WorldWideScience

Sample records for biological systems analysis

  1. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  2. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  3. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  4. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  5. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  6. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  7. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  8. ADAM: analysis of discrete models of biological systems using computer algebra.

    Science.gov (United States)

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web

  9. Continuum analysis of biological systems conserved quantities, fluxes and forces

    CERN Document Server

    Suraishkumar, G K

    2014-01-01

    This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...

  10. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  11. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  12. Compartmental study of biological systems

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1975-01-01

    The compartmental analysis of biological system is dealt with on several chapters devoted successively to: terminology; a mathematical and symbolic account of a system at equilibrium; different compartment systems; analysis of the experimental results. For this it is pointed out that the application of compartmental systems to biological phenomena is not always without danger. Sometimes the compartmental system established in a reference subject fails to conform in the patient. The compartments can divide into two or join together, completely changing the aspect of the system so that parameters calculated with the old model become entirely false. The conclusion is that the setting up of a compartmental system to represent a biological phenomenon is a tricky undertaking and the results must be constantly criticized and questioned [fr

  13. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    Science.gov (United States)

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  14. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Micro-separation toward systems biology.

    Science.gov (United States)

    Liu, Bi-Feng; Xu, Bo; Zhang, Guisen; Du, Wei; Luo, Qingming

    2006-02-17

    Current biology is experiencing transformation in logic or philosophy that forces us to reevaluate the concept of cell, tissue or entire organism as a collection of individual components. Systems biology that aims at understanding biological system at the systems level is an emerging research area, which involves interdisciplinary collaborations of life sciences, computational and mathematical sciences, systems engineering, and analytical technology, etc. For analytical chemistry, developing innovative methods to meet the requirement of systems biology represents new challenges as also opportunities and responsibility. In this review, systems biology-oriented micro-separation technologies are introduced for comprehensive profiling of genome, proteome and metabolome, characterization of biomolecules interaction and single cell analysis such as capillary electrophoresis, ultra-thin layer gel electrophoresis, micro-column liquid chromatography, and their multidimensional combinations, parallel integrations, microfabricated formats, and nano technology involvement. Future challenges and directions are also suggested.

  16. Aspergilli: Systems biology and industrial applications

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nielsen, Jens

    2012-01-01

    possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology....

  17. Analyzing the Biology on the System Level

    OpenAIRE

    Tong, Wei

    2016-01-01

    Although various genome projects have provided us enormous static sequence information, understanding of the sophisticated biology continues to require integrating the computational modeling, system analysis, technology development for experiments, and quantitative experiments all together to analyze the biology architecture on various levels, which is just the origin of systems biology subject. This review discusses the object, its characteristics, and research attentions in systems biology,...

  18. PeTTSy: a computational tool for perturbation analysis of complex systems biology models.

    Science.gov (United States)

    Domijan, Mirela; Brown, Paul E; Shulgin, Boris V; Rand, David A

    2016-03-10

    Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have either used parameter sampling, been focused on a restricted set of model observables of interest, studied optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where the changes can be permanent or temporary. Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of mathematical models including free-running and forced oscillators and signalling systems. To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new experiments. It is especially useful in the analysis of large and complex models involving many variables and parameters. PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and

  19. Tav4SB: integrating tools for analysis of kinetic models of biological systems.

    Science.gov (United States)

    Rybiński, Mikołaj; Lula, Michał; Banasik, Paweł; Lasota, Sławomir; Gambin, Anna

    2012-04-05

    Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  20. How causal analysis can reveal autonomy in models of biological systems

    Science.gov (United States)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  1. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  2. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Science.gov (United States)

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  3. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  4. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    La Cadena, A. de; La Rosa, J. de; Stolik, S.

    2012-01-01

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  5. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  6. A system for success: BMC Systems Biology, a new open access journal.

    Science.gov (United States)

    Hodgkinson, Matt J; Webb, Penelope A

    2007-09-04

    BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  7. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.

    Science.gov (United States)

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-08-15

    It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  8. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  9. Surface analysis and techniques in biology

    CERN Document Server

    Smentkowski, Vincent S

    2014-01-01

    This book highlights state-of-the-art surface analytical instrumentation, advanced data analysis tools, and the use of complimentary surface analytical instrumentation to perform a complete analysis of biological systems.

  10. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  11. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    Science.gov (United States)

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  12. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  13. VANESA - A Software Application for the Visualization and Analysis of Networks in Systems Biology Applications

    Directory of Open Access Journals (Sweden)

    Brinkrolf Christoph

    2014-06-01

    Full Text Available VANESA is a modeling software for the automatic reconstruction and analysis of biological networks based on life-science database information. Using VANESA, scientists are able to model any kind of biological processes and systems as biological networks. It is now possible for scientists to automatically reconstruct important molecular systems with information from the databases KEGG, MINT, IntAct, HPRD, and BRENDA. Additionally, experimental results can be expanded with database information to better analyze the investigated elements and processes in an overall context. Users also have the possibility to use graph theoretical approaches in VANESA to identify regulatory structures and significant actors within the modeled systems. These structures can then be further investigated in the Petri net environment of VANESA. It is platform-independent, free-of-charge, and available at http://vanesa.sf.net.

  14. A system for success: BMC Systems Biology, a new open access journal

    OpenAIRE

    Webb Penelope A; Hodgkinson Matt J

    2007-01-01

    Abstract BMC Systems Biology is the first open access journal spanning the growing field of systems biology from molecules up to ecosystems. The journal has launched as more and more institutes are founded that are similarly dedicated to this new approach. BMC Systems Biology builds on the ongoing success of the BMC series, providing a venue for all sound research in the systems-level analysis of biology.

  15. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  16. On the interplay between mathematics and biology: hallmarks toward a new systems biology.

    Science.gov (United States)

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  18. ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis.

    Science.gov (United States)

    Römer, Michael; Eichner, Johannes; Dräger, Andreas; Wrzodek, Clemens; Wrzodek, Finja; Zell, Andreas

    2016-01-01

    Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.

  19. A systems biology approach for pathway level analysis

    OpenAIRE

    Draghici, Sorin; Khatri, Purvesh; Tarca, Adi Laurentiu; Amin, Kashyap; Done, Arina; Voichita, Calin; Georgescu, Constantin; Romero, Roberto

    2007-01-01

    A common challenge in the analysis of genomics data is trying to understand the underlying phenomenon in the context of all complex interactions taking place on various signaling pathways. A statistical approach using various models is universally used to identify the most relevant pathways in a given experiment. Here, we show that the existing pathway analysis methods fail to take into consideration important biological aspects and may provide incorrect results in certain situations. By usin...

  20. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  1. SEEK: a systems biology data and model management platform.

    NARCIS (Netherlands)

    Wolstencroft, K.J.; Owen, S.; Krebs, O.; Nguyen, Q.; Stanford, N.J.; Golebiewski, M.; Weidemann, A.; Bittkowski, M.; An, L.; Shockley, D.; Snoep, J.L.; Mueller, W.; Goble, C.

    2015-01-01

    Background: Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems

  2. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  3. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    Science.gov (United States)

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  4. From systems biology to systems biomedicine.

    Science.gov (United States)

    Antony, Paul M A; Balling, Rudi; Vlassis, Nikos

    2012-08-01

    Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  6. Systems Biology-an interdisciplinary approach.

    Science.gov (United States)

    Friboulet, Alain; Thomas, Daniel

    2005-06-15

    System-level approaches in biology are not new but foundations of "Systems Biology" are achieved only now at the beginning of the 21st century [Kitano, H., 2001. Foundations of Systems Biology. MIT Press, Cambridge, MA]. The renewed interest for a system-level approach is linked to the progress in collecting experimental data and to the limits of the "reductionist" approach. System-level understanding of native biological and pathological systems is needed to provide potential therapeutic targets. Examples of interdisciplinary approach in Systems Biology are described in U.S., Japan and Europe. Robustness in biology, metabolic engineering and idiotypic networks are discussed in the framework of Systems Biology.

  7. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    Science.gov (United States)

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  8. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  9. Noninvasive biological sensor system for detection of drunk driving.

    Science.gov (United States)

    Murata, Kohji; Fujita, Etsunori; Kojima, Shigeyuki; Maeda, Shinitirou; Ogura, Yumi; Kamei, Tsutomu; Tsuji, Toshio; Kaneko, Shigehiko; Yoshizumi, Masao; Suzuki, Nobutaka

    2011-01-01

    Systems capable of monitoring the biological condition of a driver and issuing warnings during instances of drowsiness have recently been studied. Moreover, many researchers have reported that biological signals, such as brain waves, pulsation waves, and heart rate, are different between people who have and have not consumed alcohol. Currently, we are developing a noninvasive system to detect individuals driving under the influence of alcohol by measuring biological signals. We used the frequency time series analysis to attempt to distinguish between normal and intoxicated states of a person as the basis of the sensing system.

  10. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  11. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  12. Efficient Analysis of Systems Biology Markup Language Models of Cellular Populations Using Arrays.

    Science.gov (United States)

    Watanabe, Leandro; Myers, Chris J

    2016-08-19

    The Systems Biology Markup Language (SBML) has been widely used for modeling biological systems. Although SBML has been successful in representing a wide variety of biochemical models, the core standard lacks the structure for representing large complex regular systems in a standard way, such as whole-cell and cellular population models. These models require a large number of variables to represent certain aspects of these types of models, such as the chromosome in the whole-cell model and the many identical cell models in a cellular population. While SBML core is not designed to handle these types of models efficiently, the proposed SBML arrays package can represent such regular structures more easily. However, in order to take full advantage of the package, analysis needs to be aware of the arrays structure. When expanding the array constructs within a model, some of the advantages of using arrays are lost. This paper describes a more efficient way to simulate arrayed models. To illustrate the proposed method, this paper uses a population of repressilator and genetic toggle switch circuits as examples. Results show that there are memory benefits using this approach with a modest cost in runtime.

  13. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  14. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  15. Systems biology: the reincarnation of systems theory applied in biology?

    Science.gov (United States)

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.

  16. Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models

    Directory of Open Access Journals (Sweden)

    Kruthika H.A.

    2017-03-01

    Full Text Available In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the networks around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commensurate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.

  17. Polynomial algebra of discrete models in systems biology.

    Science.gov (United States)

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  18. Information-theoretic analysis of the dynamics of an executable biological model.

