tissue weights, it is concluded that the response of both the thymus and spleen to continuous low dose-rate irradiation is multiphasic. That is, alternating periods of steady state growth, followed by collapse, which in turn is followed by another period of homeostasis. Since there are two populations of lymphocytes - short lived and long-lived, it may be that different phases of steady state growth are mediated by different lymphocytes. The spleen is affected to a greater extent with shorter periods of steady-state growth than exhibited by the thymus.

  16. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    International Nuclear Information System (INIS)

    Dokshina, G.A.; Silaeva, T.Yu.

    1976-01-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when β-receptors are blocked by obsidane (0.5 μg/ml). It is suggested that insuline secretion by β-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible

  17. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    Science.gov (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  18. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    Science.gov (United States)

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  20. Applying the Kelvin probe to biological tissues: theoretical and computational analyses.

    Science.gov (United States)

    Ahn, Andrew C; Gow, Brian J; Martinsen, Orjan G; Zhao, Min; Grodzinsky, Alan J; Baikie, Iain D

    2012-06-01

    The Kelvin probe measures surface electrical potential without making physical contact with the specimen. It relies on capacitive coupling between an oscillating metal tip that is normal to a specimen's surface. Kelvin probes have been increasingly used to study surface and electrical properties of metals and semiconductors and are capable of detecting material surface potentials with submillivolt resolution at a micrometer spatial scale. Its capability for measuring electrical potential without being confounded by electrode-specimen contact makes extending its use towards biological materials particularly appealing. However, the theoretical basis for applying the Kelvin probe to dielectric or partially conductive materials such as biological tissue has not been evaluated and remains unclear. This study develops the theoretical basis underlying Kelvin probe measurements in five theoretical materials: highly conductive, conductive dielectric with rapid charge relaxation, conductive dielectric with slow charge relaxation, perfect dielectric, and tissue with a bulk serial resistance. These theoretically derived equations are then computationally analyzed using parameters from both theoretical specimens and actual biomaterials-including wet skin, dry skin, cerebrospinal fluid, and tendon. Based on these analyses, a Kelvin probe performs in two distinct ways depending on the charge relaxation rates of the sample: The specimen is treated either as a perfect dielectric or as highly conductive material. Because of their rapid relaxation rate and increased permittivity biomaterials behave similarly to highly conductive materials, such as metal, when evaluated by the Kelvin probe. These results indicate that the Kelvin probe can be readily applied to studying the surface potential of biological tissue.

  1. The effects of calcium-deficient diet after irradiation on the periodontal tissue formation in rat pups

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Chan Duk; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    1998-02-15

    The present study was deigned to elucidate the effects of the Co-60 {gamma} irradiation and/or calcium-deficient diet on the periodental tissue formation in rat pups. The pregnant three-week old Sprague-Dawley rats were used for the study. The experimental groups was divided into two groups, irradiation/normal diet group (Group 2) and irradiation/calcium-deficient diet group (Group 1). The abdoment of the rats at the 19th day of pregnancy were irradiated with single absorbed dose of 350 cGy. The rats pups were sacrificed on the 14th day after delivery, and the maxillae including molar tooth sections for light and transmission electron microscopy. Some of tissue sections for light microscopy were stained immunohistochemically with anti-fibronectin antibodies. The results were as follows: 1. In the periodontal ligament forming area, the fibroblasts of Group 2 showed irregular arrangement and low activity. The immunoreactivity between the fibroblasts and collagen fibers was decreased, compared with Group 1. The fibroblasts of Group 3 showed atrophic change and clumped nucleus. The collagen fibers showed cystic change and low immunoreactivity to the fibronectin. 2. In the cementum forming area, the cementoblasts of Group 2 showed decrease of number and atrophic change. The cementoblasts of Group 3 showed edematous change, atrophy of cytoplasm, and clumping of nucleus. 3. In the alveolar bone forming area, the bone of Group 2 was thin and various degree of immunoreactivity to the osteonectin, Group 3 showed edematous osteoblasts, fibrous degeneration of bone marrow, and weak immunoreactivity to the osteonectin.

  2. Distance-dependent penumbra and MLC-width: new insights in determinants of healthy tissue sparing in stereotactic irradiation

    Directory of Open Access Journals (Sweden)

    Bratengeier Klaus

    2017-09-01

    Full Text Available For stereotactic irradiation, both, penumbra and MLC leaf width make an impact on the sparing of healthy tissue around the target. Mostly, MLC design is regarded as the one influenceable parameter. However, also penumbra can be varied by choosing different distances between the source of radiation and the patient. The authors investigate the distance- dependent penumbra effects of idealized collimators as well as for real 5 mm MLCs. Test objects are small spherical targets of varying diameters to be irradiated under differing prescription conditions. A method to calculate exact stereotactic radial dose distributions from beam profiles or 2D dose distributions of single beams is developed for circular and MLC shaped targets. Also, a planning study is performed using a Pinnacle3™ planning system. Also, in a theoretical analysis perfect top hat profile beams and beams with varying penumbra are compared for better understanding of penumbra effects with respect to radial dose distributions. It is shown, that the penumbra changes for small targets are more relevant than the beam shaping by 5 mm MLCs. Quasi-isotropic irradiated MLC shaped (quadratic beams at virtual SAD 700 mm produce steeper radial dose decrease than ideal circular beam shapes with a penumbra typical for SAD 1000 mm. A reduced source-to-patient distance allows better sparing of healthy tissue because of two reasons: The smaller effective leaf width but even more due to steeper penumbra. First, the authors suggest for future recommendations on stereotactic irradiations to specify not only MLC widths but also penumbra characteristics. Second, a so-called “virtual isocentre” could be useful to take advantage of the penumbra effect: Dependent on gantry angle and isocentric couch angle, the couch should be steered automatically in a way that the central axes of all beams always intersect in the same point at the same distance from the source.

  3. Low-dose-rate intraoperative brachytherapy combined with external beam irradiation in the conservative treatment of soft tissue sarcoma

    International Nuclear Information System (INIS)

    Delannes, M.; Thomas, L.; Martel, P.; Bonnevialle, P.; Stoeckle, E.; Chevreau, Ch.; Bui, B.N.; Daly-Schveitzer, N.; Pigneux, J.; Kantor, G.

    2000-01-01

    Purpose: Conservative treatment of soft tissue sarcomas most often implies combination of surgical resection and irradiation. The aim of this study was to evaluate low-dose-rate intraoperative brachytherapy, delivered as a boost, in the local control of primary tumors, with special concern about treatment complications. Methods and Materials: Between 1986 and 1995, 112 patients underwent intraoperative implant. This report focuses on the group of 58 patients with primary sarcomas treated by combination of conservative surgery, intraoperative brachytherapy, and external irradiation. Most of the tumors were located in the lower limbs (46/58--79%). Median size of the tumor was 10 cm, most of the lesions being T2-T3 (51/58--88%), Grade 2 or 3 (48/58--83%). The mean brachytherapy dose was 20 Gy and external beam irradiation dose 45 Gy. In 36/58 cases, iridium wires had to be placed on contact with neurovascular structures. Results: With a median follow-up of 54 months, the 5-year actuarial survival was 64.9%, with a 5-year actuarial local control of 89%. Of the 6 patients with local relapse, 3 were salvaged. Acute side effects, essentially wound healing problems, occurred in 20/58 patients, late side effects in 16/58 patients (7 neuropathies G2 to G4). No amputation was required. The only significant factor correlated with early side effects was the location of the tumor in the lower limb (p = 0.003), and with late side effects the vicinity of the tumor with neurovascular structures (p = 0.009). Conclusion: Brachytherapy allows early delivery of a boost dose in a reduced volume of tissue, precisely mapped by the intraoperative procedure. Combined with external beam irradiation, it is a safe and efficient treatment technique leading to high local control rates and limited functional impairment

  4. Laser autofluorescence polarimetry of optically anisotropic structures of biological tissues in cancer diagnostics

    Science.gov (United States)

    Ushenko, Yu. A.

    2015-06-01

    The results of a new physical study of polarization manifestations of laser autofluorescence of optically anisotropic structures in human female reproductive tissues are presented. A Mueller-matrix model of describing the complex anisotropy (linear and circular birefringence, linear and circular dichroism) of such biological layers is proposed. Interrelations between mechanisms of optical anisotropy and polarization manifestations of laser autofluorescence of histological layers of the uterine cervix tissue in different spectral regions are determined. Magnitudes and variation ranges of statistical moments from the first to the fourth order describing the distributions of azimuthally stable elements of Mueller matrices of autofluorescence in human female reproductive tissues in different physiological states are found. The informative value of the proposed method is determined and the differentiation of histological biopsy sections of benign (dysplasia) and malignant (adenocarcinoma) uterine cervix tumors is implemented for the first time.

  5. WE-E-BRE-03: Biological Validation of a Novel High-Throughput Irradiator for Predictive Radiation Sensitivity Bioassays

    International Nuclear Information System (INIS)

    Fowler, TL; Martin, JA; Shepard, AJ; Bailey, AM; Nickel, KP; Kimple, RJ; Bednarz, BP

    2014-01-01

    Purpose: The large dose-response variation in both tumor and normal cells between individual patients has led to the recent implementation of predictive bioassays of patient-specific radiation sensitivity in order to personalize radiation therapy. This exciting new clinical paradigm has led us to develop a novel high-throughput, variable dose-rate irradiator to accompany these efforts. Here we present the biological validation of this irradiator through the use of human cells as a relative dosimeter assessed by two metrics, DNA double-strand break repair pathway modulation and intercellular reactive oxygen species production. Methods: Immortalized human tonsilar epithelial cells were cultured in 96-well micro titer plates and irradiated in groups of eight wells to absorbed doses of 0, 0.5, 1, 2, 4, and 8 Gy. High-throughput immunofluorescent microscopy was used to detect γH2AX, a DNA double-strand break repair mechanism recruiter. The same analysis was performed with the cells stained with CM-H2DCFDA that produces a fluorescent adduct when exposed to reactive oxygen species during the irradiation cycle. Results: Irradiations of the immortalized human tonsilar epithelial cells at absorbed doses of 0, 0.5, 1, 2, 4, and 8 Gy produced excellent linearity in γH2AX and CM-H2DCFDA with R2 values of 0.9939 and 0.9595 respectively. Single cell gel electrophoresis experimentation for the detection of physical DNA double-strand breaks in ongoing. Conclusions: This work indicates significant potential for our high-throughput variable dose rate irradiator for patient-specific predictive radiation sensitivity bioassays. This irradiator provides a powerful tool by increasing the efficiency and number of assay techniques available to help personalize radiation therapy

  6. A tensile machine with a novel optical load cell for soft biological tissues application.

    Science.gov (United States)

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  7. Influence of low energy laser irradiation on the clinical treatment potential of adipose tissue-derived stem cells

    Directory of Open Access Journals (Sweden)

