WorldWideScience

Sample records for biological systems based

  1. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    calculi have similarly been used for the study of bio-chemical reactive systems. In this dissertation it is argued that techniques rooted in the theory and practice of programming languages, language based techniques if you will, constitute a strong basis for the investigation of models of biological......Process calculus is the common denominator for a class of compact, idealised, domain-specific formalisms normally associated with the study of reactive concurrent systems within Computer Science. With the rise of the interactioncentred science of Systems Biology a number of bio-inspired process...... systems as formalised in a process calculus. In particular it is argued that Static Program Analysis provides a useful approach to the study of qualitative properties of such models. In support of this claim a number of static program analyses are developed for Regev’s BioAmbients – a bio-inspired variant...

  2. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  3. Process-based design of dynamical biological systems

    Science.gov (United States)

    Tanevski, Jovan; Todorovski, Ljupčo; Džeroski, Sašo

    2016-09-01

    The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated be- haviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been previously considered.

  4. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  5. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  6. Computational systems chemical biology.

    Science.gov (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  7. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool

    OpenAIRE

    Zi, Z.; Klipp, E.

    2006-01-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of...

  8. Evolutionary game based control for biological systems with applications in drug delivery.

    Science.gov (United States)

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-01

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures.

  9. Multiparametric imaging of biological systems by force-distance curve-based AFM.

    Science.gov (United States)

    Dufrêne, Yves F; Martínez-Martín, David; Medalsy, Izhar; Alsteens, David; Müller, Daniel J

    2013-09-01

    A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve-based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions. PMID:23985731

  10. Network-based drug discovery by integrating systems biology and computational technologies.

    Science.gov (United States)

    Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang

    2013-07-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.

  11. ECO-BIOLOGICAL SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    T. I. Burak

    2015-01-01

    Full Text Available The methodology for computer modeling of complex eco-biological models is presented in this paper. It is based on system approach of J. Forrester. Developed methodology is universal for complex ecological and biological systems. Modeling algorithm considers specialties of eco-biological systems and shows adequate and accurate results in practice. 

  12. YeastMed: an XML-Based System for Biological Data Integration of Yeast

    CERN Document Server

    Briache, Abdelaali; Kerzazi, Amine; Navas-Delgado, Ismael; Montes, Jose F Aldana; Hassani, Badr D Rossi; Lairini, Khalid

    2010-01-01

    A key goal of bioinformatics is to create database systems and software platforms capable of storing and analysing large sets of biological data. Hundreds of biological databases are now available and provide access to huge amount of biological data. SGD, Yeastract, CYGD-MIPS, BioGrid and PhosphoGrid are five of the most visited databases by the yeast community. These sources provide complementary data on biological entities. Biologists are brought systematically to query these data sources in order to analyse the results of their experiments. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned result is a complex and laborious task. To provide transparent and simultaneous access to these sources, we have developed a mediator-based system called YeastMed. In this paper, we present YeastMed focusing on its architecture.

  13. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  14. A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry.

    Science.gov (United States)

    Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian

    2015-04-01

    Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems.

  15. Application of Evidence-based Medicine and Systems Biology Mediated by Translational Medicine in TCM Study

    Institute of Scientific and Technical Information of China (English)

    Gong Xiangwen; Zhang Jinwen; Yang Qinhe; Yan Haizhen; Zhang Yupei; Liu Yizhen; Xu Yongjian; Wang Hong; Lin Chunmei

    2013-01-01

    The core of translational medicine means that the effective relationship between science researchers of basic medicine and clinical doctors makes basic medicine research transform into diagnosis, prevention and treatment of diseases to compensate for the wide gap between basic and clinical application. Translational medicine was introduced into traditional Chinese medicine (TCM) study, and evidence-based medicine capable of improving the accuracy and reliability of TCM clinical research transforming into basic research and systems biology capable of enhancing the systematicness and integrality of basic research to make it transform into clinical application better were as major technical support, hence, the application of evidence-based medicine and systems biology mediated by translational medicine in TCM will have far-reaching signiifcance for the development of TCM modernization. In this article, the application of evidence-based medicine and systems biology mediated by translational medicine in TCM study is illustrated in terms of TCM in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD) and its clinical and basic bidirectional transformation, literature mining, translational medicine platform and team building.

  16. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  17. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da;

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  18. Engineering scalable biological systems

    OpenAIRE

    Lu, Timothy K.

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic, and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast, and mammal...

  19. YeastMed: an XML-Based System for Biological Data Integration of Yeast

    OpenAIRE

    Briache, Abdelaali; Marrakchi, Kamar; Kerzazi, Amine; Navas-Delgado, Ismael; Montes, Jose F Aldana; Hassani, Badr D. Rossi; Lairini, Khalid

    2010-01-01

    A key goal of bioinformatics is to create database systems and software platforms capable of storing and analysing large sets of biological data. Hundreds of biological databases are now available and provide access to huge amount of biological data. SGD, Yeastract, CYGD-MIPS, BioGrid and PhosphoGrid are five of the most visited databases by the yeast community. These sources provide complementary data on biological entities. Biologists are brought systematically to query these data sources i...

  20. [Study on action mechanism of Danhong injection based on computational system biology approach].

    Science.gov (United States)

    Lv, Yan-ni; Wei, Xiao-hua; Xiao, Pin

    2015-02-01

    Danhong injection is a compound preparation of traditional Chinese medicine Salvia miltiorrhiza and Carthamus tinctorius, and has been widely applied in treating coronary heart diseases and ischemic encephalopathy in clinic. Despite the complexity of its chemical compounds and the diversity of targets, especially in system biology, there have not a report for its action mechanism as a whole regulatory biological network. In this study, protein data of S. miltiorrhiza and C. tinctorius were searched in TCMGeneDIT database and agilent literature search (ALS) system to establish the multi-component protein network of S. miltiorrhiza, C. tinctorius and Danhong injection. Besides, the protein interaction network was built based on the protein-protein interaction in Genecards, BIND, BioGRID, IntAct, MINT and other databases. According to the findings, 10 compounds of S. miltiorrhiza and 14 compounds of C. tinctorius were correlated with proteins. The 24 common compounds had interactions with 81 proteins, and formed a protein interaction network with 60 none-isolated nodes. The Cluster ONE module was applied to make an enrichment analysis on the protein interaction network and extract one sub-network with significant difference P <0.05. The sub-network contains 23 key proteins, which involved five signaling pathways, namely Nod-like receptor signaling pathway, epithelial cell signaling in helicobacter pylori infection, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and neurotrophin signaling pathway through KEGG signaling pathway mapping. In this study, the computational system biology approach was adopted to preliminarily explain the molecular mechanism of main compounds of Danhong injection in preventing and treating diseases and provide reference for systematic studies on traditional Chinese medicine compounds. PMID:26084184

  1. [Systems biology of cancer].

    Science.gov (United States)

    Barillot, Emmanuel; Calzone, Laurence; Zinovyev, Andrei

    2009-01-01

    Cancer Systems Biology is now accepted and recognized as a promising field both in biological and clinical research. It relies on a rigorous formalization of regulation networks into precise and unambiguous languages. It provides both detailed and modular views of the complex biological system of interest (which in cancer research is typically an interaction network governing essential cellular events such as proliferation, differentiation, cell death...) in order to facilitate the interpretation of molecular profiles of tumors. The translation of these networks into mathematical models allows prediction of the evolution of the system in time and under certain perturbations. As a result, it can not only propose specific target points for pharmaceutical purposes, but also anticipate the evolution of tumors as well as their classifications. These characteristics emphasize the important role of Systems Biology of Cancer in the future of biomedical research.

  2. Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

    OpenAIRE

    Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal

    2014-01-01

    Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...

  3. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T; Savery, Nigel J; Grierson, Claire S; di Bernardo, Mario

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher. PMID:22936991

  4. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  5. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  6. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  7. Comparative systems biology between human and animal models based on next-generation sequencing methods

    Institute of Scientific and Technical Information of China (English)

    Yu-Qi ZHAO; Gong-Hua LI; Jing-Fei HUANG

    2013-01-01

    Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism.To improve the efficacy of animal models,a technological breakthrough is required.The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform.In the present study,we introduce the concept of the comparative systems biology,which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels".Furthermore,we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  8. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  9. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  10. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  11. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  12. Integrative radiation systems biology.

    Science.gov (United States)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  13. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  14. Systems biology, emergence and antireductionism.

    Science.gov (United States)

    Kesić, Srdjan

    2016-09-01

    This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed. Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist-antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.

  15. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.

    Science.gov (United States)

    Costa, Pedro M; Fadeel, Bengt

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials.

  16. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk.

    Science.gov (United States)

    Costa, Pedro M; Fadeel, Bengt

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global 'omics' approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. PMID:26721310

  17. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Science.gov (United States)

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  18. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes an

  19. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    Science.gov (United States)

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-01

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues.

  20. A substrate dependent biological containment systems for Pseudomonas putida based on the Escherichia coli gef gene

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Ramos, J. L.; Kaneva, Z.;

    1993-01-01

    operon (Pm) and the lacI gene, encoding the Lac repressor, plus xylS2, coding for a positive regulator of Pm. In liquid culture under optimal growth conditions and in sterile and nonsterile soil microcosms, P. putida KT2440 (pWWO) bearing the containment system behaves as designed. In the presence......A model substrate-dependent suicide system to biologically contain Pseudomonas putida KT2440 is reported. The system consists of two elements. One element carries a fusion between a synthetic lac promoter (PA1-04/03) and the gef gene, which encodes a killing function. This element is contained...... of a XylS effector, such as m-methylbenzoate, the LacI protein is synthesized, preventing the expression of the killing function. In the absence of effectors, expression of the PA1-04/03::gef cassette is no longer prevented and a high rate of cell killing is observed. Fluctuation test analyses revealed...

  1. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  2. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  3. Protein microarrays for systems biology

    Institute of Scientific and Technical Information of China (English)

    Lina Yang; Shujuan Guo; Yang Li; Shumin Zhou; Shengce Tao

    2011-01-01

    Systems biology holds the key for understanding biological systems on a system level. It eventually holds the key for the treatment and cure of complex diseases such as cancer,diabetes, obesity, mental disorders, and many others. The '-omics' technologies, such as genomics, transcriptomics,proteomics, and metabonomics, are among the major driving forces of systems biology. Featured as highthroughput, miniaturized, and capable of parallel analysis,protein microarrays have already become an important technology platform for systems biology, In this review, we will focus on the system level or global analysis of biological systems using protein microarrays. Four major types of protein microarrays will be discussed: proteome microarrays, antibody microarrays, reverse-phase protein arrays,and lectin microarrays. We will also discuss the challenges and future directions of protein microarray technologies and their applications for systems biology. We strongly believe that protein microarrays will soon become an indispensable and invaluable tool for systems biology.

  4. SBML-SAT: a systems biology markup language (SBML based sensitivity analysis tool

    Directory of Open Access Journals (Sweden)

    Rundell Ann E

    2008-08-01

    Full Text Available Abstract Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  5. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-01-01

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically. PMID:26132533

  6. Conceptual Model-based Systems Biology: mapping knowledge and discovering gaps in the mRNA transcription cycle.

    Science.gov (United States)

    Somekh, Judith; Choder, Mordechai; Dori, Dov

    2012-12-20

    We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM), a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure-the objects that comprise the system, and behavior-how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point-the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model.

  7. Conceptual Model-based Systems Biology: mapping knowledge and discovering gaps in the mRNA transcription cycle.

    Directory of Open Access Journals (Sweden)

    Judith Somekh

    2012-12-01

    Full Text Available We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM, a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure-the objects that comprise the system, and behavior-how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point-the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model.

  8. Waste activated sludge treatment based on temperature staged and biologically phased anaerobic digestion system.

    Science.gov (United States)

    Yu, Jingwen; Zheng, Mingxia; Tao, Tao; Zuo, Jiane; Wang, Kaijun

    2013-10-01

    The concept of temperature staged and biological phased (TSBP) was proposed to enhance the performance of waste-activated sludge anaerobic digestion. Semi-continuous experiments were used to investigate the effect of temperature (35 to 70 degrees C) as well as the hydraulic retention time (HRT) (2, 4 and 6 days) on the acidogenic phase. The results showed that the solubilization degree of waste-activated sludge increased from 14.7% to 30.1% with temperature increasing from 35 to 70 degrees C, while the acidification degree was highest at 45 degrees C (17.6%), and this was quite different from the temperature impact on hydrolysis. Compared with HRT of 2 and 6 days, 4 days was chosen as the appropriate HRT because of its relatively high solubilization degree (24.6%) and acidification degree (20.1%) at 45 degrees C. The TSBP system combined the acidogenic reactor (45 degrees C, 4 days) with the methanogenic reactor (35 degrees C, 16 days) and the results showed 84.8% and 11.4% higher methane yield and volatile solid reduction, respectively, compared with that of the single-stage anaerobic digestion system with HRT of 20 days at 35 degrees C. Moreover, different microbial morphologies were observed in the acidogenic- and methanogenic-phase reactors, which resulted from the temperature control and HRT adjustment. All the above results indicated that 45 degrees C was the optimum temperature to inhibit the activity of methanogenic bacteria in the acidogenic phase, and temperature staging and phase separation was thus accomplished. The advantages of the TSBP process were also confirmed by a full-scale waste-activated sludge anaerobic digestion project which was an energy self-sufficient system.

  9. Automaton based detection of affected cells in three dimensional biological system

    CERN Document Server

    Dundas, Jitesh

    2011-01-01

    The aim of this research review is to propose the logic and search mechanism for the development of an artificially intelligent automaton (AIA) that can find affected cells in a 3-dimensional biological system. Research on the possible application of such automatons to detect and control cancer cells in the human body are greatly focused MRI and PET scans finds the affected regions at the tissue level even as we can find the affected regions at the cellular level using the framework. The AIA may be designed to ensure optimum utilization as they record and might control the presence of affected cells in a human body. The proposed models and techniques can be generalized and used in any application where cells are injured or affected by some disease or accident. The best method to import AIA into the body without surgery or injection is to insert small pill like automata, carrying material viz drugs or leukocytes that is needed to correct the infection. In this process, the AIA can be compared to nano pills to ...

  10. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  11. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  12. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  13. Telemetry System of Biological Parameters

    OpenAIRE

    2005-01-01

    The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consum...

  14. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    Science.gov (United States)

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  15. A Neural Systems-Based Neurobiology and Neuropsychiatry Course: Integrating Biology, Psychodynamics, and Psychology in the Psychiatric Curriculum

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D.

    2006-01-01

    Objective: Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. Method: The authors detail the underlying assumptions and outline of a neural systems-based…

  16. Chemical and biological properties of supramolecular polymer systems based on oligocaprolactones

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; van Leeuwen, Ellen N. M.; van Gemert, Gaby M. L.; Spiering, A. J. H.; Harmsen, Martin C.; Brouwer, Linda A.; Janssen, Henk M.; Bosman, Anton W.; van Luyn, Maria J. A.; Meijer, E. W.

    2006-01-01

    We show that materials with a diverse range of mechanical and biological properties can be obtained using a modular approach by simply mixing different ratios of oligocaprolactones that are either end-functionalized or chain-extended with quadruple hydrogen bonding ureido-pyrimidinone (UPy) moieties

  17. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  18. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  19. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  20. Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology

    OpenAIRE

    Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T.; Haynes, Christy L.

    2014-01-01

    Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it oc...

  1. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    Science.gov (United States)

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). PMID:25189512

  2. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... of nutritional research is, therefore, to borrow methods that are well established in medical and pharmacological research. In this thesis, we use advanced data-mining tools for the construction of a database with available, state-of-the-art information concerning the interaction of food and its molecular...

  3. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  4. Aging and computational systems biology.

    Science.gov (United States)

    Mooney, Kathleen M; Morgan, Amy E; Mc Auley, Mark T

    2016-01-01

    Aging research is undergoing a paradigm shift, which has led to new and innovative methods of exploring this complex phenomenon. The systems biology approach endeavors to understand biological systems in a holistic manner, by taking account of intrinsic interactions, while also attempting to account for the impact of external inputs, such as diet. A key technique employed in systems biology is computational modeling, which involves mathematically describing and simulating the dynamics of biological systems. Although a large number of computational models have been developed in recent years, these models have focused on various discrete components of the aging process, and to date no model has succeeded in completely representing the full scope of aging. Combining existing models or developing new models may help to address this need and in so doing could help achieve an improved understanding of the intrinsic mechanisms which underpin aging.

  5. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.

    Science.gov (United States)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-02-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable. PMID:18199908

  6. Modelling coordination in biological systems

    OpenAIRE

    Clarke, David; Oliveira Costa, de, David; Arbab, Farhad

    2004-01-01

    We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexible

  7. Optimization in computational systems biology

    OpenAIRE

    Banga Julio R

    2008-01-01

    Abstract Optimization aims to make a system or design as effective or functional as possible. Mathematical optimization methods are widely used in engineering, economics and science. This commentary is focused on applications of mathematical optimization in computational systems biology. Examples are given where optimization methods are used for topics ranging from model building and optimal experimental design to metabolic engineering and synthetic biology. Finally, several perspectives for ...

  8. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  9. Systems biology-based diagnostic principles as pillars of the bridge between Chinese and Western medicine

    NARCIS (Netherlands)

    Greef, J. van der; Wietmarschen, H. van; Schroën, J.; Wang, M.; Hankemeier, T.; Xu, G.

    2010-01-01

    Innovative systems approaches to develop medicine and health care are emerging from the integration of Chinese and Western medicine strategies, philosophies and practices. The two medical systems are highly complementary as the reductionist aspects of Western medicine are favourable in acute disease

  10. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  11. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  12. Kinetic Modeling of Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Petzold, Linda; Pettigrew, Michel F.

    2009-04-21

    The dynamics of how its constituent components interact define the spatio-temporal response of a natural system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided.

  13. Metabolomics-based systems biology and personalized medicine: Moving towards n = 1 clinical trials?

    NARCIS (Netherlands)

    Greef, J. van der; Hankemeier, T.; McBurney, R.N.

    2006-01-01

    Personalized medicine - defined as customized medical care for each patient's unique condition - in the broader context of personalized health, will make significant strides forward when a systems approach is implemented to achieve the ultimate in disease phenotyping and to create novel therapeutics

  14. Circadian systems biology in Metazoa.

    Science.gov (United States)

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.

  15. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  16. Systems biology and cancer, [Editorial

    OpenAIRE

    Soto, A M; Sonnenschein, C; Maini, P.K.

    2011-01-01

    The systems approach to complex biological problems has rapidly gained ground during the first decade of this century. There are several reasons for this development. An important one is that while the achievement of sequencing the complete human genome, and those of other species, has been of great benefit to fundamental science, for example in comparative genomics and evolutionary biology, it has not led to the expected quick and simple solutions to multifactorial diseases (2010). On the co...

  17. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    Science.gov (United States)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  18. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... perspective about the contribution of genes and genetic variants to disease is a key reason 'omics' has failed to deliver the anticipated breakthroughs. We then point out the critical utility of key concepts from physiology like homeostasis, regulated systems and redundancy as major intellectual tools...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  19. Bridging the gap between systems biology and synthetic biology

    OpenAIRE

    Liu, Di; Hoynes-O’Connor, Allison; Zhang, Fuzhong

    2013-01-01

    Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, syst...

  20. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  1. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  2. Network-based discovery through mechanistic systems biology. Implications for applications--SMEs and drug discovery: where the action is.

    Science.gov (United States)

    Benson, Neil

    2015-08-01

    Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. PMID:26464089

  3. Modelling coordination in biological systems

    NARCIS (Netherlands)

    Clarke, D.G.; Oliveira Costa, D.F. de; Arbab, F.

    2004-01-01

    We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of

  4. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  5. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  6. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel;

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...... timed automata and most recently hybrid systems using the tool Uppaal SMC. In this paper we enable the application of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a plugin of the tool Cytoscape used by biologists, as well as with SimBiology®, a plugin of Matlab to simulate...

  7. Development of a micro-XRF system for biological samples based on proton-induced quasimonochromatic X-rays

    Science.gov (United States)

    Ploykrachang, K.; Hasegawa, J.; Kondo, K.; Fukuda, H.; Oguri, Y.

    2014-07-01

    We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface.

  8. Development of a micro-XRF system for biological samples based on proton-induced quasimonochromatic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ploykrachang, K., E-mail: ploykrachang.k.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hasegawa, J. [Department of Energy Sciences, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kondo, K.; Fukuda, H.; Oguri, Y. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-07-15

    We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface.

  9. Development of a micro-XRF system for biological samples based on proton-induced quasimonochromatic X-rays

    International Nuclear Information System (INIS)

    We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface

  10. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM.

    Science.gov (United States)

    Ogura, Toshihiko

    2015-04-10

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolution FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials.

  11. Systems biology: leading the revolution in ecotoxicology.

    Science.gov (United States)

    Garcia-Reyero, Natàlia; Perkins, Edward J

    2011-02-01

    The rapid development of new technologies such as transcriptomics, proteomics, and metabolomics (Omics) are changing the way ecotoxicology is practiced. The data deluge has begun with genomes of over 65 different aquatic species that are currently being sequenced, and many times that number with at least some level of transcriptome sequencing. Integrating these top-down methodologies is an essential task in the field of systems biology. Systems biology is a biology-based interdisciplinary field that focuses on complex interactions in biological systems, with the intent to model and discover emergent properties of the system. Recent studies demonstrate that Omics technologies provide valuable insight into ecotoxicity, both in laboratory exposures with model organisms and with animals exposed in the field. However, these approaches require a context of the whole animal and population to be relevant. Powerful approaches using reverse engineering to determine interacting networks of genes, proteins, or biochemical reactions are uncovering unique responses to toxicants. Modeling efforts in aquatic animals are evolving to interrelate the interacting networks of a system and the flow of information linking these elements. Just as is happening in medicine, systems biology approaches that allow the integration of many different scales of interaction and information are already driving a revolution in understanding the impacts of pollutants on aquatic systems.

  12. System biology of gene regulation.

    Science.gov (United States)

    Baitaluk, Michael

    2009-01-01

    ) questions of biological relevance. Thus systems biology could be treated as such a socioscientific phenomenon and a new approach to both experiments and theory that is defined by the strategy of pursuing integration of complex data about the interactions in biological systems from diverse experimental sources using interdisciplinary tools and personnel. PMID:19623486

  13. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach

    OpenAIRE

    Bor-Sen Chen; Chih-Yuan Hsu; Jing-Jia Liou

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter ...

  14. Modular microfluidic system for biological sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  15. Systems Biology of the Fluxome

    Directory of Open Access Journals (Sweden)

    Miguel A. Aon

    2015-07-01

    Full Text Available The advent of high throughput -omics has made the accumulation of comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and metabolites. Systems biology-inspired computational methods for translating metabolomics data into fluxomics provide a direct functional, dynamic readout of metabolic networks. When combined with appropriate experimental design, these methods deliver insightful knowledge about cellular function under diverse conditions. The use of computational models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the control and regulatory properties of the fluxome under steady and time-dependent behaviors. This approach extends the analysis of complex systems from description to prediction, including control of complex dynamic behavior ranging from biological rhythms to catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics approach will help our ability to engineer unicellular and multicellular organisms evolve from trial-and-error to a more predictable process, and from cells to organ and organisms.

  16. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gubanov, V. G.; Barkhatov, Yu. V.; Gribovskaya, I. V.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California warms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogmic elements, shows an almost 100% closure of the cycle inside

  17. Bridging the gaps in systems biology

    OpenAIRE

    Marija Cvijovic; Joachim Almquist; Jonas Hagmar; Stefan Hohmann; Hans\\u2011Michael Kaltenbach; Edda Klipp; Marcus Krantz; Pedro Mendes; Sven Nelander; Jens Nielsen; Andrea Pagnani; Natasa Przulj; Andreas Raue; J\\xf6rg Stelling; Szymon Stoma

    2014-01-01

    International audience Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding-the elucidation of the basic and presumably conserved "design" and "engineering" principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved ou...