    Directory of Open Access Journals (Sweden)

    Avital Sadot

    Full Text Available To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and can be used to study the changes in the state of the system over time. For many model classes, such as discrete or continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic information theory based approach for the analysis and interpretation of the dynamics of such executable models of biological systems. We apply a normalized compression distance (NCD analysis to the state representations of a model that simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the essential information in the dynamics of the system, which results from a variety of events including proliferation, differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.

  19. SEEK: a systems biology data and model management platform.

    Science.gov (United States)

    Wolstencroft, Katherine; Owen, Stuart; Krebs, Olga; Nguyen, Quyen; Stanford, Natalie J; Golebiewski, Martin; Weidemann, Andreas; Bittkowski, Meik; An, Lihua; Shockley, David; Snoep, Jacky L; Mueller, Wolfgang; Goble, Carole

    2015-07-11

    Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems biology models. There are a large number of public repositories for storing biological data of a particular type, for example transcriptomics or proteomics, and there are several model repositories. However, this silo-type storage of data and models is not conducive to systems biology investigations. Interdependencies between multiple omics datasets and between datasets and models are essential. Researchers require an environment that will allow the management and sharing of heterogeneous data and models in the context of the experiments which created them. The SEEK is a suite of tools to support the management, sharing and exploration of data and models in systems biology. The SEEK platform provides an access-controlled, web-based environment for scientists to share and exchange data and models for day-to-day collaboration and for public dissemination. A plug-in architecture allows the linking of experiments, their protocols, data, models and results in a configurable system that is available 'off the shelf'. Tools to run model simulations, plot experimental data and assist with data annotation and standardisation combine to produce a collection of resources that support analysis as well as sharing. Underlying semantic web resources additionally extract and serve SEEK metadata in RDF (Resource Description Format). SEEK RDF enables rich semantic queries, both within SEEK and between related resources in the web of Linked Open Data. The SEEK platform has been adopted by many systems biology consortia across Europe. It is a data management environment that has a low barrier of uptake and provides rich resources for collaboration. This paper provides an update on the functions and

  20. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  1. A dedicated database system for handling multi-level data in systems biology.

    Science.gov (United States)

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.

  2. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  3. Sirius PSB: a generic system for analysis of biological sequences.

    Science.gov (United States)

    Koh, Chuan Hock; Lin, Sharene; Jedd, Gregory; Wong, Limsoon

    2009-12-01

    Computational tools are essential components of modern biological research. For example, BLAST searches can be used to identify related proteins based on sequence homology, or when a new genome is sequenced, prediction models can be used to annotate functional sites such as transcription start sites, translation initiation sites and polyadenylation sites and to predict protein localization. Here we present Sirius Prediction Systems Builder (PSB), a new computational tool for sequence analysis, classification and searching. Sirius PSB has four main operations: (1) Building a classifier, (2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Preliminary and post-prediction analysis. Sirius PSB supports all these operations via a simple and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to identify interesting features in the feature space. Secondly, instead of the conventional method of searching for similar proteins via sequence similarity, we introduced searching via features' similarity. To demonstrate the capabilities of Sirius PSB, we have built two prediction models - one for the recognition of Arabidopsis polyadenylation sites and another for the subcellular localization of proteins. Both systems are competitive against current state-of-the-art models based on evaluation of public datasets. More notably, the time and effort required to build each model is greatly reduced with the assistance of Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable to find related proteins, Sirius PSB can identify functionally related proteins based on their biophysical similarities. Sirius PSB and its related supplements are available at: http://compbio.ddns.comp.nus.edu.sg/~sirius.

  4. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. BIOZON: a system for unification, management and analysis of heterogeneous biological data

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2006-02-01

    Full Text Available Abstract Background Integration of heterogeneous data types is a challenging problem, especially in biology, where the number of databases and data types increase rapidly. Amongst the problems that one has to face are integrity, consistency, redundancy, connectivity, expressiveness and updatability. Description Here we present a system (Biozon that addresses these problems, and offers biologists a new knowledge resource to navigate through and explore. Biozon unifies multiple biological databases consisting of a variety of data types (such as DNA sequences, proteins, interactions and cellular pathways. It is fundamentally different from previous efforts as it uses a single extensive and tightly connected graph schema wrapped with hierarchical ontology of documents and relations. Beyond warehousing existing data, Biozon computes and stores novel derived data, such as similarity relationships and functional predictions. The integration of similarity data allows propagation of knowledge through inference and fuzzy searches. Sophisticated methods of query that span multiple data types were implemented and first-of-a-kind biological ranking systems were explored and integrated. Conclusion The Biozon system is an extensive knowledge resource of heterogeneous biological data. Currently, it holds more than 100 million biological documents and 6.5 billion relations between them. The database is accessible through an advanced web interface that supports complex queries, "fuzzy" searches, data materialization and more, online at http://biozon.org.

  6. Boolean modeling in systems biology: an overview of methodology and applications

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Albert, Réka; Saadatpour, Assieh

    2012-01-01

    Mathematical modeling of biological processes provides deep insights into complex cellular systems. While quantitative and continuous models such as differential equations have been widely used, their use is obstructed in systems wherein the knowledge of mechanistic details and kinetic parameters is scarce. On the other hand, a wealth of molecular level qualitative data on individual components and interactions can be obtained from the experimental literature and high-throughput technologies, making qualitative approaches such as Boolean network modeling extremely useful. In this paper, we build on our research to provide a methodology overview of Boolean modeling in systems biology, including Boolean dynamic modeling of cellular networks, attractor analysis of Boolean dynamic models, as well as inferring biological regulatory mechanisms from high-throughput data using Boolean models. We finally demonstrate how Boolean models can be applied to perform the structural analysis of cellular networks. This overview aims to acquaint life science researchers with the basic steps of Boolean modeling and its applications in several areas of systems biology. (paper)

  7. Systems Biology of the Fluxome

    Directory of Open Access Journals (Sweden)

    Miguel A. Aon

    2015-07-01

    Full Text Available The advent of high throughput -omics has made the accumulation of comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and metabolites. Systems biology-inspired computational methods for translating metabolomics data into fluxomics provide a direct functional, dynamic readout of metabolic networks. When combined with appropriate experimental design, these methods deliver insightful knowledge about cellular function under diverse conditions. The use of computational models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the control and regulatory properties of the fluxome under steady and time-dependent behaviors. This approach extends the analysis of complex systems from description to prediction, including control of complex dynamic behavior ranging from biological rhythms to catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics approach will help our ability to engineer unicellular and multicellular organisms evolve from trial-and-error to a more predictable process, and from cells to organ and organisms.

  8. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  9. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  10. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system.

    Science.gov (United States)

    Lumen, Annie; McNally, Kevin; George, Nysia; Fisher, Jeffrey W; Loizou, George D

    2015-01-01

    A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local sensitivity analysis.

  11. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system

    Directory of Open Access Journals (Sweden)

    Annie eLumen

    2015-05-01

    Full Text Available A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local

  12. Novel approaches to the integration and analysis of systems biology data

    OpenAIRE

    Ramírez, Fidel

    2011-01-01

    The opportunity to investigate whole cellular systems using experimental and computational high-throughput methods leads to the generation of unprecedented amounts of data. Processing of these data often results in large lists of genes or proteins that need to be analyzed and interpreted in the context of all other biological information that is already available. To support such analyses, repositories aggregating and merging the biological information contained in different databases are req...

  13. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far....

  14. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  15. International Conference on Recent Advances in Mathematical Biology, Analysis and Applications

    CERN Document Server

    Saleem, M; Srivastava, H; Khan, Mumtaz; Merajuddin, M

    2016-01-01

    The book contains recent developments and contemporary research in mathematical analysis and in its application to problems arising from the biological and physical sciences. The book is of interest to readers who wish to learn of new research in such topics as linear and nonlinear analysis, mathematical biology and ecology, dynamical systems, graph theory, variational analysis and inequalities, functional analysis, differential and difference equations, partial differential equations, approximation theory, and chaos. All papers were prepared by participants at the International Conference on Recent Advances in Mathematical Biology, Analysis and Applications (ICMBAA-2015) held during 4–6 June 2015 in Aligarh, India. A focal theme of the conference was the application of mathematics to the biological sciences and on current research in areas of theoretical mathematical analysis that can be used as sophisticated tools for the study of scientific problems. The conference provided researchers, academicians and ...

  16. When one model is not enough: Combining epistemic tools in systems biology

    DEFF Research Database (Denmark)

    Green, Sara

    2013-01-01

    . The conceptual repertoire of Rheinberger’s historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue...

  17. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  18. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  19. Institute for Genomics and Systems Biology

    Science.gov (United States)

    Institute for Genomics and Systems Biology Discover. Predict. Improve. Advancing Human and , 2015 See all Research Papers Featured Video Introduction to Systems Biology Video: Introduction to Systems Biology News Jack Gilbert Heading UChicago Startup that Aims to Predict Behavior of Trillions of

  20. Using systems and structure biology tools to dissect cellular phenotypes.

    Science.gov (United States)

    Floratos, Aris; Honig, Barry; Pe'er, Dana; Califano, Andrea

    2012-01-01

    The Center for the Multiscale Analysis of Genetic Networks (MAGNet, http://magnet.c2b2.columbia.edu) was established in 2005, with the mission of providing the biomedical research community with Structural and Systems Biology algorithms and software tools for the dissection of molecular interactions and for the interaction-based elucidation of cellular phenotypes. Over the last 7 years, MAGNet investigators have developed many novel analysis methodologies, which have led to important biological discoveries, including understanding the role of the DNA shape in protein-DNA binding specificity and the discovery of genes causally related to the presentation of malignant phenotypes, including lymphoma, glioma, and melanoma. Software tools implementing these methodologies have been broadly adopted by the research community and are made freely available through geWorkbench, the Center's integrated analysis platform. Additionally, MAGNet has been instrumental in organizing and developing key conferences and meetings focused on the emerging field of systems biology and regulatory genomics, with special focus on cancer-related research.

  1. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  2. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  3. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  4. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  5. Systems biology in critical-care nursing.

    Science.gov (United States)

    Schallom, Lynn; Thimmesch, Amanda R; Pierce, Janet D

    2011-01-01

    Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.

  6. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  7. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  8. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  9. Calculating life? Duelling discourses in interdisciplinary systems biology.