    Xuan LIAO

    2016-10-01

    Full Text Available Objective  To investigate the effects of low level gallium aluminum arsenide (GaAlAs laser irradiation on proliferation, cytokine secretion and adipogenic differentiation of cultured human adipose tissue-derived stem cells (hADSCs, and to find a safe and effective method for improving clinical treatment effect of ADSC. Methods  The cultured hADSCs from human adipose tissue were treated by using 650nm GaAlAs laser irradiation at a single of 2, 4 and 8J/cm2 respectively. Cell proliferation was quantified by MTT assay, cytokine secretion was determined by ELISA, and adipogenic differentiation was examined by oil red staining respectively. In addition, the expression profiles of putative hADSC surface markers were determined by real-time PCR. Results  MTT assay showed that treatment with GaAlAs laser irradiation at 4J/cm2 and 8J/cm2 (especially 4J/cm2 markedly promoted ADSCs proliferation from day 4 to day 6 after irradiation, when compared with the unirradiated group (P<0.05. ELISA results showed that the concentrations of VEGF, PDGF and TGF-βin culture supernatant were 287.5±15.2pg/ml, 36.0±0.7ng/ ml, and 292.6±10.5pg/ml when hADSCs were exposed to 4J/cm2 GaAlAs laser, and they were significantly higher than those of unirradiated group (145.3±21.6pg/ml, 26.7±0.6ng/ml and 130.6±6.0pg/ml, respectively, P<0.05. Quantitative PCR showed that the mRNA expression levels of cell surface marker CD13, CD29, CD44 and CD90 in hADSCs exposed to 4J/cm2 GaAlAs laser were 1.19, 22.05, 4.38 and 7.22 fold of those in unirradiated group (P<0.05. And the oil red staining revealed that GaAlAs laser irradiation could markedly accelerate the adipogenic differentiation of hADSCs (P<0.05. Conclusions  Low energy laser irradiation is a simple, safe and effective method, which can enhance the proliferation, cytokine secretion and adipogenic differentiation of ADSCs, may help to improve the therapeutic effect of ADSCs by clinical transformation application

  8. In vitro assessment of the composition and microhardness of hard tissues of oral cavity submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Paredes, Wilber Edison Bernaola

    2017-01-01

    Clinical Radiotherapy is extremely important for the treatment of malignant lesions of the head and neck region, however, exposure to ionizing radiation can lead to systemic or local complications during and after radiation treatment. Among these immediate local complications are the oral cavity xerostomia and the consequent oral mucositis. Regarding late complications produced by radiation, tooth decay of radiation and osteoradionecrosis are included, which are considered dose-dependent lesions, with high incidence in recent decades and difficult to manage, although these appear after completion of treatment and under the influence of local factors. The methodology proposed in this study consists in evaluating the effect of gamma radiation after irradiation of the samples, using the dose used in patients suffering with head and neck cancer. The samples were obtained from human enamel and root dentin; and swine mandibular bone, which were previously polished, and then submitted to the analysis of the initial surface microhardness of all groups. Subsequently, the samples were irradiated in a dose rate of 4 Gy per day, completing a total dose of 72 Gy. Finally, the samples were submitted to surface microhardness analysis after irradiation, which presented statistically significant results from the Student t, ANOVA and Tukey statistical tests referred to the difference of the mean of the initial and final values of each study group with a significant value of p = 0.00 (<0.05). Regarding the morphological analysis in scanning electron microscopy (SEM), the deleterious effect of gamma irradiation was evidenced as structural cracks, breaks and superficial fractures of the analyzed tissues and the biochemical analysis by Attenuated Total Reflection technique using Fourier transform infrared spectroscopy (ATR - FTIR) showed degradation of inorganic components and denaturation of organic compounds; whereby, the effect of gamma irradiation on the hard tissues of the oral

  9. Effect of gamma irradiation on the pigments and the biological activities of methanolic extracts from leaves of centipedegrass (Eremochloa ophiuroides Munro)

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Lee, Seung Sik; Bai, Hyoung-Woo; Cho, Jae-Young; Kim, Tae Hoon; Chung, Byung Yeoup

    2013-01-01

    Extracts from centipedegrass (Eremochloa ophiuroides Munro) have been previously identified as having beneficial effects medically and cosmetically. In this study, the effects of gamma irradiation on pigment removal and biological activities of centipedegrass extracts to promote industrial application were investigated. The methanolic extracts were exposed to gamma irradiation at dose ranging from 2 to 20 kGy. The major pigments of centipedegrass extracts, cyanidin-3-O-glucoside and cyanidin-3-O-(6″-malonyl-)glucoside, were found to be effectively removed by gamma irradiation above 10 kGy. Although the reddish-orange color of the cyanidins was markedly decreased by gamma irradiation, the biological activities were relatively unaffected. The biological activities such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, inhibition of tyrosinase activity, and inhibition of elastase activity in methanolic extracts were modulated from 50.5% to 70.2%, from 50.9% to 65.8% and from 65.6% to 94.0%, respectively. Surprisingly, the biological activities have the highest activities after 6–8 kGy of gamma irradiation. These results indicate that despite pigment degradation, biological activities were maintained or increased by gamma irradiation. Based on these results, gamma irradiation may be a useful tool to remove the undesirable reddish-orange color present in centipedegrass without any loss of biological activities, thereby promoting its utility in industrial applications such as manufacturing of cosmetic products. - Highlights: • The pigments of centipedegrass extracts were decreased by gamma irradiation. • The contents of maysin and its derivatives were slightly changed by gamma irradiation. • The biological activities of centipedegrass extracts were retained or increased by gamma irradiation

  10. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.

    1976-09-01

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  11. Irradiation effects on the tumor and adjacent tissues of brain tumor-bearing mice

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Tsunemoto, Hiroshi; Koike, Sachiko; Furukawa, Shigeo.

    1979-01-01

    C 3 H mice aged 56 - 70 days, weighing 27 - 37 g were used throughout this experiment. A transplantable fibrosarcoma arising spontaneously from C 3 H mice was used. For experiment, 10 4 tumor cells suspended in 0.025 ml of saline solution were injected into the cerebral hemisphere by a 26 gauge needle with a micrometer syringe under nembutal anesthesia. Whole brain irradiation was performed at 7 days after injection of the tumor cells and the radiation doses were 2,000 and 20,000 rads, respectively. The feature of x-rays were 200 kVp, 20 mA, 0.5 mm Cu + 0.5 mm Al filtration and TSD 20 cm. The dose-rate was 340 - 360 R/min. The articles of this study were as follows: a) Determination of LD 50 values for the mice, tumor-bearing in the brain or non-tumor-bearing; and b) Observation of clinical features and gross autopsy findings of the mice following irradiation. The LD 50 values for 2,000 rad irradiation in the tumor-bearing or non-tumor-bearing mice were 10.9 and 11.4 days, respectively. LD 50 values of 3.7 days and 4.3 days were the results for the tumor-bearing and non-tumor-bearing mice irradiated by 20,000 rad, respectively. On the other hand, the LD 50 value for the control group, i.e. non-irradiated mice, was 6.7 days. At postmortem examinations, gastrointestinal bleeding was observed frequently in mice bearing tumor in the brain. Whole brain irradiation is effective to prolong the life of tumor-bearing mice. However, in some instances, deaths have occurred earlier in tumor-bearing mice compared to the control group. (author)

  12. The biological effects of gamma irradiation and/or plant extract (Neem) on the greater wax moth, Galleria Mollenella

    International Nuclear Information System (INIS)

    Mohamed, H. F.

    2012-12-01

    The present study was evaluating the effect of plant extract (Neem) with the concentrations 0, 10, 15, 20, 25, 50, 75 and 100 ppm on the percentage of observed mortality and corrected mortality of the greater wax moth, Galleria mellon ella zeller. Also the effect of the plant extract concentrations 0.25, 50, 75 and 100 ppm on the biology of this insect as percentage larval mortality, percentage larval weight, percentage larval and pupal duration, total development time, fecundity of resulting adults. Furthermore, we examined the effect of gamma irradiation with the doses 0, 100, 200, 300 and 400 Gray on some biological aspects of G. mellon ella. In addition, we studied the combined effect of gamma irradiation and plant extract (Neem) on some biological aspects of G. mellon ella by the doses 0,100, 200, 300, 400 Gray of gamma irradiation and the concentration 15 ppm of Neem as the percentage larval mortality, percentage pupation, percentage pupal mortality, percentage of emergence and the percentage of adult survival. (Author)

  13. The influence of alimentary vitamin E on seasonal fluctuations of lipopigment fluorescence in irradiated rat tissues

    International Nuclear Information System (INIS)

    Paranich, A.V.; Chajkin, L.A.

    1993-01-01

    In seasonal experiments (spring and autumn) with Wistar female rats, a study was made of the level of lipopigments (LP) and α-tocopherol (TPh) fluorescence in the liver and brain. Seasonal peculiarities of the parameters under study, and their dependence on Vitamin E ingestion have been revealed. After irradiation of animals, an intimate morphofunctional relationship between LP and TP and its sensitivity to alimentary factors have been found. One hour following irradiation, part of LP is disintegrated thus releasing the TPh reserve. This may be the part of the complex of adaptation changes on the postirradiation metabolic effects

  14. Development of a filtered neutron field in KUR. In behalf of biological irradiation experiments

    International Nuclear Information System (INIS)

    Sato, Takashi; Utsuro, Masahiko; Utsumi, Hiroshi

    1995-07-01

    Very little direct measurements have been made of the biological effects of neutrons below 100keV. Recently, an iron-filtered 24keV neutron beam of Harwell Materials Testing Reactor, PLUTO, was reported to be highly efficient in inducing chromosome aberrations; the efficiency being comparable to that of fission neutrons. This results could have serious repercussions for radiation protection standards as the ICRP assume a decrease in neutron RBE below 100keV. The investigations reported here have as their primary purpose the production of neutron beams at the 24keV iron window energy, using the B-1 experimental facility of the Kyoto University Research Reactor (KUR) at the Research Reactor Institute, Kyoto University (KURRI). The filtered neutron filed for biomedical applications is designed to maximized the contributions of neutrons with other energies and gamma-rays. The characteristics of the radiation field were obtained by the simple transmission calculations for Fe(45cm) and Al(35cm) filters, by using the Monte Carlo code MCN P, and by the measurement of nuclear heating for Fe and Al filter pieces. The 24keV neutron flux and gamma-ray dose rate were measured using a proton recoil counter and TLDs, respectively. The measured findings are as follows: The 24keV neutron flux at the irradiation field was approximately 1x10 6 n/cm 2 /s, and the gamma-ray dose rate was 1.0Gy/h at the surface of the B-1 plug. Nuclear heating of the filter materials was 5.2mW/g for Fe and 4mW/g for Al, in maximum. (author)

  15. Effect of γ-irradiation on the microbial quality and the biological ...

    African Journals Online (AJOL)

    The effect of γ- irradiation on both the microbial and chemical quality of the mixed spices powder (MSP) as well as the antimicrobial and the antioxidant activities of the MSP essential oil were evaluated. Irradiation at a dose of 10.0 kGy eliminated yeast and molds, pathogenic bacteria and reduced the total mesophillic and ...

  16. Original paper Influence of biologic therapy on growth in children with chronic inflammatory connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Joanna Świdrowska

    2015-04-01

    Full Text Available Objectives: Connective tissue diseases (CTD are a heterogeneous group of chronic inflammatory conditions. One of their complications in children is the inhibition of growth velocity. Due to direct inflammation within the musculoskeletal system as well as glucocorticoid therapy, this feature is the most essential and is mainly expressed in the course of juvenile spondyloarthropathies and juvenile idiopathic arthritis (JIA. Duration of the disease, but predominantly the activity of the inflammatory process, seems to have a significant impact on the abnormal growth profile in children. Effective biological therapy leads to improvement of the patient’s clinical condition and also, through the extinction of disease activity and reduction of daily doses of glucocorticosteroids (GCS, it gradually accelerates and normalizes the growth rate in children with CTD. Our objective was to evaluate the impact of biological therapy on growth in children with chronic inflammatory CTD. Material and methods: Data from 24 patients with CTD treated with tumor necrosis factor--blockers (etanercept, adalimumab, golimumab and an interleukin-6 receptor blocker (tocilizumab were reviewed at the time of disease onset, biological treatment initiation and at least 12 up to 24 months onwards. The rate of growth was correlated with the daily doses of GCS, and the type and duration of biological therapy. Results : Patient median height, measured as the change in height standard deviation score, was 0.36 ±1.07 at disease onset and –0.13 ±1.02 at biologic therapy initiation. The growth velocity accelerated in 17 patients (70.1% during the biological treatment. Mean height-SDS improvement between biological treatment initiation up to two years was 0.51 ±0.58. In 47% of patients daily doses of GCS were reduced to 0 mg/kg/day. Conclusions : In the treatment of CTD, biological agents restore growth velocity not only by inflammation inhibition, but also through limiting GCS

  17. Gamma irradiation effects on some biological aspects of Ephestia Kuehniella (Zell.), inherited sterility and mating competitiveness

    International Nuclear Information System (INIS)

    EI-Orabi, M.N.; Sawires, S.G.; Antonious, A.G.; Salama, S.I.