  18. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  19. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  20. A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes.

    Science.gov (United States)

    Hong, Seil; Choi, Il; Lim, Byung Jin; Kim, Hyunook

    2012-01-01

    In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d-1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L-1 Hg2+, 0.5 mg·L-1 allythiourea, or 0.25 mg·L-1 chloroform could be successfully detected. PMID:23443381

  1. A DO- and pH-Based Early Warning System of Nitrification Inhibition for Biological Nitrogen Removal Processes

    Directory of Open Access Journals (Sweden)

    Hyunook Kim

    2012-11-01

    Full Text Available In Korea, more than 80% of municipal wastewater treatment plants (WWTPs with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

  2. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    OpenAIRE

    Bor-Sen Chen; Chia-Chou Wu

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of...

  3. Semantic annotation for biological information retrieval system.

    Science.gov (United States)

    Oshaiba, Mohamed Marouf Z; El Houby, Enas M F; Salah, Akram

    2015-01-01

    Online literatures are increasing in a tremendous rate. Biological domain is one of the fast growing domains. Biological researchers face a problem finding what they are searching for effectively and efficiently. The aim of this research is to find documents that contain any combination of biological process and/or molecular function and/or cellular component. This research proposes a framework that helps researchers to retrieve meaningful documents related to their asserted terms based on gene ontology (GO). The system utilizes GO by semantically decomposing it into three subontologies (cellular component, biological process, and molecular function). Researcher has the flexibility to choose searching terms from any combination of the three subontologies. Document annotation is taking a place in this research to create an index of biological terms in documents to speed the searching process. Query expansion is used to infer semantically related terms to asserted terms. It increases the search meaningful results using the term synonyms and term relationships. The system uses a ranking method to order the retrieved documents based on the ranking weights. The proposed system achieves researchers' needs to find documents that fit the asserted terms semantically.

  4. Integrated Design of Antibodies for Systems Biology Using Ab Designer

    OpenAIRE

    Pisitkun, Trairak; Dummer, Patrick; Somparn, Poorichaya; Hirankarn, Nattiya; Kopp, Jeffrey B.; Knepper, Mark A.

    2014-01-01

    In the current era of large-scale biology, systems biology has evolved as a powerful approach to identify complex interactions within biological systems. In addition to high throughput identification and quantification techniques, methods based on high-quality mono-specific antibodies remain an essential element of the approach. To assist the large-scale design and production of peptide-directed antibodies for systems biology studies, we developed a fully integrated online application, AbDesi...

  5. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems

    International Nuclear Information System (INIS)

    Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40-70 kg N ha-l season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soya beans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N2 fixed by soya beans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha-l assuming that only seeds of soya beans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha-l and plus 47 kg N ha-l depending on the soyabean cultivar. Residual soyabean N values of 10-24 kg N ha-l (14-36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soy beans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the N benefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming. (author)

  6. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  7. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  8. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  9. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  10. Analyzing the Biology on the System Level

    Institute of Scientific and Technical Information of China (English)

    Wei Tong

    2004-01-01

    Although various genome projects have provided us enormous static sequence information, understanding of the sophisticated biology continues to require integrating the computational modeling, system analysis, technology development for experiments, and quantitative experiments all together to analyze the biology architecture on various levels, which is just the origin of systems biology subject. This review discusses the object, its characteristics, and research attentions in systems biology, and summarizes the analysis methods, experimental technologies, research developments, and so on in the four key fields of systems biology-systemic structures, dynamics, control methods, and design principles.

  11. Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment.

    Science.gov (United States)

    Wierling, Christoph; Kühn, Alexander; Hache, Hendrik; Daskalaki, Andriani; Maschke-Dutz, Elisabeth; Peycheva, Svetlana; Li, Jian; Herwig, Ralf; Lehrach, Hans

    2012-08-15

    Cancer is known to be a complex disease and its therapy is difficult. Much information is available on molecules and pathways involved in cancer onset and progression and this data provides a valuable resource for the development of predictive computer models that can help to identify new potential drug targets or to improve therapies. Modeling cancer treatment has to take into account many cellular pathways usually leading to the construction of large mathematical models. The development of such models is complicated by the fact that relevant parameters are either completely unknown, or can at best be measured under highly artificial conditions. Here we propose an approach for constructing predictive models of such complex biological networks in the absence of accurate knowledge on parameter values, and apply this strategy to predict the effects of perturbations induced by anti-cancer drug target inhibitions on an epidermal growth factor (EGF) signaling network. The strategy is based on a Monte Carlo approach, in which the kinetic parameters are repeatedly sampled from specific probability distributions and used for multiple parallel simulations. Simulation results from different forms of the model (e.g., a model that expresses a certain mutation or mutation pattern or the treatment by a certain drug or drug combination) can be compared with the unperturbed control model and used for the prediction of the perturbation effects. This framework opens the way to experiment with complex biological networks in the computer, likely to save costs in drug development and to improve patient therapy.

  12. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  13. Modeling biological systems with Answer Set Programming

    OpenAIRE

    Thiele, Sven

    2012-01-01

    Biology has made great progress in identifying and measuring the building blocks of life. The availability of high-throughput methods in molecular biology has dramatically accelerated the growth of biological knowledge for various organisms. The advancements in genomic, proteomic and metabolomic technologies allow for constructing complex models of biological systems. An increasing number of biological repositories is available on the web, incorporating thousands of biochemical reactions and ...

  14. A Research Project-Based and Self-Determined Teaching System of Molecular Biology Techniques for Undergraduates

    Science.gov (United States)

    Zhang, Shuping

    2008-01-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a…

  15. Principles of Systems Biology, No. 8.

    Science.gov (United States)

    2016-08-01

    Advances in biological engineering headline this month's Cell Systems call (Cell Systems 1, 307), alongside intriguing applications of modeling from the Elf, Goentoro, and Wolf groups. Check out our recent blogpost: http://crosstalk.cell.com/blog/a-call-for-papers-on-biological-engineering-and-synthetic-biology. PMID:27559920

  16. The Biological Bases of Conformity

    Directory of Open Access Journals (Sweden)

    Thomas Joshau Henry Morgan

    2012-06-01

    Full Text Available Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favour adaptive learning strategies that facilitate effective use of social information in decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behaviour in nonhuman animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history and ontogeny of conformity and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behaviour conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subject’s behaviour is the result of both social and asocial influences, the resultant behaviour may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for

  17. Spatial Aspects in Biological System Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Costa, Michelle N.; Shankaran, Harish

    2011-01-30

    Mathematical models of the dynamical properties of biological systems aim to improve our understanding of the studied system with the ultimate goal of being able to predict system responses in the absence of experimentation. Despite the enormous advances that have been made in biological modeling and simulation, the inherently multiscale character of biological systems and the stochasticity of biological processes continue to present significant computational and conceptual challenges. Biological systems often consist of well-organized structural hierarchies, which inevitably lead to multiscale problems. This chapter introduces and discusses the advantages and shortcomings of several simulation methods that are being used by the scientific community to investigate the spatio-temporal properties of model biological systems. We first describe the foundations of the methods and then describe their relevance and possible application areas with illustrative examples from our own research. Possible ways to address the encountered computational difficulties are also discussed.

  18. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure;

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  19. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Science.gov (United States)

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  20. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    Science.gov (United States)

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  1. Machine learning based methods for the study of metabolism and its effect on the behavior of biological systems

    OpenAIRE

    Higuera Cabañes, Clara

    2015-01-01

    Las disciplinas de bioinformática y biología computacional, que se sirven de técnicas informáticas para dar solución a problemas en biología, se han posicionado como piezas clave en la investigación en biología molecular. Tanto por la gran cantidad de información compleja generada en los laboratorios como por la necesidad de simular in silico determinados procesos biológicos para su estudio, actualmente es esencial el desarrollo de nuevos métodos computacionales que asistan en la investigació...

  2. Tritium Exchange in Biological Systems

    International Nuclear Information System (INIS)

    Whenever tritium-labelled water is employed as a test solute or tracer in biological systems, an appreciable exchange between tritium and labile hydrogen atoms occurs that frequently affects the nature and interpretation of experimental results. The studies reported here are concerned with the magnitude of the effect that tritium exchange introduces into measurements of total body water and water metabolism in animals and humans. Direct measurements of exchange were made in rats, guinea pigs, pigeons, and rabbits. Tritium-labelled water was administered intravenously or by mouth, and tritium space and turnover determined from the concentration of tritium in blood. The animals were then desiccated to constant weight in vacuo. The specific activity of water collected periodically during desiccation increased by 50% as a result of isotope effects. Water from combustion of dried rabbit tissues contained about 2% of the tritium originally given to the animal. Adipose tissue alone contained little or no exchange tritium. The dried tissues of the other animals were rehydrated with inactive water and the appearance of tritium in the water observed. The specific activity of the water increased in exponential fashion, i.e., 1-exp. (kt), with about 90% of exchange occurring with a half-time of 1 h, and the remaining 10% with a half-time of 10 h. The total tritium extracted accounted for 1.5 to 3.5% of the dose given to the animal, which agrees with the difference between the tritium space and total body water determined by desiccation. An indirect estimate of exchange in humans was derived from concurrent measurements of tritium and antipyrene spaces. The average difference of about 2% in water volume agrees with the direct estimates of exchanges in animals. It is evident that tritium space should be reduced by about 2% to identify it with total body water. The magnitude and relatively slow rate of exchange may also influence the interpretation of metabolic studies with

  3. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  4. Marine biological data and information management system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.

    Indian National Oceanographic Data Centre (INODC) is engaged in developing a marine biological data and information management system (BIODIMS). This system will contain the information on zooplankton in the water column, zoobenthic biomass...

  5. A Free Energy Principle for Biological Systems

    Directory of Open Access Journals (Sweden)

    Friston Karl

    2012-10-01

    Full Text Available This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology.

  6. Nucleic Acid-Based Nanodevices in Biological Imaging.

    Science.gov (United States)

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  7. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  8. Systems Medicine: Evolution of Systems Biology From Bench To Bedside

    OpenAIRE

    Wang, Rui-Sheng; Maron, Bradley A.; Loscalzo, Joseph

    2015-01-01

    High-throughput experimental techniques for generating genomes, transcriptomes, proteomes, metabolomes, and interactomes have provided unprecedented opportunities to interrogate biological systems and human diseases on a global level. Systems biology integrates the mass of heterogeneous high-throughput data and predictive computational modeling to understand biological functions as system-level properties. Most human diseases are biological states caused by multiple components of perturbed pa...

  9. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics

    OpenAIRE

    Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; Banga, Julio R.; Saez-Rodriguez, Julio

    2013-01-01

    Optimization is key to solve many problems in computational biology. Global optimization methods provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in ...

  10. Biological control in greenhouse systems.

    Science.gov (United States)

    Paulitz, T C; Bélanger, R R

    2001-01-01

    The controlled environment of greenhouses, the high value of the crops, and the limited number of registered fungicides offer a unique niche for the biological control of plant diseases. During the past ten years, over 80 biocontrol products have been marketed worldwide. A large percentage of these have been developed for greenhouse crops. Products to control soilborne pathogens such as Sclerotinia, Pythium, Rhizoctonia and Fusarium include Coniothyrium minitans, species of Gliocladium, Trichoderma, Streptomyces, and Bacillus, and nonpathogenic Fusarium. Products containing Trichoderma, Ampelomyces quisqualis, Bacillus, and Ulocladium are being developed to control the primary foliar diseases, Botrytis and powdery mildew. The development of Pseudomonas for the control of Pythium diseases in hydroponics and Pseudozyma flocculosa for the control of powdery mildew by two Canadian research programs is presented. In the future, biological control of diseases in greenhouses could predominate over chemical pesticides, in the same way that biological control of greenhouse insects predominates in the United Kingdom. The limitations in formulation, registration, and commercialization are discussed, along with suggested future research priorities. PMID:11701861

  11. The Current State and Perspectives of Systems Biology

    Institute of Scientific and Technical Information of China (English)

    Tielui Shi; Yixue Li

    2006-01-01

    Emerging as a new field in biology recently, Systems Biology provides a branch new way to study the biological activities in organisms. In order to decode the complexity of life systematically,systems biology integrates the "-omics" and uses the high throughput methods from transcriptomics,protomics and metabonomics to detect the dynamic activities in cell; and then, it incorporates bioinformatics methods to integrate and analyze those data, and simulate the biological processes based on the model built from those integrated data. In this paper, the current state, the research field and the methods for the Systems Biology are introduced briefly, and then, several ideas about future development in this field are also proposed.

  12. Genomes, phylogeny, and evolutionary systems biology

    OpenAIRE

    Medina, Monica

    2005-01-01

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics, and computer science are now known as systems biology. Here, I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting c...

  13. Developmental systems biology flourishing on new technologies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies,and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.

  14. Developmental systems biology flourishing on new technologies.

    Science.gov (United States)

    Han, Jing-Dong J; Liu, Yi; Xue, Huiling; Xia, Kai; Yu, Hong; Zhu, Shanshan; Chen, Zhang; Zhang, Wei; Huang, Zheng; Jin, Chunyu; Xian, Bo; Li, Jing; Hou, Lei; Han, Yixing; Niu, Chaoqun; Alcon, Timothy C

    2008-10-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches. PMID:18937914

  15. Applicability of computational systems biology in toxicology.

    Science.gov (United States)

    Kongsbak, Kristine; Hadrup, Niels; Audouze, Karine; Vinggaard, Anne Marie

    2014-07-01

    Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search. However, computational systems biology offers more advantages than providing a high-throughput literature search; it may form the basis for establishment of hypotheses on potential links between environmental chemicals and human diseases, which would be very difficult to establish experimentally. This is possible due to the existence of comprehensive databases containing information on networks of human protein-protein interactions and protein-disease associations. Experimentally determined targets of the specific chemical of interest can be fed into these networks to obtain additional information that can be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method in the hypothesis-generating phase of toxicological research.

  16. Using the Unified Modelling Language (UML) to guide the systemic description of biological processes and systems.

    Science.gov (United States)

    Roux-Rouquié, Magali; Caritey, Nicolas; Gaubert, Laurent; Rosenthal-Sabroux, Camille

    2004-07-01

    One of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes. This makes unambiguous representations of biological systems, which would be suitable for translation into mathematical and computational formalisms, enabling analysis, simulation and prediction of these systems behaviours.

  17. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    Science.gov (United States)

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  18. Quantum integrable systems. Quantitative methods in biology

    CERN Document Server

    Feverati, Giovanni

    2011-01-01

    Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. ...

  19. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  20. Systems Biology Analysis of Heterocellular Signaling.

    Science.gov (United States)

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. PMID:27087613

  1. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  2. Culturing Life from Air: Using a Surface Air System to Introduce Discovery-Based Research in Aerobiology into the Undergraduate Biology Curriculum

    Directory of Open Access Journals (Sweden)

    Carolyn F. Weber

    2015-02-01

    Full Text Available Although the field of aerobiology predates Louis Pasteur’s classic experiments in the late 19th century, the atmosphere has recently emerged as one of the last great frontiers in the field of microbiology. Recent research has demonstrated that airborne microbes are more diverse than previously thought and are metabolically active in some cases, influencing atmospheric chemistry and meteorological patterns.  Furthermore, concern continues to grow regarding airborne travel of biothreat agents and emerging infectious diseases in an increasingly global society.  Despite the increased recognition of the atmosphere as a frontier for microbiological exploration in both basic and applied sciences, students are generally not exposed to this field of research in the undergraduate biology curriculum.  We describe the use of the Surface Air System (SAS SUPER 180 (Bioscience International, Rockville, MD, an extremely rugged, easy-to-use, portable and nearly maintenance-free instrument that impacts defined volumes of air directly onto petri dishes to facilitate the study of culturable airborne microorganisms.  We successfully employed this instrument in a Biology I course in which freshmen, with no prior research experiences, conducted discovery-based research that produced data that was presented at a national meeting and made a genuine contribution to the field of aerobiology.  We also describe how such discovery-based research experiences in aerobiology can be used as a platform for teaching core biological concepts and basic laboratory skills. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the

  3. Bioferroelectricity and optical properties of biological systems

    Science.gov (United States)

    Bystrov, Vladimir; Bystrova, Natalia

    2003-08-01

    A bioferroelectric approach to analysis of ferroelectric behavior of biological systems is presented. The optical properties of nerve fibers, biomembrane ion channels, and purple membrane films containing bacteriorhodopsin are analyzed. The features, influence of the proton subsystem and proton transfer on the hydrogen-bonded biomolecular structures are analyzed within the ferroelectric liquid-crystal model and possible biomedical applications discussed. The ferroelectric behavior of biological systems and the set of various bioferroelectric effects are considered within the limits of phenomenological theory of ferroelectrics. The nonlinear response to weak actions under conditions critical to human organism is one of specific features characterizing biological objects on molecular, cell and organism levels.

  4. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery

    Science.gov (United States)

    Fonseca-Santos, Bruno; dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2016-01-01

    From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G′>G″), as evidenced by the increased G′ values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin. PMID:27660447

  5. The start of systems biology in Ukraine

    Directory of Open Access Journals (Sweden)

    Obolenskaya M. Yu.

    2014-01-01

    Full Text Available The first laboratory of Systems Biology in Ukraine (IMBIG NASU represents a track record of its scientific results. They include the pioneered development of a web-based tool for genome-wide surveys of eukaryotic promoters for the presence of transcription factors binding sites (COTRASIF; the deciphered mechanisms of the fine-tuned and balanced response of primary hepatocytes to interferon alpha levels recorded after partial hepatectomy; the elaboration of a novel method of gene regulatory network inference compatible with GRID environment and the development of a stoichiometric model of folate-related one carbon unit metabolism in human placenta and its application for the characteristics of the system’s behavior as a whole at different human pathologies.

  6. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.

    Science.gov (United States)

    Sun, Zachary Z; Yeung, Enoch; Hayes, Clarmyra A; Noireaux, Vincent; Murray, Richard M

    2014-06-20

    Accelerating the pace of synthetic biology experiments requires new approaches for rapid prototyping of circuits from individual DNA regulatory elements. However, current testing standards require days to weeks due to cloning and in vivo transformation. In this work, we first characterized methods to protect linear DNA strands from exonuclease degradation in an Escherichia coli based transcription-translation cell-free system (TX-TL), as well as mechanisms of degradation. This enabled the use of linear DNA PCR products in TX-TL. We then compared expression levels and binding dynamics of different promoters on linear DNA and plasmid DNA. We also demonstrated assembly technology to rapidly build circuits entirely in vitro from separate parts. Using this strategy, we prototyped a four component genetic switch in under 8 h entirely in vitro. Rapid in vitro assembly has future applications for prototyping multiple component circuits if combined with predictive computational models.

  7. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01).

  8. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01). PMID:25903188

  9. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  10. The Journey of a Sandwich: Computer-Based Laboratory Experiments about the Human Digestive System in High School Biology Teaching

    Science.gov (United States)

    Sorgo, Andrej; Hajdinjak, Zdravka; Briski, Darko

    2008-01-01

    Teaching high school students about the digestive system can be a challenge for a teacher when s/he wants to overcome rote learning of facts without a deeper understanding of the physiological processes inside the alimentary tract. A series of model experiments illustrating the journey of a sandwich was introduced into teaching high school…

  11. Mathematical aspects of pattern formation in biological systems

    CERN Document Server

    Wei, Juncheng

    2013-01-01

    This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models.The approach adopted in the monograph is based on the following paradigms:• Examine the existence of spiky steady states in reaction-diffusion systems and select as observabl

  12. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  13. Computational systems biology in cancer brain metastasis.

    Science.gov (United States)

    Peng, Huiming; Tan, Hua; Zhao, Weiling; Jin, Guangxu; Sharma, Sambad; Xing, Fei; Watabe, Kounosuke; Zhou, Xiaobo

    2016-01-01

    Brain metastases occur in 20-40% of patients with advanced malignancies. A better understanding of the mechanism of this disease will help us to identify novel therapeutic strategies. In this review, we will discuss the systems biology approaches used in this area, including bioinformatics and mathematical modeling. Bioinformatics has been used for identifying the molecular mechanisms driving brain metastasis and mathematical modeling methods for analyzing dynamics of a system and predicting optimal therapeutic strategies. We will illustrate the strategies, procedures, and computational techniques used for studying systems biology in cancer brain metastases. We will give examples on how to use a systems biology approach to analyze a complex disease. Some of the approaches used to identify relevant networks, pathways, and possibly biomarkers in metastasis will be reviewed into details. Finally, certain challenges and possible future directions in this area will also be discussed.

  14. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  15. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...

  16. Expert systems guide biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Krichten, D.J.; Wilson, K.D.; Tracy, K.D. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1991-10-01

    There is a large body of knowledge regarding optimum control strategies for new secondary wastewater treatment technology using an anaerobic selector to provide biological phosphorus removal. However, because the selector technology is new and the concepts differ somewhat from those used in conventional activated sludge wastewater treatment, a method of communicating this knowledge to plant operators is needed. Traditional methods such as classroom training and operating manuals are of limited effectiveness. The commonplace availability and low cost of the personal computer (PC) makes it practical to use a computer program to communicate the type of information required to control a wastewater treatment plant. Knowledge-based systems technology, commonly referred to as expert systems (ES) technology, is easy to use, provides useful information regarding a consistent control strategy, relieves the anxiety associated with learning a new process,' and provides instruction for inexperienced personnel. ES technology does not require special formatted input and is therefore easily accessible. All information required by the program is readily available through routine laboratory analysis, common plant instrumentation, or direct user observation. The program was designed for all levels of computer users and will run on all IBM-compatible or Apple MacIntosh systems.

  17. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.

  18. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  19. Data driven computing for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Samatova, Nagiza F.; Gorin, Andrey; Uberbacher, Edward; Karpinets, Tatiana V.; Park, Byung H.; Pan, Chongle; Straatsma, TP; Cannon, William R.; Resat, Haluk; Lins, Roberto D.; Oehmen, Christopher S.

    2007-11-01

    Biological breakthroughs that can lead to improved diagnosis and treatment of diseases, generation of clean energy, and solutions to other critical societal problems require high performance, data-intensive computational tools that have the ability to process, analyze and cohesively integrate massive amounts of data and information in real time. Biological computing problems are typically data-intensive and must share very large sets of data effectively across many processors. However, the various components of biological systems, composed of complex networks and pathways, must be integrated to gain a coherent understanding of the system. The more different types of data that can be integrated, the deeper the insights into the biology of the system being studied. Conventional analysis software, however, hasn’t been able to efficiently deal with such massive data set. The goal of the Data-Intensive Computing for Complex Biological Systems (BioPilot) project, a multiyear project funded by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research (ASCR), is to create an integrated suite of highly flexible, highly adaptable pipelines of computational tools for analyzing large-scale data sets that will be used to address specific challenges facing the U.S. Department of Energy (DOE) and our society.