    Science.gov (United States)

    Calvert, Jane; Fujimura, Joan H

    2011-06-01

    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Heuristic Strategies in Systems Biology

    Directory of Open Access Journals (Sweden)

    Fridolin Gross

    2016-06-01

    Full Text Available Systems biology is sometimes presented as providing a superior approach to the problem of biological complexity. Its use of ‘unbiased’ methods and formal quantitative tools might lead to the impression that the human factor is effectively eliminated. However, a closer look reveals that this impression is misguided. Systems biologists cannot simply assemble molecular information and compute biological behavior. Instead, systems biology’s main contribution is to accelerate the discovery of mechanisms by applying models as heuristic tools. These models rely on a variety of idealizing and simplifying assumptions in order to be efficient for this purpose. The strategies of systems biologists are similar to those of experimentalists in that they attempt to reduce the complexity of the discovery process. Analyzing and comparing these strategies, or ‘heuristics’, reveals the importance of the human factor in computational approaches and helps to situate systems biology within the epistemic landscape of the life sciences.

  11. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  12. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  13. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  14. Editorial overview : Systems biology for biotechnology

    NARCIS (Netherlands)

    Heinemann, Matthias; Pilpel, Yitzhak

    About 15 years ago, systems biology was introduced as a novel approach to biological research. On the one side, its introduction was a result of the recognition that through solely the reductionist approach, we would ulti- mately not be able to understand how biological systems function as a whole.

  15. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    Directory of Open Access Journals (Sweden)

    Marco Aldinucci

    2014-01-01

    Full Text Available The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  16. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    Science.gov (United States)

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  17. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  18. Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research

    Science.gov (United States)

    Saks, Valdur; Monge, Claire; Guzun, Rita

    2009-01-01

    We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed. PMID:19399243

  19. Systems biology approaches and tools for analysis of interactomes and multi-target drugs.

    Science.gov (United States)

    Schrattenholz, André; Groebe, Karlfried; Soskic, Vukic

    2010-01-01

    Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models. One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of "complex

  20. Omics/systems biology and cancer cachexia.

    Science.gov (United States)

    Gallagher, Iain J; Jacobi, Carsten; Tardif, Nicolas; Rooyackers, Olav; Fearon, Kenneth

    2016-06-01

    Cancer cachexia is a complex syndrome generated by interaction between the host and tumour cells with a background of treatment effects and toxicity. The complexity of the physiological pathways likely involved in cancer cachexia necessitates a holistic view of the relevant biology. Emergent properties are characteristic of complex systems with the result that the end result is more than the sum of its parts. Recognition of the importance of emergent properties in biology led to the concept of systems biology wherein a holistic approach is taken to the biology at hand. Systems biology approaches will therefore play an important role in work to uncover key mechanisms with therapeutic potential in cancer cachexia. The 'omics' technologies provide a global view of biological systems. Genomics, transcriptomics, proteomics, lipidomics and metabolomics approaches all have application in the study of cancer cachexia to generate systems level models of the behaviour of this syndrome. The current work reviews recent applications of these technologies to muscle atrophy in general and cancer cachexia in particular with a view to progress towards integration of these approaches to better understand the pathology and potential treatment pathways in cancer cachexia. Copyright © 2016. Published by Elsevier Ltd.

  1. Set membership experimental design for biological systems

    Directory of Open Access Journals (Sweden)

    Marvel Skylar W

    2012-03-01

    Full Text Available Abstract Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This

  2. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  3. Design of fluidized-bed, biological denitrification systems

    International Nuclear Information System (INIS)

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO 3 - )/m 3 ) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO 3 - )/m 3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams

  4. Fiji: an open-source platform for biological-image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  5. Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research

    Directory of Open Access Journals (Sweden)

    Valdur Saks

    2009-03-01

    Full Text Available We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed.

  6. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    Science.gov (United States)

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  7. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  8. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

  9. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many......In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...

  10. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  11. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  12. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  13. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    Science.gov (United States)

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  14. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  15. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  16. Model checking biological systems described using ambient calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola

    2005-01-01

    Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005.......Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....

  17. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why.

    Science.gov (United States)

    Stéphanou, Angélique; Fanchon, Eric; Innominato, Pasquale F; Ballesta, Annabelle

    2018-05-09

    Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.

  18. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  19. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  20. WebBio, a web-based management and analysis system for patient data of biological products in hospital.

    Science.gov (United States)

    Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin

    2011-08-01

    We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.

  1. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  2. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  3. Stress-associated synchronization and desynchronization in geologic and biologic systems

    Science.gov (United States)

    Kluchevsky, A. V.; Kluchevskaya, A. A.

    2010-12-01

    Variations in the annual numbers of representative earthquakes in three areas and six districts of the Baikal rift zone in 1964-2002 were subjected to correlation analysis. Episodes of significant correlations of shock flow rates were found against the background of chaotic seismic activity. They followed the rearrangements (catastrophes) of stresses in the lithosphere, which are also stressing factors for the whole rift geodynamic system. The episode of the late 1970s-early 1980s was particularly long and showed the maximum correlation. Therefore, it can be considered the principal event in seismic process synchronization in the Baikal Rift Zone. The same approach to data analysis revealed similar synchronization and desynchronization phenomena in the behavior of Baikalian turbellaria when they deviated from homeostasis as a result of illumination, which is a stress for this biologic system. Possible reasons for the behavior of biologic and geodynamic systems are discussed in terms of the synergetic concept of phenomena in living and nonliving nature.

  4. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  5. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael

    2018-01-01

    of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological...... strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties...

  6. Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Matt Shipman

    Full Text Available Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.

  7. SBEToolbox: A Matlab Toolbox for Biological Network Analysis.

    Science.gov (United States)

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.

  8. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  10. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  11. The Feasibility of Systems Thinking in Biology Education

    Science.gov (United States)

    Boersma, Kerst; Waarlo, Arend Jan; Klaassen, Kees

    2011-01-01

    Systems thinking in biology education is an up and coming research topic, as yet with contrasting feasibility claims. In biology education systems thinking can be understood as thinking backward and forward between concrete biological objects and processes and systems models representing systems theoretical characteristics. Some studies claim that…

  12. Compatibility analysis of 3D printer resin for biological applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Alamoudi, Kholod; Buttner, Ulrich; Khashab, Niveen M.; Salama, Khaled N.

    2016-01-01

    and that had the least effect on biological molecules that could be used for PCR and protein interactions and cells, whereas the others were used after treating the surface. Importance in building lab-on-chip/micrototal analysis systems and organ

  13. Collaborative Systems Biology Projects for the Military Medical Community.

    Science.gov (United States)

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  14. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  15. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  16. Answering biological questions: Querying a systems biology database for nutrigenomics

    NARCIS (Netherlands)

    Evelo, C.T.; Bochove, K. van; Saito, J.T.

    2011-01-01

    The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A

  17. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    Science.gov (United States)

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  18. Systems biology technologies enable personalized traditional Chinese medicine: a systematic review.

    Science.gov (United States)

    Wang, Xijun; Zhang, Aihua; Sun, Hui; Wang, Ping

    2012-01-01

    Traditional Chinese medicine (TCM), an alternative medicine, focuses on the treatment of human disease via the integrity of the close relationship between body and syndrome analysis. It remains a form of primary care in most Asian countries and its characteristics showcase the great advantages of personalized medicine. Although this approach to disease diagnosis, prognosis and treatment has served the medical establishment well for thousands of years, it has serious shortcomings in the era of modern medicine that stem from its reliance on reductionist principles of experimentation and analysis. In this way, systems biology offers the potential to personalize medicine, facilitating the provision of the right care to the right patient at the right time. We expect that systems biology will have a major impact on future personalized therapeutic approaches which herald the future of medicine. Here we summarize current trends and critically review the potential limitations and future prospects of such treatments. Some characteristic examples are presented to highlight the application of this groundbreaking platform to personalized TCM as well as some of the necessary milestones for moving systems biology of a state-of-the-art nature into mainstream health care.

  19. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  20. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  1. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  2. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  3. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  4. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  5. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  6. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  7. An integrated model for interaction of electromagnetic fields with biological systems

    International Nuclear Information System (INIS)

    Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.

    1999-01-01

    In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it

  8. Biological reference materials and analysis of toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  9. Growing trend of CE at the omics level: the frontier of systems biology--an update.

    Science.gov (United States)

    Ban, Eunmi; Park, Soo Hyun; Kang, Min-Jung; Lee, Hyun-Jung; Song, Eun Joo; Yoo, Young Sook

    2012-01-01

    Omics is the study of proteins, peptides, genes, and metabolites in living organisms. Systems biology aims to understand the system through the study of the relationship between elements such as genes and proteins in biological system. Recently, systems biology emerged as the result of the advanced development of high-throughput analysis technologies such as DNA sequencers, DNA arrays, and mass spectrometry for omics studies. Among a number of analytical tools and technologies, CE and CE coupled to MS are promising and relatively rapidly developing tools with the potential to provide qualitative and quantitative analyses of biological molecules. With an emphasis on CE for systems biology, this review summarizes the method developments and applications of CE for the genomic, transcriptomic, proteomic, and metabolomic studies focusing on the drug discovery and disease diagnosis and therapies since 2009. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  11. Impact of Thermodynamic Principles in Systems Biology

    NARCIS (Netherlands)

    Heijnen, J.J.

    2010-01-01

    It is shown that properties of biological systems which are relevant for systems biology motivated mathematical modelling are strongly shaped by general thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near equilibria and thermodynamic driving force. Each of these aspects

  12. Systems Biology of Metabolism: Annual Review of Biochemistry

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2017-01-01

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are descr...

  13. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    Science.gov (United States)

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  15. Analysis of undergraduate students' conceptual models of a complex biological system across a diverse body of learners

    Science.gov (United States)

    Dirnbeck, Matthew R.

    Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function

  16. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  17. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  19. Systems Biology — the Broader Perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Bard

    2013-06-01

    Full Text Available Systems biology has two general aims: a narrow one, which is to discover how complex networks of proteins work, and a broader one, which is to integrate the molecular and network data with the generation and function of organism phenotypes. Doing all this involves complex methodologies, but underpinning the subject are more general conceptual problems about upwards and downwards causality, complexity and information storage, and their solutions provide the constraints within which these methodologies can be used. This essay considers these general aspects and the particular role of protein networks; their functional outputs are often the processes driving phenotypic change and physiological function—networks are, in a sense, the units of systems biology much as proteins are for molecular biology. It goes on to argue that the natural language for systems-biological descriptions of biological phenomena is the mathematical graph (a set of connected facts of the general form [process] (e.g., [activates] . Such graphs not only integrate events at different levels but emphasize the distributed nature of control as well as displaying a great deal of data. The implications and successes of these ideas for physiology, pharmacology, development and evolution are briefly considered. The paper concludes with some challenges for the future.