    2007-01-01

    Full grown male and female pupae of the Mediterranean flour moth, Ephestia kuehniella (Zell.) were exposed to gamma irradiation doses ranging from 40 to 450 Gy. Irradiated males were more radio-resistant than females. Reduction in fecundity and egg hatch were dose-dependant. Irradiated males or females showed significant shorter lifespan than control group. Also, there were reductions in F 1 progeny as a result of irradiating male and female parents with sub-sterilizing doses, which were more apparent in irradiating of male parents. The average larval pupal developmental period of F1 male and female progeny was affected. The sex ratio of F 1 generation was shifted in favor of males. The parental males or females irradiated as full-grown pupae were affected with sub-sterilizing dose of 200 Gy for male line and 100 Gy for female line. All possible mating combinations in F1, F 2 and F3 of males and females lines were examined. Fecundity and fertility of F I adults descendant from irradiated male parents were significantly reduced than F1 adults descendant from irradiated female parents. Also, the number of laid eggs and percentage of egg hatch were reduced drastically in crosses of F 1 males mated to unirradiated females of male line. Fecundity and fertility of the different mating combinations among F2 generation for both male and female treated lines were significantly decreased than the unirradiated control. Also, the number of adults resulting from all mating crosses among F2 generation was greatly reduced as compared to control adult progeny. There was a recovery in reproductive potential in moths of third generation for irradiated male line and in the second generation of the irradiated female line

  18. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Rebecca Antonia

    2014-06-03

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  19. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    International Nuclear Information System (INIS)

    Gruen, Rebecca Antonia

    2014-01-01

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  20. Analysis of photon transport in biological tissue and the subsequent heating effects

    International Nuclear Information System (INIS)

    Fadhali, M.M.A.

    2015-01-01

    Analysis of laser interaction with matter revealed the possibilities of many industrial and therapeutic applications. This research article discusses the theoretical aspects of laser beam interaction with biological tissues. It introduces the numerical analysis of photon distribution and transport in the tissue and its bio-thermal heating effects. The Monte Carlo method has been applied to simulate the variation of photon distribution and photon fluence with the radial distance from the point of interaction as well as laser powers and tissue thickness. For a specific wavelength, the variation of diffuse reflectance with the absorption coefficient was depicted for different values of the anisotropy factor. It has also been used to simulate the bio-heat transfer to obtain the temperature variation with the heating depth. On the other hand, finite difference method (FDM) has been applied to simulate the heating effect resulted from the incident laser beam on the tissue based on Penne's bio-heat equation combined with the obtained photon distribution and transport parameters from the MC method. The heating effect of the laser beam and hence the occurred thermal damage in the tissue was depicted. A linear relationship between the temperature and the rate of thermal damage has been manifested. This result can be used as a threshold reference for various medical applications of lasers. (authors)

  1. Irradiation Sterilized Gelatin-Water-Glycerol Ternary Gel as an Injectable Carrier for Bone Tissue Engineering.

    Science.gov (United States)

    Zhao, Yantao; Han, Liwei; Yan, Jun; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2017-01-01

    Injectable gelatin gels offer an attractive option for filling bone defects. The challenge is to fabricate gelatin gels with optimal gelation properties, which can be irradiation sterilized. Here, a gelatin-water-glycerol (GWG) gel is reported for use as a broad-spectrum injectable carrier. This ternary gel is high in glycerol and low in water, and remains stable after gamma irradiation at doses (25 kGy). As an injectable gel, it remains a viscous solution at gelatin concentrations ≤2.0%, at room temperature. Its storage modulus increases dramatically and eventually exceeds the loss modulus around 46-50 °C, indicating a transition from a liquid-like state to an elastic gel-like state. This ternary gel ranges significantly in terms of storage modulus (12-1700 Pa) while demonstrating a narrow pH range (5.58-5.66), depending on the gelatin concentration. Therefore, it can be loaded with a variety of materials. It is highly cytocompatible compared with saline in vivo and culture media in vitro. When loaded with demineralized bone matrix, the composites show favorable injectability, and excellent osteogenesis performance, after irradiation. These features can be attributed to high hydrophilicity and fast degradability. These findings justify that this ternary gel is promising as an irradiation-sterilized and universal injectable delivery system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks.

    Directory of Open Access Journals (Sweden)

    Kai Rothkamm

    Full Text Available Microbeam radiation therapy (MRT using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.

  3. Changes in the rate of proliferation in normal tissues after irradiation

    International Nuclear Information System (INIS)

    Denekamp, J.

    1975-01-01

    In tissues where reproductive cell death is known to cause the functional tissue damage (e.g., intestine and skin), repopulation becomes important only after the death of the radiation-damaged cells. Since these tissues have a fairly rapid turnover, this can occur within a short period of time and can assist in the healing of tissues during fractionated therapy. However, in tissues which express their damage late, such as the lung, it is very unlikely that repopulation will be stimulated before cell death is manifested and this does not occur during the period over which fractionated radiotherapy is administered. Although repopulation may be of no importance in these tissues, e.g., lungs and kidneys, there appears to be some other ''repair'' process which requires additional radiation dose to be administered to achieve the same endpoint if the overall time is increased

  4. Dual-porosity model of solute diffusion in biological tissue modified by electroporation.

    Science.gov (United States)

    Mahnič-Kalamiza, Samo; Miklavčič, Damijan; Vorobiev, Eugène

    2014-07-01

    In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion. We use a dual-porosity approach to describe solute diffusion in electroporated biological tissue. The cellular membrane presents a hindrance to solute transport into the extracellular space and is modeled as electroporation-dependent porosity, assigned to the intracellular space (the finite rate of mass transfer within an individual cell is not accounted for, for reasons that we elaborate on). The second porosity is that of the extracellular space, through which solute vacates a block of tissue. The model can be used to study extraction out of or introduction of solutes into tissue, and we give three examples of application, a full account of model construction, validation with experiments, and a parametrical analysis. To facilitate easy implementation and experimentation by the reader, the complete derivation of the analytical solution for a simplified example is presented. Validation is done by comparing model results to experimentally-obtained data; we modeled kinetics of sucrose extraction by diffusion from sugar beet tissue in laboratory-scale experiments. The parametrical analysis demonstrates the importance of selected physicochemical and geometrical properties of the system, illustrating possible outcomes of applying the model to different electroporation applications. The proposed model is a new platform that supports rapid extension by state-of-the-art models of electroporation phenomena, developed as latest achievements in the field of electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue

    Directory of Open Access Journals (Sweden)

    Abolhasan Rezaeyan

    2016-01-01

    Full Text Available This study was carried out to evaluate radioprotective effects of hesperidin (HES administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD, malondialdehyde (MDA, and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.

  6. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    Science.gov (United States)

    Shanthini, G. M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K.; Lakshmi, B. S.; Asokan, K.; Kanjilal, D.; Kalkura, S. Narayana

    2015-02-01

    Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si7+ ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell-material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  7. Effects of irradiation on the biology of the infective larvae of Toxocara canis in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, O.O.; Myser, W.C.

    1987-02-01

    Mice were infected with either 2000 normal or irradiated embryonated eggs of Toxocara canis and the number of larvae in their livers, lungs, brains, and carcasses investigated at 5, 20, and 33 days of infection. Mortality of mice infected with normal eggs was 33% between day 4 and 8 postinfection but there was no mortality among mice infected with irradiated eggs. Irradiation with 60, 90, or 150 kr of X-rays inhibited the migration of larvae from the livers and lungs and their accumulation in brain and carcass in proportion to the irradiation dose. By day 33 of infection, the ratio of larvae in liver and lungs to larvae in brain and carcass was 0.16 in normal mice, 0.42 in 60-kr mice, 0.98 in 90-kr mice, and 23.3 in 150-kr mice. Irradiated larvae, particularly those migrating through the peritoneal cavity, died faster than normal larvae until day 20. Irradiation favored survival after day 20. By days 20 and 33 postinfection the total parasite load was 29% and 8%, respectively, of the administered dose in control mice, 18% and 12% in 60-kr mice, 8% and 4% in 90-kr mice, and 0.9% and 0.3% in 150-kr mice. Irradiation of infective T. canis larvae, then, reduces their pathogenicity, inhibits their migration from liver and lungs, kills some of the parasites during the first 3 weeks of infection, but favors their late survival in the host.

  8. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  9. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay

  10. Telomere Lengths and Telomerase Activity in Dog Tissues: A Potential Model System to Study Human Telomere and Telomerase Biology

    Directory of Open Access Journals (Sweden)

    Lubna Nasir

    2001-01-01

    Full Text Available Studies on telomere and telomerase biology are fundamental to the understanding of aging and age-related diseases such as cancer. However, human studies have been hindered by differences in telomere biology between humans and the classical murine animal model system. In this paper, we describe basic studies of telomere length and telomerase activity in canine normal and neoplastic tissues and propose the dog as an alternative model system. Briefly, telomere lengths were measured in normal canine peripheral blood mononuclear cells (PBMCs, a range of normal canine tissues, and in a panel of naturally occurring soft tissue tumours by terminal restriction fragment (TRF analysis. Further, telomerase activity was measured in canine cell lines and multiple canine tissues using a combined polymerase chain reaction/enzyme-linked immunosorbent assay method. TRF analysis in canine PBMCs and tissues demonstrated mean TRF lengths to range between 12 and 23 kbp with heterogeneity in telomere lengths being observed in a range of normal somatic tissues. In soft tissue sarcomas, two subgroups were identified with mean TRFs of 22.2 and 18.2 kbp. Telomerase activity in canine tissue was present in tumour tissue and testis with little or no activity in normal somatic tissues. These results suggest that the dog telomere biology is similar to that in humans and may represent an alternative model system for studying telomere biology and telomerase-targeted anticancer therapies.

  11. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  12. Faecal microbiota transplantation: a sui generis biological drug, not a tissue.