  20. Approximate bayesian parameter inference for dynamical systems in systems biology

    International Nuclear Information System (INIS)

    This paper proposes to use approximate instead of exact stochastic simulation algorithms for approximate Bayesian parameter inference of dynamical systems in systems biology. It first presents the mathematical framework for the description of systems biology models, especially from the aspect of a stochastic formulation as opposed to deterministic model formulations based on the law of mass action. In contrast to maximum likelihood methods for parameter inference, approximate inference method- share presented which are based on sampling parameters from a known prior probability distribution, which gradually evolves toward a posterior distribution, through the comparison of simulated data from the model to a given data set of measurements. The paper then discusses the simulation process, where an over- view is given of the different exact and approximate methods for stochastic simulation and their improvements that we propose. The exact and approximate simulators are implemented and used within approximate Bayesian parameter inference methods. Our evaluation of these methods on two tasks of parameter estimation in two different models shows that equally good results are obtained much faster when using approximate simulation as compared to using exact simulation. (Author)

  1. Systems Biology Approaches to a Rational Drug Discovery Paradigm.

    Science.gov (United States)

    Prathipati, Philip; Mizuguchi, Kenji

    2016-01-01

    Ligand- and structure-based drug design approaches complement phenotypic and target screens, respectively, and are the two major frameworks for guiding early-stage drug discovery efforts. Since the beginning of this century, the advent of the genomic era has presented researchers with a myriad of high throughput biological data (parts lists and their interaction networks) to address efficacy and toxicity, augmenting the traditional ligand- and structure-based approaches. This data rich era has also presented us with challenges related to integrating and analyzing these multi-platform and multi-dimensional datasets and translating them into viable hypotheses. Hence in the present paper, we review these existing approaches to drug discovery research and argue the case for a new systems biology based approach. We present the basic principles and the foundational arguments/underlying assumptions of the systems biology based approaches to drug design. Also discussed are systems biology data types (key entities, their attributes and their relationships with each other, and data models/representations), software and tools used for both retrospective and prospective analysis, and the hypotheses that can be inferred. In addition, we summarize some of the existing resources for a systems biology based drug discovery paradigm (open TG-GATEs, DrugMatrix, CMap and LINCs) in terms of their strengths and limitations. PMID:26306988

  2. Systems Biology Approaches to a Rational Drug Discovery Paradigm.

    Science.gov (United States)

    Prathipati, Philip; Mizuguchi, Kenji

    2016-01-01

    Ligand- and structure-based drug design approaches complement phenotypic and target screens, respectively, and are the two major frameworks for guiding early-stage drug discovery efforts. Since the beginning of this century, the advent of the genomic era has presented researchers with a myriad of high throughput biological data (parts lists and their interaction networks) to address efficacy and toxicity, augmenting the traditional ligand- and structure-based approaches. This data rich era has also presented us with challenges related to integrating and analyzing these multi-platform and multi-dimensional datasets and translating them into viable hypotheses. Hence in the present paper, we review these existing approaches to drug discovery research and argue the case for a new systems biology based approach. We present the basic principles and the foundational arguments/underlying assumptions of the systems biology based approaches to drug design. Also discussed are systems biology data types (key entities, their attributes and their relationships with each other, and data models/representations), software and tools used for both retrospective and prospective analysis, and the hypotheses that can be inferred. In addition, we summarize some of the existing resources for a systems biology based drug discovery paradigm (open TG-GATEs, DrugMatrix, CMap and LINCs) in terms of their strengths and limitations.

  3. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  4. Magellan: a web based system for the integrated analysis of heterogeneous biological data and annotations; application to DNA copy number and expression data in ovarian cancer.

    Science.gov (United States)

    Kingsley, Chris B; Kuo, Wen-Lin; Polikoff, Daniel; Berchuck, Andy; Gray, Joe W; Jain, Ajay N

    2007-02-05

    Recent advances in high throughput biological methods allow researchers to generate enormous amounts of data from a single experiment. In order to extract meaningful conclusions from this tidal wave of data, it will be necessary to develop analytical methods of sufficient power and utility. It is particularly important that biologists themselves be able to perform many of these analyses, such that their background knowledge of the experimental system under study can be used to interpret results and direct further inquiries. We have developed a web-based system, Magellan, which allows the upload, storage, and analysis of multivariate data and textual or numerical annotations. Data and annotations are treated as abstract entities, to maximize the different types of information the system can store and analyze. Annotations can be used in analyses/visualizations, as a means of subsetting data to reduce dimensionality, or as a means of projecting variables from one data type or data set to another. Analytical methods are deployed within Magellan such that new functionalities can be added in a straightforward fashion. Using Magellan, we performed an integrated analysis of genome-wide comparative genomic hybridization (CGH), mRNA expression, and clinical data from ovarian tumors. Analyses included the use of permutation-based methods to identify genes whose mRNA expression levels correlated with patient survival, a nearest neighbor classifier to predict patient survival from CGH data, and curated annotations such as genomic position and derived annotations such as statistical computations to explore the quantitative relationship between CGH and mRNA expression data.

  5. Magellan: A Web Based System for the Integrated Analysis of Heterogeneous Biological Data and Annotations; Application to DNA Copy Number and Expression Data in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chris B. Kingsley

    2006-01-01

    Full Text Available Recent advances in high throughput biological methods allow researchers to generate enormous amounts of data from a single experiment. In order to extract meaningful conclusions from this tidal wave of data, it will be necessary to develop analytical methods of sufficient power and utility. It is particularly important that biologists themselves be able to perform many of these analyses, such that their background knowledge of the experimental system under study can be used to interpret results and direct further inquiries. We have developed a web-based system, Magellan, which allows the upload, storage, and analysis of multivariate data and textual or numerical annotations. Data and annotations are treated as abstract entities, to maximize the different types of information the system can store and analyze. Annotations can be used in analyses/visualizations, as a means of subsetting data to reduce dimensionality, or as a means of projecting variables from one data type or data set to another. Analytical methods are deployed within Magellan such that new functionalities can be added in a straightforward fashion. Using Magellan, we performed an integrated analysis of genome-wide comparative genomic hybridization (CGH, mRNA expression, and clinical data from ovarian tumors. Analyses included the use of permutation-based methods to identify genes whose mRNA expression levels correlated with patient survival, a nearest neighbor classifier to predict patient survival from CGH data, and curated annotations such as genomic position and derived annotations such as statistical computations to explore the quantitative relationship between CGH and mRNA expression data.

  6. Synthetic biology: advancing biological frontiers by building synthetic systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E.; Smolke, Christina D.

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  7. Systems Biology — the Broader Perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Bard

    2013-06-01

    Full Text Available Systems biology has two general aims: a narrow one, which is to discover how complex networks of proteins work, and a broader one, which is to integrate the molecular and network data with the generation and function of organism phenotypes. Doing all this involves complex methodologies, but underpinning the subject are more general conceptual problems about upwards and downwards causality, complexity and information storage, and their solutions provide the constraints within which these methodologies can be used. This essay considers these general aspects and the particular role of protein networks; their functional outputs are often the processes driving phenotypic change and physiological function—networks are, in a sense, the units of systems biology much as proteins are for molecular biology. It goes on to argue that the natural language for systems-biological descriptions of biological phenomena is the mathematical graph (a set of connected facts of the general form [process] (e.g., [activates] . Such graphs not only integrate events at different levels but emphasize the distributed nature of control as well as displaying a great deal of data. The implications and successes of these ideas for physiology, pharmacology, development and evolution are briefly considered. The paper concludes with some challenges for the future.

  8. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  9. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  10. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    Full Text Available Many  authors have proposed  that contextualization of reality  is necessary  to teach  Biology, empha- sizing students´ social and  economic realities.   However, contextualization means  more than  this;  it is related  to working with  different kinds of phenomena  and/or objects  which enable  the  expression of scientific concepts.  Thus,  contextualization allows the integration of different contents.  Under this perspective,  the  objectives  of this  work were to articulate different  biology concepts  in order  to de- velop a systemic vision of biology; to establish  relationships with other areas of knowledge and to make concrete the  cell molecular  structure and organization as well as their  implications  on living beings´ environment, using  contextualization.  The  methodology  adopted  in this  work  was based  on three aspects:  interdisciplinarity, contextualization and development of competences,  using energy:  its flux and transformations as a thematic axis and  an approach  which allowed the  interconnection between different situations involving  these  concepts.   The  activities developed  were:  1.   dialectic exercise, involving a movement around  micro and macroscopic aspects,  by using questions  and activities,  sup- ported  by the use of alternative material  (as springs, candles on the energy, its forms, transformations and  implications  in the  biological way (microscopic  concepts;  2, Construction of molecular  models, approaching the concepts of atom,  chemical bonds and bond energy in molecules; 3. Observations de- veloped in Manguezal¨(mangrove swamp  ecosystem (Itapissuma, PE  were used to work macroscopic concepts  (as  diversity  and  classification  of plants  and  animals,  concerning  to  energy  flow through food chains and webs. A photograph register of all activities  along the course plus texts

  11. Using Entropy Leads to a Better Understanding of Biological Systems

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2010-12-01

    Full Text Available In studying biological systems, conventional approaches based on the laws of physics almost always require introducing appropriate approximations. We argue that a comprehensive approach that integrates the laws of physics and principles of inference provides a better conceptual framework than these approaches to reveal emergence in such systems. The crux of this comprehensive approach hinges on entropy. Entropy is not merely a physical quantity. It is also a reasoning tool to process information with the least bias. By reviewing three distinctive examples from protein folding dynamics to drug design, we demonstrate the developments and applications of this comprehensive approach in the area of biological systems.

  12. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  13. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  14. 3D Modelling of Biological Systems for Biomimetics

    Institute of Scientific and Technical Information of China (English)

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  15. Computational systems biology for aging research.

    Science.gov (United States)

    Mc Auley, Mark T; Mooney, Kathleen M

    2015-01-01

    Computational modelling is a key component of systems biology and integrates with the other techniques discussed thus far in this book by utilizing a myriad of data that are being generated to quantitatively represent and simulate biological systems. This chapter will describe what computational modelling involves; the rationale for using it, and the appropriateness of modelling for investigating the aging process. How a model is assembled and the different theoretical frameworks that can be used to build a model are also discussed. In addition, the chapter will describe several models which demonstrate the effectiveness of each computational approach for investigating the constituents of a healthy aging trajectory. Specifically, a number of models will be showcased which focus on the complex age-related disorders associated with unhealthy aging. To conclude, we discuss the future applications of computational systems modelling to aging research.

  16. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  17. Effects of Pesticides on Biological Systems

    Directory of Open Access Journals (Sweden)

    Ergul Belge Kurutas

    2003-06-01

    Full Text Available The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In this study effects of pesticides on biological systems will be presented in genaral terms. [Archives Medical Review Journal 2003; 12(3.000: 215-228

  18. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    Science.gov (United States)

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function. PMID:26696234

  19. Computer structures perspective on switching dynamics of simple biological systems

    OpenAIRE

    Moškon, Miha

    2012-01-01

    Synthetic biology is a rapidly evolving discipline that copes with the modifications of existent and with the construction of new biological systems with novel functionalities. Its interdisciplinarity arises from combining of engineering and biological sciences. Biological computing is a relatively new research field that is analyzing the possibilities of constructing a biological computer. Synthetic biology approaches can also be used in order to build biological computer. Certain levels of ...

  20. Graphical Modelling in Genetics and Systems Biology

    OpenAIRE

    Scutari, Marco

    2012-01-01

    Graphical modelling has a long history in statistics as a tool for the analysis of multivariate data, starting from Wright's path analysis and Gibbs' applications to statistical physics at the beginning of the last century. In its modern form, it was pioneered by Lauritzen and Wermuth and Pearl in the 1980s, and has since found applications in fields as diverse as bioinformatics, customer satisfaction surveys and weather forecasts. Genetics and systems biology are unique among these fields in...

  1. Systems Biology from a Yeast Omics Perspective

    OpenAIRE

    Snyder, Michael; Gallagher, Jennifer E.G.

    2009-01-01

    Systems biology represents a paradigm shift from the study of individual genes, proteins or other components to that of the analysis of entire pathways, cellular, developmental, or organismal processes. Large scale studies, primarily initiated in S. cerevisiae, have allowed the identification and characterization of components on an unprecedented level. Large scale interaction, transcription factor binding and phosphorylation data have enabled the elucidation of global regulatory networks. Th...

  2. Systems biology of cancer biomarker detection.

    Science.gov (United States)

    Mitra, Sanga; Das, Smarajit; Chakrabarti, Jayprokas

    2013-01-01

    Cancer systems-biology is an ever-growing area of research due to explosion of data; how to mine these data and extract useful information is the problem. To have an insight on carcinogenesis one need to systematically mine several resources, such as databases, microarray and next-generation sequences. This review encompasses management and analysis of cancer data, databases construction and data deposition, whole transcriptome and genome comparison, analysing results from high throughput experiments to uncover cellular pathways and molecular interactions, and the design of effective algorithms to identify potential biomarkers. Recent technical advances such as ChIP-on-chip, ChIP-seq and RNA-seq can be applied to get epigenetic information transformed into a high-throughput endeavour to which systems biology and bioinformatics are making significant inroads. The data from ENCODE and GENCODE projects available through UCSC genome browser can be considered as benchmark for comparison and meta-analysis. A pipeline for integrating next generation sequencing data, microarray data, and putting them together with the existing database is discussed. The understanding of cancer genomics is changing the way we approach cancer diagnosis and treatment. To give a better understanding of utilizing available resources' we have chosen oral cancer to show how and what kind of analysis can be done. This review is a computational genomic primer that provides a bird's eye view of computational and bioinformatics' tools currently available to perform integrated genomic and system biology analyses of several carcinoma.

  3. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  4. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  5. [Systems theory in medicine and biology].

    Science.gov (United States)

    Feigl, W; Bonet, E M

    1989-03-15

    We try to determinate, that systems theory has to be introduced into modern medicine. The biological roots as well as the cybernetic ones are outlined. Among various concepts about systems theory the evaluation by Riedl seems to be the most efficient to explain medical procedures. His basic informations refer to von Bertalanffy, the additional introduction of a 4-cause-principle, Aristoteles, permits the explanation of complex relations. The examples of tumor and inflammation are used to demonstrate the basic idea of the formal cause as well as the final cause. The latter should also become an important fact in the solution of other medical problems.

  6. A Chemical/biological Information System Based on SEURAT%构建基于SEURAT的化学/生物信息系统

    Institute of Scientific and Technical Information of China (English)

    李丰; Andreas Witte; Matt Wessel; 王正

    2012-01-01

    In modern drug design scientists need to handle massive data every day and it is a key to success to manage all these data systematically. Most technologies needed to handle chemicaL/biologi- cal information are built up in recent decades but there are no low-priced solutions to fulfill these needs in contemporary pharmaceutical companies. We created a system based on SEURAT according to our demands. It supplied an easy-to-use platform to our scientists to fulfill their routine.%在现代药物研发中,科学家们每天都会面对海量的数据。因此,能系统化的组织并迅速处理这些数据成为研发新药的关键。对于药物研发所需的生物化学数据的存储、检索等技术已经在过去几十年中逐步发展起来,但对中小型的药物研发企业来说,要将这些技术组合起来,建立真正系统化的解决方隶,仍旧耗资巨大。依据日常所需,基于Schrodinger公司的SEURAT软件,建立了一个公司内部的化学/生物信息系统,管理了公司内部药物研发所产生的海量数据,满足了广大科研人员的日常需求。

  7. From effects-based operations to effects-based force : on causality, complex adaptive system and the the biology of war

    NARCIS (Netherlands)

    Jobbagy, Zoltán

    2009-01-01

    The author addresses a recent force employment concept called effects-based operations, which first appeared during the 1991 war against Iraq. The attributes of effects-based operations can be grouped around three common, but interrelated elements such as effects focus, advanced technology, and syst

  8. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  9. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy. PMID:25845304

  10. Biological Therapy in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mariana Postal

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic inflammatory autoimmune disorder characterized by multisystem involvement and fluctuating disease activity. Symptoms range from rather mild manifestations such as rash or arthritis to life-threatening end-organ manifestations. Despite new and improved therapy having positively impacted the prognosis of SLE, a subgroup of patients do not respond to conventional therapy. Moreover, the risk of fatal outcomes and the damaging side effects of immunosuppressive therapies in SLE call for an improvement in the current therapeutic management. New therapeutic approaches are focused on B-cell targets, T-cell downregulation and costimulatory blockade, cytokine inhibition, and the modulation of complement. Several biological agents have been developed, but this encouraging news is associated with several disappointments in trials and provide a timely moment to reflect on biologic therapy in SLE.

  11. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  12. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    OpenAIRE

    Haiyu Xu; Yanqiong Zhang; Yun Lei; Xiumei Gao; Huaqiang Zhai; Na Lin; Shihuan Tang; Rixin Liang; Yan Ma; Defeng Li; Yi Zhang; Guangrong Zhu; Hongjun Yang; Luqi Huang

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ult...

  13. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  14. The Feasibility of Systems Thinking in Biology Education

    Science.gov (United States)

    Boersma, Kerst; Waarlo, Arend Jan; Klaassen, Kees

    2011-01-01

    Systems thinking in biology education is an up and coming research topic, as yet with contrasting feasibility claims. In biology education systems thinking can be understood as thinking backward and forward between concrete biological objects and processes and systems models representing systems theoretical characteristics. Some studies claim that…

  15. Systems Biology: Impressions from a Newcomer Graduate Student in 2016

    Science.gov (United States)

    Simpson, Melanie Rae

    2016-01-01

    As a newcomer, the philosophical basis of systems biology seems intuitive and appealing, the underlying philosophy being that the whole of a living system cannot be completely understood by the study of its individual parts. Yet answers to the questions "What is systems biology?" and "What constitutes a systems biology approach in…

  16. Cancer systems biology: signal processing for cancer research

    Institute of Scientific and Technical Information of China (English)

    Olli Yli-Harja; Antti Ylip(a)(a); Matti Nykter; Wei Zhang

    2011-01-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  17. Cancer systems biology: signal processing for cancer research.

    Science.gov (United States)

    Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei

    2011-04-01

    In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts.

  18. Exogenous control of biological and ecological systems through evolutionary modelling

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2013-09-01

    Full Text Available The controllability of network-like systems is a topical issue in ecology and biology. It relies on the ability to lead a system's behaviour towards the desired state through the appropriate handling of input variables. Up to now, controllability of networks is based on the permanent control of a set of driver nodes that can guide the system's dynamics. This assumption seems motivated by real-world networks observation, where a decentralized control is often applied only to part of the nodes. While in a previous paper I showed that ecological and biological networks can be efficaciously controlled from the inside, here I further introduce a new framework for network controllability based on the employment of exogenous controllers and evolutionary modelling, and provide an exemplification of its application.

  19. Dielectric relaxation in biological systems physical principles, methods, and applications

    CERN Document Server

    Feldman, Yuri

    2015-01-01

    This title covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems.

  20. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Putten, van der W.H.; Ruiter, de P.C.; Struik, P.C.; Thomma, B.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase agricultura

  1. Model checking biological systems described using ambient calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola;

    2005-01-01

    Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....

  2. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  3. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  4. A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

    Science.gov (United States)

    Huang, Lin; Lv, Qi; Liu, Fenfen; Shi, Tieliu; Wen, Chengping

    2015-01-01

    Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas. PMID:26560501

  5. Sleep and multisystem biological risk: a population-based study.

    Directory of Open Access Journals (Sweden)

    Judith E Carroll

    Full Text Available Short sleep and poor sleep quality are associated with risk of cardiovascular disease, diabetes, cancer, and mortality. This study examines the contribution of sleep duration and sleep quality on a multisystem biological risk index that is known to be associated with morbidity and mortality.Analyses include a population-based sample from the Midlife Development in the United States survey recruited to the Biomarker substudy. A total of 1,023 participants aged 54.5 years (SD = 11.8, 56% female and 77.6% white, were included in the analyses. A multisystem biological risk index was derived from 22 biomarkers capturing cardiovascular, immune, lipid-metabolic, glucose-metabolic, sympathetic, parasympathetic, and hypothalamic-pituitary-adrenal systems. Self-reported average sleep duration was categorized as short (5 sleep.Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed. As compared to normal sleepers, multisystem biological risk in both short (B(SE = .38(.15, p<.01 and long sleepers (B(SE = .28(.11, p<.01 were elevated. Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE = .15(.06, p = .01, but was not significant after adjustment for health status. All short sleepers reported poor sleep quality. However in the long sleepers, only those who reported poor sleep quality exhibited elevated multisystem biological risk (B(SE = .93(.3, p = .002.Self-reported poor sleep quality with either short or long sleep duration is associated with dysregulation in physiological set points across regulatory systems, leading to elevated multisystem biological risk. Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

  6. Non-Equilibrium Quantum Entanglement in Biological Systems

    Institute of Scientific and Technical Information of China (English)

    LI Hong-Rong; ZHANG Pei; GAO Hong; BI Wen-Ting; ALAMRI M. D.; LI Fu-Li

    2012-01-01

    A non-equilibrium model of a classically driven quantum harmonic oscillator is proposed to explain persistent quantum entanglement in biological systems at ambient temperature. The conditions for periodic entanglement generation are derived. Our results support the evidence that biological systems may have quantum entanglement at biological temperatures.%A non-equilibrium model of a classically driven quantum harmonic oscillator is proposed to explain persistent quantum entanglement in biological systems at ambient temperature.The conditions for periodic entanglement generation are derived.Our results support the evidence that biological systems may have quantum entanglement at biological temperatures.

  7. Biological Systems for Hydrogen Photoproduction (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  8. Are Biological Systems Poised at Criticality?

    Science.gov (United States)

    Mora, Thierry; Bialek, William

    2011-07-01

    Many of life's most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this "inverse" approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

  9. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  10. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure;

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological fu...

  11. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  12. DNA Computing System Based on Molecular Biology Technology%基于分子生物技术的DNA计算系统

    Institute of Scientific and Technical Information of China (English)

    李燕; 钟磊

    2014-01-01

    DNA computing,a new calculating method by molecular biology technology,is charac-terized by its high parallel nature and enormous information storage capacity.A data initialization model was proposed to solve the problem in initialization,guarantee the wholeness of initial data, reduce the number of DNA chains that participate in screening during the computation process, and improve the precision of calculation.On such a basis,the biological modeling DNA compu-ting system was developed to shorten the biological experiment reaction time and reduce the cost of active DNA materials.Finally,simulation experiment was made to solve the Hamilton problem.%DNA计算是一种应用分子生物技术进行计算的新方法,DNA计算的2个主要特点是高度并行性和巨大的信息存储容量。为解决 DNA计算初始化过程存在的问题,提出了数据初始化模型,保证了初始数据的完整性,减少了计算过程中参与筛选的 DNA链的数量,提高了计算精度。针对生物实验反应时间较长、活性DNA材料成本高的现状,开发了DNA计算系统,通过仿真实验解决了哈密尔顿问题。

  13. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  14. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  15. The Structural Biology of CRISPR-Cas Systems

    OpenAIRE

    Jiang, Fuguo; Doudna, Jennifer A.

    2015-01-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ~30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of the...

  16. Data management in systems biology I - Overview and bibliography

    CERN Document Server

    Mayer, Gerhard

    2009-01-01

    Large systems biology projects can encompass several workgroups often located in different countries. An overview about existing data standards in systems biology and the management, storage, exchange and integration of the generated data in large distributed research projects is given, the pros and cons of the different approaches are illustrated from a practical point of view, the existing software - open source as well as commercial - and the relevant literature is extensively overview, so that the reader should be enabled to decide which data management approach is the best suited for his special needs. An emphasis is laid on the use of workflow systems and of TAB-based formats. The data in this format can be viewed and edited easily using spreadsheet programs which are familiar to the working experimental biologists. The use of workflows for the standardized access to data in either own or publicly available databanks and the standardization of operation procedures is presented. The use of ontologies and...

  17. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... that were in concordance with their effects in experimental animals. In project II, I profiled the effects on rat liver gene expression levels following exposure to a 14-chemical mixture ± the presence of an endocrine disrupting chemical. This project helped us shed light on the mechanism of action...... of the 14-chemical mixture and the endocrine disrupting chemical. In project III, I modeled a predictive signature for an in vivo endpoint that is sensitive to endocrine disruption. I used publicly available data generated for the purpose of modeling predictive signatures for various in vivo endpoints. From...