  20. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  1. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Optoelectronic system and apparatus for connection to biological systems

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2018-03-06

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  3. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  4. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...... by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....... and metabolic pathways that are necessary or related to establishment of chronic infections. Archetypal analysis showed to be successful in extracting relevant phenotypes from global gene expression da-­‐ ta. Furthermore, genome-­‐scale metabolic modeling showed to be useful in connecting the genotype...

  5. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David

    2017-05-09

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.

  6. Micro and nano-platforms for biological cell analysis

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Castillo, Jaime; Moresco, Jacob Lange

    2011-01-01

    In this paper some technological platforms developed for biological cell analysis will be presented and compared to existing systems. In brief, we present a novel micro cell culture chamber based on diffusion feeding of cells, into which cells can be introduced and extracted after culturing using...... from the cells, while passive modifications involve the presence of a peptide nanotube based scaffold for the cell culturing that mimics the in vivo environment. Two applications involving fluorescent in situ hybridization (FISH) analysis and cancer cell sorting are presented, as examples of further...... analysis that can be done after cell culturing. A platform able to automate the entire process from cell culturing to cell analysis by means of simple plug and play of various self-contained, individually fabricated modules is finally described....

  7. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  8. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  9. Data acquisition and analysis at the Structural Biology Center

    International Nuclear Information System (INIS)

    Westbrook, M.L.; Coleman, T.A.; Daly, R.T.; Pflugrath, J.W.

    1996-01-01

    The Structural Biology Center (SBC), a national user facility for macromolecular crystallography located at Argonne National Laboratory's Advanced Photon Source, is currently being built and commissioned. SBC facilities include a bending-magnet beamline, an insertion-device beamline, laboratory and office space adjacent to the beamlines, and associated instrumentation, experimental apparatus, and facilities. SBC technical facilities will support anomalous dispersion phasing experiments, data collection from microcrystals, data collection from crystals with large molecular structures and rapid data collection from multiple related crystal structures for protein engineering and drug design. The SBC Computing Systems and Software Engineering Group is tasked with developing the SBC Control System, which includes computing systems, network, and software. The emphasis of SBC Control System development has been to provide efficient and convenient beamline control, data acquisition, and data analysis for maximal facility and experimenter productivity. This paper describes the SBC Control System development, specifically data acquisition and analysis at the SBC, and the development methods used to meet this goal

  10. Dynamic Analysis of a Phytoplankton-Fish Model with Biological and Artificial Control

    OpenAIRE

    Wang, Yapei; Zhao, Min; Pan, Xinhong; Dai, Chuanjun

    2014-01-01

    We investigate a nonlinear model of the interaction between phytoplankton and fish, which uses a pair of semicontinuous systems with biological and artificial control. First, the existence of an order-1 periodic solution to the system is analyzed using a Poincaré map and a geometric method. The stability conditions of the order-1 periodic solution are obtained by a theoretical mathematical analysis. Furthermore, based on previous analysis, we investigate the bifurcation in the order-1 periodi...

  11. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    Science.gov (United States)

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  13. BetaWB - A language for modular representation of biological systems

    DEFF Research Database (Denmark)

    Ihekwaba, Adoha; Larcher, Roberto; Mardare, Radu Iulian

    2007-01-01

    A. Ihekwaba, R. Larcher, R. Mardare, C. Priami. BetaWB - A language for modular representation of biological systems. In Proc. of International Conference on Systems Biology (ICSB), 2007......A. Ihekwaba, R. Larcher, R. Mardare, C. Priami. BetaWB - A language for modular representation of biological systems. In Proc. of International Conference on Systems Biology (ICSB), 2007...

  14. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Westergaard, Steen Lund; Soberano de Oliveira, Ana Paula; Bro, Christoffer

    2007-01-01

    in repression of a wide range of genes involved to utilization of alternative carbon sources. In this work, we applied a systems biology approach to study the interaction between these two pathways. Through genome-wide transcription analysis of strains with disruption of HXK2, GRR1, MIG1, the combination of MIG......1 and MIG2, and the parentel strain, we identified 393 genes to have significantly changed expression levels. To identify co-regulation patterns in the different strains we applied principal component analysis. Disruption of either GRR1 or HXK2 were both found to have profound effects...... reporter metabolites, and found that there is a high degree of consistency between the identified reporter metabolites and the physiological effects observed in the different mutants . Our systems biology approach points to close interaction between the two pathways, and our metabolism driven analysis...

  15. Biological diversity in the patent system.

    Directory of Open Access Journals (Sweden)

    Paul Oldham

    Full Text Available Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI established by the Global Biodiversity Information Facility (GBIF and Encyclopedia of Life (EOL. We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8-1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on

  16. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... laboratory has access to all the necessary competences. For this reason the Yeast Systems Biology Network (YSBN) has been established. YSBN will coordinate research efforts, in yeast systems biology and, through the recently obtained EU funding for a Coordination Action, it will be possible to set...

  17. 3S - Systematic, systemic, and systems biology and toxicology.

    Science.gov (United States)

    Smirnova, Lena; Kleinstreuer, Nicole; Corvi, Raffaella; Levchenko, Andre; Fitzpatrick, Suzanne C; Hartung, Thomas

    2018-01-01

    A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.

  18. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active...... performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii...

  19. Evolving cell models for systems and synthetic biology.

    Science.gov (United States)

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  20. A simple method of fabricating mask-free microfluidic devices for biological analysis.

    KAUST Repository

    Yi, Xin; Kodzius, Rimantas; Gong, Xiuqing; Xiao, Kang; Wen, Weijia

    2010-01-01

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper

  1. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Van der Putten, W.H.; de Ruiter, P.C.; Struik, P.C.; Thomma, B.P.H.J.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase

  2. Multi-level and hybrid modelling approaches for systems biology.

    Science.gov (United States)

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  3. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  4. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  5. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  6. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus

    2017-01-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...... characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity...... compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains...

  7. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Directory of Open Access Journals (Sweden)

    Tilton Susan C

    2012-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single

  9. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis

  10. Analysis of biological spectrum of Divčibare flora

    Directory of Open Access Journals (Sweden)

    Popović Ivana

    2006-01-01

    Full Text Available One of the essential analyses which is performed during the floristic study of a region is the analysis of the biological spectrum. The analysis of the biological spectrum of the flora includes the determination of the type of life form for each taxon described in the flora of the study region. If it is considered that life form is a specific structural-functional response to the environmental effects and the result of the adaptation during the species evolution, it is clear that the basic characteristics of the site are more or less reflected in any life form. This fact is confirmed by the analysis of the biological spectrum of Divčibare flora. The study results are in correlation with the results of the analysis of the biological spectrum of the flora of Serbia and the Balkan Peninsula.

  11. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Improvements in algal lipid production: a systems biology and gene editing approach.

    Science.gov (United States)

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  13. Systems Biology: Impressions from a Newcomer Graduate Student in 2016

    Science.gov (United States)

    Simpson, Melanie Rae

    2016-01-01

    As a newcomer, the philosophical basis of systems biology seems intuitive and appealing, the underlying philosophy being that the whole of a living system cannot be completely understood by the study of its individual parts. Yet answers to the questions "What is systems biology?" and "What constitutes a systems biology approach in…

  14. The Biological Connection Markup Language: a SBGN-compliant format for visualization, filtering and analysis of biological pathways.

    Science.gov (United States)

    Beltrame, Luca; Calura, Enrica; Popovici, Razvan R; Rizzetto, Lisa; Guedez, Damariz Rivero; Donato, Michele; Romualdi, Chiara; Draghici, Sorin; Cavalieri, Duccio

    2011-08-01

    Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions. The Biological Connection Markup Language (BCML) is a format to describe, annotate and visualize pathways. BCML is able to store multiple information, permitting a selective view of the pathway as it exists and/or behave in specific organisms, tissues and cells. Furthermore, BCML can be automatically converted into data formats suitable for analysis and into a fully SBGN-compliant graphical representation, making it an important tool that can be used by both computational biologists and 'wet lab' scientists. The XML schema and the BCML software suite are freely available under the LGPL for download at http://bcml.dc-atlas.net. They are implemented in Java and supported on MS Windows, Linux and OS X.

  15. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices.

    Science.gov (United States)

    Cook, Douglas; Julias, Margaret; Nauman, Eric

    2014-04-11

    Biological systems are characterized by high levels of variability, which can affect the results of biomechanical analyses. As a review of this topic, we first surveyed levels of variation in materials relevant to biomechanics, and compared these values to standard engineered materials. As expected, we found significantly higher levels of variation in biological materials. A meta-analysis was then performed based on thorough reviews of 60 research studies from the field of biomechanics to assess the methods and manner in which biological variation is currently handled in our field. The results of our meta-analysis revealed interesting trends in modeling practices, and suggest a need for more biomechanical studies that fully incorporate biological variation in biomechanical models and analyses. Finally, we provide some case study example of how biological variability may provide valuable insights or lead to surprising results. The purpose of this study is to promote the advancement of biomechanics research by encouraging broader treatment of biological variability in biomechanical modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems.

    Science.gov (United States)

    Lu, Chuan; King, Ross D

    2009-08-15

    Distribution analysis is one of the most basic forms of statistical analysis. Thanks to improved analytical methods, accurate and extensive quantitative measurements can now be made of the mRNA, protein and metabolite from biological systems. Here, we report a large-scale analysis of the population abundance distributions of the transcriptomes, proteomes and metabolomes from varied biological systems. We compared the observed empirical distributions with a number of distributions: power law, lognormal, loglogistic, loggamma, right Pareto-lognormal (PLN) and double PLN (dPLN). The best-fit for mRNA, protein and metabolite population abundance distributions was found to be the dPLN. This distribution behaves like a lognormal distribution around the centre, and like a power law distribution in the tails. To better understand the cause of this observed distribution, we explored a simple stochastic model based on geometric Brownian motion. The distribution indicates that multiplicative effects are causally dominant in biological systems. We speculate that these effects arise from chemical reactions: the central-limit theorem then explains the central lognormal, and a number of possible mechanisms could explain the long tails: positive feedback, network topology, etc. Many of the components in the central lognormal parts of the empirical distributions are unidentified and/or have unknown function. This indicates that much more biology awaits discovery.