    Science.gov (United States)

    Megerlin, F; Fouassier, E; Lopert, R; Bourlioux, P

    2014-07-01

    Responding to Smith et al. (Nature, 2014), this paper argues that for medical use, faecal microbiota transplantation (FMT) should be considered a sui generis biological drug, rather than a tissue. Smith and colleagues' thesis is based on possible undesirable economic consequences of this designation--not on its scientific and conceptual basis. The faecal transplant (including gut microbiota, metabolites, mucus, human cells, viruses, fungi, etc.) is not a tissue; it is of topographic--not cellular--human origin. We consider the donor a bioreactor, producing the faecal substrate of therapeutic interest. The debate is of singular importance as the FDA considers FMT a drug and released a new guidance for public consultation in February 2014, whereas to date the European Medicines Agency has not promulgated its position. The UK's National Institute for Heath and Care Excellence does not consider FMT to involve the transplantation of body tissue, and in March 2014 the French regulatory agency ANSM expressly declared it to be a drug. As FM is a complex and highly variable admixture, its components cannot be completely characterized, and to date, compositional quality cannot be assessed. We consider FMT to be a sui generis biologic drug, albeit one prepared with unconventional raw material under microbiologic control. The possibility of associating identified bacterial species with particular diseases and cultivating selected bacteria of therapeutic interest would certainly define a second generation of microbiome therapeutics, but is still speculative. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. DEPENDENCE OF THE SPECKLE-PATTERNS SIZE AND THEIR CONTRAST ON THE BIOPHYSICAL AND STRUCTURAL PARAMETERS OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    N. D. Abramovich

    2017-01-01

    Full Text Available Speckle fields are widely used in optical diagnostics of biotissues and evaluation of the functional state of bioobjects. The speckle field is formed by laser radiation scattered from the object under study. It bears information about the average dimensions of the scatterers, the degree of surface roughness makes it possible to judge the structural and biophysical characteristics of individual tissue cells (particles, on the one hand, and the integral optical characteristics of the entire biological tissue. The aim of the study was – the determination of connections between the biophysical and structural characteristics of the biotissue and the light fields inside the biotissues.The model developed of the medium gives a direct relationship between the optical and biophysical parameters of the biotissue. Calculations were carried out using known solutions of the radiation transfer equation, taking into account the multilayer structure of the tissue, multiple scattering in the medium, and multiple reflection of irradiation between the layers.With the increase wavelength, the size of speckles formed by the non-scattered component (direct light of laser radiation increases by a factor of 2 from 400 to 800 μm in the stratum corneum and 5 times from 0.6 to 3 μm for the epidermis and from 0.27 to 1.4 μm to the dermis. Typical values of sizes of speckles formed by the diffraction component of laser radiation for the stratum corneum and epidermis range from 0.02 to 0.15 μm. For the dermis typical spot sizes are up to 0.03 μm. The speckle-spot size of the diffusion component in the dermis can vary from ±10 % at 400 nm and up to ±23 % for 800 nm when the volume concentration of blood capillaries changes. Characteristic dependencies are obtained and biophysical factors associated with the volume concentration of blood and the degree of it’s oxygenation that affect the contrast of the speckle structure in the dermis are discussed.The of speckles

  15. Effects of IL-2 treatment on different compartments of the irradiated rat lung analysed by bronchoalveolar lavage and lung tissue morphology

    Energy Technology Data Exchange (ETDEWEB)

    Yi-Qing, C.; Froejd, Oe.; Henriksson, R. [Univ. Hospital of Umeaa, Dept. of Oncology (Sweden); Bjermer, L. [Univ. Hopsital of Trondheim, Dept. of Lung Medicine (Norway); Nettelbladt, O. [Univ. Hospital of Uppsala, Dept. of Lung Medicine (Sweden); Karlsson-Parra, A. [Univ. Hospital of Uppsala, Dept. of Immunology (Sweden)

    1995-11-01

    IN recent years, interleukin-2 (IL-2) has been used as an immunomodulatory agent in the treatment of various malignant tumours. However, this treatment has been limited by serious side-effects, including toxic reactions in the lung. The effects of IL-2 treatment on inflammatory cell populations in the normal and irradiated rat lung were investigated in this study. IL-2 was continuously administered as a subcutaneous infusion over a 6 week study period. Irradiation was given in a single dose (25 Gy) the day after starting IL-2 treatment. Evaluation with bronchoalveolar lavage fluid (BALF) analysis and lung tissue morphology was made 6 weeks after irradiation. In nonirradiated rats, IL-2 treatment induced significant increases in the total number of inflammatory cells in the perivascular, interstitial and peribronchial tissues as well as in the alveolar space. These increases were not reflected in BALF; on the contrary, a significant decrease of the total numbers of inflammatory cells was found in BALF. Irradiation alone caused a more pronounced inflammatory response with significant increases of all inflammatory cells in all lung compartments, which was also reflected in BALF. Concomitant treatment with IL-2 and irradiation induced an enhanced accumulation of inflammatory cells in the perivascular and peribronchial tissues compared with irradiation alone. Thus, both irradiation and IL-2 treatment induce inflammatory reactions in the lung, but there were few signs of synergistic effects seen in this study. Furthermore, the results also emphasize the difficulties in making sophisticated conclusions from BALF analyses alone.(au) 28 refs.

  16. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  17. Comparative study of cell transplantability of various hemopoietic tissues in irradiated mice

    International Nuclear Information System (INIS)

    Fiala, J.; Viktora, L.

    1975-01-01

    The transplantation effect of cells from various hemopoietic organs was studied in 626 irradiated mice. In experimental animals, peripheral blood reticulocytosis and the spleen differential count were also examined 9 days after transplantation. The colonization effect was mainly found with the transplants of bone marrow and spleen cells, embryonic liver cells and the liver cells of adult mice, and thymus cells. No effect was observed with the transplants of lymph node cells and of heterologous material (human embryonic liver and spleen). (author)

  18. Biological and physiological changes in rats fed some raw and irradiated legumes

    International Nuclear Information System (INIS)

    Elwakeil, F.A.; Farag, H.; Sharabash, M.T.M.; Diaa Eldin, M.; Mahrous, S.R.

    1995-01-01

    Body weight of rats fed on raw kidney beans, soybeans, broad beans, chick peas and lupines suftered from poor growth due to the presence of some anti nutritional factors in these pulses. The processed soybeans, kidney beans, bread beans and lupines at 10 KGy could not correct the growth of rats kept on their diets for 8 weeks while irradiated chick beans at 10 KGy indicating some effect of the irradiation in this respect. When extracts of raw legumes were injected by intraperitoneal route, Ld 5 0 were found to be 125, 300, and 1800 mg/kg, for raw kidney beans, raw soybeans, and raw broad beans respectively. However, injecting the extracts of raw chick peas and raw lupines did not kill the rats even at higher concentration levels of 300 mg/kg. Similar results were obtained with irradiated chick peas and lupines (10 KGy). Meanwhile, post irradiation treatment of kidney beans, soybeans, and broad beans caused the Ld 5 0 to be 250,400, and 2000 mg/kg for the above pulses respectively. Both raw and irradiated kidney beans and raw soybeans were most active in stimulating pancreas and liver growth and reducing spleen weight. Irradiated soybeans showed a moderate, but significant, increase in liver weight only. However, rats which received both raw and irradiated broad beans, chick peas and lupins in their diets did not suffer any pancreatic, liver hypertrophy or spleen atrophy. The hematological parameters investigated showed that there was no significant differences between rat groups fed on either the raw or the irradiated legumes. 5 tabs

  19. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  20. Study optical properties of biological tissue in the presence of microbubbles

    Science.gov (United States)

    Assadi, Homa; Lee, Vincent; Karshafian, Raffi; Douplik, Alexandre

    2015-03-01

    Optical contrast agents introduce distinct features to induce detectable changes in native tissue properties [1]. In ultrasound imaging, microbubbles (MBs) - a gas-core shell-encapsulated agent - are used clinically as contrast agents. The working hypothesis of this study is that microbubbles can be employed as an intravascular contrast agent in optical imaging systems. Microbubbles can produce a refractive index mismatch which makes it distinguishable from surrounding media. In this work, the interaction of collimated light and microbubbles in a [1] biological phantom solution was investigated. The biological medium was comprised of intralipid and human blood which was constructed to cover the range of soft tissue optical properties. The effect of microbubbles on the optical properties such as reduced scattering and absorption coefficients were considered. Diffuse reflectance (DR) and total transmittance (TT) of a biological phantom solution were measured using a spectroscopic integrating sphere system in the absence and presence of Definity® microbubbles. The optical properties were computed using the inverse adding doubling (IAD) software. The presence of microbubbles increased DR and decreased TT of the phantom. In the presence of MB's (2.5% volume concentration), the reflectance of the phantom increased by 25% in the optical window. There is no absorption event and only scattering happened after light-microbubbles interactions. The reduced scattering coefficient increased significantly (30%) indicating the potential use of MBs as optical contrast agents. In conclusion, reflectance of a media can be enhanced by adding microbubbles to increase scattering properties and more light was detected returning to the surface of tissue.

  1. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    Science.gov (United States)

    Konishi, T.; Ishikawa, T.; Iso, H.; Yasuda, N.; Oikawa, M.; Higuchi, Y.; Kato, T.; Hafer, K.; Kodama, K.; Hamano, T.; Suya, N.; Imaseki, H.

    2009-06-01

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 μm in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si 3N 4 plate (2.5 mm × 2.5 mm area with 1 μm thickness) supported by a 7.5 mm × 7.5 mm frame of 200 μm thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against γ-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  2. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    International Nuclear Information System (INIS)

    Konishi, T.; Ishikawa, T.; Iso, H.; Yasuda, N.; Oikawa, M.; Higuchi, Y.; Kato, T.; Hafer, K.; Kodama, K.; Hamano, T.; Suya, N.; Imaseki, H.

    2009-01-01

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 μm in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si 3 N 4 plate (2.5 mm x 2.5 mm area with 1 μm thickness) supported by a 7.5 mm x 7.5 mm frame of 200 μm thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against γ-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  3. Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability.

    Science.gov (United States)

    Staber, B; Guilleminot, J

    2017-01-01

    In this work, we address the constitutive modeling, in a probabilistic framework, of the hyperelastic response of soft biological tissues. The aim is on the one hand to mimic the mean behavior and variability that are typically encountered in the experimental characterization of such materials, and on the other hand to derive mathematical models that are almost surely consistent with the theory of nonlinear elasticity. Towards this goal, we invoke information theory and discuss a stochastic model relying on a low-dimensional parametrization. We subsequently propose a two-step methodology allowing for the calibration of the model using standard data, such as mean and standard deviation values along a given loading path. The framework is finally applied and benchmarked on three experimental databases proposed elsewhere in the literature. It is shown that the stochastic model allows experiments to be accurately reproduced, regardless of the tissue under consideration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Povarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (Povarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  5. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  6. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  7. Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Frederiksen, Camilla; Lomholt, A F; Lottenburger, T

    2008-01-01

    BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) measurements in plasma may be useful for the early detection and prognosis of colorectal cancer (CRC). Data on analytical performance and normal intra- and interindividual biological variation are required in order to interpret...... the utility of TIMP-1 in CRC. The aim of this study was to establish the biological and analytical variation of plasma TIMP-1 in volunteers. MATERIAL AND METHODS: Three separate studies were undertaken. 1: Plasma was collected from 23 volunteers 6 times within a 3-week period, first in September 2004 (round.......4%, and the intraclass correlation was 46.2%. Comparison between the 3 rounds and time of collection showed that TIMP-1 values decreased by 11% after storage for more than 16 months (p=0.0002). A systematic circadian variation in plasma TIMP-1 levels was not observed (p=0.17). No significant variation of plasma TIMP-1...

  8. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  9. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  10. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  11. Chemical and Biological Studies on Cumin Fruits Irradiated by GAMMA Rays for Conservation

    International Nuclear Information System (INIS)

    HASSANEIN, R.A.M.