  18. Nutritional Systems Biology: Definitions and Approaches

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Nielsen, Jens

    2009-01-01

    Nutrigenetics and nutrigenomics are nascent areas that are evolving quickly and riding on the wave of “personalized medicine” that is providing opportunities in the discovery and development of nutraceutical compounds. The human genome sequence and sequences of model organisms provide...... will benefit most from, or be placed at risk by, intervention strategies. More accurate assessment of the inputs to human health and the consequences of those inputs measured as accurate transcriptomic, proteomic, and metabolomic analyses would bring personalized health/diet to practice far faster than would...... waiting for a predictive knowledge of genetic variation. It is widely recognized that systems and network biology has the potential to increase our understanding of how nutrition influences metabolic pathways and homeostasis, how this regulation is disturbed in a diet-related disease, and to what extent...

  19. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  20. Microbial systems biology: New frontiers open to predictive microbiology

    NARCIS (Netherlands)

    S. Brul; F.I.C. Mensonides; K.J. Hellingwerf; M.J. Teixeira De Mattos

    2008-01-01

    The field of Systems Biology is a rapidly evolving area of research. It follows on from the previous experimental and theoretical ‘omics’ revolution in biology. Now that we have through the use of these tools many ‘indices’ of biological systems available the next step is to actually start composing

  1. Biological robustness: paradigms, mechanisms, and systems principles.

    Science.gov (United States)

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  2. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    Directory of Open Access Journals (Sweden)

    James Michael Whitacre

    2012-05-01

    Full Text Available Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g. mutational, environmental are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.

  3. Systems biology: A tool for charting the antiviral landscape.

    Science.gov (United States)

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape.

  4. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  5. Systems Biology in Aging: Linking the Old and the Young

    OpenAIRE

    HOU, LEI; Huang, Jialiang; Green, Christopher D.; Boyd-Kirkup, Jerome; Zhang, Wei; Yu, Xiaoming; Gong, Wenxuan; Zhou, Bing; Jing-Dong J Han

    2012-01-01

    Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We the...

  6. Computational Systems Biology of Psoriasis: Are We Ready for the Age of Omics and Systems Biomarkers?

    Science.gov (United States)

    Sevimoglu, Tuba; Arga, Kazim Yalcin

    2015-11-01

    Computational biology and 'omics' systems sciences are greatly impacting research on common diseases such as cancer. By contrast, dermatology covering an array of skin diseases with high prevalence in society, has received relatively less attention from 'omics' and computational biosciences. We are focusing on psoriasis, a common and debilitating autoimmune disease involving skin and joints. Using computational systems biology and reconstruction, topological, modular, and a novel correlational analyses (based on fold changes) of biological and transcriptional regulatory networks, we analyzed and integrated data from a total of twelve studies from the Gene Expression Omnibus (sample size = 534). Samples represented a comprehensive continuum from lesional and nonlesional skin, as well as bone marrow and dermal mesenchymal stem cells. We identified and propose here a JAK/STAT signaling pathway significant for psoriasis. Importantly, cytokines, interferon-stimulated genes, antimicrobial peptides, among other proteins, were involved in intrinsic parts of the proposed pathway. Several biomarker and therapeutic candidates such as SUB1 are discussed for future experimental studies. The integrative systems biology approach presented here illustrates a comprehensive perspective on the molecular basis of psoriasis. This also attests to the promise of systems biology research in skin diseases, with psoriasis as a systemic component. The present study reports, to the best of our knowledge, the largest set of microarray datasets on psoriasis, to offer new insights into the disease mechanisms with a proposal of a disease pathway. We call for greater computational systems biology research and analyses in dermatology and skin diseases in general.

  7. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    Science.gov (United States)

    Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Sun, Ren (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  8. Integrative biological systems modeling:challenges and opportunities

    Institute of Scientific and Technical Information of China (English)

    Jialiang WU; Eberhard VOIT

    2009-01-01

    Most biological systems are by nature hybrids consist of interacting discrete and continuous components,which may even operate on different time scales. Therefore," it is desirable to establish modeling frameworks that are capable of combining deterministic and stochastic, discrete and continuous, as well as multi-timescale features. In the context of molecular systems biology, an example for the need of such a combination is the investigation of integrated biological pathways that contain gene regulatory, metabolic and signaling components, which may operate on different time scales and involve on-off switches as well as stochastic effects. The implementation of integrated hybrid systems is not trivial because most software is limited to one or the other of the dichotomies above. In this study, we first review the motivation for hybrid modeling. Secondly, by using the example of a toggle switch model, we illustrate a recently developed modeling framework that is based on the combination of biochemical systems theory (BST) and hybrid functional Petri nets (HFPN). Finally, we discuss remaining challenges and future opportunities.

  9. A Biologically Based Chemo-Sensing UAV for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    Paul F.M.J. Verschure

    2008-11-01

    Full Text Available Antipersonnel mines, weapons of cheap manufacture but lethal effect, have a high impact on the population even decades after the conflicts have finished. Here we investigate the use of a chemo-sensing Unmanned Aerial Vehicle (cUAV for demining tasks. We developed a blimp based UAV that is equipped with a broadly tuned metal-thin oxide chemo-sensor. A number of chemical mapping strategies were investigated including two biologically based localization strategies derived from the moth chemical search that can optimize the efficiency of the detection and localization of explosives and therefore be used in the demining process. Additionally, we developed a control layer that allows for both fully autonomous and manual controlled flight, as well as for the scheduling of a fleet of cUAVs. Our results confirm the feasibility of this technology for demining in real-world scenarios and give further support to a biologically based approach where the understanding of biological systems is used to solve difficult engineering problems.

  10. Modeling and Simulation Tools: From Systems Biology to Systems Medicine.

    Science.gov (United States)

    Olivier, Brett G; Swat, Maciej J; Moné, Martijn J

    2016-01-01

    Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools.

  11. EUD-based biological optimization for carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brüningk, Sarah C., E-mail: sarah.brueningk@icr.ac.uk; Kamp, Florian; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, München 81675, Germany and Physik-Department, Technische Universität München, James-Franck-Str. 1, Garching 85748 (Germany)

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  12. Exploring Synthetic and Systems Biology at the University of Edinburgh.

    Science.gov (United States)

    Fletcher, Liz; Rosser, Susan; Elfick, Alistair

    2016-06-15

    The Centre for Synthetic and Systems Biology ('SynthSys') was originally established in 2007 as the Centre for Integrative Systems Biology, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC). Today, SynthSys embraces an extensive multidisciplinary community of more than 200 researchers from across the University with a common interest in synthetic and systems biology. Our research is broad and deep, addressing a diversity of scientific questions, with wide ranging impact. We bring together the power of synthetic biology and systems approaches to focus on three core thematic areas: industrial biotechnology, agriculture and the environment, and medicine and healthcare. In October 2015, we opened a newly refurbished building as a physical hub for our new U.K. Centre for Mammalian Synthetic Biology funded by the BBSRC/EPSRC/MRC as part of the U.K. Research Councils' Synthetic Biology for Growth programme.

  13. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...

  14. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  15. Commentary: Systems Biology and Its Relevance to Alcohol Research

    OpenAIRE

    Guo, Q. Max; Zakhari, Sam

    2008-01-01

    Systems biology, a new scientific discipline, aims to study the behavior of a biological organization or process in order to understand the function of a dynamic system. This commentary will put into perspective topics discussed in this issue of Alcohol Research & Health, provide insight into why alcohol-induced disorders exemplify the kinds of conditions for which a systems biological approach would be fruitful, and discuss the opportunities and challenges facing alcohol researchers.

  16. Interactive analysis of systems biology molecular expression data

    OpenAIRE

    Prabhakar Sunil; Salt David E; Kane Michael D; Stephenson Alan; Ouyang Qi; Zhang Mingwu; Burgner John; Buck Charles; Zhang Xiang

    2008-01-01

    Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferr...

  17. Influence of low intensity laser radiation on different biological systems

    OpenAIRE

    Tsivunchyk, Olga S.

    2004-01-01

    Abstract There are a lot of examples and contradictory results concerning influence of low intensity laser irradiation (LILI) on biological objects. In this work with a number of experiments the influence of LILI on different biological systems was investigated. For the carried out experiments the following biological objects and systems were used: * different enzymes of anti-oxidant system of animals (i.e. catalase, superoxide-di...

  18. Advanced Systems Biology Methods in Drug Discovery and Translational Biomedicine

    OpenAIRE

    Jun Zou; Ming-Wu Zheng; Gen Li; Zhi-Guang Su

    2013-01-01

    Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networ...

  19. Changes in soil biological quality under legume- and maize-based farming systems in a humid savanna zone of Côte d’Ivoire

    Directory of Open Access Journals (Sweden)

    Tano Y.

    2008-01-01

    Full Text Available Studying the impact of farming systems on soil status is essential in determining the most relevant for a given agroecological zone. A trial was conducted in a West Africa humid savanna, aiming at assessing the short-term effects of farming systems on soil (0-10 cm organic carbon (SOC content and some soil microbiological properties. A randomized complete block experimental design with three replications, and the following treatments were used: Mucuna pruriens (Mucuna, Pueraria phaseoloides (Pueraria, Lablab purpureus (Lablab, a combination of these three legumes (Mixed-legumes, maize + urea (Maize-U, maize + triple super phosphate (Maize-Sp, maize + urea + triple super phosphate (Maize-USp, fertilizer-free maize continuous cropping (Maize-Tradi. Results indicated that SOC content was improved over time under legume-based systems. The relative increase was the highest with the legume association and Lablab, where SOC varied from 7.5 to 8.6 g.kg-1 (i.e. 14.7% and from 7.2 to 8.3 g.kg-1 (i.e. 15.3% respectively, between the start and the end of the trial. Besides, applying grass and maize residues as mulch on the ground, in association with inorganic fertilizers may be a way of improving SOC content in the short-term. Although legume-based systems exhibited highest values, microbial biomass carbon (MBC did not show any statistical significant differences between treatments. However, soil C mineralization and soil specific respiration were influenced by the farming systems, with higher mean values under legume-based systems (42 ± 7.6 mg C-CO2.g-1 Corg and 0.4 mg C-CO2.g-1 biomass C, respectively, compared to maize continuous cropping systems (33.1 ± 1.6 mg C-CO2.g-1 Corg and 0.3 mg C-CO2.g-1 biomass C, respectively. Thus, these parameters can be used as sensitive indicators of the early changes in soil organic matter quality. The integration of legumes cover crops in farming systems may contribute to improve soil quality that would lead to

  20. MEMBRANE COMPUTING AS THE PARADIGM FOR MODELING SYSTEMS BIOLOGY

    Directory of Open Access Journals (Sweden)

    Ravie Chandren Muniyandi

    2013-01-01

    Full Text Available Membrane computing is a field in computer science that is inspired from the structure and the processes of living cells and is being considered as an alternative in solving the limitations in conventional mathematical approaches by taking into consideration its essential features that are of interest for research in systems biology. Advancements in computability make it feasible to handle huge volumes of data in biology and propose a new and better approach using a discreet computer science model, such as membrane computing. In this respect, membrane-computing abilities, to enhance the understanding of the system level of biological systems, have been explored. This study discusses experiences in applying membrane computing in modeling biological systems as well as possibilities of incorporating membrane computing into other computer science paradigms to enhance the use of membrane computing in systems biology. Experiences in modeling aspects of systems biology with membrane computing demonstrate additional advantages and possibilities compared with conventional methods. However, they are not yet used widely to model or simulate biological processes or systems. A general framework of modeling and verifying biological systems using membrane computing is essential as a guideline for biologists in their research in systems biology.

  1. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    Science.gov (United States)

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works.

  2. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  3. A guide to numerical modelling in systems biology

    CERN Document Server

    Deuflhard, Peter

    2015-01-01

    This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks, and identification of model parameters by means of comparisons...

  4. Biologically-Inspired Water Propulsion System

    Institute of Scientific and Technical Information of China (English)

    Andrzej Sioma

    2013-01-01

    Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers.Observations of nature,however,show that the absolute majority of organisms travel through water using wave motion,paddling or using water jet power.Inspired by these observations of nature,an innovative propulsion system working in aquatic environment was developed.This paper presents the design of the water propulsion system.Particular attention was paid to the use of paddling techniques and water jet power.A group of organisms that use those mechanisms to travel through water was selected and analysed.The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment.A method for modelling a propulsion system using a combination of the two solutions and the result were described.A conceptual design and a prototype constructed based on the solution were presented.With respect to the solution developed,studies and analyses of selected parameters of the prototype were described.

  5. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  6. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.

  7. A unified biological modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  8. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  9. A systems biology and proteomics-based approach identifies SRC and VEGFA as biomarkers in risk factor mediated coronary heart disease.

    Science.gov (United States)

    V, Alexandar; Nayar, Pradeep G; Murugesan, R; S, Shajahan; Krishnan, Jayalakshmi; Ahmed, Shiek S S J

    2016-07-19

    Coronary heart disease (CHD) is the most common cause of death worldwide. The burden of CHD increases with risk factors such as smoking, hypertension, obesity and diabetes. Several studies have demonstrated the association of these classical risk factors with CHD. However, the mechanisms of these associations remain largely unclear due to the complexity of disease pathophysiology and the lack of an integrative approach that fails to provide a definite understanding of molecular linkage. To overcome these problems, we propose a novel systems biology approach that relates causative genes, interactomes and pathways to elucidate the risk factors mediating the molecular mechanisms and biomarkers for feasible diagnosis. The literature was mined to retrieve the causative genes of each risk factor and CHD to construct protein interactomes. The interactomes were examined to identify 298 common molecular signatures. The common signatures were mapped to the tissue network to synthesize a sub-network consisting of 82 proteins. Further, the dissection of the sub-network provides functional modules representing a diverse range of molecular functions, including the AKT/p13k, MAPK and wnt pathways. Also, the prioritization of functional modules identifies SRC, VEGFA and HIF1A as potential candidate markers. Further, we validate these candidates with the existing markers CRP, NOS3 and VCAM1 in the serum of 63 individuals, 33 with CHD and 30 controls, using ELISA. SRC, VEGFA, H1F1A, CRP and NOS3 were significantly altered in patients compared to controls. These results support the utility of these candidate markers for the diagnosis of CHD. Overall, our molecular observations indicate the influence of risk factors in the pathophysiology of CHD and identify serum markers for diagnosis. PMID:27279347

  10. Decoherence and Spin Echo in Biological Systems

    CERN Document Server

    Nesterov, Alexander I

    2015-01-01

    The spin echo approach is extended to include bio-complexes for which the interaction with dynamical noise is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically, for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. This approach is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bio-applications.

  11. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  12. Dynamics and kinetics of model biological systems

    Science.gov (United States)

    Mirigian, Stephen

    In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions. We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details of the boundary conditions lead to qualitatively different behavior. Under experimentally relevant conditions for a diblock copolymer we find that there is a threshold length of the charged block, beyond which the probability of successful translocation is independent of charge fraction. Additionally, we find that mean successful translocation time exhibits non-monotonic behavior with increasing length of the charged fraction; there is an optimum length of the charged block where the mean successful translocation time is slowest and there can be a substantial range of charge fraction where it is slower than a minimally charged chain. For a fixed total charge on the chain, we find that finer distributions of the charge along the chain leads to a significant reduction in mean translocation time compared to the diblock distribution. Endocytosis is modeled using a simple geometrical model from the literature. We map the process of wrapping a rigid spherical bead onto a one-dimensional stochastic process described by the Fokker-Planck equation to compute uptake rates as a function of membrane properties and system geometry. We find that simple geometrical considerations pick an optimal particle size for uptake and a corresponding maximal uptake rate, which can be controlled by altering the material properties of the

  13. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  14. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  15. StochKit-FF: Efficient Systems Biology on Multicore Architectures

    CERN Document Server

    Aldinucci, Marco; Liò, Pietro; Sorathiya, Anil; Torquati, Massimo

    2010-01-01

    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.

  16. Rigid Biological Systems as Models for Synthetic Composites

    Science.gov (United States)

    Mayer, George

    2005-11-01

    Advances that have been made in understanding the mechanisms underlying the mechanical behavior of a number of biological materials (namely mollusk shells and sponge spicules) are discussed here. Attempts at biomimicry of the structure of a nacreous layer of a mollusk shell have shown reasonable success. However, they have revealed additional issues that must be addressed if new synthetic composite materials that are based on natural systems are to be constructed. Some of the important advantages and limitations of copying from nature are also described here.

  17. Building momentum for systems and synthetic biology in India

    OpenAIRE

    Krishnan, Remya; Manjaly-Antony, Lijo Anto; Dhar, Pawan K.

    2010-01-01

    Biological systems are inherently noisy. Predicting the outcome of a perturbation is extremely challenging. Traditional reductionist approach of describing properties of parts, vis-a-vis higher level behaviour has led to enormous understanding of fundamental molecular level biology. This approach typically consists of converting genes into junk (knock-down) and garbage (knock-out) and observe how a system responds. To enable broader understanding of biological dynamics, an integrated computat...

  18. Global optimization in systems biology: stochastic methods and their applications

    OpenAIRE

    Balsa-Canto, Eva; Banga, Julio R.; Egea, José A.; Villaverde, A. F.; Hijas-Liste, G. M.

    2012-01-01

    Mathematical optimization is at the core of many problems in systems biology: (1) as the underlying hypothesis for model development, (2) in model identification, or (3) in the computation of optimal stimulation procedures to synthetically achieve a desired biological behavior. These problems are usually formulated as nonlinear programing problems (NLPs) with dynamic and algebraic constraints. However the nonlinear and highly constrained nature of systems biology models, together with the usu...

  19. Systems biology in aging: linking the old and the young.

    Science.gov (United States)

    Hou, Lei; Huang, Jialiang; Green, Christopher D; Boyd-Kirkup, Jerome; Zhang, Wei; Yu, Xiaoming; Gong, Wenxuan; Zhou, Bing; Han, Jing-Dong J

    2012-11-01

    Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging. PMID:23633915

  20. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Morrison Margaux A

    2011-10-01

    Full Text Available Abstract Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1, and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001. Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OHD] was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1 in this same family-based cohort. Initial

  1. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration.

    Science.gov (United States)

    Morrison, Margaux A; Silveira, Alexandra C; Huynh, Nancy; Jun, Gyungah; Smith, Silvia E; Zacharaki, Fani; Sato, Hajime; Loomis, Stephanie; Andreoli, Michael T; Adams, Scott M; Radeke, Monte J; Jelcick, Austin S; Yuan, Yang; Tsiloulis, Aristoteles N; Chatzoulis, Dimitrios Z; Silvestri, Giuliana; Kotoula, Maria G; Tsironi, Evangelia E; Hollis, Bruce W; Chen, Rui; Haider, Neena B; Miller, Joan W; Farrer, Lindsay A; Hageman, Gregory S; Kim, Ivana K; Schaumberg, Debra A; DeAngelis, Margaret M

    2011-10-01

    Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then

  2. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies...

  3. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  4. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  5. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  6. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...... on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational...

  7. Mathematical modeling of the evolution of a simple biological system

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Neetu, S.; Krishnan, K.P.; Attri, K.; LokaBharathi, P.A.

    physical system, where a model usually can be developed from well established fundamental principles, in case of biological systems such principles are not always available offering an opportunity for innovation. The success of the innovation, of course...

  8. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system.

    Science.gov (United States)

    Fang, Jing; Su, Bin; Sun, Peide; Lou, Juqing; Han, Jingyi

    2015-02-01

    In light of the fact that most wastewater in China contained both industrial and domestic wastewater, a 52-d systematical investigation was conducted on the long-term effect of low concentration Cr(VI) (0.3-0.8 mg L(-1)) on P removal performance of granule-based EBPR system in this study. The mechanisms were likewise discussed. Results showed that high Cr(VI) concentration (⩾0.5 mg L(-1)) could significantly inhibit P removal, while this phenomenon was not found when Cr(VI) concentration was less than (or equal to) 0.4 mg L(-1). Most of the granules was disintegrated and filamentous bacteria overgrew inducing sludge bulking occurred at 0.7 mg L(-1) Cr(VI). During the exposure test, the abundance of poly-phosphate-accumulating organisms (PAOs) significantly decreased while the populations of glycogen accumulating organisms (GAOs) and other bacteria increased. Both production and degradation of poly-β-hydroxyakanoates (PHAs) were apparently inhibited. An improved polysaccharide/protein (PS/PN) ratio was observed with the increasing Cr(VI) concentration, implying excessive polysaccharide was secreted by microorganisms to support its resistance to the toxicity of Cr(VI). Besides, good linear regression between PS/PN ratio and the granule size (R(2)=-0.86, p<0.01) was obtained, indicating that high PS/PN was adverse to granule stability. Correlation analysis indicated that the accumulation of granules intracellular Cr was directly responsible for the observed inhibitory effect on P removal process. The long-term Cr(VI) treatment had irreversible effects on granule-based EBPR system as it could not revive after a 16-d recovery process. PMID:25479809

  9. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  10. A systems biology approach reveals common metastatic pathways in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Flores Ricardo J

    2012-05-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. Results mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/TGF/WNT” was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT” pathway in the Sa

  11. Machine learning in systems biology at different scales : from molecular biology to ecology

    OpenAIRE

    Aderhold, Andrej

    2015-01-01

    Machine learning has been a source for continuous methodological advances in the field of computational learning from data. Systems biology has profited in various ways from machine learning techniques but in particular from network inference, i.e. the learning of interactions given observed quantities of the involved components or data that stem from interventional experiments. Originally this domain of system biology was confined to the inference of gene regulation networks but ...

  12. Integrative systems biology for data-driven knowledge discovery.

    Science.gov (United States)

    Greene, Casey S; Troyanskaya, Olga G

    2010-09-01

    Integrative systems biology is an approach that brings together diverse high-throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost-effective manner. By using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of as yet unknown components of a system of interest and how its malfunction leads to disease.

  13. Multimode lasers as analogs of complex biological systems (a survey)

    Science.gov (United States)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  14. Measuring cell identity in noisy biological systems

    OpenAIRE

    Birnbaum, Kenneth D; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty me...

  15. Towards systems thinking in cell biology education

    OpenAIRE

    Verhoeff, Roald Pieter

    2003-01-01

    Students are taught a large variety of life structures and processes at the cellular level. The concepts used to describe them are mainly drawn from the sub-cellular level, but this knowledge seems to be fragmentary if its integration at the cellular and organismic level remains undone. As a consequence, many students fail to acquire coherent conceptual understanding of the cell as a basic and functional unit of the organism. To enhance the coherence in students’ cell biological knowledge we ...

  16. Systems for Detection and Identification of Biological Aerosols (Review Paper)

    OpenAIRE

    Eva Švabenska

    2012-01-01

    Easy and inexpensive manufacturing of biological weapons, their complicated detection, expensive protection, difficult treating of affected individuals, selective impact only for people, animals or plants, are all factors making an effective defense against biological warfare agents very difficult. The aim of this study is an introduction to the systems for the detection and identification of biological aerosols containing dangerous bioagents. The basic techniques used for detection and ident...

  17. Antibody-based biological toxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Menking, D.E.; Goode, M.T. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-12-01

    Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a direct competition assay, antibodies against Cholera toxin, Staphylococcus Enterotoxin B or ricin were noncovalently immobilized on quartz fibers and probed with fluorescein isothiocyanate (FITC) - labeled toxins. In the indirect competition assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified anti-toxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or anti-toxin IgG in a dose dependent manner and the detection of the toxins was in the nanomolar range.

  18. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    OpenAIRE

    Pablo Szekely; Hila Sheftel; Avi Mayo; Uri Alon

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach ...