  17. Mathematical methods in systems biology.

    Science.gov (United States)

    Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz

    2016-12-01

    The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.

  18. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  19. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  20. Systems Biology Modeling of the Radiation Sensitivity Network: A Biomarker Discovery Platform

    International Nuclear Information System (INIS)

    Eschrich, Steven; Zhang Hongling; Zhao Haiyan; Boulware, David; Lee, Ji-Hyun; Bloom, Gregory; Torres-Roca, Javier F.

    2009-01-01

    Purpose: The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. Methods and Materials: Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). Results: The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. Conclusion: We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.

  1. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  2. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  3. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  4. The validation of a pixe system for trace element analysis of biological samples

    Science.gov (United States)

    Saied, S. O.; Crumpton, D.; Francois, P. E.

    1981-03-01

    A PIXE system has been developed for measuring trace element levels in biological samples and a study made of the precision and accuracy achievable. The calibration of the system has been established using thin targets of known elemental composition and the reproducibility studied using protons of energy 2.5 MeV. Both thick and thin samples prepared from NBS bovine liver have been analysed and the elemental ratios present established for a set of replicate samples. These are compared with the results of other workers. Problems relating to sample preparation are discussed.

  5. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  6. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  7. Systems Biology for Mapping Genotype-Phenotype Relations in Yeast

    KAUST Repository

    Nielsen, Jens

    2016-01-25

    The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel new industrial processes have been developed over the last 10 years. Besides its wide industrial use, S. cerevisiae serves as an eukaryal model organism, and many systems biology tools have therefore been developed for this organism. Among these genome-scale metabolic models have shown to be most successful as they easy integrate with omics data and at the same time have been shown to have excellent predictive power. Despite our extensive knowledge of yeast metabolism and its regulation we are still facing challenges when we want to engineer complex traits, such as improved tolerance to toxic metabolites like butanol and elevated temperatures or when we want to engineer the highly complex protein secretory pathway. In this presentation it will be demonstrated how we can combine directed evolution with systems biology analysis to identify novel targets for rational design-build-test of yeast strains that have improved phenotypic properties. In this lecture an overview of systems biology of yeast will be presented together with examples of how genome-scale metabolic modeling can be used for prediction of cellular growth at different conditions. Examples will also be given on how adaptive laboratory evolution can be used for identifying targets for improving tolerance towards butanol, increased temperature and low pH and for improving secretion of heterologous proteins.

  8. Advances in Structural Biology and the Application to Biological Filament Systems.

    Science.gov (United States)

    Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C

    2018-04-01

    Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  9. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  10. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  11. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  12. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  13. Biological analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Cookson, J.A.; Legge, G.J.F.

    1975-01-01

    Most low-energy nuclear accelerators are now partly used on analytical studies in support of sciences other than nuclear physics. This paper gives a short review of such analytical techniques (X-ray analysis, elastic scattering analysis, nuclear reaction analysis, and the nuclear microprobe) with particular reference to biological applications and also emphasizes the role of the positional analysis that can be performed with a focused beam of ions - the nuclear microprobe. (author)

  14. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  15. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  16. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  17. Systems biology solutions for biochemical production challenges.

    Science.gov (United States)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    GPSR: A Resource for Genomics Proteomics and Systems Biology · Simple Calculation Programs for Biology Immunological Methods · Simple Calculation Programs for Biology Methods in Molecular Biology · Simple Calculation Programs for Biology Other Methods · PowerPoint Presentation · Slide 6 · Slide 7 · Prediction of ...

  19. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  20. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  1. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    International Nuclear Information System (INIS)

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  2. It's the System, Stupid: How Systems Biology Is Transforming.

    Science.gov (United States)

    2010-01-01

    So far, little is known about systems biology and its potential for changing how we diagnose and treat disease. That will change soon, say the systems experts, who advise payers to begin learning now about how it could make healthcare efficient.

  3. Seasonal allergic rhinitis and systems biology-oriented biomarker discovery

    NARCIS (Netherlands)

    Baars, E.W.; Nierop, A.F.M.; Savelkoul, H.F.J.

    2015-01-01

    There is an increasing interest in science and medicine in the systems approach. Instead of the reductionist approach that focuses on the physical and chemical properties of the individual components, systems biology aims to describe, understand, and explain from the complex biological systems

  4. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational......With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...

  5. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Esaulkov, M N; Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  6. Predicting biological system objectives de novo from internal state measurements

    Directory of Open Access Journals (Sweden)

    Maranas Costas D

    2008-01-01

    Full Text Available Abstract Background Optimization theory has been applied to complex biological systems to interrogate network properties and develop and refine metabolic engineering strategies. For example, methods are emerging to engineer cells to optimally produce byproducts of commercial value, such as bioethanol, as well as molecular compounds for disease therapy. Flux balance analysis (FBA is an optimization framework that aids in this interrogation by generating predictions of optimal flux distributions in cellular networks. Critical features of FBA are the definition of a biologically relevant objective function (e.g., maximizing the rate of synthesis of biomass, a unit of measurement of cellular growth and the subsequent application of linear programming (LP to identify fluxes through a reaction network. Despite the success of FBA, a central remaining challenge is the definition of a network objective with biological meaning. Results We present a novel method called Biological Objective Solution Search (BOSS for the inference of an objective function of a biological system from its underlying network stoichiometry as well as experimentally-measured state variables. Specifically, BOSS identifies a system objective by defining a putative stoichiometric "objective reaction," adding this reaction to the existing set of stoichiometric constraints arising from known interactions within a network, and maximizing the putative objective reaction via LP, all the while minimizing the difference between the resultant in silico flux distribution and available experimental (e.g., isotopomer flux data. This new approach allows for discovery of objectives with previously unknown stoichiometry, thus extending the biological relevance from earlier methods. We verify our approach on the well-characterized central metabolic network of Saccharomyces cerevisiae. Conclusion We illustrate how BOSS offers insight into the functional organization of biochemical networks

  7. An online model composition tool for system biology models.

    Science.gov (United States)

    Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2013-09-05

    There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.

  8. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    Science.gov (United States)

    Turaev, Dmitrij; Rattei, Thomas

    2016-06-01

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Cybernetics and biology].

    Science.gov (United States)

    Vasil'ev, G F

    2013-01-01

    Owing to methodical disadvantages, the theory of control still lacks the potential for the analysis of biological systems. To get the full benefit of the method in addition to the algorithmic model of control (as of today the only used model in the theory of control) a parametric model of control is offered to employ. The reasoning for it is explained. The approach suggested provides the possibility to use all potential of the modern theory of control for the analysis of biological systems. The cybernetic approach is shown taking a system of the rise of glucose concentration in blood as an example.

  10. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  11. Spatial Structures and Regulation in Biological Systems

    DEFF Research Database (Denmark)

    Yde, Pernille

    , and the other is the spatial regulation of biological systems, here related to different aspects of the inflammatory response. All systems are studied using computational modelling and mathematical analysis. The first part of the thesis explores different protein aggregation scenarios. In Chapter 1, we consider...... a previously studied and very general aggregation model describing frangible linear filaments. This model is especially relevant for the growth of amyloid fibres, that have been related to a number of serious human diseases, and which are known to grow in an accelerated self-enhanced manner.We derive...... model of the tissue and show how coupled cells are able to function as an excitable medium and propagate waves of high cytokine concentration through the tissue. If the internal regulation in the cells is over-productive, the model predicts a continuous amplification of cytokines, which spans the entire...

  12. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    Science.gov (United States)

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  13. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    Science.gov (United States)

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  14. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  17. Structural identifiability of systems biology models: a critical comparison of methods.

    Directory of Open Access Journals (Sweden)

    Oana-Teodora Chis

    Full Text Available Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided.

  18. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-04-01

    Full Text Available Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I – an organic farming system without any biological products used (growth under natural soil fertility – Control; II – an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa; III – an organic farming system in which a biological insecticide (NeemAzal T/S was used; IV – an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S. Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D. Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum. The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%, followed by Hemiptera, and the families Aphididae (31.6-40.3% and Cicadellidae (27.3-28.6%. This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.

  19. Elemental Analysis in Biological Matrices Using ICP-MS.

    Science.gov (United States)

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  20. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Science.gov (United States)

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  1. Exploring Synthetic and Systems Biology at the University of Edinburgh.

    Science.gov (United States)

    Fletcher, Liz; Rosser, Susan; Elfick, Alistair

    2016-06-15

    The Centre for Synthetic and Systems Biology ('SynthSys') was originally established in 2007 as the Centre for Integrative Systems Biology, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC). Today, SynthSys embraces an extensive multidisciplinary community of more than 200 researchers from across the University with a common interest in synthetic and systems biology. Our research is broad and deep, addressing a diversity of scientific questions, with wide ranging impact. We bring together the power of synthetic biology and systems approaches to focus on three core thematic areas: industrial biotechnology, agriculture and the environment, and medicine and healthcare. In October 2015, we opened a newly refurbished building as a physical hub for our new U.K. Centre for Mammalian Synthetic Biology funded by the BBSRC/EPSRC/MRC as part of the U.K. Research Councils' Synthetic Biology for Growth programme. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    Science.gov (United States)

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  3. The markup is the model: reasoning about systems biology models in the Semantic Web era.

    Science.gov (United States)

    Kell, Douglas B; Mendes, Pedro

    2008-06-07

    Metabolic control analysis, co-invented by Reinhart Heinrich, is a formalism for the analysis of biochemical networks, and is a highly important intellectual forerunner of modern systems biology. Exchanging ideas and exchanging models are part of the international activities of science and scientists, and the Systems Biology Markup Language (SBML) allows one to perform the latter with great facility. Encoding such models in SBML allows their distributed analysis using loosely coupled workflows, and with the advent of the Internet the various software modules that one might use to analyze biochemical models can reside on entirely different computers and even on different continents. Optimization is at the core of many scientific and biotechnological activities, and Reinhart made many major contributions in this area, stimulating our own activities in the use of the methods of evolutionary computing for optimization.

  4. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  5. Logic-based models in systems biology: a predictive and parameter-free network analysis method†

    Science.gov (United States)

    Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.

    2012-01-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820

  6. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Thomassen, Mads; Riley, Caroline H

    2012-01-01

    The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...

  8. Statistical analysis of joint toxicity in biological growth experiments

    DEFF Research Database (Denmark)

    Spliid, Henrik; Tørslev, J.