    2011-01-01

    The aim of this study was to investigate the effect of different doses of gamma irradiation (0, 5, 10 and 15 KGy) and different storage periods (0, 3 and 6 months) in different package materials (cotton or polyethylene bags) on essential oil quality and chemical composition of cumin (Cuminum cyminum) fruits. On the other hand antimicrobial activity of treated cumin fruits essential oil and its extracts at 0, 5000, 10000, 20000 and 40000 ppm were investigated. Results showed that the highest essential oil % was obtained from fruits stored for 3 months in cotton bag without gamma irradiation. Concerning the effect of essential oil as antimicrobial agent, the highest antibacterial activity was obtained by essential oil isolated from irradiated polyethylene packed fruits at 5 KGy then stored for 3 months (Staphylococcus aureus) or irradiated polyethylene packed ones at 15 KGy without storage (Salmonella typhimurium). On the other hand, the highest antifungal activity against Aspergillus niger and Penicillium digitatum was obtained by essential oil isolated from unirradiated packed in polyethylene fruits then stored for 6 months. Non-stored packed in cotton bag fruits irradiated with gamma rays at 10 KGy produced essential oil with highest antiyeastal activity. Cumin fruits extract at 40000 ppm when combined with different treatments presented the highest antimicrobial activity (represents as inhibition zone) against all studied microbes except with P. digitatum. Cumin extract at 40000 ppm when extracted from irradiated packed fruits in polyethylene bags with gamma rays at 5 KGy without storage or with 6 months storage or irradiated at 15 KGy of packed fruits in cotton bag with storage for 3 months presented the highest significant inhibition zones against S. aureus. The same concentration of extracted cumin from uni radiated packed in cotton bag fruits and storage for 6 months presented the highest inhibition zone of S. typhimurium. Also, with the same concentration

  12. Pre-irradiation of tissue culture flasks leads to diminished stem and progenitor cell production in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Rooney, P.; Wright, E.G.

    1993-01-01

    Empty plastic tissue culture flasks were exposed to X-irradiation doses of 0.3-10.0 Gy, prior to the establishment of long-term bone marrow cultures. During the course of a 10 week culture period, all irradiated plastic flasks exhibited a dramatic decrease in the number of both haemopoietic stem cells and myeloid progenitor cells, in the non-adherent layer, when compared with controls. This decrease was not due to a decrease in the number of non-adherent cells produced. Histological examination of non-adherent cells showed an increase in mature granulocytic cells with few blast cells. Morphologically, the adherent layers of irradiated flasks demonstrated a delay in appearance or absence of fat cell production. X-irradiation of glass tissue culture flasks had no deleterious effect. (author)

  13. Estimating functional liver reserve following hepatic irradiation: Adaptive normal tissue response models

    International Nuclear Information System (INIS)

    Stenmark, Matthew H.; Cao, Yue; Wang, Hesheng; Jackson, Andrew; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2014-01-01

    Purpose: To estimate the limit of functional liver reserve for safe application of hepatic irradiation using changes in indocyanine green, an established assay of liver function. Materials and methods: From 2005 to 2011, 60 patients undergoing hepatic irradiation were enrolled in a prospective study assessing the plasma retention fraction of indocyanine green at 15-min (ICG-R15) prior to, during (at 60% of planned dose), and after radiotherapy (RT). The limit of functional liver reserve was estimated from the damage fraction of functional liver (DFL) post-RT [1 − (ICG-R15 pre-RT /ICG-R15 post-RT )] where no toxicity was observed using a beta distribution function. Results: Of 48 evaluable patients, 3 (6%) developed RILD, all within 2.5 months of completing RT. The mean ICG-R15 for non-RILD patients pre-RT, during-RT and 1-month post-RT was 20.3%(SE 2.6), 22.0%(3.0), and 27.5%(2.8), and for RILD patients was 6.3%(4.3), 10.8%(2.7), and 47.6%(8.8). RILD was observed at post-RT damage fractions of ⩾78%. Both DFL assessed by during-RT ICG and MLD predicted for DFL post-RT (p < 0.0001). Limiting the post-RT DFL to 50%, predicted a 99% probability of a true complication rate <15%. Conclusion: The DFL as assessed by changes in ICG during treatment serves as an early indicator of a patient’s tolerance to hepatic irradiation

  14. The influence of presumable radioprotectors on vitamin E redox system in irradiated rat tissues

    International Nuclear Information System (INIS)

    Paranich, A.V.; Pochernyaeva, V.F.; Dubinskaya, G.M.; Mishchinko, V.P.; Mironova, N.G.; Gugalo, V.P.; Nazarets, V.V.

    1993-01-01

    In experiments with mature Wistar male rats under irradiation by dose of 5 Gy the effect of emoxypine, citomedine and echinacea purpurea on the content of liposoluble vitamin A, carotene, vitamin E and its metabolites (quinone and oxidized tocopherol) in blood plasma, spleen, liver and testes was studied. It was shown the drugs under study mobilized the internal reserves of these vitamins and promoted effective functioning of vitamin E redox system. Mechanisms of their action are different. The drugs might be used as radioprotectors, but they exhaust the reserves of the liposoluble vitamins. Therefore they should be used in a combination with vitamin preparations

  15. Pencilbeam irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model.

    Science.gov (United States)

    Schültke, Elisabeth; Trippel, Michael; Bräuer-Krisch, Elke; Renier, Michel; Bartzsch, Stefan; Requardt, Herwig; Döbrössy, Máté D; Nikkhah, Guido

    2013-01-01

    We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.

  16. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti

    2016-12-05

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  17. Nanowire Nanoelectronics: Building Interfaces with Tissue and Cells at the Natural Scale of Biology

    Science.gov (United States)

    Cohen-Karni, Itzhaq Tzahi

    The interface between nanoscale electronic devices and biological systems enables interactions at length-scales natural to biology, and thus should maximize communication between these two diverse yet complementary systems. Moreover, nanostructures and nanostructured substrates show enhanced coupling to artificial membranes, cells, and tissue. Such nano-bio interfaces offer better sensitivity and spatial resolution as compared to conventional planar structures. In this work, I will report the electrical properties of silicon nanowires (SiNWs) interfaced with embryonic chicken hearts and cultured cardiomyocytes. I developed a scheme that allows us to manipulate the nanoelectronic to tissue/cell interfaces while monitoring their electrical activity. In addition, by utilizing the bottom-up approach, we extend our work to the sub-cellular regime, and interface cells with the smallest reported device ever and thus exceed the spatial and temporal resolution limits of other electrical recording techniques. The exceptional synthetic control and flexible assembly of nanowires provides powerful tools for fundamental studies and applications in life science, and opens up the potential of merging active transistors with cells such that the distinction between nonliving and living systems is blurred.

  18. Analysis of nanoparticles optical propagation influence in biological tissue simulating phantoms

    Science.gov (United States)

    Rodríguez-Colmenares, Miguel A.; Fanjul-Vélez, Félix; Arévalo-Díaz, Laura; Arce-Diego, José L.

    2017-02-01

    The applications of nanoparticles in optical techniques of diagnosis and treatment of biological tissues are increasing. Image contrast can be improved in diagnostic approaches such as fluorescence, spectroscopy or optical coherence tomography. The therapeutic effect can be increased if nanoparticles are previously incorporated in the biological tissue. This is the case in thermotherapy, or in Photodynamic Therapy. All these applications take advantage of specific properties of the nanoparticles involved, either optical up- or down-conversion, thermal confinement or the ability to act as a drug-carrier. Although many biomedical applications that involve nanoparticles are being proposed and tested, there is a need to take into account the influence of those nanoparticles on optical radiation propagation. The previously mentioned optical treatment and diagnosis techniques assume a particular optical propagation pattern, which is altered by the addition of nanoparticles. This change depends on the nanoparticle material, shape, size and concentration, among other parameters. In order to try to quantify these changes, in this work several phantoms that include different nanoparticles are analyzed, in order to estimate the influence of nanoparticles in optical propagation. A theoretical model of optical propagation, which takes into account the absorption and scattering changes in the medium, is also considered. Nanoparticles of different sizes from 40 nm to 1 μm are analyzed. Nanoparticle materials of interest in biomedical applications are employed. The results are relevant in diagnosis interpretation of images and treatment outcome evaluation when nanoparticles are present.

  19. Optical simulation of laser beam phase-shaping focusing optimization in biological tissues

    Science.gov (United States)

    Gomes, Ricardo; Vieira, Pedro; Coelho, João. M. P.

    2013-11-01

    In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam's propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software's proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.

  20. Change in the measuring biological response-resulted from irradiation by the hypermetria method 25 MeVeV electron

    International Nuclear Information System (INIS)

    Shtirbets, M.; Skarlat, F.; Pehushesku, E.; Martin, D.; Bachu, G.

    1979-01-01

    Irradiation of Wister rats preliminarily heated up to the temperature of 42 deg during 30 minutes is conducted for investigating the effect of radiation hyperthermia on animal tissues. Temperature was maintained during radiation by electrons of 25 MeV energy. Doses up to 7.5 Grey were introduced. It is shown that hyperthermia exercises slight and reversible changes of prostaglandine concentration in the brain and liver of rats. It is concluded, that observation over the level of prostaglandine in different organs is an effective means of evaluating biochemical changes [ru

  1. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.

    Science.gov (United States)

    Byrne, H L; Gholami, Y; Kuncic, Z

    2017-04-21

    The addition of gold nanoparticles within target tissue (i.e. a tumour) to enhance the delivered radiation dose is a well studied radiotherapy treatment strategy, despite not yet having been translated into standard clinical practice. While several studies have used Monte Carlo simulations to investigate radiation dose enhancement by Auger electrons emitted from irradiated gold nanoparticles, none have yet considered the effects due to escaping fluorescence photons. Geant4 was used to simulate a water phantom containing 10 mg ml -1 uniformly dispersed gold (1% by mass) at 5 cm depth. Incident monoenergetic photons with energies either side of the gold K-edge at 73 keV and 139.5 keV were chosen to give the same attenuation contrast against water, where water is used as a surrogate for biological tissue. For 73 keV incident photons, adding 1% gold into the water phantom enhances the energy deposited in the phantom by a factor of  ≈1.9 while 139.5 keV incident photons give a lower enhancement ratio of  ≈1.5. This difference in enhancement ratio, despite the equivalent attenuation ratios, can be attributed to energy carried from the target into the surrounding volume by fluorescence photons for the higher incident photon energy. The energy de-localisation is maximal just above the K-edge with 36% of the initial energy deposit in the phantom lost to escaping fluorescence photons. Conversely we find that the absorption of more photons by gold in the phantom reduces the number of scattered photons and hence energy deposited in the surrounding volume by up to 6% for incident photons below the K-edge. For incident photons above the K-edge this is somewhat offset by fluorescence. Our results give new insight into the previously unstudied centimetre scale energy deposition outside a target, which will be valuable for the future development of treatment plans using gold nanoparticles. From these results, we can conclude that gold nanoparticles delivered

  2. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Luka, S.; Marks, J.E.

    2015-01-15

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total of 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.

  3. Biological X-ray irradiator characterization for use with small animals and cells

    Directory of Open Access Journals (Sweden)

    A. Colello Bruno

    Full Text Available This study presents the characterization of an X-ray irradiator through dosimetric tests, which confirms the actual dose rate that small animals and cells will be exposed to during radiobiological experiments. We evaluated the linearity, consistency, repeatability, and dose distribution in the positions in which the animals or cells are placed during irradiation. In addition, we evaluated the performance of the X-ray tube (voltage and tube operating current, the radiometric survey (leakage radiation and safety devices. The irradiator default setting was established as 160 kV and 25 mA. Tests showed that the dose rate was linear overtime (R2=1 and remained stable for long (constant and short (repeatability intervals between readings. The mean dose rate inside the animal cages was 1.27±0.06 Gy/min with a uniform beam of 95.40% (above the minimum threshold guaranteed by the manufacturer. The mean dose rate inside the cell plates was 0.92±0.19 Gy/min. The dose rate dependence with tube voltage and current presented a quadratic and linear relationship, respectively. There was no observed mechanical failure during evaluation of the irradiator safety devices and the radiometric survey obtained a maximum ambient equivalent dose rate of 0.26 mSv/h, which exempts it from the radiological protection requirements of the International Atomic Energy Agency. The irradiator characterization enables us to perform radiobiological experiments, and assists or even replaces traditional therapy equipment (e.g., linear accelerators for cells and small animal irradiation, especially in early research stages.