  19. Hepatocellular carcinoma: a systems biology perspective

    Directory of Open Access Journals (Sweden)

    Lorenza Alice D'alessandro

    2013-02-01

    Full Text Available Hepatocellular carcinomas (HCC have different etiology and heterogenic genomic alterations lead to high complexity. The molecular features of HCC have largely been studied by gene expression and proteome profiling focusing on the correlations between the expression of specific markers and clinical data. Integration of the increasing amounts of data in databases has facilitated the link of genomic and proteomic profiles of HCC to disease state and clinical outcome. Despite the current knowledge, specific molecular markers remain to be identified and new strategies are required to establish novel targeted therapies. In the last years, mathematical models reconstructing gene and protein networks based on experimental data of HCC have been developed providing powerful tools to predict candidate interactions and potential targets for therapy. Furthermore, the combination of dynamic and logical mathematical models with quantitative data allows detailed mechanistic insights into system properties. To address effects at the organ level, mathematical models reconstructing the three-dimensional organization of liver lobules were developed. In the future, integration of different modeling approaches capturing the effects at the cellular up to the organ level is required to address the complex properties of HCC and to enable the discovery of new targets for HCC prevention or treatment.

  20. NMR-based Metabolomics Applications in Biological and Environmental Science

    Science.gov (United States)

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used bybiologists to study the dynamic response of biological systems (cells, tissues, or wholeorganisms) under diverse physiological or pathological conditions. Metabolomics deals with the quali...

  1. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    OpenAIRE

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-...

  2. Systems-biology dissection of eukaryotic cell growth

    OpenAIRE

    Andrews Justen; Przytycka Teresa M

    2010-01-01

    Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  3. Systems Biology: The elements and principles of Life

    NARCIS (Netherlands)

    Westerhoff, H.V.; Winder, C.; Messiha, H.; Simeonidis, E.; Adamczyk, M.; Verma, M.; Bruggeman, F.J.; Dunn, W.

    2009-01-01

    Systems Biology has a mission that puts it at odds with traditional paradigms of physics and molecular biology, such as the simplicity requested by Occam’s razor and minimum energy/maximal efficiency. By referring to biochemical experiments on control and regulation, and on flux balancing in yeast,

  4. Directed evolution and synthetic biology applications to microbial systems.

    Science.gov (United States)

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. PMID:27054950

  5. Search for organising principles: understanding in systems biology.

    Science.gov (United States)

    Mesarovic, M D; Sreenath, S N; Keene, J D

    2004-06-01

    Due in large measure to the explosive progress in molecular biology, biology has become arguably the most exciting scientific field. The first half of the 21st century is sometimes referred to as the 'era of biology', analogous to the first half of the 20th century, which was considered to be the 'era of physics'. Yet, biology is facing a crisis--or is it an opportunity--reminiscent of the state of biology in pre-double-helix time. The principal challenge facing systems biology is complexity. According to Hood, 'Systems biology defines and analyses the interrelationships of all of the elements in a functioning system in order to understand how the system works.' With 30000+ genes in the human genome the study of all relationships simultaneously becomes a formidably complex problem. Hanahan and Weinberg raised the question as to whether progress will consist of 'adding further layers of complexity to a scientific literature that is already complex almost beyond measure' or whether the progress will lead to a 'science with a conceptual structure and logical coherence that rivals that of chemistry or physics.' At the core of the challenge is the need for a new approach, a shift from reductionism to a holistic perspective. However, more than just a pronouncement of a new approach is needed. We suggest that what is needed is to provide a conceptual framework for systems biology research. We propose that the concept of a complex system, i.e. a system of systems as defined in mathematical general systems theory (MGST), is central to provide such a framework. We further argue that for a deeper understanding in systems biology investigations should go beyond building numerical mathematical or computer models--important as they are. Biological phenomena cannot be predicted with the level of numerical precision as in classical physics. Explanations in terms of how the categories of systems are organised to function in ever changing conditions are more revealing. Non

  6. Search for organising principles: understanding in systems biology.

    Science.gov (United States)

    Mesarovic, M D; Sreenath, S N; Keene, J D

    2004-06-01

    Due in large measure to the explosive progress in molecular biology, biology has become arguably the most exciting scientific field. The first half of the 21st century is sometimes referred to as the 'era of biology', analogous to the first half of the 20th century, which was considered to be the 'era of physics'. Yet, biology is facing a crisis--or is it an opportunity--reminiscent of the state of biology in pre-double-helix time. The principal challenge facing systems biology is complexity. According to Hood, 'Systems biology defines and analyses the interrelationships of all of the elements in a functioning system in order to understand how the system works.' With 30000+ genes in the human genome the study of all relationships simultaneously becomes a formidably complex problem. Hanahan and Weinberg raised the question as to whether progress will consist of 'adding further layers of complexity to a scientific literature that is already complex almost beyond measure' or whether the progress will lead to a 'science with a conceptual structure and logical coherence that rivals that of chemistry or physics.' At the core of the challenge is the need for a new approach, a shift from reductionism to a holistic perspective. However, more than just a pronouncement of a new approach is needed. We suggest that what is needed is to provide a conceptual framework for systems biology research. We propose that the concept of a complex system, i.e. a system of systems as defined in mathematical general systems theory (MGST), is central to provide such a framework. We further argue that for a deeper understanding in systems biology investigations should go beyond building numerical mathematical or computer models--important as they are. Biological phenomena cannot be predicted with the level of numerical precision as in classical physics. Explanations in terms of how the categories of systems are organised to function in ever changing conditions are more revealing. Non

  7. Nucleic acid based logical systems.

    Science.gov (United States)

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  8. A system for success: BMC Systems Biology, a new open access journal

    OpenAIRE

    Webb Penelope A; Hodgkinson Matt J

    2007-01-01

    Abstract BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  9. A system for success: BMC Systems Biology, a new open access journal

    Directory of Open Access Journals (Sweden)

    Webb Penelope A

    2007-09-01

    Full Text Available Abstract BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  10. [Investigation of the microstructure of biological systems by triplet label].

    Science.gov (United States)

    Kotel'niko, A I; Kuznetsov, S N; Fogel', V R; Likhtenshteĭn, G I

    1979-01-01

    A method for investigating the microstruct and dynamics of biological systems by means of triplet-excited molecules is suggested. The method is based on the phenomenon of triplet excitation disactivation by exchange-resonance triplet-triplet energy transfer to the acceptor or by intercombination conversion induced by interaction of an excited molecule with a paramagnetic center. The disactivation efficiency was measured by registrating the phosphorescense decay kinetics. The interaction of the triplet label eosin isothiocyanate, covalently coupled with albumine, lysozyme, sarcoplasmic reticulum membrane and Ca-Mg-dependent sarcoplasmic reticulum ATPase, with O2, the stable nitroxide radicals and ions of Mn2+ was investigated to analyse the potentialities of this method. As a model system the eosin phosphorescence quenching by the same quenchers in glycerine-aguaous solutions was studied. The method permits to investigate the microviscosity and microstructure of biological objects in the label attached region on interaction of the label with a sound-quencher with constants being 10(4) divided by 10(9) M-1 sec-1 and to measure the lateral diffusion of molecules in highly viscosity media (10 divided by 10(5) santypuas). PMID:223037

  11. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  12. Yeast prions: structure, biology, and prion-handling systems.

    Science.gov (United States)

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.

  13. Systems biology applied to vaccine and immunotherapy development

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2011-09-01

    Full Text Available Abstract Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs plays in determining the nature and duration (immune memory of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.

  14. Systems biology of recombinant protein production using Bacillus megaterium.

    Science.gov (United States)

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  15. Integrated physiology and systems biology of PPARα.

    Science.gov (United States)

    Kersten, Sander

    2014-07-01

    The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.

  16. Evaluation models for contaminated sites – biological system at risk

    OpenAIRE

    Golomeova, Mirjana; Krstev, Boris; Golomeov, Blagoj; Zendelska, Afrodita; Krstev, Aleksandar

    2009-01-01

    The paper presents the different methods that can be used correspond to three types of approaches, testing, monitoring, and modeling: experimental models, in situ indicators and mathematical models, and choice of model for contaminated sites – biological system at risk.

  17. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    of advanced cell factories for production of fuels, chemicals, food ingredients and pharmaceuticals. The yeast Saccharomyces cerevisiae represents an excellent model system; the density of biological information available on this organism allows it to serve as a eukaryotic model for studying human diseases....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... appropriate guidelines, establish an appropriate infrastructure for the network and organize courses, meetings and conferences that will consolidate the network and promote systems biology. This paper discusses the impacts of systems biology and how YSBN may play a role in the future development of the field...

  18. Network benchmarking: a happy marriage between systems and synthetic biology.

    Science.gov (United States)

    Minty, Jeremy J; Varedi K, S Marjan; Nina Lin, Xiaoxia

    2009-03-27

    In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and synthetic biology.

  19. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  20. Effects of abiotic stress on plants: a systems biology perspective

    OpenAIRE

    Cramer Grant R; Urano Kaoru; Delrot Serge; Pezzotti Mario; Shinozaki Kazuo

    2011-01-01

    Abstract The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynam...

  1. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  2. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    Science.gov (United States)

    Li, Xu; Xiakun, Chu; Zhiqiang, Yan; Xiliang, Zheng; Kun, Zhang; Feng, Zhang; Han, Yan; Wei, Wu; Jin, Wang

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. Project supported by the Natural Science Foundation of China (Grant Nos. 21190040, 11174105, 91225114, 91430217, and 11305176) and Jilin Province Youth Foundation, China (Grant No. 20150520082JH).

  3. Economic and Biological Values for Pasture-Based Dairy Cattle Porduction Systems and their Application in Genetic Improvement in the Tropics

    DEFF Research Database (Denmark)

    Wahinya, P K; Otieno, Tobias Okeno; Kosgey, I S;

    2015-01-01

    during the estimation of economic values. Genetic improvements targeting MY and growth traits would be recommended to production system with unlimited feed supply for profit maximization. However, since dairy production systems in the tropics are characterised by feed scarcity, fixing the herd...

  4. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  5. Virtual Tissues and Developmental Systems Biology

    Science.gov (United States)

    Computational modeling of embryonic systems to analyze how 'core development processes' are wired together. Has the potential to address environmental and human health factors with broad scientific and economic impacts.

  6. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  7. Effects of Pesticides on Biological Systems

    OpenAIRE

    Ergul Belge Kurutas; Metin Kilinc

    2003-01-01

    The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In ...

  8. Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Directory of Open Access Journals (Sweden)

    Ezio Bartocci

    2016-01-01

    Full Text Available As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.

  9. Application of Bioinformatics and Systems Biology in Medicinal Plant Studies

    Institute of Scientific and Technical Information of China (English)

    DENG You-ping; AI Jun-mei; XIAO Pei-gen

    2010-01-01

    One important purpose to investigate medicinal plants is to understand genes and enzymes that govern the biological metabolic process to produce bioactive compounds.Genome wide high throughput technologies such as genomics,transcriptomics,proteomics and metabolomics can help reach that goal.Such technologies can produce a vast amount of data which desperately need bioinformatics and systems biology to process,manage,distribute and understand these data.By dealing with the"omics"data,bioinformatics and systems biology can also help improve the quality of traditional medicinal materials,develop new approaches for the classification and authentication of medicinal plants,identify new active compounds,and cultivate medicinal plant species that tolerate harsh environmental conditions.In this review,the application of bioinformatics and systems biology in medicinal plants is briefly introduced.

  10. Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Science.gov (United States)

    Bartocci, Ezio; Lió, Pietro

    2016-01-01

    As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.

  11. Systems biology studies of Aspergilli - from sequence to science

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam

    2008-01-01

    sequence analysis, exo-metabolomics, transcriptomics and classical genetics. With a special focus on the traits making one strain a high-yield citric acid producer and the other an efficient glucoamylase producer, a surprising number of co-enhancing factors were found on multiple levels of cellular...... of citric acid. Furthermore, a detailed transcriptome profiling of all of the genes of A. niger predicted to code for extracellular enzymes was made using a new literature-based graphical tool for analysis of the degradation targets of the enzymes. In conclusion, the versatility of a systems biology...... metabolism. Transcriptome profiling coupled with metabolic modeling further allowed the charting of the genome-wide regulation of A. niger in response to ambient pH in the context of organic acid production and a plausible explanation for the evolution of the capabilities to be a high-yield producer...

  12. Abstract Interpretation for Probabilistic Termination of Biological Systems

    CERN Document Server

    Gori, Roberta; 10.4204/EPTCS.11.9

    2009-01-01

    In a previous paper the authors applied the Abstract Interpretation approach for approximating the probabilistic semantics of biological systems, modeled specifically using the Chemical Ground Form calculus. The methodology is based on the idea of representing a set of experiments, which differ only for the initial concentrations, by abstracting the multiplicity of reagents present in a solution, using intervals. In this paper, we refine the approach in order to address probabilistic termination properties. More in details, we introduce a refinement of the abstract LTS semantics and we abstract the probabilistic semantics using a variant of Interval Markov Chains. The abstract probabilistic model safely approximates a set of concrete experiments and reports conservative lower and upper bounds for probabilistic termination.

  13. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  14. Modular Verification of Interactive Systems with an Application to Biology

    Directory of Open Access Journals (Sweden)

    P. Milazzo

    2011-01-01

    Full Text Available We propose sync-programs, an automata-based formalism for the description of biological systems, and a modular verification technique for such a formalism that allows properties expressed in the universal fragment of CTL to be verified on suitably chosen fragments of models, rather than on whole models. As an application we show the modelling of the lac operon regulation process and the modular verification of some properties. Verification of properties is performed by using the NuSMV model checker and we show that by applying our modular verification technique we can verify properties in shorter times than those necessary to verify the same properties in the whole model.

  15. Semantic Search among Heterogeneous Biological Databases Based on Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    Shun-Liang CAO; Lei QIN; Wei-Zhong HE; Yang ZHONG; Yang-Yong ZHU; Yi-Xue LI

    2004-01-01

    Semantic search is a key issue in integration of heterogeneous biological databases. In thispaper, we present a methodology for implementing semantic search in BioDW, an integrated biological datawarehouse. Two tables are presented: the DB2GO table to correlate Gene Ontology (GO) annotated entriesfrom BioDW data sources with GO, and the semantic similarity table to record similarity scores derived fromany pair of GO terms. Based on the two tables, multifarious ways for semantic search are provided and thecorresponding entries in heterogeneous biological databases in semantic terms can be expediently searched.

  16. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems.

  17. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. PMID:26546279

  18. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  19. Computational Proteomics: High-throughput Analysis for Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  20. Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae in Sicilian vineyards

    Directory of Open Access Journals (Sweden)

    Ramzi Mansour

    2010-11-01

    Full Text Available The “potato trap” technique was applied for the fi rst time in Italian (Sicily vineyards in an attempt to assess: a the impact of the kairomonal activity of the vine mealybug sex pheromone (S-(+-lavandulyl senecioate (LS on the parasitism of mealybugs by the encyrtid Anagyrus sp. near pseudococci, b the influence of two commonly used insecticides on the parasitization activity of A. sp. near pseudococci towards mealybugs, and c the efficiency of the release of A. sp. near pseudococci in enhancing parasitism rates of mealybugs. The number of captured A. sp. near pseudococci females in LS baited traps was significantly higher than that in unbaited traps. The minimal number of days for the first parasitoid emergence in LS baited traps was almost 3 days earlier, compared to unbaited control, suggesting a faster host detection by the encyrtid when LS is applied. These findings resulted in a significant increase in parasitism of mealybugs by A. sp. near pseudococci in LS baited traps relative to unbaited traps suggesting that the LS is used by the encyrtid as kairomone to ensure greater potential for host searching activity. Insecticide treatments significantly affected parasitization activity of A. sp. near pseudococci on mealybugs when compared to an untreated control with parasitoid release. The buprofezin, chlorpyriphos-methyl and untreated control with no parasitoid release treatments had statistically similar numbers of emerged parasitoids from exposed mealybugs. The obtained results provide evidence that, in the absence of conventional insecticides applications, the use of the LS could be a promising tool to improve and strengthen biological control of mealybugs by A. sp. near pseudococci within Sicilian vineyard conditions.

  1. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    Science.gov (United States)

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  2. Ultrasensitive Force Detection and Applications to Biological Systems

    Science.gov (United States)

    Kenny, Thomas

    2001-03-01

    For many years, researchers have developed a variety of micromechanical devices for a range of applications. The majority of these devices are based on micromechanical force transducers to convert external physical signals into electrical signals. The force sensing capabilities of these devices are remarkable - it is possible to design devices with force resolution ranging from milli-N to atto-N within this technology. In addition to the conventional applications for MEMS devices, it is possible to tailor these designs to allow interesting scientific measurements on biological systems. For example, there are active research communities investigating cellular adhesion, protein folding, and animal locomotion. In all of these cases, the basic questions are mechanical in nature, and direct force measurements can provide new insight. This talk will review some ongoing biological research that makes use of MEMS devices, and discuss opportunities for new directions. Collaborators on this research include : Yiching Liang, Robert Rudnitsky, Michael Bartsch, Robert Full, Kellar Autumn, James Nelson, Jim Spudich, and Mark Cutkosky This work is funded by NSF (XYZ on a Chip) and ONR MURI (Biomimetic Robots).

  3. Quantitative Analysis of the Trends Exhibited by the Three Interdisciplinary Biological Sciences: Biophysics, Bioinformatics, and Systems Biology.

    Science.gov (United States)

    Kang, Jonghoon; Park, Seyeon; Venkat, Aarya; Gopinath, Adarsh

    2015-12-01

    New interdisciplinary biological sciences like bioinformatics, biophysics, and systems biology have become increasingly relevant in modern science. Many papers have suggested the importance of adding these subjects, particularly bioinformatics, to an undergraduate curriculum; however, most of their assertions have relied on qualitative arguments. In this paper, we will show our metadata analysis of a scientific literature database (PubMed) that quantitatively describes the importance of the subjects of bioinformatics, systems biology, and biophysics as compared with a well-established interdisciplinary subject, biochemistry. Specifically, we found that the development of each subject assessed by its publication volume was well described by a set of simple nonlinear equations, allowing us to characterize them quantitatively. Bioinformatics, which had the highest ratio of publications produced, was predicted to grow between 77% and 93% by 2025 according to the model. Due to the large number of publications produced in bioinformatics, which nearly matches the number published in biochemistry, it can be inferred that bioinformatics is almost equal in significance to biochemistry. Based on our analysis, we suggest that bioinformatics be added to the standard biology undergraduate curriculum. Adding this course to an undergraduate curriculum will better prepare students for future research in biology.

  4. Quantitative Analysis of the Trends Exhibited by the Three Interdisciplinary Biological Sciences: Biophysics, Bioinformatics, and Systems Biology

    Directory of Open Access Journals (Sweden)

    Jonghoon Kang

    2015-08-01

    Full Text Available New interdisciplinary biological sciences like bioinformatics, biophysics, and systems biology have become increasingly relevant in modern science. Many papers have suggested the importance of adding these subjects, particularly bioinformatics, to an undergraduate curriculum; however, most of their assertions have relied on qualitative arguments. In this paper, we will show our metadata analysis of a scientific literature database (PubMed that quantitatively describes the importance of the subjects of bioinformatics, systems biology, and biophysics as compared with a well-established interdisciplinary subject, biochemistry. Specifically, we found that the development of each subject assessed by its publication volume was well described by a set of simple nonlinear equations, allowing us to characterize them quantitatively. Bioinformatics, which had the highest ratio of publications produced, was predicted to grow between 77% and 93% by 2025 according to the model. Due to the large number of publications produced in bioinformatics, which nearly matches the number published in biochemistry, it can be inferred that bioinformatics is almost equal in significance to biochemistry. Based on our analysis, we suggest that bioinformatics be added to the standard biology undergraduate curriculum. Adding this course to an undergraduate curriculum will better prepare students for future research in biology.

  5. Biologic Therapy in Inflammatory Immunomediated Systemic Diseases: Safety Profile.

    Science.gov (United States)

    Moroncini, Gianluca; Albani, Lisa; Nobili, Lorenzo; Gabrielli, Armando

    2016-01-01

    The discovery of some key molecular mechanisms underlying the dysregulation of the immune system responsible for inflammatory systemic diseases as severe as Systemic Lupus Erythematosus (SLE), Systemic Sclerosis (SSc), and Systemic Vasculitides, led to the development and subsequent introduction into clinical practice of biological drugs which are significantly improving the management of such complex disorders. This novel molecular targeted therapeutics represents in fact a valid alternative or complementary treatment to conventional immunosuppressive strategies, characterized by broad, unspecific actions and severe adverse effects. Main advantages of the use of biologic drugs reside in their steroid-sparing effect and in the ability of inducing remission of refractory disease states or curing specific organ involvements. Aim of this article is to review and briefly discuss the scientific evidence supporting the use of biologics in these diseases, with a particular emphasis on their efficacy and safety profile compared to the canonical drugs.

  6. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  7. Metagenomic Systems Biology of the Human Microbiome

    DEFF Research Database (Denmark)

    Bonde, Ida

    in the system. Applying the CAG clustering method to data from the human gut microbiome, we identified dependency-associations between plasmids, phages and clone-specific gene sets to their bacterial host. Connections between CRISPR-elements and phages were also observed. Additionally, the persistence of some...

  8. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    Directory of Open Access Journals (Sweden)

    Bosl William J

    2007-02-01

    Full Text Available Abstract Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists

  9. Stochastic Physics, Complex Systems and Biology

    OpenAIRE

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent dis...

  10. Systems Biology of the Vervet Monkey

    OpenAIRE

    Jasinska, Anna J.; Schmitt, Christopher A.; Susan K Service; Cantor, Rita M.; Dewar, Ken; James D. Jentsch; Kaplan, Jay R; Turner, Trudy R.; Warren, Wesley C.; George M Weinstock; Woods, Roger P.; Freimer, Nelson B.

    2013-01-01

    Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an inter...

  11. Integrative systems biology approaches in asthma pharmacogenomics

    OpenAIRE

    Dahlin, Amber; Tantisira, Kelan G.

    2012-01-01

    In order to improve therapeutic outcomes, there is a tremendous need to identify patients who are likely to respond to a given asthma treatment. Pharmacogenomic studies have explained a portion of the variability in drug response and provided an increasing list of candidate genes and SNPs. However, as phenotypic variation arises from a network of complex interactions among genetic and environmental factors, rather than individual genes or SNPs, a multidisciplinary, systems-level approach is r...

  12. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  13. Systems Biology Brings Life Sciences Closer--Report on the China-UK Systems Biology Workshop 2005

    Institute of Scientific and Technical Information of China (English)

    Ming Chen

    2005-01-01

    @@ The China-UK Systems Biology Workshop 2005 was held during June 20-21 in the National Science Park of Zhejiang University, Hangzhou, China. It was organized by the Institute of Bioinformatics, Zhejiang University, and was initiated by Prof. Dr. Jun Zhu (Zhejiang University) and Prof. Dr. John Findlay (University of Leeds, UK). The workshop was part of the program called UK-China Partners in Science, a one-year campaign that was initiated by the British government to explore more collaborations between UK and China on science and technology. It was attended also by a representative of this program, Mr.Frank Yuan, senior science & innovation officer. The idea of the workshop was to bring together experts with specialists in systems biology in order to promote the "natural partnership" between scientists from the two countries. The most important items of systems biology considered at the workshop were: (1) New technologies and advances in systems biology; (2) Research developments in genomics and proteomics; (3) New methodologies and software in computational biology; (4) Research collaboration on systems biology between China and UK.

  14. Improving Collaboration by Standardization Efforts in Systems Biology

    OpenAIRE

    Dräger, Andreas; Palsson, Bernhard Ø.

    2014-01-01

    Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches. Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of gran...

  15. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  16. Learning (from) the errors of a systems biology model

    OpenAIRE

    Benjamin Engelhardt; Holger Frőhlich; Maik Kschischo

    2016-01-01

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a dat...

  17. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  18. Phase transitions in fluids and biological systems

    Science.gov (United States)

    Sipos, Maksim

    In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this

  19. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have...