    1994-01-01

    The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants are...... is applied on data from an experiment where inhibition of the growth of the bacteria Pseudomonas fluorescens caused by different mixtures of pentachlorophenol and aniline was studied.......The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants...

  9. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  10. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  11. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  12. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  13. Heavy-ion microbeam system at JAEA-Takasaki for microbeam biology

    International Nuclear Information System (INIS)

    Funayama, Tomoo; Wada, Seiichi; Yokota, Yuichiro

    2008-01-01

    Research concerning cellular responses to low dose irradiation, radiation-induced bystander effects, and the biological track structure of charged particles has recently received particular attention in the field of radiation biology. Target irradiation employing a microbeam represents a useful means of advancing this research by obviating some of the disadvantages associated with the conventional irradiation strategies. The heavy-ion microbeam system at Japan Atomic Energy Agency (JAEA)-Takasaki, which was planned in 1987 and started in the early 1990's, can provide target irradiation of heavy charged particles to biological material at atmospheric pressure using a minimum beam size 5 μm in diameter. A variety of biological material has been irradiated using this microbeam system including cultured mammalian and higher plant cells, isolated fibers of mouse skeletal muscle, silkworm (Bombyx mori) embryos and larvae, Arabidopsis thaliana roots, and the nematode Caenorhabditis elegans. The system can be applied to the investigation of mechanisms within biological organisms not only in the context of radiation biology, but also in the fields of general biology such as physiology, developmental biology and neurobiology, and should help to establish and contribute to the field of 'microbeam biology'. (author)

  14. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    Science.gov (United States)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science.

  15. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  16. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2

    Directory of Open Access Journals (Sweden)

    Sorokin Anatoly

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  17. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  18. EURASIP journal on bioinformatics & systems biology

    National Research Council Canada - National Science Library

    2006-01-01

    "The overall aim of "EURASIP Journal on Bioinformatics and Systems Biology" is to publish research results related to signal processing and bioinformatics theories and techniques relevant to a wide...

  19. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  20. Marine biological data and information management system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.

    Indian National Oceanographic Data Centre (INODC) is engaged in developing a marine biological data and information management system (BIODIMS). This system will contain the information on zooplankton in the water column, zoobenthic biomass...

  1. Predictive modelling of complex agronomic and biological systems.

    Science.gov (United States)

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.

  2. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  3. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  4. Differentially regulated splice variants and systems biology analysis of Kaposi's sarcoma-associated herpesvirus-infected lymphatic endothelial cells.

    Science.gov (United States)

    Chang, Ting-Yu; Wu, Yu-Hsuan; Cheng, Cheng-Chung; Wang, Hsei-Wei

    2011-09-01

    Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon-intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3'-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34(+) precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.

  5. Teleology and its constitutive role for biology as the science of organized systems in nature.

    Science.gov (United States)

    Toepfer, Georg

    2012-03-01

    'Nothing in biology makes sense, except in the light of teleology'. This could be the first sentence in a textbook about the methodology of biology. The fundamental concepts in biology, e.g. 'organism' and 'ecosystem', are only intelligible given a teleological framework. Since early modern times, teleology has often been considered methodologically unscientific. With the acceptance of evolutionary theory, one popular strategy for accommodating teleological reasoning was to explain it by reference to selection in the past: functions were reconstructed as 'selected effects'. But the theory of evolution obviously presupposes the existence of organisms as organized and regulated, i.e. functional systems. Therefore, evolutionary theory cannot provide the foundation for teleology. The underlying reason for the central methodological role of teleology in biology is not its potential to offer particular forms of (evolutionary) explanations for the presence of parts, but rather an ontological one: organisms and other basic biological entities do not exist as physical bodies do, as amounts of matter with a definite form. Rather, they are dynamic systems in stable equilibrium; despite changes of their matter and form (in metabolism and metamorphosis) they maintain their identity. What remains constant in these kinds of systems is their 'organization', i.e. the causal pattern of interdependence of parts with certain effects of each part being relevant for the working of the system. Teleological analysis consists in the identification of these system-relevant effects and at the same time of the system as a whole. Therefore, the identity of biological systems cannot be specified without teleological reasoning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  7. The SEEK: a platform for sharing data and models in systems biology.

    Science.gov (United States)

    Wolstencroft, Katy; Owen, Stuart; du Preez, Franco; Krebs, Olga; Mueller, Wolfgang; Goble, Carole; Snoep, Jacky L

    2011-01-01

    Systems biology research is typically performed by multidisciplinary groups of scientists, often in large consortia and in distributed locations. The data generated in these projects tend to be heterogeneous and often involves high-throughput "omics" analyses. Models are developed iteratively from data generated in the projects and from the literature. Consequently, there is a growing requirement for exchanging experimental data, mathematical models, and scientific protocols between consortium members and a necessity to record and share the outcomes of experiments and the links between data and models. The overall output of a research consortium is also a valuable commodity in its own right. The research and associated data and models should eventually be available to the whole community for reuse and future analysis. The SEEK is an open-source, Web-based platform designed for the management and exchange of systems biology data and models. The SEEK was originally developed for the SysMO (systems biology of microorganisms) consortia, but the principles and objectives are applicable to any systems biology project. The SEEK provides an index of consortium resources and acts as gateway to other tools and services commonly used in the community. For example, the model simulation tool, JWS Online, has been integrated into the SEEK, and a plug-in to PubMed allows publications to be linked to supporting data and author profiles in the SEEK. The SEEK is a pragmatic solution to data management which encourages, but does not force, researchers to share and disseminate their data to community standard formats. It provides tools to assist with management and annotation as well as incentives and added value for following these recommendations. Data exchange and reuse rely on sufficient annotation, consistent metadata descriptions, and the use of standard exchange formats for models, data, and the experiments they are derived from. In this chapter, we present the SEEK platform

  8. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  9. A model of heavy ion detection in physical and biological systems

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1988-01-01

    Track structure theory (the Katz model) and its application to the detection of heavy ions in physical and biological systems are reviewed. Following the use of a new corrected formula describing the radial distribution of average dose around the path of a heavy ion, based on results of Monte Carlo calculations and on results of experimental measurements, better agreement is achieved between model calculations and experimentally measured relative effectiveness, for enzymatic and viral systems, for the Fricke dosemeter and for alanine and thermoluminescent (TDL-700) dosemeters irradiated with beams of heavy charged particles. From experimentally measured RBE dependences for survival and frequency of neoplastic transformations in a mammalian cell culture irradiated with beams of energetic heavy ions, values of model parameters for these biological endpoints have been extracted, and a model extrapolation to the low-dose region performed. Results of model calculations are then compared with evaluations of the lung cancer hazard in populations exposed to radon and its progeny. The model can be applied to practical phenomenological analysis of radiation damage in solid-state systems and to dosimetry of charged particle and fast neutron beams using a variety of detectors. The model can also serve as a guide in building more basic models of the action of ionizing radiation with physical and biological systems and guide of development of models of radiation risk more relevant than that used presently. 185 refs., 31 figs., 3 tabs. (author)

  10. BiologicalNetworks 2.0 - an integrative view of genome biology data

    Directory of Open Access Journals (Sweden)

    Ponomarenko Julia

    2010-12-01

    Full Text Available Abstract Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other and their relations (interactions, co-expression, co-citations, and other. The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org.

  11. Inverse Problems in Systems Biology: A Critical Review.

    Science.gov (United States)

    Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola

    2018-01-01

    Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.

  12. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data.

    Science.gov (United States)

    Smith, Richard N; Aleksic, Jelena; Butano, Daniela; Carr, Adrian; Contrino, Sergio; Hu, Fengyuan; Lyne, Mike; Lyne, Rachel; Kalderimis, Alex; Rutherford, Kim; Stepan, Radek; Sullivan, Julie; Wakeling, Matthew; Watkins, Xavier; Micklem, Gos

    2012-12-01

    InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of 'widgets' performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. Freely available from http://www.intermine.org under the LGPL license. g.micklem@gen.cam.ac.uk Supplementary data are available at Bioinformatics online.

  13. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    Science.gov (United States)

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell

  14. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  15. The species translation challenge—A systems biology perspective on human and rat bronchial epithelial cells

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies. PMID:25977767

  16. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    Science.gov (United States)

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R.L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed. PMID:23750150

  17. Amino acid analysis in biological fluids by GC-MS

    OpenAIRE

    Kaspar, Hannelore

    2009-01-01

    Amino acids are intermediates in cellular metabolism and their quantitative analysis plays an important role in disease diagnostics. A gas chromatography-mass spectrometry (GC-MS) based method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate could be carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acid...

  18. SBRML: a markup language for associating systems biology data with models.

    Science.gov (United States)

    Dada, Joseph O; Spasić, Irena; Paton, Norman W; Mendes, Pedro

    2010-04-01

    Research in systems biology is carried out through a combination of experiments and models. Several data standards have been adopted for representing models (Systems Biology Markup Language) and various types of relevant experimental data (such as FuGE and those of the Proteomics Standards Initiative). However, until now, there has been no standard way to associate a model and its entities to the corresponding datasets, or vice versa. Such a standard would provide a means to represent computational simulation results as well as to frame experimental data in the context of a particular model. Target applications include model-driven data analysis, parameter estimation, and sharing and archiving model simulations. We propose the Systems Biology Results Markup Language (SBRML), an XML-based language that associates a model with several datasets. Each dataset is represented as a series of values associated with model variables, and their corresponding parameter values. SBRML provides a flexible way of indexing the results to model parameter values, which supports both spreadsheet-like data and multidimensional data cubes. We present and discuss several examples of SBRML usage in applications such as enzyme kinetics, microarray gene expression and various types of simulation results. The XML Schema file for SBRML is available at http://www.comp-sys-bio.org/SBRML under the Academic Free License (AFL) v3.0.

  19. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    TermehYousefi, Amin, E-mail: at.tyousefi@gmail.com [Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech) (Japan); Bagheri, Samira; Shahnazar, Sheida [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, Md. Habibur [Department of Computer Science and Engineering, University of Asia Pacific, Green Road, Dhaka-1215 (Bangladesh); Kadri, Nahrizul Adib [Department of Biomedical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. - Graphical abstract: This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well

  20. Dielectric relaxation in biological systems physical principles, methods, and applications

    CERN Document Server

    Feldman, Yuri

    2015-01-01

    This title covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems.