  4. A novel 3D modelling and simulation technique in thermotherapy predictive analysis on biological tissue

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.; Romanov, Oleg G.; Tolstik, Alexei L.

    2007-07-01

    Optical techniques applied to biological tissue allow the development of new tools in medical praxis, either in tissue characterization or treatment. Examples of the latter are Photodynamic Therapy (PDT) or Low Intensity Laser Treatment (LILT), and also a promising technique called thermotherapy, that tries to control temperature increase in a pathological tissue in order to reduce or even eliminate pathological effects. The application of thermotherapy requires a previous analysis in order to avoid collateral damage to the patient, and also to choose the appropriate optical source parameters. Among different implementations of opto-thermal models, the one we use consists of a three dimensional Beer-Lambert law for the optical part, and a bio-heat equation, that models heat transference, conduction, convection, radiation, blood perfusion and vaporization, solved via a numerical spatial-temporal explicit finite difference approach, for the thermal part. The usual drawback of the numerical method of the thermal model is that convergence constraints make spatial and temporal steps very small, with the natural consequence of slow processing. In this work, a new algorithm implementation is used for the bio-heat equation solution, in such a way that the simulation time decreases considerably. Thermal damage based on the Arrhenius integral damage is also considered.

  5. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  6. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  7. Melatonin prevents radiation-induced oxidative stress and periodontal tissue breakdown in irradiated rats with experimental periodontitis.

    Science.gov (United States)

    Köse, O; Arabaci, T; Kizildag, A; Erdemci, B; Özkal Eminoğlu, D; Gedikli, S; Özkanlar, S; Zihni, M; Albayrak, M; Kara, A; Kermen, E

    2017-06-01

    The aim of this study was to analyze the biochemical and histochemical effects of radiation therapy and protective melatonin administration on periodontal tissues in rats with experimental periodontitis. Sixty male Sprague Dawley rats were divided into six groups, as follows: control; experimental periodontitis (Ped); radiotherapy administration (Rt); experimental periodontitis and exposure to irradiation (Ped-Rt); radiotherapy and protective melatonin administration (Rt-Mel); and periodontitis, radiation therapy and protective melatonin administration (Ped-Rt-Mel). The rats were killed at the end of the experimental procedure, and the oxidative stress level and periodontal destruction were compared among the groups. The oxidative stress index and the levels of 8-hydroxy-2'-deoxyguanosine, malondialdehyde and C-terminal telopeptide of type I collagen were found to be significantly higher in the Ped-Rt group compared with the Ped group (p periodontal attachment level and alveolar bone loss, and protective melatonin administration significantly reduced the oxidative parameters and prevented periodontal damage in irradiated rats with experimental periodontitis. Further research is needed regarding the use of systemic melatonin administration before radiation therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. A new Monte Carlo program for calculations of dose distributions within tissue equivalent phantoms irradiated from π--meson beams

    International Nuclear Information System (INIS)

    Przybilla, G.

    1980-11-01

    The present paper reports on the structure and first results from a new Monte Carlo programme for calculations of energy distributions within tissue equivalent phantoms irradiated from π - -beams. Each pion or generated secondary particle is transported until to the complete loss of its kinetic energy taking into account pion processes like multiple Coulomb scattering, pion reactions in flight and absorption of stopped pions. The code uses mainly data from experiments, and physical models have been added only in cases of lacking data. Depth dose curves for a pensil beam of 170 MeV/c within a water phantom are discussed as a function of various parameters. Isodose contours are plotted resulting from a convolution of an extended beam profile and the dose distribution of a pencil beams. (orig.) [de

  9. Fluid flow in a spiral device used for irradiation of biological fluids.

    Science.gov (United States)

    Nikolof, Todd; Prakash, Mahesh; Cleary, Paul W; Bertolini, Joseph

    2013-01-01

    The manufacture of plasma-derived therapeutics includes dedicated viral inactivation steps to minimize the risk of infection. Traditional viral inactivation methods are effective for the removal and inactivation of enveloped viruses, but less effective against small nonenveloped viruses. UV-C irradiation has been demonstrated to be an effective means of inactivating such viruses. The UVivatec lab system consists of a spiral tube around an UV-C irradiation source. Flow of a solution through the chamber generates and ensures controlled mixing and uniform exposure to irradiation. A detailed assessment of the effect of flow rate, alternate cross sectional design and scale up of the irradiation chamber on Dean vortices was performed using the smoothed particle hydrodynamics method. The aim was to provide a basis for setting flow rate limits and using a laboratory scale apparatus to model viral inactivation in larger manufacturing scale equipment. The effect of flow rate related changes on the fluence rate was also investigated through chemical actinometry studies. The data were consistent with the simulations indicating that Dean vortices were present at low flow rates, but dissipated at higher flow rates through the spiral chamber. Importantly, this work also allowed a correlation between the small system and large scale system to be established. This will greatly facilitate process development and viral validation studies. Copyright © 2013 American Institute of Chemical Engineers.

  10. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  11. In vitro mutant obtainment by irradiation of nucellar tissue of citrus (Citrus Sinensis Osb.)

    International Nuclear Information System (INIS)

    Pasqual, M.; Ando, A.; Tulmann Neto, A.; Menten, J.O.M.

    1984-01-01

    Nucellus of cultivar Valencia (Citrus Sinensis, Osb.) extracted from fruits 12 weeks after fertilization, were gamma irradiated (0.1, 1.0, 2.0, 4.0, 8.0 and 12.0 kR) before inoculation in culture media (pH 5.7) which comprised of macro and micronutrients of medium MS to which were added (in mg/l): mesoinusitol, 100; pyroxidin HCl, 1; nicotinic acid, 1; thiamine HCl, 0.2; malt extract, 500; sacarose, 50,000; agar-agar, 8,000. They were then Kept under 16 h light and 8h dark at a temperature of 27 0 C. (M.A.C.) [pt

  12. Experimental study of mechanical response of artificial tissue models irradiated with Nd:YAG nanosecond laser pulses

    Science.gov (United States)

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Aguilar, Guillermo

    2011-07-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light irradiance and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present three experimental approaches to study pressure transients originated when 6 ns laser pulses are incident on agar gels and water with varying linear absorption coefficient, using laser radiant exposures above and below threshold for bubble formation: (a) PVDF sensors, (b) Time-resolved shadowgraphy and (c) Time-resolved interferometry. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this study is to carry out a comprehensive experimental analysis of the mechanical effects that result when tissue models are irradiated with nanosecond laser pulses to elucidate the relative contribution of linear and nonlinear absorption to bubble formation. Furthermore, we investigate cavitation bubble formation with temperature increments as low as 3 °C.

  13. Nutrition and tissue regeneration from irradiated places: a study of cellular nutrition for the place submitted to radiotherapy

    International Nuclear Information System (INIS)

    Furtunato, Clayton R.V.; Romano, Déborah R.A.

    2017-01-01

    This paper presents a physico-chemical study of the interaction of radiation with skin by ionizing radiation, presenting the hazards caused by the process. Throughout the work it is shown the importance of cellular nutrition during the period of radiotherapeutic treatment, besides having updated data on the application of natural substances for the regeneration of the place submitted to the treatment. Cancer is a problem of public health and according to data provided by the National Cancer Institute José Alencar Gomes da Silva (INCA), 420,310 new cases were registered in Brazil in 2016, of which 214,350 are among women (primary location 'breast') and 205,960 among male (primary location 'prostate'). Despite advances in technology, the hazards caused by ionizing radiation in contact with the skin are high degree of aggressiveness. Therefore, there is great importance in developing scientific studies in order to evaluate and minimize its damages during its application for radiotherapeutic purposes. The use of Aloe Vera (extracted from the slug) on the irradiated site is easily found among people undergoing radiation therapy. How is it about a stimulator of cellular and healing multiplication favors the tissue regeneration, becoming important its application, due to the radiodermatitis that appear during the treatment. Thus, the objective of this work is to present a bibliographic study of the mechanisms related to the interaction of radiation with matter, as well as the beneficial effects of the substance on irradiated living tissue and to expose such data in graph and tables to quantify its use

  14. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  15. Physico-chemical and biological study of excision-repair of UV-irradiated PHIX 174 RF DNA in vitro

    International Nuclear Information System (INIS)

    Heijneker, H.L.

    1975-01-01

    A study is presented on the excision repair of ultraviolet-irradiated PHIX 174 RFI DNA in vitro with UV-specific endonuclease from micrococcus luteus, DNA polymerase I from E. coli and DNA ligase from phage T 4 infected E. coli. Excision repair was measured by physico-chemical and by biological methods. It is shown that more than 90% of the pyrimidine dimers can be repaired in vitro and that the repaired molecules have regained full biological activity. Endonuclease III was not essential for excision repair in vitro and did not stimulate repair; from this it was concluded that UV-endo generates 3' OH endgroups. The usefulness of the methods with regard to the study of excision repair is discussed

  16. Correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue

    Directory of Open Access Journals (Sweden)

    Wei Lin

    2016-10-01

    Full Text Available Objective: To study the correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue. Methods: Cervical cancer tissue and paracarcinoma tissue were collected from cervical cancer patients who received surgery in our hospital from May 2012 to October 2015, and HPV types as well as the expression levels of DNMTs, MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L were determined. Results: Protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue were significantly higher than those in para-carcinoma tissue, and the rising trend of DNMT1 expression level was the most significant; protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue with high-risk HPV infection were significantly higher than those in cervical cancer tissue with normal HPV infection; in cervical cancer tissue with high expression of DNMT1 and MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L levels were significantly higher than those in cervical cancer tissue with low expression of DNMT1 and MeCP2. Conclusions: Abnormally high expression of DNMT1 and MeCP2 in cervical cancer tissue may up-regulate the expression of a variety of malignant biological molecules by increasing methylation level.

  17. FiBi - A French network of facilities for irradiation in biology: The organisation of the network and the research opportunities associated

    International Nuclear Information System (INIS)

    Gaillard-Lecanu, E.; Coffigny, H.; Poncy, J.L.; Authier, N.; Verrey, B.; Bailly, I.; Baldacchino, G.; Bordy, J.M.; Carriere, M.; Leplat, J.J.; Pin, S.; Pommeret, S.; Thuret, J.Y.; Renault, J.P.; Cortella, I.; Duval, D.; Khodja, H.; Testard, I.

    2006-01-01

    The Life Science Division of the Atomic Energy Commission has developed a national network of available irradiation facilities for biological studies. One aim is to optimise the irradiation of biological samples, through a compendium of existing facilities allowing for the preserving and the irradiation of these samples in good conditions, and for providing an appropriate and reliable dosimetry. Given the high cost of the facilities and their specialization (nature and precision of irradiation on a cell scale, dose and dose rate), closeness is no longer the only criteria of choice for biologists. Development is leaning towards the implementation of irradiation platforms gathering irradiation tools associated with specific methods belonging to biology: cell culture, molecular biology and even animal care houses. The aim is to be able to offer biologists the most appropriate experimental tools, and to modify them according to the changing needs of radiobiology. This work is currently in progress and the database is still not exhaustive and shall be implemented as and when new documents are drawn up and new facilities are opened. (author)

  18. Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Sun, Dianjun; Lv, Yingli

    2016-06-01

    Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms.

  19. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  20. A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues

    Science.gov (United States)

    Chakravarty, Koyel; Dalal, D. C.

    2016-10-01

    Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles played by diffusion, mass-transfer, particle binding and internalization parameters.

  1. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  2. Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue.