  20. On optimizing distance-based similarity search for biological databases.

    Science.gov (United States)

    Mao, Rui; Xu, Weijia; Ramakrishnan, Smriti; Nuckolls, Glen; Miranker, Daniel P

    2005-01-01

    Similarity search leveraging distance-based index structures is increasingly being used for both multimedia and biological database applications. We consider distance-based indexing for three important biological data types, protein k-mers with the metric PAM model, DNA k-mers with Hamming distance and peptide fragmentation spectra with a pseudo-metric derived from cosine distance. To date, the primary driver of this research has been multimedia applications, where similarity functions are often Euclidean norms on high dimensional feature vectors. We develop results showing that the character of these biological workloads is different from multimedia workloads. In particular, they are not intrinsically very high dimensional, and deserving different optimization heuristics. Based on MVP-trees, we develop a pivot selection heuristic seeking centers and show it outperforms the most widely used corner seeking heuristic. Similarly, we develop a data partitioning approach sensitive to the actual data distribution in lieu of median splits. PMID:16447992

  1. Control Structure Design of an Innovative Enhanced Biological Nutrient Recovery Activated Sludge System Coupled with a Photobioreactor

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier;

    2015-01-01

    The TRENS system is a train of biological units designed for resource recovery from wastewater. It is a sequence of a modified enhanced biological phosphorus removal and recovery system (EBP2R) coupled with a photobioreactor (PBR). The bacteria-based system constructs an optimal culture media for...

  2. Biologically Inspired Execution Framework for Vulnerable Workflow Systems

    CERN Document Server

    Safdar, Sohail; Qureshi, Muhammad Aasim; Akbar, Rehan

    2009-01-01

    The main objective of the research is to introduce a biologically inspired execution framework for workflow systems under threat due to some intrusion attack. Usually vulnerable systems need to be stop and put into wait state, hence to insure the data security and privacy while being recovered. This research ensures the availability of services and data to the end user by keeping the data security, privacy and integrity intact. To achieve the specified goals, the behavior of chameleons and concept of hibernation has been considered in combination. Hence the workflow systems become more robust using biologically inspired methods and remain available to the business consumers safely even in a vulnerable state.

  3. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  4. What's behind the Biological Classification System in Use Today?

    Science.gov (United States)

    Robertson, William C.

    2010-01-01

    Whether students should memorize classification schemes (taxonomies) is a column in itself, but the author can address the role that this system plays in the study of biology. To that end, it will help to address how the system developed over time. And toward "that" end, you will do a simple activity to start. (Contains 3 figures.)

  5. Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Chang, Roger L.; Andrews, Kathleen; Kim, Donghyuk;

    2013-01-01

    Improve the System A "systems biology" approach may clarify, for example, how particular proteins determine sensitivity of bacteria to extremes of temperature. Chang et al. (p. 1220) integrated information on protein structure with a model of metabolism, thus associating the protein structure of ...

  6. Chemical imaging of biological systems with the scanning electrochemical microscope.

    Science.gov (United States)

    Gyurcsányi, Róbert E; Jágerszki, Gyula; Kiss, Gergely; Tóth, Klára

    2004-06-01

    A brief overview on recent advances in the application of scanning electrochemical microscopy (SECM) to the investigation of biological systems is presented. Special emphasis is given to the mapping of local enzyme activity by SECM, which is exemplified by relevant original systems. PMID:15110274

  7. The Use of an Electronic Response System in Teaching Biology

    Science.gov (United States)

    Bessler, William C.; Nisbet, Jerry J.

    1971-01-01

    An electronic student response system was used in teaching college biology to non-science students. Achievement of this treatment group was compared with that of the control group (not utilizing the response system). The only statistical significant difference found in an analysis of covariance was an interaction between treatment group and time…

  8. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  9. Integrative Systems Biology: Elucidating Complex Traits

    DEFF Research Database (Denmark)

    Pers, Tune Hannes

    to analyses conducted within a single type of data. e first line of research presented here outlines two integrative methodologies designed to identify etiological pathways and susceptibility genes. In Paper I, my coworkers and I present an integrative approach that interrogates protein complexes...... that body-mass index associated gene products coalesce onto distinct protein complexes, and show that these putative risk modules incriminate novel candidate obesitysusceptibility genes. e last overall line of research presented here, provides examples on how networks of human metabolism may serve...... for weight maintenance upon dietary-induced weight loss. e approaches presented in this PhD esis provide integrative methodologies for the aggregation of multiple, functionally relevant data types. Together they represent a novel bioinformatics-based toolbox for analyses of genetic variation in human...

  10. An intrusion detection system based on biological immune for wireless sensor network%基于生物免疫的无线传感器网络入侵检测系统

    Institute of Scientific and Technical Information of China (English)

    刘宁; 赵建华

    2011-01-01

    To improve the security of wireless sensor network, this paper designed a lightweight intrusion detection system based on biological immune. The Intrusion detection system integrated the generation of detector and antigen detection. Vaccine extraction and vaccination technology was applied, the dynamic evolution of self set and antibody set were carried out. Simulation results showed that the system had good detection rate and low energy consumption.%为了解决无线传感器网络的安全性问题,设计了一个基于生物免疫的轻量级入侵检测系统.系统集成了检测器的生成和抗原的检测,采用了疫苗提取和疫苗接种技术,实现了自体、非自体、抗体的动态演化.仿真结果表明,系统具有良好的检测率和较低的能耗.

  11. Lessons learned from quantitative dynamical modeling in systems biology.

    Directory of Open Access Journals (Sweden)

    Andreas Raue

    Full Text Available Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.

  12. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    CERN Document Server

    Hinkelmann, Franziska; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2010-01-01

    Motivation: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. Results: We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. Availability: All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interf...

  13. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory.

  14. Systems Biology: The Role of Engineering in the Reverse Engineering of Biological Signaling

    OpenAIRE

    Iglesias, Pablo A.

    2013-01-01

    One of the principle tasks of systems biology has been the reverse engineering of signaling networks. Because of the striking similarities to engineering systems, a number of analysis and design tools from engineering disciplines have been used in this process. This review looks at several examples including the analysis of homeostasis using control theory, the attenuation of noise using signal processing, statistical inference and the use of information theory to understand both binary decis...

  15. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830

  16. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    Science.gov (United States)

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  17. A systems biology-based approach to deciphering the etiology of steatosis employing patient-derived dermal fibroblasts and iPS cells

    Directory of Open Access Journals (Sweden)

    Justyna eJozefczuk

    2012-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD comprises a broad spectrum of disease states ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g. the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN and low density lipoprotein receptor (LDLR. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger sample of patients and matching controls will confirm our preliminary findings presented

  18. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    Saccharomyces cerevisiae is extremely well suited for this objective. As one of the most intensely studied eukaryotic model organisms, a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance can be capitalized upon to enable a substantial increase...... in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  19. Learning (from) the errors of a systems biology model

    Science.gov (United States)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-01

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  20. Continuum analysis of biological systems conserved quantities, fluxes and forces

    CERN Document Server

    Suraishkumar, G K

    2014-01-01

    This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...

  1. Biologically erodable microspheres as potential oral drug delivery systems

    Science.gov (United States)

    Mathiowitz, Edith; Jacob, Jules S.; Jong, Yong S.; Carino, Gerardo P.; Chickering, Donald E.; Chaturvedi, Pravin; Santos, Camilla A.; Vijayaraghavan, Kavita; Montgomery, Sean; Bassett, Michael; Morrell, Craig

    1997-03-01

    Biologically adhesive delivery systems offer important advantages1-5 over conventional drug delivery systems6. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.

  2. Metabolomics in the context of systems biology: Bridging Traditional Chinese Medicine and molecular pharmacology

    NARCIS (Netherlands)

    Wang, M.; Lamers, R.J.A.N.; Korthout, H.A.A.J.; Nesselrooij, J.H.J. van; Witkamp, R.F.; Heijden, R. van der; Voshol, P.J.; Havekes, L.M.; Verpoorte, R.; Greef, J. van der

    2005-01-01

    The introduction of the concept of systems biology, enabling the study of living systems from a holistic perspective based on the profiling of a multitude of biochemical components, opens up a unique and novel opportunity to reinvestigate natural products. In the study of their bioactivity, the nece

  3. The Dominance Behavioral System and Psychopathology: Evidence from Self-Report, Observational, and Biological Studies

    Science.gov (United States)

    Johnson, Sheri L.; Leedom, Liane J.; Muhtadie, Luma

    2012-01-01

    The dominance behavioral system (DBS) can be conceptualized as a biologically based system that guides dominance motivation, dominant and subordinate behavior, and responsivity to perceptions of power and subordination. A growing body of research suggests that problems with the DBS are evident across a broad range of psychopathologies. We begin by…

  4. Investigation of bacterial populations in a biological nutrient removal system

    OpenAIRE

    Kavanaugh, Rathi G.

    1991-01-01

    Bacterial populations proliferating in a pilot scale biological nutrient removal system (BNR) were studied. The objective of the research was to develop media and methods to identify bacterial populations in BNR systems. Samples were obtained from the last aerobic zone of a University of Cape Town (UCT)-type system. The most probable numbers (MPN) of bacteria in the samples were analyzed in liquid media containing volatile fatty acids as sole sources of carbon. Samples...

  5. The Systems Biology Research Tool: evolvable open-source software

    OpenAIRE

    Wright Jeremiah; Wagner Andreas

    2008-01-01

    Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput) experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform calle...

  6. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  7. Controlled biological and biomimetic systems for landmine detection.

    Science.gov (United States)

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions. PMID:17662594

  8. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

    KAUST Repository

    Klingbeil, G.

    2011-02-25

    Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user\\'s models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.

  9.  Biological therapies in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Dorota Suszek

    2012-08-01

    Full Text Available  The prevention of chronic organic damage and complete inhibition of inflammatory activity of the disease are the main goals in the treatment of systemic lupus erythematosus (SLE. Current therapies of SLE are not effective enough and they may cause various serious side effects. Biological therapies, affecting important pathogenetic disturbances in the immunological system of SLE patients, give hope for the development of a new treatment for SLE. Currently the most advanced clinical trials are being conducted with anti-lymphocyte B drugs, such as rituximab, belimumab and epratuzumab. Belimumab as the first biological agent was registered for treatment of the active, seropositive form of SLE. The advances in immunology and rheumatology nowadays raise the hope of finding effective and safe treatment for SLE. In our article we present an overview of data concerning perspectives of biological treatment in SLE.

  10. Biological impact of music and software-based auditory training

    OpenAIRE

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based ...

  11. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  12. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  13. Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.

    Directory of Open Access Journals (Sweden)

    Pablo Szekely

    Full Text Available Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.

  14. A Color-Opponency Based Biological Model for Color Constancy

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2011-05-01

    Full Text Available Color constancy is the ability of the human visual system to adaptively correct color-biased scenes under different illuminants. Most of the existing color constancy models are nonphysiologically plausible. Among the limited biological models, the great majority is Retinex and its variations, and only two or three models directly simulate the feature of color-opponency, but only of the very earliest stages of visual pathway, i.e., the single-opponent mechanisms involved at the levels of retinal ganglion cells and lateral geniculate nucleus (LGN neurons. Considering the extensive physiological evidences supporting that both the single-opponent cells in retina and LGN and the double-opponent neurons in primary visual cortex (V1 are the building blocks for color constancy, in this study we construct a color-opponency based color constancy model by simulating the opponent fashions of both the single-opponent and double-opponent cells in a forward manner. As for the spatial structure of the receptive fields (RF, both the classical RF (CRF center and the nonclassical RF (nCRF surround are taken into account for all the cells. The proposed model was tested on several typical image databases commonly used for performance evaluation of color constancy methods, and exciting results were achieved.

  15. Agent-based Models in Synthetic Biology: Tools for Simulation and Prospects

    Directory of Open Access Journals (Sweden)

    E.V.Krishnamurthy

    2012-03-01

    Full Text Available We describe a multiset of agents based modeling and simulation paradigm for synthetic biology. The multiset of agents –based programming paradigm, can be interpreted as the outcome arising out of deterministic, nondeterministic or stochastic interaction among elements in a multiset object space, that includes the environment. These interactions are like chemical reactions and the evolution of the multiset can emulate the system biological functions. Since the reaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of elements, so that the elements evolve toward equilibrium or emergent state. Practical realization of this paradigm for system biological simulation is achieved through the concept of transactional style programming with agents, as well as soft computing (neural- network principles. Also we briefly describe currently available tools for agent-based-modeling, simulation and animation.

  16. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  17. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  18. INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Debra Goldberg; Matthew Hibbs; Lukas Kall; Ravikumar Komandurglayavilli; Shaun Mahony; Voichita Marinescu; Itay Mayrose; Vladimir Minin; Yossef Neeman; Guy Nimrod; Marian Novotny; Stephen Opiyo; Elon Portugaly; Tali Sadka; Noboru Sakabe; Indra Sarkar; Marc Schaub; Paul Shafer; Olena Shmygelska; Gregory Singer; Yun Song; Bhattacharya Soumyaroop; Michael Stadler; Pooja Strope; Rong Su; Yuval Tabach; Hongseok Tae; Todd Taylor; Michael Terribilini; Asha Thomas; Nam Tran; Tsai-Tien Tseng; Akshay Vashist; Parthiban Vijaya; Kai Wang; Ting Wang; Lai Wei; Yong Woo; Chunlei Wu; Yoshihiro Yamanishi; Changhui Yan; Jack Yang; Mary Yang; Ping Ye; Miao Zhang

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  19. Request for Travel Funds for Systems Radiation Biology Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [NYU School of Medicine

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  20. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    OpenAIRE

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased...

  1. System as metaphor in the psychology and biology of shame.

    Science.gov (United States)

    Maunder, R

    1996-01-01

    Biological theories of brain and psychological theories of mind are two systems of explanation that seem related to one another. The nature of the relationship is problematic and constitutes the age-old mind-body problem. The most prominent solutions currently are variations of materialism. While psychological theories can be consistent with materialism, there remains a difficulty in comprehending nonphysical (social, psychological) causes of physical effects. This difficulty is an obstacle to integration in psychiatry, where we routinely assume that illnesses that include or depend on biological dysfunction are caused multifactorially by causal agents such as perceived parental warmth, parental loss, stressful life events, genetics, and personality (Hammen et al. 1992; Kendler et al. 1993). Unity theory adopts the stance that neurobiological theories and psychological theories are essentially disparate explanations of the same psychobiological events; thus the relationship of mind to brain is one of shared reference (Goodman 1991; Maunder 1995). In Goodman's model the gap between biological and psychological systems is not bridgeable. Different conceptual categories refer to the same referents but cannot interact with each other. Stepping into the breach, systems theory has been presented as offering a language that can bridge the gap between psychological and biological theories of causation (Schwartz 1981; Weiner 1989). Thus, there is a controversy about the applicability of systems theory for integration in psychiatry. PMID:8837180

  2. Environmental Noise and Nonlinear Relaxation in Biological Systems

    CERN Document Server

    Spagnolo, B; Spezia, S; Curcio, L; Pizzolato, N; Dubkov, A A; Fiasconaro, A; Adorno, D Persano; Bue, P Lo; Peri, E; Colazza, S

    2011-01-01

    We analyse the effects of environmental noise in three different biological systems: (i) mating behaviour of individuals of \\emph{Nezara viridula} (L.) (Heteroptera Pentatomidae); (ii) polymer translocation in crowded solution; (iii) an ecosystem described by a Verhulst model with a multiplicative L\\'{e}vy noise.

  3. FIELD INVESTIGATION OF BIOLOGICAL TOILET SYSTEMS AND GREY WATER TREATMENT

    Science.gov (United States)

    The objective of the field program was to determine the operational characteristics and overall acceptability of popular models of biological toilets and a few select grey water systems. A field observation scheme was devised to take advantage of in-use sites throughout the State...

  4. Integration of proteomics into systems biology of cancer

    OpenAIRE

    Hanash, S; Schliekelman, M.; Q. Zhang; Taguchi, A

    2012-01-01

    Deciphering the complexity and heterogeneity of cancer benefits from integration of proteomic level data into systems biology efforts. The opportunities available as a result of advances in proteomic technologies, the successes to date and the challenges involved in integrating diverse datasets are addressed in this review.

  5. System as metaphor in the psychology and biology of shame.

    Science.gov (United States)

    Maunder, R

    1996-01-01

    Biological theories of brain and psychological theories of mind are two systems of explanation that seem related to one another. The nature of the relationship is problematic and constitutes the age-old mind-body problem. The most prominent solutions currently are variations of materialism. While psychological theories can be consistent with materialism, there remains a difficulty in comprehending nonphysical (social, psychological) causes of physical effects. This difficulty is an obstacle to integration in psychiatry, where we routinely assume that illnesses that include or depend on biological dysfunction are caused multifactorially by causal agents such as perceived parental warmth, parental loss, stressful life events, genetics, and personality (Hammen et al. 1992; Kendler et al. 1993). Unity theory adopts the stance that neurobiological theories and psychological theories are essentially disparate explanations of the same psychobiological events; thus the relationship of mind to brain is one of shared reference (Goodman 1991; Maunder 1995). In Goodman's model the gap between biological and psychological systems is not bridgeable. Different conceptual categories refer to the same referents but cannot interact with each other. Stepping into the breach, systems theory has been presented as offering a language that can bridge the gap between psychological and biological theories of causation (Schwartz 1981; Weiner 1989). Thus, there is a controversy about the applicability of systems theory for integration in psychiatry.

  6. Catalytic mechanisms by biological systems : Special issue introduction

    NARCIS (Netherlands)

    Fraaije, Marco W; Scrutton, Nigel S

    2013-01-01

    Research on enzyme mechanisms is advancing knowledge of the chemistry and biochemistry of catalytic mechanisms by biological systems. The structural-dynamical properties of enzymes are of key importance. Advanced methodological approaches and new insights into enzyme functioning, and new emerging ap

  7. Integration of proteomics into systems biology of cancer.

    Science.gov (United States)

    Hanash, S; Schliekelman, M; Zhang, Q; Taguchi, A

    2012-01-01

    Deciphering the complexity and heterogeneity of cancer, benefits from integration of proteomic level data into systems biology efforts. The opportunities available as a result of advances in proteomic technologies, the successes to date, and the challenges involved in integrating diverse datasets are addressed in this review.

  8. Beyond standardization : dynamic software infrastructures for systems biology

    NARCIS (Netherlands)

    Swertz, Morris A.; Jansen, Ritsert C.

    2007-01-01

    Progress in systems biology is seriously hindered by slow production of suitable software infrastructures. Biologists need infrastructure that easily connects to work that is done in other laboratories, for which standardization is helpful. However, the infrastructure must also accommodate the speci

  9. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  10. Molecular biology of the renin-angiotensin system

    Energy Technology Data Exchange (ETDEWEB)

    Dzau, V.J.; Burt, D.W.; Pratt, R.E. (Harvard Medical School, Boston, MA (USA))

    1988-10-01

    This paper reviews the molecular biology of the renin-angiotensin system. The renin gene structure is analyzed in detail, including an examination of the putative regulatory regions. The combined action of these regulatory sequences would result in the complex, tissue-specific expression and regulation observed in vivo. The expression of the tissue renin-angiotensin systems, which may have important physiological functions, is also described. In addition, the pathway of renin biosynthesis and secretion is reviewed. This includes speculation on the fate of circulating prorenin and the physiological role of multiple renin forms and secretory pathways. The molecular approaches described in this paper have greatly advanced our knowledge of the biology of the renin-angiotensin system. Future studies using these and other approaches should provide further insight into this complex system.

  11. Applications of membrane computing in systems and synthetic biology

    CERN Document Server

    Gheorghe, Marian; Pérez-Jiménez, Mario

    2014-01-01

    Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying th...

  12. Predicting biological system objectives de novo from internal state measurements

    Directory of Open Access Journals (Sweden)

    Maranas Costas D

    2008-01-01

    Full Text Available Abstract Background Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks. Critical features of FBA are the definition of a biologically relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement of cellular growth and the subsequent application of linear programming (LP to identify fluxes through a reaction network. Despite the success of FBA, a central remaining challenge is the definition of a network objective with biological meaning. Results We present a novel method called Biological Objective Solution Search (BOSS for the inference of an objective function of a biological system from its underlying network stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a system objective by defining a putative stoichiometric "objective reaction," adding this reaction to the existing set of stoichiometric constraints arising from known interactions within a network, and maximizing the putative objective reaction via LP, all the while minimizing the difference between the resultant in silico flux distribution and available experimental (e.g., isotopomer flux data. This new approach allows for discovery of objectives with previously unknown stoichiometry, thus extending the biological relevance from earlier methods. We verify our approach on the well-characterized central metabolic network of Saccharomyces cerevisiae. Conclusion We illustrate how BOSS offers insight into the functional organization of biochemical networks

  13. Leakage from biological shield cooling system in Pickering NGS A

    International Nuclear Information System (INIS)

    Over the past eight years, a number of leaks have developed in the Biological Shield Cooling (BSC) system of the Pickering NGS A reactors. The highest leak rate exists in Unit 4. The failure mechanism is not known, but corrosion and/or weld failure are suspected. This paper summarizes the concerns associated with the leaks and possible solutions. It should be noted that the BSC system is peculiar to Pickering A reactors only

  14. Facile: a command-line network compiler for systems biology

    OpenAIRE

    Ollivier Julien F; Siso-Nadal Fernando; Swain Peter S

    2007-01-01

    Abstract Background A goal of systems biology is the quantitative modelling of biochemical networks. Yet for many biochemical systems, parameter values and even the existence of interactions between some chemical species are unknown. It is therefore important to be able to easily investigate the effects of adding or removing reactions and to easily perform a bifurcation analysis, which shows the qualitative dynamics of a model for a range of parameter values. Results We present Facile, a Perl...

  15. The solar system: Importance of research to the biological sciences

    Science.gov (United States)

    Klein, Harold P.

    1992-01-01

    An attempt is made to describe the scope of scientific areas that comprise the current field of exobiology in the United States. From investigations of astrophysical phenomena that deal with the birth of stars and planetary systems to questions of molecular biology involving phylogenetic relationships among organisms, from attempts to simulate the synthesis of biological precursor molecules in the chemistry laboratory to making measurements of the organic constituents of Titan's atmosphere, these researches all converge toward a common objective--answering the question of how life came about in the universe.

  16. Developing integrated TOF-SIMS/MALDI IMS system in studying biological systems

    Science.gov (United States)

    Wu, Ligang

    Using imaging mass spectrometry (IMS) techniques (including TOF-SIMS and MALDI IMS) to study biological systems is a relatively new concept and quickly gained popularity in recent years. Imaging mass spectrometry is a discovery technology that utilizes a focused ion beam or laser beam to desorb ions from sample surface. By detecting the desorbed ions, the chemical distributions and biological changes of a sample surface can be analyzed. These techniques offer a new analytical imaging approach to investigate biological processes at the cellular and tissue level. In this research, a novel integrated TOF-SIMS/MALDI IMS system as well as IMS based biological-sample-preparation techniques and data-reduction methods are developed. We then demonstrate the power of these techniques in studying different biological systems, including monosaccharides isomers, human breast cancer cell lines, mouse embryo tissues and mouse kidney sections. Using TOF-SIMS and statistical analysis methods, seven monosaccharide isomers are fully differentiated by analyzing their characteristic spectral pattern. In addition, a deep understanding of the fragmentation pathway of these isomers under ion bombardment is gained. In an application of TOF-SIMS to the differentiation of three human breast cancer cell lines, MCF-7, T47D, and MDA-MB-231, we show that principal component analysis (PCA) data reduction of TOF-SIMS spectra can differentiate cellular compartments (cytosol, nuclear and particulate) within the cell types, as well as homogenates from among the three cell lines. In a tissue-specific application, we extend the analytical capabilities of TOF-SIMS and PCA by imaging and differentiating Formalin-fixed paraffin-embedded (FFPE) mouse embryo tissues. We demonstrate reproducible differentiation of six tissue types based on the remaining small molecules after paraffin-embedding and the fragments of the cellular proteins. In a unique study of fresh frozen mouse kidney tissues, both TOF

  17. Notes on a PDE system for biological network formation

    KAUST Repository

    Haskovec, Jan

    2016-01-22

    We present new analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transport networks. The model describes the pressure field using a Darcy’s type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. The analytical part extends the results of Haskovec et al. (2015) regarding the existence of weak and mild solutions to the whole range of meaningful relaxation exponents. Moreover, we prove finite time extinction or break-down of solutions in the spatially one-dimensional setting for certain ranges of the relaxation exponent. We also construct stationary solutions for the case of vanishing diffusion and critical value of the relaxation exponent, using a variational formulation and a penalty method. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on mixed finite elements and study the qualitative properties of network structures for various parameter values. Furthermore, we indicate numerically that some analytical results proved for the spatially one-dimensional setting are likely to be valid also in several space dimensions.