  1. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  2. It’s the System, Stupid: How Systems Biology Is Transforming

    Science.gov (United States)

    2010-01-01

    So far, little is known about systems biology and its potential for changing how we diagnose and treat disease. That will change soon, say the systems experts, who advise payers to begin learning now about how it could make healthcare efficient. PMID:22478806

  3. A dedicated database system for handling multi-level data in systems biology

    OpenAIRE

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Background Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging...

  4. Ionic interactions in biological and physical systems: a variational treatment.

    Science.gov (United States)

    Eisenberg, Bob

    2013-01-01

    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry has for more than a century studied reactions as if they occurred in ideal conditions of infinitely dilute solutions. But most reactions occur in salt solutions that are not ideal. In those solutions everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to the boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals (or vice versa). In my view, ionic solutions should be viewed as complex fluids, particularly in the biological and engineering context. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (to approximately 10 M) where they are most important, near electrodes, nucleic ids, proteins, active sites of enzymes, and ionic channels. Ca2+ is always involved in biological solutions because the concentration (really free energy per mole) of Ca2+ in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition has not succeeded as one would hope. Here, we present a variational treatment of ard spheres in a frictional dielectric with the hope that such a treatment of an lectrolyte as a complex fluid will be productive. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) nergy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when

  5. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  6. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    Science.gov (United States)

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  7. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  8. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should...

  9. Towards systems biology of the gravity response of higher plants -multiscale analysis of Arabidopsis thaliana root growth

    Science.gov (United States)

    Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.

    Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.

  10. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  11. Echinococcus as a model system: biology and epidemiology.

    Science.gov (United States)

    Thompson, R C A; Jenkins, D J

    2014-10-15

    The introduction of Echinococcus to Australia over 200 years ago and its establishment in sheep rearing areas of the country inflicted a serious medical and economic burden on the country. This resulted in an investment in both basic and applied research aimed at learning more about the biology and life cycle of Echinococcus. This research served to illustrate the uniqueness of the parasite in terms of developmental biology and ecology, and the value of Echinococcus as a model system in a broad range of research, from fundamental biology to theoretical control systems. These studies formed the foundation for an international, diverse and ongoing research effort on the hydatid organisms encompassing stem cell biology, gene regulation, strain variation, wildlife diseases and models of transmission dynamics. We describe the development, nature and diversity of this research, and how it was initiated in Australia but subsequently has stimulated much international and collaborative research on Echinococcus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Thermostability of biological systems: fundamentals, challenges, and quantification.

    Science.gov (United States)

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.

  13. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  14. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  15. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  16. 1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    International Nuclear Information System (INIS)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D.

    2011-01-01

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in 1 H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  17. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.

    Science.gov (United States)

    Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah

    2018-03-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.

  18. o-TOF ICPMS analysis of environmental, food and biological samples

    International Nuclear Information System (INIS)

    Krejcova, A.; Cernohorsky, T.; Ludvikova, I.; Pouzar, M.; Capova, L.

    2009-01-01

    Full text: o-TOF ICPMS was used for inorganic analysis of environmental, food and biological samples. The method validity was proved by analysis of spiked samples, reference materials, by determination without/with internal standards and the standard addition technique. The technique was shown to be powerful, and reliable for analysis of the samples mentioned, and high sample throughput enables environmental or biological screening studies. Independent of the number of elements analyzed, complete analysis and whole mass spectra are gained from a small sample amount in a very short time. (author)

  19. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  20. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  2. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2

    Directory of Open Access Journals (Sweden)

    Mi Huaiyu

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  3. Cellular respiration: replicating in vivo systems biology for in ...

    Science.gov (United States)

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The express purpose is to provide a publication outlet for novel breath related research that includes in vitro studies, especially those that explore the biological origin and expression of compounds that may ultimately influence the constituents of exhaled breath. The new topics include all manner of methods and instrumentations for making in vivo and in vitro measurements, the use of different biological media (blood, urine saliva, swabs) including human and microbial cell-lines, in vitro kinetic studies of metabolism, and advances in ex vivo methods for maintaining metabolic competency and viability of biological samples. Traditionally, JBR has published articles on human breath analysis for diagnosing disease, tracking health state, assessing the dose and effect of exogenous chemicals, and contributions of malodorous compounds from the oral/nasal cavity. These have also included research describing novel sampling and analytical technologies, most notably those implementing mass spectrometry, chemical sensors and optical measurement instrumentation (Amann and Smith 2013). The journal’s original scope has also embraced animal models as surrogates for human sampling, new mathematical and

  4. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  5. Theoretical discussion for quantum computation in biological systems

    Science.gov (United States)

    Baer, Wolfgang

    2010-04-01

    Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ψ interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.

  6. What does systems biology mean for drug development?

    Science.gov (United States)

    Schrattenholz, André; Soskić, Vukić

    2008-01-01

    The complexity and flexibility of cellular architectures is increasingly recognized by impressive progress on the side of molecular analytics, i.e. proteomics, genomics and metabolomics. One of the messages from systems biology is that the number of molecular species in cellular networks is orders of magnitude bigger than anticipated by genomic analysis, in particular by fast posttranslational modifications of proteins. The requirements to manage external signals, integrate spatiotemporal signal transduction inside an organism and at the same time optimizing networks of biochemical and chemical reactions result in chemically extremely fine tuned molecular entities. Chemical side reactions of enzymatic activity, like e.g. random oxidative damage of proteins by free radicals during aging constantly introduce epigenetic alterations of protein targets. These events gradually and on an individual stochastic scale, keep modifying activities of these targets, and their affinities and selectivities towards biological and pharmacological ligands. One further message is that many of the key reactions in living systems are essentially based on interactions of low affinities and even low selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. So, in complex disorders like cancer or neurodegenerative diseases, which are rooted in relatively subtle and multimodal dysfunction of important physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which still dominate the pharmaceutical industry increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade and the treatment of "complex diseases" remains a most pressing medical need. Currently a change of paradigm can be observed with

  7. Magnetic separation techniques in sample preparation for biological analysis: a review.

    Science.gov (United States)

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Radiological/biological/aerosol removal system

    Science.gov (United States)

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  9. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology

    Directory of Open Access Journals (Sweden)

    Ina Aretz

    2016-04-01

    Full Text Available Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  10. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.

    Science.gov (United States)

    Aretz, Ina; Meierhofer, David

    2016-04-27

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  11. Specifications of Standards in Systems and Synthetic Biology.

    Science.gov (United States)

    Schreiber, Falk; Bader, Gary D; Golebiewski, Martin; Hucka, Michael; Kormeier, Benjamin; Le Novère, Nicolas; Myers, Chris; Nickerson, David; Sommer, Björn; Waltemath, Dagmar; Weise, Stephan

    2015-09-04

    Standards shape our everyday life. From nuts and bolts to electronic devices and technological processes, standardised products and processes are all around us. Standards have technological and economic benefits, such as making information exchange, production, and services more efficient. However, novel, innovative areas often either lack proper standards, or documents about standards in these areas are not available from a centralised platform or formal body (such as the International Standardisation Organisation). Systems and synthetic biology is a relatively novel area, and it is only in the last decade that the standardisation of data, information, and models related to systems and synthetic biology has become a community-wide effort. Several open standards have been established and are under continuous development as a community initiative. COMBINE, the ‘COmputational Modeling in BIology’ NEtwork has been established as an umbrella initiative to coordinate and promote the development of the various community standards and formats for computational models. There are yearly two meeting, HARMONY (Hackathons on Resources for Modeling in Biology), Hackathon-type meetings with a focus on development of the support for standards, and COMBINE forums, workshop-style events with oral presentations, discussion, poster, and breakout sessions for further developing the standards. For more information see http://co.mbine.org/. So far the different standards were published and made accessible through the standards’ web- pages or preprint services. The aim of this special issue is to provide a single, easily accessible and citable platform for the publication of standards in systems and synthetic biology. This special issue is intended to serve as a central access point to standards and related initiatives in systems and synthetic biology, it will be published annually to provide an opportunity for standard development groups to communicate updated specifications.

  12. A simple method of fabricating mask-free microfluidic devices for biological analysis.

    KAUST Repository

    Yi, Xin

    2010-09-07

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip\\'s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches.

  13. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  14. Modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, Vidyadhar G

    2011-01-01

    Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edi

  15. Scaling for Dynamical Systems in Biology.

    Science.gov (United States)

    Ledder, Glenn

    2017-11-01

    Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.

  16. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    Science.gov (United States)

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  17. Systems biology of lactic acid bacteria: a critical review.

    Science.gov (United States)

    Teusink, Bas; Bachmann, Herwig; Molenaar, Douwe

    2011-08-30

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For example, different strains or species can be the parts of a community, or we could study only the chemical reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux balance analysis. As long as we have some understanding of the properties of these parts, we can investigate whether their interaction leads to novel or unanticipated behaviour of the system that they constitute. There has been a tendency in the Systems Biology community to think that the collection and integration of data should continue ad infinitum, or that we will otherwise not be able to understand the systems that we study in their details. However, it may sometimes be useful to take a step back and consider whether the knowledge that we already have may not explain the system behaviour that we find so intriguing. Reasoning about systems can be difficult, and may require the application of mathematical techniques. The reward is sometimes the realization of unexpected conclusions, or in the worst case, that we still do not know enough details of the parts, or of the interactions between them. We will discuss a number of cases, with a focus on LAB-related work, where a typical systems approach has brought new knowledge or perspective, often counterintuitive, and clashing with conclusions from simpler approaches. Also novel types of testable hypotheses may be generated by the systems approach, which we will illustrate. Finally we will give an outlook on the fields of research where the systems approach may point the way for the near future.

  18. [Mass spectrometry technology and its application in analysis of biological samples].

    Science.gov (United States)

    Zhao, Long-Shan; Li, Qing; Guo, Chao-Wei; Chen, Xiao-Hui; Bi, Kai-Shun

    2012-02-01

    With the excellent merits of wide analytical range, high sensitivity, small sample size, fast analysis speed, good repeatability, simple operation, low mobile phase consumption, as well as its capability of simultaneous isolation and identification, etc, mass spectrometry techniques have become widely used in the area of environmental science, energy chemical industry, biological medicine, and so on. This article reviews the application of mass spectrometry technology in biological sample analysis in the latest three years with the focus on the new applications in pharmacokinetics and bioequivalence, toxicokinetics, pharmacokinetic-pharmacodynamic, population pharmacokinetics, identification and fragmentation pathways of drugs and their metabolites and metabonomics to provide references for further study of biological sample analysis.