    Science.gov (United States)

    Zhou, Hongfu; Gang, Yadong; Chen, Shenghua; Wang, Yu; Xiong, Yumiao; Li, Longhui; Yin, Fangfang; Liu, Yue; Liu, Xiuli; Zeng, Shaoqun

    2017-10-01

    Plastic embedding is widely applied in light microscopy analyses. Previous studies have shown that embedding agents and related techniques can greatly affect the quality of biological tissue embedding and fluorescent imaging. Specifically, it is difficult to preserve endogenous fluorescence using currently available acidic commercial embedding resins and related embedding techniques directly. Here, we developed a neutral embedding resin that improved the green fluorescent protein (GFP), yellow fluorescent protein (YFP), and DsRed fluorescent intensity without adjusting the pH value of monomers or reactivating fluorescence in lye. The embedding resin had a high degree of polymerization, and its fluorescence preservation ratios for GFP, YFP, and DsRed were 126.5%, 155.8%, and 218.4%, respectively. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. On the influence of microscopic architecture elements to the global viscoelastic properties of soft biological tissue

    Science.gov (United States)

    Posnansky, Oleg P.

    2014-12-01

    In this work we introduce a 2D minimal model of random scale-invariant network structures embedded in a matrix to study the influence of microscopic architecture elements on the viscoelastic behavior of soft biological tissue. Viscoelastic properties at a microscale are modeled by a cohort of basic elements with varying complexity integrated into multi-hierarchic lattice obeying self-similar geometry. It is found that this hierarchy of structure elements yields a global nonlinear frequency dependent complex-valued shear modulus. In the dynamic range of external frequency load, the modeled shear modulus proved sensitive to the network concentration and viscoelastic characteristics of basic elements. The proposed model provides a theoretical framework for the interpretation of dynamic viscoelastic parameters in the context of microstructural variations under different conditions.

  4. Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue

    Science.gov (United States)

    Zhou, Hongfu; Gang, Yadong; Chen, Shenghua; Wang, Yu; Xiong, Yumiao; Li, Longhui; Yin, Fangfang; Liu, Yue; Liu, Xiuli; Zeng, Shaoqun

    2017-10-01

    Plastic embedding is widely applied in light microscopy analyses. Previous studies have shown that embedding agents and related techniques can greatly affect the quality of biological tissue embedding and fluorescent imaging. Specifically, it is difficult to preserve endogenous fluorescence using currently available acidic commercial embedding resins and related embedding techniques directly. Here, we developed a neutral embedding resin that improved the green fluorescent protein (GFP), yellow fluorescent protein (YFP), and DsRed fluorescent intensity without adjusting the pH value of monomers or reactivating fluorescence in lye. The embedding resin had a high degree of polymerization, and its fluorescence preservation ratios for GFP, YFP, and DsRed were 126.5%, 155.8%, and 218.4%, respectively.

  5. Salt Tolerant Mutants in Potato sp. Cara Induced by Gamma Irradiation and Tissue Culture Technique

    International Nuclear Information System (INIS)

    Sharabash, M.T.; Mohamed, A.A.; Ahmed, F.A.; Afifi, A.M.

    2003-01-01

    Sprouts of 2-3 cm length were cut off from potatoes cv. Cara tubers and sterilized. Apical meristemic tips were sown to produce virus free plantlets. After 6-8 weeks, the new plantlets became at 5-7cm heights. Micro-propagation was begun to obtain sufficient number of plantlets. Plantlets obtained from micro-propagation stage were divided into 3 groups to be exposed to 0.0,20 or 40Gy gamma rays. The dose rate was 27.7rad/sec. Irradiated and unirradiated plantlets were trimmed to be with 5-6 nodes and without leaves. They were transplanted onto 1/2MS [1] liquid medium supplemented with sodium chloride at different concentrations, i.e.,0.0, 2000 or 4000 ppm. Healthy plantlets were chosen, and all unfit ones were excluded. The plantlets were sub-cultured six times on the same fresh medium with the same concentrations of NaCI, with insisting to exclude all unfit plantlets. All maintained healthy plantlets, in the sixth vegetative generation (M 1 V 6 ), grown under salinity stress, whatever the concentration of NaCI, were considered as mutant lines

  6. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  7. Soft tissue sarcomas: From a morphological to a molecular biological approach.

    Science.gov (United States)

    Oda, Yoshinao; Yamamoto, Hidetaka; Kohashi, Kenichi; Yamada, Yuichi; Iura, Kunio; Ishii, Takeaki; Maekawa, Akira; Bekki, Hirofumi

    2017-09-01

    Recently developed molecular genetic techniques have led to the elucidation of tumor-specific genomic alterations and thereby the reclassification of tumor entities of soft tissue sarcoma. A solitary fibrous tumor-mimicking tumor with the AHRR-NCOA2 gene has been isolated as angiofibroma of soft tissue. As for small round cell sarcomas, novel fusion genes such as CIC-DUX4 and BCOR-CCNB3 have been identified in these tumor groups. SMARCB1/INI1 deficient tumors with round cell morphology are also expected to be reclassified in three types, based on the combination of their morphology and genotype. The identification of the MDM2 gene amplification in pleomorphic sarcomas has extended the entity of dedifferentiated liposarcoma (DDLS). Our recent molecular investigations elucidated candidates for novel therapeutic strategies. Activation of the Akt-mTOR pathway was correlated with poor prognosis or tumor grade in spindle cell sarcomas including malignant peripheral nerve sheath tumor. In vitro and in vivo studies of transcription factor Forkhead Box M1 (FOXM1) demonstrated the close correlation between aggressive biological behavior or chemosensitivity and FOXM1 expression in synovial sarcoma, so far. Finally, in regard to the investigation of cancer-testis antigens, myxoid/round cell liposarcoma and synovial sarcoma showed frequent and high expression of PRAME and NY-ESO-1. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  8. Metabolism and toxicological analysis of synthetic cannabinoids in biological fluids and tissues.

    Science.gov (United States)

    Presley, B C; Gurney, S M R; Scott, K S; Kacinko, S L; Logan, B K

    2016-07-01

    Synthetic cannabinoids, which began proliferating in the United States in 2009, have gone through numerous iterations of modification to their chemical structures. More recent generations of compounds have been associated with significant adverse outcomes following use, including cognitive and psychomotor impairment, seizures, psychosis, tissue injury and death. These effects increase the urgency for forensic and public health laboratories to develop methods for the detection and identification of novel substances, and apply these to the determination of their metabolism and disposition in biological samples. This comprehensive review describes the history of the appearance of the drugs in the United States, discusses the naming conventions emerging to designate new structures, and describes the most prominent new compounds linked to the adverse effects now associated with their use. We review in depth the metabolic pathways that have been elucidated for the major members of each of the prevalent synthetic cannabinoid drug subclasses, the enzyme systems responsible for their metabolism, and the use of in silico approaches to assist in predicting and identifying the metabolites of novel compounds and drug subclasses that will continue to appear. Finally, we review and critique analytical methods applied to the detection of the drugs and their metabolites, including immunoassay screening, and liquid chromatography mass spectrometry confirmatory techniques applied to urine, serum, whole blood, oral fluid, hair, and tissues. Copyright © 2016 Central Police University.

  9. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. © 2014 Wiley Periodicals, Inc.

  10. Development and characterization of a radioimmunoassay to measure human tissue kallikrein in biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Bagshaw, A.F.; Whicher, J.T. (Bristol Royal Infirmary (UK)); Bhoola, K.D.; Lemon, M.J.C. (Bristol Univ. (UK). Medical School)

    1984-05-01

    A direct radioimmunoassay has been developed to measure tissue kallikrein in human biological fluids, including serum, plasma, urine, pancreatic juice and saliva. Purified kallikreins from human urine and human saliva were used to raise rabbit antibody and each labelled with Na/sup 125/I for use in the radioimmunoassay. Comparison of the different antigen-antibody systems was then made. Bound and free enzyme were separated by a double-antibody technique. The usable range of the standard curve was from 2.5 to 100 ..mu..g kallikrein/1. The intra-assay coefficient of variation was 4.7%, the interassay coefficient of variation 8.9% and the recoveries of purified kallikrein added to the samples were 99.3, 96.0, 110.8 and 81.2% for urine, saliva, serum and plasma respectively. Parallel dilution curves were obtained for serum and plasma, as well as urine, saliva and pancreatic juice. Plasma anticoagulated with EDTA or heparin gave consistently lower values than serum, when measured in the radioimmunoassay. From eight different subjects plasma (EDTA) values were on average 50% lower than those of serum, and subsequent experiments revealed that treatment of blood with some anticoagulants, in particular heparin and EDTA, resulted in a marked reduction in measurable tissue kallikrein.

  11. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  12. Experimental concepts for toxicity prevention and tissue restoration after central nervous system irradiation

    Directory of Open Access Journals (Sweden)

    Astner Sabrina T

    2007-06-01

    Full Text Available Abstract Several experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine.

  13. External Volume Expansion in Irradiated Tissue: Effects on the Recipient Site.

    Science.gov (United States)

    Chin, Michael S; Lujan-Hernandez, Jorge; Babchenko, Oksana; Bannon, Elizabeth; Perry, Dylan J; Chappell, Ava G; Lo, Yuan-Chyuan; Fitzgerald, Thomas J; Lalikos, Janice F

    2016-05-01

    External volume expansion prepares recipient sites to improve outcomes of fat grafting. For patients receiving radiotherapy after mastectomy, results with external volume expansion vary, and the relationship between radiotherapy and expansion remains unexplored. Thus, the authors developed a new translational model to investigate the effects in chronic skin fibrosis after radiation exposure. Twenty-four SKH1-E mice received 50 Gy of β-radiation to each flank and were monitored until fibrosis developed (8 weeks). External volume expansion was then applied at -25 mmHg to one side for 6 hours for 5 days. The opposite side served as the control. Perfusion changes were assessed with hyperspectral imaging. Mice were euthanized at 5 (n = 12) and 15 days (n = 12) after the last expansion application. Tissue samples were analyzed with immunohistochemistry for CD31 and Ki67, Masson trichrome for skin thickness, and picrosirius red to analyze collagen composition. All animals developed skin fibrosis 8 weeks after radiotherapy and became hypoperfused based on hyperspectral imaging. Expansion induced edema on treated sides after stimulation. Perfusion was decreased by 13 percent on the expansion side (p External volume expansion temporarily reduces perfusion, likely because of transient ischemia or edema. Together with mechanotransduction, these effects encourage a proangiogenic and proliferative environment in fibrotic tissue after radiotherapy in the authors' mouse model. Further studies are needed to assess these changes in fat graft retention.

  14. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    Science.gov (United States)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  15. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes

    International Nuclear Information System (INIS)

    Stroemberg, Niklas; Hakonen, Aron

    2011-01-01

    Highlights: → A plasmophore sensitized optode for imaging ammonia (NH 3 ) concentrations in muscle tissues was developed. → Ammonia concentrations ranging from 10 nM and upwards can be quantified reversibly with an optical resolution of 127 μm. → The general sensing scheme offers new possibilities for the development of artificial optical noses and tongues. - Abstract: A plasmophore sensitized optode was developed for imaging ammonia (NH 3 ) concentrations in muscle tissues. The developed ammonia sensor and an equivalent non plasmophore version of the sensor were tested side by side to compare their limit of detection, dynamic range, reversibility and overall imaging quality. Bio-degradation patterns of ammonia release from lean porcine skeletal muscle were studied over a period of 11 days. We demonstrate that ammonia concentrations ranging from 10 nM can be quantified reversibly with an optical resolution of 127 μm in a sample area of 25 mm x 35 mm. The plasmophore ammonia optode showed improved reversibility, less false pixels and a 2 nM ammonia detection limit compared to 200 nM for the non-plasmophore sensor. Main principles of the sensing mechanism include ammonia transfer over a gas permeable film, ammonia protonation, nonactin facilitated merocyanine-ammonium coextraction and plasmophore enhancement. The vast signal improvement is suggested to rely on solvatochroism, nanoparticle scattering and plasmonic interactions that are utilized constructively in a fluorescence ratio. In addition to fundamental medicinal and biological research applications in tissue physiology, reversible ammonia quantification will be possible for a majority of demanding imaging and non imaging applications such as monitoring of low ammonia background concentrations in air and non-invasive medicinal diagnosis through medical breath or saliva analysis. The nanoparticle doped sensor constitutes a highly competitive technique for ammonia sensing in complex matrixes and the

  16. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  17. Tracing overlapping biological signals in mid-infrared using colonic tissues as a model system.