  18. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  19. Hydrogel based occlusion systems

    OpenAIRE

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  20. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  1. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  2. RNA Systems Biology for Cancer: From Diagnosis to Therapy.

    Science.gov (United States)

    Amirkhah, Raheleh; Farazmand, Ali; Wolkenhauer, Olaf; Schmitz, Ulf

    2016-01-01

    It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.

  3. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  4. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination. PMID:23737624

  5. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  6. Systems biology in the frontier of cancer research:a report of the Second International Workshop of Cancer Systems Biology

    Institute of Scientific and Technical Information of China (English)

    Juan Cui; Yan-Chun Liang; Ying Xu

    2012-01-01

    The report summarizes the Second International Workshop of Cancer Systems Biology held on July 5-6,2012 in Changchun,China.The goal of the workshop was to bring together cancer researchers with different backgrounds to share their views about cancer and their experiences in fighting against cancer,and to gain new and systems-level understanding about cancer formation,progression,diagnosis,and treatment through exchanging ideas.

  7. Systems biology in the frontier of cancer research: a report of the Second International Workshop of Cancer Systems Biology

    OpenAIRE

    Ying Xu; Yan-Chun Liang; Juan Cui

    2012-01-01

    The report summarizes the Second International Workshop of Cancer Systems Biology held on July 5-6, 2012 in Changchun, China. The goal of the workshop was to bring together cancer researchers with different backgrounds to share their views about cancer and their experiences in fighting against cancer, and to gain new and systems-level understanding about cancer formation, progression, diagnosis, and treatment through exchanging ideas.

  8. Biologically-inspired Microfluidic Platforms and Aptamer-based Nanobiosensors

    OpenAIRE

    Cho, Hansang

    2010-01-01

    Recent advances in micro/nano- technologies have shown high potentials in the field of quantitative biology, biomedical science, and analytical chemistry. However, micro/nano fluidics still requires multi-layered structures, complex plumbing/tubing, and external equipments for large-scale applications and nanotechnology-based sensors demand high cost. Interestingly, nature has much simpler and more effective solutions. The goal of this dissertation is to develop novel microfluidic platforms a...

  9. What is infidelity? Perceptions based on biological sex and personality

    OpenAIRE

    Thornton V; Nagurney AJ

    2011-01-01

    Victoria Thornton, Alexander NagurneyTexas State University – San Marcos, San Marcos, Texas, USAAbstract: The study examines perceptions of infidelity, paying particular attention to how these perceptions differ based on biological sex and personality traits, specifically agency and communion and their unmitigated counterparts. The study utilizes a sample of 125 male and 233 female college students. In addition to the personality measures, participants completed a 19-item checklist ...

  10. Improving collaboration by standardization efforts in systems biology.

    Science.gov (United States)

    Dräger, Andreas; Palsson, Bernhard Ø

    2014-01-01

    Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches. Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of granularity in biology. In addition to the originally envisaged exchange of computational models and tool interoperability, new standards have been suggested for an unambiguous graphical display of biological phenomena, to annotate, archive, as well as to rank models, and to describe execution and the outcomes of simulation experiments. The spectrum now even covers the interaction of entire neurons in the brain, three-dimensional motions, and the description of pharmacometric studies. Thereby, the mathematical description of systems and approaches for their (repeated) simulation are clearly separated from each other and also from their graphical representation. Minimum information definitions constitute guidelines and common operation protocols in order to ensure reproducibility of findings and a unified knowledge representation. Central database infrastructures have been established that provide the scientific community with persistent links from model annotations to online resources. A rich variety of open-source software tools thrives for all data formats, often supporting a multitude of programing languages. Regular meetings and workshops of developers and users lead to continuous improvement and ongoing development of these standardization efforts. This article gives a brief overview about the current state of the growing number of operation protocols, mark-up languages, graphical descriptions, and fundamental software support with relevance to systems biology. PMID:25538939

  11. Improving collaboration by standardization efforts in systems biology

    Directory of Open Access Journals (Sweden)

    Andreas eDräger

    2014-12-01

    Full Text Available Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches.Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of granularity in biology.In addition to the originally envisaged exchange of computational models and tool interoperability, new standards have been suggested for an unambiguous graphical display of biological phenomena, to annotate, archive, as well as to rank models, and to describe execution and the outcomes of simulation experiments. The spectrum now even covers the interaction of entire neurons in the brain, three-dimensional motions, and the description of pharmacometric studies.Thereby, the mathematical description of systems and approaches for their (repeated simulation are clearly separated from each other and also from their graphical representation. Minimum information definitions constitute guidelines and common operation protocols in order to ensure reproducibility of findings and a unified knowledge representation.Central database infrastructures have been established that provide the scientific community with persistent links from model annotations to on-line resources. A rich variety of open-source software tools thrives for all data formats, often supporting a multitude of programming languages. Regular meetings and workshops of developers and users lead to continuous improvement and ongoing development of these standardization efforts.This article gives a brief overview about the current state of the growing number of operation protocols, markup languages, graphical descriptions, and fundamental software support with relevance to systems biology.

  12. Systems biology, connectivity and the future of medicine

    NARCIS (Netherlands)

    Greef, J. van der

    2005-01-01

    The concept of systems-based strategies in medicine is emerging, with systems pathology guiding an understanding of the multidimensional aspects of disease system fingerprints and systems pharmacology providing insight into dynamic system responses upon (multiple) drug perturbations. Knowledge of th

  13. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  14. From globally coupled maps to complex-systems biology

    Science.gov (United States)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  15. Biological Computation as the Revolution of Complex Engineered Systems

    CERN Document Server

    Gómez-Cruz, Nelson Alfonso

    2011-01-01

    Provided that there is no theoretical frame for complex engineered systems (CES) as yet, this paper claims that bio-inspired engineering can help provide such a frame. Within CES bio-inspired systems play a key role. The disclosure from bio-inspired systems and biological computation has not been sufficiently worked out, however. Biological computation is to be taken as the processing of information by living systems that is carried out in polynomial time, i.e., efficiently; such processing however is grasped by current science and research as an intractable problem (for instance, the protein folding problem). A remark is needed here: P versus NP problems should be well defined and delimited but biological computation problems are not. The shift from conventional engineering to bio-inspired engineering needs bring the subject (or problem) of computability to a new level. Within the frame of computation, so far, the prevailing paradigm is still the Turing-Church thesis. In other words, conventional engineering...

  16. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  17. Biological optimization of heterogeneous dose distributions in systemic radiotherapy

    International Nuclear Information System (INIS)

    The standard computational method developed for internal radiation dosimetry is the MIRD (medical internal radiation dose) formalism, based on the assumption that tumor control is given by uniform dose and activity distributions. In modern systemic radiotherapy, however, the need for full 3D dose calculations that take into account the heterogeneous distribution of activity in the patient is now understood. When information on nonuniform distribution of activity becomes available from functional imaging, a more patient specific 3D dosimetry can be performed. Application of radiobiological models can be useful to correlate the calculated heterogeneous dose distributions to the current knowledge on tumor control probability of a homogeneous dose distribution. Our contribution to this field is the introduction of a parameter, the F factor, already used by our group in studying external beam radiotherapy treatments. This parameter allows one to write a simplified expression for tumor control probability (TCP) based on the standard linear quadratic (LQ) model and Poisson statistics. The LQ model was extended to include different treatment regimes involving source decay, incorporating the repair 'μ' of sublethal radiation damage, the relative biological effectiveness and the effective 'waste' of dose delivered when repopulation occurs. The sensitivity of the F factor against radiobiological parameters (α,β,μ) and the influence of the dose volume distribution was evaluated. Some test examples for 131I and 90Y labeled pharmaceuticals are described to further explain the properties of the F factor and its potential applications. To demonstrate dosimetric feasibility and advantages of the proposed F factor formalism in systemic radiotherapy, we have performed a retrospective planning study on selected patient case. F factor formalism helps to assess the total activity to be administered to the patient taking into account the heterogeneity in activity uptake and dose

  18. Analyzing Defects in the "Caenorhabditis Elegans" Nervous System Using Organismal and Cell Biological Approaches

    Science.gov (United States)

    Guziewicz, Megan; Vitullo, Toni; Simmons, Bethany; Kohn, Rebecca Eustance

    2002-01-01

    The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of "Caenorhabditis elegans" with defects in their…

  19. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    Science.gov (United States)

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  20. Systems biology of IL-6, IL-12 family cytokines.

    Science.gov (United States)

    Dittrich, Anna; Hessenkemper, Wiebke; Schaper, Fred

    2015-10-01

    Interleukin-6-type cytokines play important roles in the communication between cells of multicellular organisms. They are involved in the regulation of complex cellular processes such as proliferation and differentiation and act as key player during inflammation and immune response. A major challenge is to understand how these complex non-linear processes are connected and regulated. Systems biology approaches are used to tackle this challenge in an iterative process of quantitative experimental and mathematical analyses. Here we review quantitative experimental studies and systems biology approaches dealing with the function of Interleukin-6-type cytokines in physiological and pathophysiological conditions. These approaches cover the analyses of signal transduction on a cellular level up to pharmacokinetic and pharmacodynamic studies on a whole organism level.

  1. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Science.gov (United States)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  2. Computational systems biology in drug discovery and development: methods and applications.

    Science.gov (United States)

    Materi, Wayne; Wishart, David S

    2007-04-01

    Computational systems biology is an emerging field in biological simulation that attempts to model or simulate intra- and intercellular events using data gathered from genomic, proteomic or metabolomic experiments. The need to model complex temporal and spatiotemporal processes at many different scales has led to the emergence of numerous techniques, including systems of differential equations, Petri nets, cellular automata simulators, agent-based models and pi calculus. This review provides a brief summary and an assessment of most of these approaches. It also provides examples of how these methods are being used to facilitate drug discovery and development.

  3. Systems Biology Approaches to Epidemiological Studies of Complex Diseases

    OpenAIRE

    Li, Hongzhe

    2013-01-01

    Systems biology approaches to epidemiological studies of complex diseases include collection of genetic, genomic, epigenomic and metagenomic data in large-scale epidemiological studies of complex phenotypes. Designs and analyses of such studies raise many statistical challenges. This paper reviews some issues related to integrative analysis of such high dimensional and inter-related data sets and outline some possible solutions. I focus my review on integrative approaches for genome-wide gene...

  4. Rethinking biology instruction: The application of DNR-based instruction to the learning and teaching of biology

    Science.gov (United States)

    Maskiewicz, April Lee

    Educational studies report that secondary and college level students have developed only limited understandings of the most basic biological processes and their interrelationships from typical classroom experiences. Furthermore, students have developed undesirable reasoning schemes and beliefs that directly affect how they make sense of and account for biological phenomena. For these reasons, there exists a need to rethink instructional practices in biology. This dissertation discusses how the principles of Harel's (1998, 2001) DNR-based instruction in mathematics could be applied to the teaching and learning of biology. DNR is an acronym for the three foundational principles of the system: Duality, Necessity, and Repeated-reasoning. This study examines the application of these three principles to ecology instruction. Through clinical and teaching interviews, I developed models of students' existing ways of understanding in ecology and inferred their ways of thinking. From these models a hypothetical learning trajectory was developed for 16 college level freshmen enrolled in a 10-week ecology teaching experiment. Through cyclical, interpretive analysis I documented and analyzed the evolution of the participants' progress. The results provide empirical evidence to support the claim that the DNR principles are applicable to ecology instruction. With respect to the Duality Principle, helping students develop specific ways of understanding led to the development of model-based reasoning---a way of thinking and the cognitive objective guiding instruction. Through carefully structured problem solving tasks, the students developed a biological understanding of the relationship between matter cycling, energy flow, and cellular processes such as photosynthesis and respiration, and used this understanding to account for observable phenomena in nature. In the case of intellectual necessity, the results illuminate how problem situations can be developed for biology learners

  5. Systems Biology - A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine

    OpenAIRE

    Soojin Lee

    2015-01-01

    Objectives: Systems biology is a novel subject in the field of life science that aims at a systems’ level understanding of biological systems. Because of the significant progress in high-throughput technologies and molecular biology, systems biology occupies an important place in research during the post-genome era. Methods: The characteristics of systems biology and its applicability to traditional medicine research have been discussed from three points of view: data and databases, network a...

  6. Systems Biology for Mapping Genotype-Phenotype Relations in Yeast

    KAUST Repository

    Nielsen, Jens

    2016-01-25

    The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel new industrial processes have been developed over the last 10 years. Besides its wide industrial use, S. cerevisiae serves as an eukaryal model organism, and many systems biology tools have therefore been developed for this organism. Among these genome-scale metabolic models have shown to be most successful as they easy integrate with omics data and at the same time have been shown to have excellent predictive power. Despite our extensive knowledge of yeast metabolism and its regulation we are still facing challenges when we want to engineer complex traits, such as improved tolerance to toxic metabolites like butanol and elevated temperatures or when we want to engineer the highly complex protein secretory pathway. In this presentation it will be demonstrated how we can combine directed evolution with systems biology analysis to identify novel targets for rational design-build-test of yeast strains that have improved phenotypic properties. In this lecture an overview of systems biology of yeast will be presented together with examples of how genome-scale metabolic modeling can be used for prediction of cellular growth at different conditions. Examples will also be given on how adaptive laboratory evolution can be used for identifying targets for improving tolerance towards butanol, increased temperature and low pH and for improving secretion of heterologous proteins.

  7. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    Directory of Open Access Journals (Sweden)

    Laurent Nottale

    2013-12-01

    Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

  8. BOWiki: an ontology-based wiki for annotation of data and integration of knowledge in biology

    Directory of Open Access Journals (Sweden)

    Gregorio Sergio E

    2009-05-01

    Full Text Available Abstract Motivation Ontology development and the annotation of biological data using ontologies are time-consuming exercises that currently require input from expert curators. Open, collaborative platforms for biological data annotation enable the wider scientific community to become involved in developing and maintaining such resources. However, this openness raises concerns regarding the quality and correctness of the information added to these knowledge bases. The combination of a collaborative web-based platform with logic-based approaches and Semantic Web technology can be used to address some of these challenges and concerns. Results We have developed the BOWiki, a web-based system that includes a biological core ontology. The core ontology provides background knowledge about biological types and relations. Against this background, an automated reasoner assesses the consistency of new information added to the knowledge base. The system provides a platform for research communities to integrate information and annotate data collaboratively. Availability The BOWiki and supplementary material is available at http://www.bowiki.net/. The source code is available under the GNU GPL from http://onto.eva.mpg.de/trac/BoWiki.

  9. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    Science.gov (United States)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  10. Computational optimization for S-type biological systems: cockroach genetic algorithm.

    Science.gov (United States)

    Wu, Shinq-Jen; Wu, Cheng-Tao

    2013-10-01

    S-type biological systems (S-systems) are demonstrated to be universal approximations of continuous biological systems. S-systems are easy to be generalized to large systems. The systems are identified through data-driven identification techniques (cluster-based algorithms or computational methods). However, S-systems' identification is challenging because multiple attractors exist in such highly nonlinear systems. Moreover, in some biological systems the interactive effect cannot be neglected even the interaction order is small. Therefore, learning should be focused on increasing the gap between the true and redundant interaction. In addition, a wide searching space is necessary because no prior information is provided. The used technologies should have the ability to achieve convergence enhancement and diversity preservation. Cockroaches live in nearly all habitats and survive for more than 300 million years. In this paper, we mimic cockroaches' competitive swarm behavior and integrated it with advanced evolutionary operations. The proposed cockroach genetic algorithm (CGA) possesses strong snatching-food ability to rush forward to a target and high migration ability to escape from local minimum. CGA was tested with three small-scale systems, a twenty-state medium-scale system and a thirty-state large-scale system. A wide search space ([0,100] for rate constants and [-100,100] for kinetic orders) with random or bad initial starts are used to show the high exploration performance.

  11. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

  12. Model Checking the Biological Model of Membrane Computing with Probabilistic Symbolic Model Checker by Using Two Biological Systems

    Directory of Open Access Journals (Sweden)

    Ravie c. Muniyandi

    2010-01-01

    Full Text Available Problem statement: Membrane computing formalism has provided better modeling capabilities for biological systems in comparison to conventional mathematical models. Model checking could be used to reason about the biological system in detail and with precision by verifying formally whether membrane computing model meets the properties of the system. Approach: This study was carried to investigate the preservation of properties of two biological systems that had been modeled and simulated in membrane computing by a method of model checking using PRISM. The two biological systems were prey-predator population and signal processing in the legend-receptor networks of protein TGF-ß. Results: The model checking of membrane computing model of the biological systems with five different properties showed that the properties of the biological systems could be preserved in the membrane computing model. Conclusion: Membrane computing model not only provides a better approach in representing and simulating a biological system but also able to sustain the basic properties of the system.

  13. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  14. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    Science.gov (United States)

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.

  15. Nearly Closed Loops in Biological Systems as Electromagnetic Receptors

    CERN Document Server

    Eichler, D

    1997-01-01

    It is noted here that when a nearly closed loop in a biological system, such as a self-synapsing (autapsing) neuron or mutually synapsing pair, is exposed to an AC magnetic field, the induced electric fields in the insulating gaps can be many orders of magnitude larger than the average values typically discussed in the literature.$^{1,2}$ It is suggested that animal nervous systems might possibly be affected in selected spots by man-made alternating magnetic fields at weaker levels than previously supposed. Radio and microwave radiation should be considered particularly suspect.

  16. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    Science.gov (United States)

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985

  17. An Intuitive Automated Modelling Interface for Systems Biology

    Directory of Open Access Journals (Sweden)

    Ozan Kahramanoğulları

    2009-11-01

    Full Text Available We introduce a natural language interface for building stochastic pi calculus models of biological systems. In this language, complex constructs describing biochemical events are built from basic primitives of association, dissociation and transformation. This language thus allows us to model biochemical systems modularly by describing their dynamics in a narrative-style language, while making amendments, refinements and extensions on the models easy. We demonstrate the language on a model of Fc-gamma receptor phosphorylation during phagocytosis. We provide a tool implementation of the translation into a stochastic pi calculus language, Microsoft Research's SPiM.

  18. Enabling a systems biology knowledgebase with gaggle and firegoose

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Nitin S. [Institute for Systems Biology, Seattle, WA (United States)

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and

  19. Enabling a Systems Biology Knowledgebase with Gaggle and Firegoose

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Nitin S. [Institute for Systems Biology

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and

  20. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  1. Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems.

    Directory of Open Access Journals (Sweden)

    Lesia Bilitchenko

    Full Text Available BACKGROUND: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices from a collection of individual Parts. RESULTS: We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. CONCLUSIONS: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.

  2. Cosmo Cassette: A Microfluidic Microgravity Microbial System For Synthetic Biology Unit Tests and Satellite Missions

    Science.gov (United States)

    Berliner, Aaron J.

    2013-01-01

    Although methods in the design-build-test life cycle of the synthetic biology field have grown rapidly, the expansion has been non-uniform. The design and build stages in development have seen innovations in the form of biological CAD and more efficient means for building DNA, RNA, and other biological constructs. The testing phase of the cycle remains in need of innovation. Presented will be both a theoretical abstraction of biological measurement and a practical demonstration of a microfluidics-based platform for characterizing synthetic biological phenomena. Such a platform demonstrates a design of additive manufacturing (3D printing) for construction of a microbial fuel cell (MFC) to be used in experiments carried out in space. First, the biocompatibility of the polypropylene chassis will be demonstrated. The novel MFCs will be cheaper, and faster to make and iterate through designs. The novel design will contain a manifold switchingdistribution system and an integrated in-chip set of reagent reservoirs fabricated via 3D printing. The automated nature of the 3D printing yields itself to higher resolution switching valves and leads to smaller sized payloads, lower cost, reduced power and a standardized platform for synthetic biology unit tests on Earth and in space. It will be demonstrated that the application of unit testing in synthetic biology will lead to the automatic construction and validation of desired constructs. Unit testing methodologies offer benefits of preemptive problem identification, change of facility, simplicity of integration, ease of documentation, and separation of interface from implementation, and automated design.

  3. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  4. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry...... (ICP-MS) instrumentation, such as reaction/collision cell ICP-MS and multicollector ICP-MS with improved isotope ratio measurement and interference removal capabilities. Adaptation and refinement of radioisotope tracer experiment methodologies for enriched stable isotope experiments......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...

  5. Local therapy, systemic benefit: challenging the paradigm of biological predeterminism.

    Science.gov (United States)

    Kurtz, J M

    2006-04-01

    This paper briefly reviews the historical evolution of paradigms that have been purported to characterise the clinical behaviour of breast cancer, with the intention of guiding treatment approaches. Results from randomised clinical trials and the explosion of knowledge in the area of cancer biology have discredited the monolithic paradigms that had dominated thinking about breast cancer in the past. Contemporary notions of breast cancer biology recognise that, although some cancers disseminate well before becoming clinically detectable, acquisition of a metastatic phenotype can occur at any point (or not at all) in the local evolution of the tumour. As a consequence, both systemic and timely local--regional therapies can be expected to influence disease dissemination and patient survival. This is consistent with results observed in clinical trials, overviews of which indicate that prevention of four local recurrences will, on the average, prevent one death from breast cancer. Optimisation of local-regional treatment is an important goal in breast cancer management. PMID:16605046

  6. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  7. Biological systems: from water radiolysis to carbon ion radiotherapy

    Science.gov (United States)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  8. Image-based surface matching algorithm oriented to structural biology.

    Science.gov (United States)

    Merelli, Ivan; Cozzi, Paolo; D'Agostino, Daniele; Clematis, Andrea; Milanesi, Luciano

    2011-01-01

    Emerging technologies for structure matching based on surface descriptions have demonstrated their effectiveness in many research fields. In particular, they can be successfully applied to in silico studies of structural biology. Protein activities, in fact, are related to the external characteristics of these macromolecules and the ability to match surfaces can be important to infer information about their possible functions and interactions. In this work, we present a surface-matching algorithm, based on encoding the outer morphology of proteins in images of local description, which allows us to establish point-to-point correlations among macromolecular surfaces using image-processing functions. Discarding methods relying on biological analysis of atomic structures and expensive computational approaches based on energetic studies, this algorithm can successfully be used for macromolecular recognition by employing local surface features. Results demonstrate that the proposed algorithm can be employed both to identify surface similarities in context of macromolecular functional analysis and to screen possible protein interactions to predict pairing capability. PMID:21566253

  9. Microbial diversity of biological filters in recirculating aquaculture systems.

    Science.gov (United States)

    Schreier, Harold J; Mirzoyan, Natella; Saito, Keiko

    2010-06-01

    Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies. These studies have included the application of molecular tools to characterize community diversity and have identified key processes useful for improving system performance. In this paper we summarize the current understanding of the microbial diversity and physiology of RAS biofilters and discuss directions for future studies. PMID:20371171

  10. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  11. Making United States Integrated Ocean Observing System (U.S. IOOS) inclusive of marine biological resources

    Science.gov (United States)

    Moustahfid, H.; Potemra, J.; Goldstein, P.; Mendelssohn, R.; Desrochers, A.