    Science.gov (United States)

    Sahu, Ranjit Kumar; Salman, Ahmad; Mordechai, Shaul

    2017-01-14

    To understand the interference of carbohydrates absorbance in nucleic acids signals during diagnosis of malignancy using Fourier transform infrared (FTIR) spectroscopy. We used formalin fixed paraffin embedded colonic tissues to obtain infrared (IR) spectra in the mid IR region using a bruker II IR microscope with a facility for varying the measurement area by varying the aperture available. Following this procedure we could measure different regions of the crypt circles containing different biochemicals. Crypts from 18 patients were measured. Circular crypts with a maximum diameter of 120 μm and a lumen of about 30 μm were selected for uniformity. The spectral data was analyzed using conventional and advanced computational methods. Among the various components that are observed to contribute to the diagnostic capabilities of FTIR, the carbohydrates and nucleic acids are prominent. However there are intrinsic difficulties in the diagnostic capabilities due to the overlap of major absorbance bands of nucleic acids, carbohydrates and phospholipids in the mid-IR region. The result demonstrates colonic tissues as a biological system suitable for studying interference of carbohydrates and nucleic acids under ex vivo conditions. Among the diagnostic parameters that are affected by the absorbance from nucleic acids is the RNA/DNA ratio, dependent on absorbance at 1121 cm -1 and 1020 cm -1 that is used to classify the normal and cancerous tissues especially during FTIR based diagnosis of colonic malignancies. The signals of the nucleic acids and the ratio (RNA/DNA) are likely increased due to disappearance of interfering components like carbohydrates and phosphates along with an increase in amount of RNA. The present work, proposes one mechanism for the observed changes in the nucleic acid absorbance in mid-IR during disease progression (carcinogenesis).

  18. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.

    Science.gov (United States)

    Gallyamov, Marat O; Chaschin, Ivan S; Khokhlova, Marina A; Grigorev, Timofey E; Bakuleva, Natalia P; Lyutova, Irina G; Kondratenko, Janna E; Badun, Gennadii A; Chernysheva, Maria G; Khokhlov, Alexei R

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H2O and CO2. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16-33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. HDR monotherapy for prostate cancer: A simulation study to determine the effect of catheter displacement on target coverage and normal tissue irradiation

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina); M.A. Roos (Martin); S. Aluwini (Shafak)

    2011-01-01

    textabstractPurpose: The aim of this study was to systematically analyse the effect of catheter displacements both on target coverage and normal tissue irradiation in fractionated high dose rate (HDR) prostate brachytherapy, using a simulation study, and to define tolerances for catheter

  20. A study of the ionizing radiation effect on some chemical changes in irradiated soy-bean flour, and its biological value assessment

    International Nuclear Information System (INIS)

    Tencheva, S.; Katsareva, Ts.

    1985-01-01

    The results of the assessment of a number of chemical indicators are presented, namely: formation of free radicals in defatted soy-bean flour irradiated with 10 kGy using EPR-spectrometry, alteration in the residual lipid fraction, estimated by the UV spectrometry and TB test. Assessment of the biological value of protein is done on the basis of the protein efficiency coefficient (PEC). For the purpose two kinds of synthetic diets, including 10% soy-bean protein, are employed. Growing rats of the Wistar line (body weight 55 g) are used in the experiment. The amino acid profile of irradiated and non-irradiated soy-bean flour is also outlined. The obtained results indicate that the amount of free radicals, found in soy-bean flour irradiated with dose 10 kGy,is approximately 11 times larger than in flour irradiated with 5 kGy. Changes in the UV spectrum of the lipid fraction are likewise disclosed

  1. Treating Cutaneous T-cell Lymphoma with Highly Irregular Surfaces with Photon Irradiation Using Rice as Tissue Compensator

    Directory of Open Access Journals (Sweden)

    Lonika eMajithia

    2015-02-01

    Full Text Available Purpose: Cutaneous T-cell lymphoma (CTCL is known to have an excellent response to radiotherapy, an important treatment modality for this disease. In patients with extremity and digit involvement, the irregular surface and depth variations create difficulty in delivering a homogenous dose using electrons. We sought to evaluate photon irradiation with rice packing as tissue equivalence and determine clinical tolerance and response. Materials and Methods: Three consecutive CTCL patients with extensive lower extremity involvement including the digits were treated using external beam photon therapy with rice packing for tissue compensation. The entire foot was treated to 30-40 Gy in 2-3 Gy per fraction using 6 MV photons prescribed to the mid-plane of an indexed box filled with rice in which the foot was placed. Optically stimulated luminescence dosimeter (OSLD was used for dose measurement to determine the dose deposition to the skin surface. Treatment tolerance and response were monitored with clinical evaluation. Results: All patients tolerated the treatment without treatment breaks. Toxicities included grade 3 erythema and desquamation with resolution within 4 weeks. No late toxicities were observed. All four treated sites had partial response (PR by the end of the treatment course. All patients reported improved functionality after treatment, with less pain, drainage, or swelling. No local recurrence has been observed in these patients with a median follow-up time of 14 months. Conclusion: Tissue compensation with rice packing offers a convenient, inexpensive and reproducible method for the treatment of CTCL with highly irregular surfaces.

  2. Regio-controlled hydrogen-deuterium exchange of biologically important indoles under uv irradiation

    International Nuclear Information System (INIS)

    Saito, Isao; Muramatsu, Shigeru; Sugiyama, Hiroshi; Yamamoto, Akihiro; Matsuura, Teruo

    1985-01-01

    Photochemical hydrogen-deuterium exchange reaction of biologically important indoles is reported. The regioselectivity of the photodeuteration was found to be controlled by the ammonium group of the side chain. (author)

  3. Effect of gamma irradiation on chemical and biological properties of lipopolysaccharide from Salmonella typhimurium

    International Nuclear Information System (INIS)

    Naidu, Mamta D.; Chander, Ramesh; Nair, P.M.

    1998-01-01

    Lipopolysaccharide (LPS) from S. typhimurium on exposure to γ-radiation resulted in decrease in toxicity and was less mitogenic. Silver stained profiles of irradiated LPS on polyacrylamide gels revealed complete loss of its heteropolysaccharides which was confirmed further by analysing lipid A and LPS from Salmonella minnesota Re mutants on SDS-PAGE. Glucosamine and 2-keto 3-deoxy-octonate (Kdo) contents were significantly decreased on treatment. Lipid A obtained by removal of heteropolysaccharides from LPS was less toxic on exposure to gamma radiations. (author)

  4. Energy Dependence of EPR Signal in Synthetic and Biological Hydroxyapatite Irradiated with Photons

    International Nuclear Information System (INIS)

    Oliveira, L.M. de; Jesus, E.F. de; Rossi, A.M.; Lopes, R.T.; Rodrigues, L.N.; Barbosa, R.A.

    1999-01-01

    Synthetic A-type carbonated apatite and enamel samples were irradiated using X rays and gamma rays of 137 Cs and 60 Co in the range of 47 keV to 1.25 MeV. The energy-dependent response of CO 2 - radicals induced by radiation in both systems is studied using electron paramagnetic resonance (EPR). No energy dependence was verified for synthetic apatites and enamel in the range of 58 to 1250 keV. The results are compared with the energy dependence of the same radicals induced in bones and enamel reported in the literature. (author)

  5. Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics

    Science.gov (United States)

    Cheng, Kai-Xuan; Wu, Rong-Rong; Liu, Xiao-Zhou; Liu, Jie-Hui; Gong, Xiu-Fen; Wu, Jun-Ru

    2015-04-01

    In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (> 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1113020403 and 1101020402), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), the China Postdoctoral Science Foundation (Grant No. 2013M531313), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Project of Interdisciplinary Center of Nanjing University, China (Grant No. NJUDC2012004).

  6. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  7. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  8. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  9. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com; Liu, Weichao; Chen, Zhuying [Key Laboratory of Laser Medicine of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192 (China); Wang, Chao [Biomedical Engineering and Technology College, Tianjin Medical University, Tianjin, 300070 (China)

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  10. Biological effects and RAPD analysis of alfalfa (medicago sativa L.) irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Han Weibo; Zhang Yuexue; Tang Fenglan; Liu Jielin; Liu Fengqi; Shang Chen; Kong Fuquan; Wang Xiao; Liu Luxiang

    2011-01-01

    Dry seeds of alfalfa variety Zhaodong were irradiated by fast neutrons generated by linear accelerator with three fluences, 3.60 × 10 11 , 7.10 × 10 11 and 3.54 × 10 12 /cm 2 respectively. Seed germination, growth, and RAPD analysis on the mutation were reported in this study. The results showed that germination vigor and germination rate of irradiated seeds were higher than those of control, but seedling height and root length were reduced with the increase of fluences. When the dosages reached 3.54 × 10 12 /cm 2 , seedling root length decreased by 81.63% compared with the control, but the seedling didn't grow any true leaves except for cotyledon. 36 primers were used in RAPD analysis, and the results showed that the RAPD polymorphic loci rate was 7.25%, 6.52% and 5.80% among the 3.60 × 10 11 /cm 2 , 7.10 × 10 11 /cm 2 and 3.54 × 10 12 /cm 2 treated M 1 plants. RAPD polymorphic loci rate in the 3.60 × 10 11 /cm 2 treated plants was the highest among three treatment. It is concluded that 3.60 × 10 11 /cm 2 could be on optimum fluences for a alfalfa mutation by fast neutrons. (authors)

  11. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi

    1980-01-01

    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  12. Calculated dose factors for the radiosensitive tissues in bone irradiated by surface-deposited radionuclides

    International Nuclear Information System (INIS)

    Spiers, F.W.; Whitwell, J.R.; Beddoe, A.H.

    1978-01-01

    The method of calculating dose factors for the haemopoietic marrow and endosteal tissues in human trabecular bone, used by Whitwell and Spiers for volume-seeking radionuclides, has been developed for the case of radionuclides which are deposited as very thin layers on bone surfaces. The Monte Carlo method is again used, but modifications to the computer program are made to allow for a surface rather than a volume source of particle emission. The principal change is the introduction of a surface-orientation factor which is shown to have a value of approximately 2, varying slightly with bone structure. Results are given for β-emitting radionuclides ranging from 171 Tm(anti Esub(β) = 0.025 MeV) to 90 Y(anti Esub(β) = 0.93 MeV), and also for the α-emitter 239 Pu. It is shown that where the particle ranges are short compared with the dimensions of the bone structures the dose factors for the surface seekers are much greater than those for the volume seekers. For long range particles the dose factors for surface- and volume-seeking radionuclides converge. Comparisons are given relating the dose factors calculated in this paper on the basis of measured bone structures to those of other workers based on single plane geometry. (author)

  13. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo

    International Nuclear Information System (INIS)

    Yasuda, Takako; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi; Kimori, Yoshitaka

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. (author)

  14. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  15. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    Rodrigues, Pedro Pereira

    2007-01-01

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C 3 H 8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  16. All-optical photoacoustic microscopy (AOPAM) system for remote characterization of biological tissues<