    2011-01-01

    An important Data Management and Communication (DMAC) goal is to enable a multi-disciplinary view of the ocean environment by facilitating discovery and integration of data from various sources, projects and scientific domains. United States Integrated Ocean Observing System (U.S. IOOS) DMAC functional requirements are based upon guidelines for standardized data access services, data formats, metadata, controlled vocabularies, and other conventions. So far, the data integration effort has focused on geophysical U.S. IOOS core variables such as temperature, salinity, ocean currents, etc. The IOOS Biological Observations Project is addressing the DMAC requirements that pertain to biological observations standards and interoperability applicable to U.S. IOOS and to various observing systems. Biological observations are highly heterogeneous and the variety of formats, logical structures, and sampling methods create significant challenges. Here we describe an informatics framework for biological observing data (e.g. species presence/absence and abundance data) that will expand information content and reconcile standards for the representation and integration of these biological observations for users to maximize the value of these observing data. We further propose that the approach described can be applied to other datasets generated in scientific observing surveys and will provide a vehicle for wider dissemination of biological observing data. We propose to employ data definition conventions that are well understood in U.S. IOOS and to combine these with ratified terminologies, policies and guidelines. ?? 2011 MTS.

  12. MathBench Biology Modules: Web-Based Math for All Biology Undergraduates

    Science.gov (United States)

    Nelson, Karen C.; Marbach-Ad, Gili; Schneider, Katie; Thompson, Katerina V.; Shields, Patricia A.; Fagan, William F.

    2009-01-01

    Historically, biology has not been a heavily quantitative science, but this is changing rapidly (Ewing 2002; Gross 2000; Hastings and palmer 2003; Jungck 2005; Steen 2005). Quantitative approaches now constitute a key tool for modern biologists, yet undergraduate biology courses remain largely qualitative and descriptive. Although biology majors…

  13. Low angle neutron data acquisition system for molecular biology

    International Nuclear Information System (INIS)

    The low angle spectrometer system utilizing a 2-dimensional position sensitive counter was designed to accommodate a variety of experiments in molecular biology requiring good low angle resolution. Biological structures requiring low angle analysis techniques fall into two groups: non-ordered systems (proteins or protein complexes in solution) and ordered systems with large spacings like muscle, collagen, and membranes. For structural investigations into such systems, data are ideally needed to a low scattering angle of 0.20 at 4.5 A or a minimum Q of 0.005 A-1 (Q = theta . 2π/lambda). Depending on the type of structure, data often extend to the high angle region, say 300. Apart from the low angle requirements, the spectrometer has to have good resolution to resolve diffraction peaks from samples with crystal spacings up to 1000 A or even larger. While it is desirable to build a spectrometer to such scattering conditions, given reactor conditions might not permit this and compromises have to be made between flux, resolution and lowest angle. The low angle spectrometer described here was designed to be used at the HFBR neutron beam pipe working at approximately 4.2 A or at the H4 satellite station working at 2.4 A

  14. A Real-Time and Dynamic Biological Information Retrieval and Analysis System (BIRAS)

    Institute of Scientific and Technical Information of China (English)

    Qi Zhou; Hong Zhang; Meiying Geng; Chenggang Zhang

    2003-01-01

    The aim of this study is to design a biological information retrieval and analysis system (BIRAS) based on the Internet. Using the specific network protocol, BIRAS system could send and receive information from the Entrez search and retrieval system maintained by National Center for Biotechnology Information (NCBI) in USA. The literatures, nucleotide sequence, protein sequences, and other resources according to the user-defined term could then be retrieved and sent to the user by pop up message or by E-mail informing automatically using BIRAS system.All the information retrieving and analyzing processes are done in real-time. As a robust system for intelligently and dynamically retrieving and analyzing on the user-defined information, it is believed that BIRAS would be extensively used to retrieve specific information from large amount of biological databases in now days.The program is available on request from the corresponding author.

  15. Systems Biology of Cancer: A Challenging Expedition for Clinical and Quantitative Biologists

    Directory of Open Access Journals (Sweden)

    Ilya eKorsunsky

    2014-08-01

    Full Text Available A systems-biology approach to complex disease (such as cancer is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive and personalized. In this paper, we summarize and classify models of systems biology and model-checking tools which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.

  16. Systems biology of cancer: a challenging expedition for clinical and quantitative biologists.

    Science.gov (United States)

    Korsunsky, Ilya; McGovern, Kathleen; LaGatta, Tom; Olde Loohuis, Loes; Grosso-Applewhite, Terri; Griffeth, Nancy; Mishra, Bud

    2014-01-01

    A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.

  17. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far. © 2011 by Annual Reviews. All rights reserved....

  18. Systems Biology and P4 Medicine: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Leroy Hood

    2013-04-01

    Full Text Available Studying complex biological systems in a holistic rather than a “one gene or one protein” at a time approach requires the concerted effort of scientists from a wide variety of disciplines. The Institute for Systems Biology (ISB has seamlessly integrated these disparate fields to create a cross-disciplinary platform and culture in which “biology drives technology drives computation.” To achieve this platform/culture, it has been necessary for cross-disciplinary ISB scientists to learn one another’s languages and work together effectively in teams. The focus of this “systems” approach on disease has led to a discipline denoted systems medicine. The advent of technological breakthroughs in the fields of genomics, proteomics, and, indeed, the other “omics” is catalyzing striking advances in systems medicine that have and are transforming diagnostic and therapeutic strategies. Systems medicine has united genomics and genetics through family genomics to more readily identify disease genes. It has made blood a window into health and disease. It is leading to the stratification of diseases (division into discrete subtypes for proper impedance match against drugs and the stratification of patients into subgroups that respond to environmental challenges in a similar manner (e.g. response to drugs, response to toxins, etc.. The convergence of patient-activated social networks, big data and their analytics, and systems medicine has led to a P4 medicine that is predictive, preventive, personalized, and participatory. Medicine will focus on each individual. It will become proactive in nature. It will increasingly focus on wellness rather than disease. For example, in 10 years each patient will be surrounded by a virtual cloud of billions of data points, and we will have the tools to reduce this enormous data dimensionality into simple hypotheses about how to optimize wellness and avoid disease for each individual. P4 medicine will be able to

  19. Predictive modeling of nanomaterial exposure effects in biological systems

    Directory of Open Access Journals (Sweden)

    Liu X

    2013-09-01

    nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion: The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. Keywords: nanomaterial exposure effects, biological response, toxicity, embryonic zebrafish, data mining, numerical prediction

  20. Tav4SB: integrating tools for analysis of kinetic models of biological systems

    Directory of Open Access Journals (Sweden)

    Rybiński Mikołaj

    2012-04-01

    Full Text Available Abstract Background Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. Results The Taverna services for Systems Biology (Tav4SB project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project’s Web page: http://bioputer.mimuw.edu.pl/tav4sb/. Conclusions The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  1. External noise control in inherently stochastic biological systems.

    Science.gov (United States)

    Zheng, Likun; Chen, Meng; Nie, Qing

    2012-11-01

    Biological systems are often subject to external noise from signal stimuli and environmental perturbations, as well as noises in the intracellular signal transduction pathway. Can different stochastic fluctuations interact to give rise to new emerging behaviors? How can a system reduce noise effects while still being capable of detecting changes in the input signal? Here, we study analytically and computationally the role of nonlinear feedback systems in controlling external noise with the presence of large internal noise. In addition to noise attenuation, we analyze derivatives of Fano factor to study systems' capability of differentiating signal inputs. We find effects of internal noise and external noise may be separated in one slow positive feedback loop system; in particular, the slow loop can decrease external noise and increase robustness of signaling with respect to fluctuations in rate constants, while maintaining the signal output specific to the input. For two feedback loops, we demonstrate that the influence of external noise mainly depends on how the fast loop responds to fluctuations in the input and the slow loop plays a limited role in determining the signal precision. Furthermore, in a dual loop system of one positive feedback and one negative feedback, a slower positive feedback always leads to better noise attenuation; in contrast, a slower negative feedback may not be more beneficial. Our results reveal interesting stochastic effects for systems containing both extrinsic and intrinsic noises, suggesting novel noise filtering strategies in inherently stochastic systems. PMID:23213267

  2. Design Strategies of Fluorescent Biosensors Based on Biological Macromolecular Receptors

    Directory of Open Access Journals (Sweden)

    Takashi Morii

    2010-02-01

    Full Text Available Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.

  3. Modeling biological systems with delays in Bio-PEPA

    CERN Document Server

    Caravagna, Giulio; 10.4204/EPTCS.40.7

    2010-01-01

    Delays in biological systems may be used to model events for which the underlying dynamics cannot be precisely observed, or to provide abstraction of some behavior of the system resulting more compact models. In this paper we enrich the stochastic process algebra Bio-PEPA, with the possibility of assigning delays to actions, yielding a new non-Markovian process algebra: Bio-PEPAd. This is a conservative extension meaning that the original syntax of Bio-PEPA is retained and the delay specification which can now be associated with actions may be added to existing Bio-PEPA models. The semantics of the firing of the actions with delays is the delay-as-duration approach, earlier presented in papers on the stochastic simulation of biological systems with delays. These semantics of the algebra are given in the Starting-Terminating style, meaning that the state and the completion of an action are observed as two separate events, as required by delays. Furthermore we outline how to perform stochastic simulation of Bio...

  4. Casual Games and Casual Learning About Human Biological Systems

    Science.gov (United States)

    Price, C. Aaron; Gean, Katherine; Christensen, Claire G.; Beheshti, Elham; Pernot, Bryn; Segovia, Gloria; Person, Halcyon; Beasley, Steven; Ward, Patricia

    2016-02-01

    Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show modest improvement in scientific attitudes, ability to identify human biological systems and in the children's ability to describe how those systems work together in real-world scenarios. Interviews reveal that children drew upon their prior school learning as they played the game. Also, on the surface they perceived the game as mainly entertainment but were easily able to discern learning outcomes when prompted. Implications for the design of casual games and how they can be used to enhance transfer of knowledge from the classroom to everyday life are discussed.

  5. Text mining and its potential applications in systems biology.

    Science.gov (United States)

    Ananiadou, Sophia; Kell, Douglas B; Tsujii, Jun-ichi

    2006-12-01

    With biomedical literature increasing at a rate of several thousand papers per week, it is impossible to keep abreast of all developments; therefore, automated means to manage the information overload are required. Text mining techniques, which involve the processes of information retrieval, information extraction and data mining, provide a means of solving this. By adding meaning to text, these techniques produce a more structured analysis of textual knowledge than simple word searches, and can provide powerful tools for the production and analysis of systems biology models. PMID:17045684

  6. The Search for Covalently Ligandable Proteins in Biological Systems.

    Science.gov (United States)

    Badshah, Syed Lal; Mabkhot, Yahia Nasser

    2016-01-01

    This commentary highlights the recent article published in Nature, June 2016, titled: "Proteome-wide covalent ligand discovery in native biological systems". They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here. PMID:27598117

  7. Caenorhabditis elegans - A model system for space biology studies

    Science.gov (United States)

    Johnson, Thomas E.; Nelson, Gregory A.

    1991-01-01

    The utility of the nematode Caenorhabditis elegans in studies spanning aspects of development, aging, and radiobiology is reviewed. These topics are interrelated via cellular and DNA repair processes especially in the context of oxidative stress and free-radical metabolism. The relevance of these research topics to problems in space biology is discussed and properties of the space environment are outlined. Exposure to the space-flight environment can induce rapid changes in living systems that are similar to changes occurring during aging; manipulation of these environmental parameters may represent an experimental strategy for studies of development and senescence. The current and future opportunities for such space-flight experimentation are presented.

  8. A complex systems approach to computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States)

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  9. From experimental systems to evolutionary biology: an impossible journey?

    Science.gov (United States)

    Morange, Michel

    2013-01-01

    The historical approach to the sciences has undergone a sea change during recent decades. Maybe the major contribution of Hans-Jörg Rheinberger to this movement was his demonstration of the importance of experimental systems, and of their transformations, in the development of the sciences. To describe these transformations, Hans-Jörg borrows metaphors from evolutionary biology. I want to argue that evolutionary biologists can find in these recent historical studies plenty of models and concepts to address unresolved issues in their discipline. At a time when transdisciplinarity is highly praised, it is useful to provide a precise description of the obstacles that have so far prevented this exchange.

  10. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  11. Application of computational systems biology to explore environmental toxicity hazards

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Grandjean, Philippe

    2011-01-01

    ) to ascertain their possible links to relevant adverse effects.Methods: We extracted chemical-protein association networks for each DDT isomer and its metabolites using ChemProt, a disease chemical biology database that includes both binding and gene expression data, and we explored protein-protein interactions...... diseases were linked to the two DDT isomers. Asthma was uniquely linked with p,p´-DDT, and autism with o,p´-DDT. Several reproductive and neurobehavioral outcomes and cancer types were linked to all three compounds.Conclusions: Computer-based modeling relies on available information. Although differences...

  12. Enhanced biological phosphorus removal from activated sludge system; Eliminacion biologica del fosfor en aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Pidre Bocardo, J. R.; Toja Santillana, J.; Alonso Alvarez, E. [Sevilla (Spain)

    1999-06-01

    A literature review of enhanced biological phosphorus removal was performed. This biological removal is based on the selective enrichment of bacteria accumulating inorganic polyphosphate, obtained at a cyclic regime of alternating anaerobic and aerobic conditions; or anaerobic, anoxic and aerobic zones for combined nitrogen and phosphorus removal. Some bacterial groups may to be implicate in this process, the gen Acinetobacter has been the most studied. In this paper a study of phosphorate forms from wastewater for a conventional activated sludge system is presented. (Author) 40 refs.

  13. Agent-Based Modeling in Systems Pharmacology.

    Science.gov (United States)

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling. PMID:26783498

  14. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  15. Strategies for the reduction of Legionella in biological treatment systems.

    Science.gov (United States)

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    2016-01-01

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection. PMID:27533856

  16. Mathematical and Statistical Modeling in Cancer Systems Biology

    Directory of Open Access Journals (Sweden)

    Rachael eHageman Blair

    2012-06-01

    Full Text Available Cancer is a major health problem with high mortality rates. In the post-genome era, investigators have access to massive amounts of rapidly accumulating high-throughput data in publicly available databases, some of which are exclusively devoted to housing Cancer data. However, data interpretation efforts have not kept pace with data collection, and gained knowledge is not necessarily translating into better diagnoses and treatments. A fundamental problem is to integrate and interpret data to further our understanding in Cancer Systems Biology. Viewing cancer as a network provides insights into the complex mechanisms underlying the disease. Mathematical and statistical models provide an avenue for cancer network modeling. In this article, we review two widely used modeling paradigms: deterministic metabolic models and statistical graphical models. The strength of these approaches lies in their flexibility and predictive power. Once a model has been validated, it can be used to make predictions and generate hypotheses. We describe a number of diverse applications to Cancer Biology, including, the system-wide effects of drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes, and survival predictions.

  17. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H2S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  18. Proceedings First Workshop on Applications of Membrane computing, Concurrency and Agent-based modelling in POPulation biology

    CERN Document Server

    Milazzo, Paolo; 10.4204/EPTCS.33

    2010-01-01

    This volume contains the papers presented at the first International Workshop on Applications of Membrane Computing, Concurrency and Agent-based Modelling in Population Biology (AMCA-POP 2010) held in Jena, Germany on August 25th, 2010 as a satellite event of the 11th Conference on Membrane Computing (CMC11). The aim of the workshop is to investigate whether formal modelling and analysis techniques could be applied with profit to systems of interest for population biology and ecology. The considered modelling notations include membrane systems, Petri nets, agent-based notations, process calculi, automata-based notations, rewriting systems and cellular automata. Such notations enable the application of analysis techniques such as simulation, model checking, abstract interpretation and type systems to study systems of interest in disciplines such as population biology, ecosystem science, epidemiology, genetics, sustainability science, evolution and other disciplines in which population dynamics and interactions...

  19. First Steps in Computational Systems Biology: A Practical Session in Metabolic Modeling and Simulation

    Science.gov (United States)

    Reyes-Palomares, Armando; Sanchez-Jimenez, Francisca; Medina, Miguel Angel

    2009-01-01

    A comprehensive understanding of biological functions requires new systemic perspectives, such as those provided by systems biology. Systems biology approaches are hypothesis-driven and involve iterative rounds of model building, prediction, experimentation, model refinement, and development. Developments in computer science are allowing for ever…

  20. Strategies for structuring interdisciplinary education in Systems Biology: an European perspective

    NARCIS (Netherlands)

    Cvijovic, Marija; Höfer, Thomas; Acimovic, Jure; Alberghina, Lilia; Almaas, Eivind; Besozzi, Daniela; Blomberg, Anders; Bretschneider, Till; Cascante, Marta; Collin, Olivier; Atauri, de Pedro; Depner, Cornelia; Dickinson, Robert; Dobrzynski, Maciej; Fleck, C.; Garcia-Ojalvo, Jordi; Gonze, Didier; Hahn, Jens; Hess, Heide Marie; Hollmann, Susanne; Krantz, Marcus; Kummer, Ursula; Lundh, Torbjörn; Martial, Gifta; Martins dos Santos, V.A.P.; Mauer-Oberthür, Angela; Regierer, Babette; Skene, Barbara; Stalidzans, Egils; Stelling, Jörg; Teusink, Bas; Workman, Christopher T.; Hohmann, Stefan

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological funct

  1. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    Science.gov (United States)

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.

  2. Coumarin Based Neutral Sensor for Biologically Important Anions

    Institute of Scientific and Technical Information of China (English)

    SHAO Jie

    2011-01-01

    A coumarin Shiff-base derivative,salicylaldehyde-N-(6-phenylazo-coumarin-3-formyl)-hydrazone(1),was obtained by simple organic synthesis from cheap and commercially available starting materials.Sensor 1 exhibits a very weak fluorescence emission,however,in the presence of acetate ions “turn-on” fluorescence is observed,which results from binding-induced conformational restriction of the fluorophore.Importantly,sensor 1 can also be used as colorimetric chemosensor for the anions with strong basicity,which is easily observed from yellow to red by naked eyes.Consequently,compound l can behave as a colorimetric and fluorescence sensor for biologically important F,CH3COO and H2PO4- in the presence of the other anions tested such as Cl-,Br- and I- in dimethyl sulfoxide(DMSO).

  3. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author)

  4. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems

    Science.gov (United States)

    Transtrum, Mark K.; Qiu, Peng

    2016-01-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  5. Comparison of Three Systems for Biological Greywater Treatment

    Directory of Open Access Journals (Sweden)

    Lucía Hernández Leal

    2010-04-01

    Full Text Available Greywater consists of household wastewater excluding toilet discharges. Three systems were compared for the biological treatment of greywater at a similar hydraulic retention time of approximately 12–13 hours. These systems were aerobic treatment in a sequencing batch reactor, anaerobic treatment in an up-flow anaerobic blanket reactor and combined anaerobic-aerobic treatment (up-flow anaerobic blanket reactor + sequencing batch reactor. Aerobic conditions resulted in a COD removal of 90%, which was significantly higher than 51% removal by anaerobic treatment. The low removal in the anaerobic reactor may have been caused by high concentration of anionic surfactants in the influent (43.5 mg/L and a poor removal of the colloidal fraction of the COD in up-flow anaerobic sludge blanket reactors. Combined aerobic-anaerobic treatment accomplished a COD removal of 89%, similar to the aerobic treatment alone. Greywater methanization was 32% for the anaerobic system and 25% for the anaerobic-aerobic system, yielding a small amount of energy. Therefore, anaerobic pre-treatment is not feasible and an aerobic system is preferred for the treatment of greywater.

  6. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Directory of Open Access Journals (Sweden)

    Mark K Transtrum

    2016-05-01

    Full Text Available The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  7. RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Science.gov (United States)

    Callahan, Alison; Abeyruwan, Saminda W; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R; Popovich, Phillip G; Shah, Nigam H; Visser, Ubbo; Bixby, John L; Lemmon, Vance P

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org. PMID:27055827

  8. RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Science.gov (United States)

    Callahan, Alison; Abeyruwan, Saminda W; Al-Ali, Hassan; Sakurai, Kunie; Ferguson, Adam R; Popovich, Phillip G; Shah, Nigam H; Visser, Ubbo; Bixby, John L; Lemmon, Vance P

    2016-01-01

    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org.

  9. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    OpenAIRE

    Ivelina Nikolova; Natalia Georgieva

    2015-01-01

    Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I - an organic farming system without any biological products used (growth under natural soil fertility) - Control; II - an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa); III - an organic farming system in which a biologica...

  10. Molecular eco-systems biology: towards an understanding of community function

    OpenAIRE

    Raes, J.; Bork, P.

    2008-01-01

    Systems-biology approaches, which are driven by genome sequencing and high-throughput functional genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we discuss the necessary data types that ar...

  11. Entity grammar systems: a grammatical tool for studying the hierarchical structures of biological systems.

    Science.gov (United States)

    Wang, Yun

    2004-05-01

    The hierarchical structures of biological systems are the typical complex hierarchical dynamical structures in the physical world, the effective investigations on which could not be performed with the existing formal grammar systems. To meet the needs of the investigation on these kinds of systems, especially the emerging field of system biology, a grammatical tool was proposed in the present article. Because the grammatical tool mainly deals with the systems composed of structured entities, they are called entity grammar systems (EGSs). The structure of entities in EGSs have the general form of the objects in the physical world, which means EGSs could be used as a tool to study the complex system composed of many objects with different structures, just like the biological systems. The article contains the formal definition of EGSs and the hierarchy of EGSs, which is congruent with the Chomsky hierarchy. The relationship between EGSs and array grammar systems, graph grammar systems, tree grammar systems, multi-set grammar systems are discussed to show the generative power of EGSs. At the end of the present article, the steps to define new grammar systems with the form of EGS are provided and the possible applicable fields of EGSs are discussed. PMID:15006443

  12. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

    OpenAIRE

    Pascual, Laura; Xu, Jiaxin; Biais, Benoit; Maucourt, Mickael; Ballias, Patricia; Bernillon, Stéphane; Deborde, Catherine; Jacob, Daniel; Desgroux, Aurore; Faurobert, Mireille; Bouchet, Jean-Paul; Gibon, Yves; Moing, Annick

    2013-01-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and oran...

  13. Biological anoxic phosphorus removal in a continuous-flow external nitrification activated sludge system

    Energy Technology Data Exchange (ETDEWEB)

    Kapagiannidis, A. G.; Aivasidis, A.

    2009-07-01

    Application of Biological Nutrient Removal (BNR) process in wastewater treatment is necessitated for the protection of water bodies from eutrophication. an alternative BNR method is tested for simultaneous Carbon (C), Nitrogen (N) and Phosphorus (P) removal in a continuous-flow bench scale plant for municipal wastewater treatment. The plant operation is based on the activity of two microbial populations which grow under different operational conditions (two sludge system). (Author)

  14. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  15. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Science.gov (United States)

    de Graaf, Albert A.; Freidig, Andreas P.; De Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales. PMID:19956660

  16. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    Directory of Open Access Journals (Sweden)

    Albert A de Graaf

    2009-11-01

    Full Text Available The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a "middle-out" strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from "-omics" signatures are identified as key elements of a successful systems biology modeling approach in nutrition research--one that integrates physiological mechanisms and data at multiple space and time scales.

  17. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  18. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    The application of the stable isotope 15N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15N tracer technique. On the basis of the latest results of 15N tracer research in life sciences and agriculture methods of 15N tracer research in biological systems are compiled. The 15N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15N analysis and aspects of 15N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15N tracer experiments are made. (author)

  19. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Directory of Open Access Journals (Sweden)

    Blekherman Grigoriy

    2011-07-01

    Full Text Available Abstract Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM, which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides

  20. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.

    Science.gov (United States)

    Wigren, Torbjörn

    2015-01-01

    The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data.