  19. Tritium fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, F.

    1991-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by measuring the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to tissue water. The determination of the R-value is found to involve always isotope fractionation in applied analytical procedures and hence the evaluation of the true OBT-value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fraction in the tissue water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure water systems as well as in real biological systems, e.g. maize plant. The results are systematically analysed and the influence of isotope effects on the R-value is rigorously quantified. (orig.)

  20. Systematic integration of experimental data and models in systems biology.

    Science.gov (United States)

    Li, Peter; Dada, Joseph O; Jameson, Daniel; Spasic, Irena; Swainston, Neil; Carroll, Kathleen; Dunn, Warwick; Khan, Farid; Malys, Naglis; Messiha, Hanan L; Simeonidis, Evangelos; Weichart, Dieter; Winder, Catherine; Wishart, Jill; Broomhead, David S; Goble, Carole A; Gaskell, Simon J; Kell, Douglas B; Westerhoff, Hans V; Mendes, Pedro; Paton, Norman W

    2010-11-29

    The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.

  1. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  2. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  3. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David

    2017-08-23

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  4. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegner, Jesper

    2017-01-01

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  5. Strategies for structuring interdisciplinary education in Systems Biology: an European perspective

    NARCIS (Netherlands)

    Cvijovic, Marija; Höfer, Thomas; Acimovic, Jure; Alberghina, Lilia; Almaas, Eivind; Besozzi, Daniela; Blomberg, Anders; Bretschneider, Till; Cascante, Marta; Collin, Olivier; Atauri, de Pedro; Depner, Cornelia; Dickinson, Robert; Dobrzynski, Maciej; Fleck, C.; Garcia-Ojalvo, Jordi; Gonze, Didier; Hahn, Jens; Hess, Heide Marie; Hollmann, Susanne; Krantz, Marcus; Kummer, Ursula; Lundh, Torbjörn; Martial, Gifta; Martins dos Santos, V.A.P.; Mauer-Oberthür, Angela; Regierer, Babette; Skene, Barbara; Stalidzans, Egils; Stelling, Jörg; Teusink, Bas; Workman, Christopher T.; Hohmann, Stefan

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological

  6. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... of a system thereby suggesting new ways of thinking specific toxicological endpoints. Furthermore, computational methods can serve as valuable input for the hypothesis generating phase of the preparations of a research project....

  7. Category of Metabolic-Replication Systems in Biology and Medicine

    OpenAIRE

    I. C. Baianu

    2012-01-01

    Metabolic-repair models, or (M,R)-systems were introduced in Relational Biology by Robert Rosen. Subsequently, Rosen represented such (M,R)-systems (or simply MRs)in terms of categories of sets, deliberately selected without any structure other than the discrete topology of sets. Theoreticians of life's origins postulated that Life on Earth has begun with the simplest possible organism, called the primordial. Mathematicians interested in biology attempted to answer this important questio...

  8. Direct analysis of biological samples by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Lue M, Marco P.; Hernandez-Caraballo, Edwin A.

    2004-01-01

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry

  9. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    Science.gov (United States)

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  10. Function of dynamic models in systems biology: linking structure to behaviour.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens

    2013-10-08

    Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. In this paper we describe different functional aspects of dynamic models. This description is conceptually embedded in our "meaning facets" framework which systematises the interpretation of dynamic models in structural, functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model. Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function). A simulation experiment always refers to a specific situation and a state of the model and the modelled system (conditional function). We claim that the function of dynamic models refers to both the simulation experiment executed by software (intrinsic function) and the biological experiment which produces the phenomena under investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of these gaps we propose an ontology for the teleological function of models. We have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual framework for the function of models is an important first step towards a comprehensive formal representation of the functional knowledge involved in the modelling and simulation process

  11. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  12. Learning (from) the errors of a systems biology model.

    Science.gov (United States)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-11

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  13. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  14. Investigating cholesterol metabolism and ageing using a systems biology approach.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2017-08-01

    CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.

  15. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  16. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    Science.gov (United States)

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research.

    Science.gov (United States)

    Jinawath, Natini; Bunbanjerdsuk, Sacarin; Chayanupatkul, Maneerat; Ngamphaiboon, Nuttapong; Asavapanumas, Nithi; Svasti, Jisnuson; Charoensawan, Varodom

    2016-11-22

    With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians' point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world's major diseases.

  18. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    Science.gov (United States)

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  19. Systems Biology of Meridians, Acupoints, and Chinese Herbs in Disease

    Directory of Open Access Journals (Sweden)

    Li-Ling Lin

    2012-01-01

    Full Text Available Meridians, acupoints, and Chinese herbs are important components of traditional Chinese medicine (TCM. They have been used for disease treatment and prevention and as alternative and complementary therapies. Systems biology integrates omics data, such as transcriptional, proteomic, and metabolomics data, in order to obtain a more global and complete picture of biological activity. To further understand the existence and functions of the three components above, we reviewed relevant research in the systems biology literature and found many recent studies that indicate the value of acupuncture and Chinese herbs. Acupuncture is useful in pain moderation and relieves various symptoms arising from acute spinal cord injury and acute ischemic stroke. Moreover, Chinese herbal extracts have been linked to wound repair, the alleviation of postmenopausal osteoporosis severity, and anti-tumor effects, among others. Different acupoints, variations in treatment duration, and herbal extracts can be used to alleviate various symptoms and conditions and to regulate biological pathways by altering gene and protein expression. Our paper demonstrates how systems biology has helped to establish a platform for investigating the efficacy of TCM in treating different diseases and improving treatment strategies.

  20. [Analysis on property of meridian supramolecules by biological evolution path].

    Science.gov (United States)

    Deng, Kaiwen; Tao, Yeqin; Tang, Wenhan; He, Fuyuan; Liu, Wenlong; Shi, Jilian; Yang, Yantao; Zhou, Yiqun; Chang, Xiaorong

    2017-03-12

    With human placed in the whole nature, by following the biologic evolution path, the property of channel structure for "imprinting template" in meridian and zang-fu was explored with supramolecular chemistry. In the history of biologic evolution, each molecule in "molecule society" gradually developed into various highly-ordered supramolecular bodies based on self-identification, self-assembly, self-organization, self-replicating of"imprinting template", and thereby the original biochemical system was established, and finally evolved into human. In the forming process of supramolecular bodies, the channel structure of"imprinting template" in guest supramolecular bodies would be kept by host supramolecular bodies, and communicate with the outside to exchange materials, energy, information, otherwise life phenomenon could not continue, for which it was the chemical nature of biolo-gical supramolecular bodies for body to develop meridian. Therefore, the human was a gigantic and complicated supramolecules body in biological nature, and possessed the supramolecules "imprinting template" at each stage of evolution, for which the meridians were formed. When meridians converged, acupoints appeared; when acupointsconverged, zang-fu appeared. With the promotion of the blood from heart, according to"imprinting template", the guest supramolecular bodies and host meridian produced qi -analysis, which was the qi -phenomenon of guest in meridian. It presented as zang-fu image of physiology and pathology as well as action regularities of medication and acupuncture tolerance, by which current various meridian viewpoints could be explained and propose the hypothesis of meridian supramolecular bodies. The meridian and its phenomenon was decide by its "imprinting template" of supramolecular bodies and self-reaction regularities, which abided through the living nature. This was the substance for meridian biology.

  1. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  2. Two faces of entropy and information in biological systems.

    Science.gov (United States)

    Mitrokhin, Yuriy

    2014-10-21

    The article attempts to overcome the well-known paradox of contradictions between the emerging biological organization and entropy production in biological systems. It is assumed that quality, speculative correlation between entropy and antientropy processes taking place both in the past and today in the metabolic and genetic cellular systems may be perfectly authorized for adequate description of the evolution of biological organization. So far as thermodynamic entropy itself cannot compensate for the high degree of organization which exists in the cell, we discuss the mode of conjunction of positive entropy events (mutations) in the genetic systems of the past generations and the formation of organized structures of current cells. We argue that only the information which is generated in the conditions of the information entropy production (mutations and other genome reorganization) in genetic systems of the past generations provides the physical conjunction of entropy and antientropy processes separated from each other in time generations. It is readily apparent from the requirements of the Second law of thermodynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. System biology and the project Encode

    Directory of Open Access Journals (Sweden)

    M. Yu. Obolenskaya

    2014-08-01

    Full Text Available The goal of this review is to give an incipient knowledge on the background of system biology, the premises to its assignment as a new branch of biology, its principles, methodology and its great achievements in identification of functional elements of human genome and regulation of their concordant­ and differential activity. The short characteristics of functional elements including the protein-coding sequences and those coding noncoding RNAs, the DNAse 1 hypersensitivity sites and methylated CpG islets, modified histones and specific 3D structure of chromatin, are represented. The topology of transcription factors network with its main motifs, hierar­chy, combination and association of transcription factors and their allelic specificity are highlighted­.

  4. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  5. From proteomics to systems biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a user-oriented platform.

    Science.gov (United States)

    Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang

    2014-01-01

    Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.

  6. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  7. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  8. Application of secondary ion mass spectrometry (SIMS) to biological sample analysis

    International Nuclear Information System (INIS)

    Tamura, Hifumi

    1990-01-01

    Some major issues and problems related with the analysis of biological samples are discussed, focusing on demonstrated and possible solutions and the application of secondary ion mass spectrometry (SIMS) to investigation of the composition of biological samples. The effective use of secondary electrons in combination with negative ions is most practical for the analysis of biological samples. Regardless of whether positive or negative ions are used, the electric potential at the surface of a sample stays around a constant value because of the absense of the accumulation of electric charges at the surface, leading to almost complete avoidance of the charging of the biological sample. A soft tissue sample can suffer damage to the tissue or migration of atoms in removing water from the sample. Some processes including fixation and freeze drying are available to prevent this. The application of SIMS to biological analysis is still in the basic research stage and further studies will be required to develop practical methods. Possible areas of its application include medicine, pathology, toxicology, pharmacology, plant physiology and other areas related with marine life and marine contamination. (N.K.)

  9. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  10. Promoting Systems Thinking through Biology Lessons

    Science.gov (United States)

    Riess, Werner; Mischo, Christoph

    2010-01-01

    This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the…

  11. Application of activation techniques to biological analysis

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1981-01-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials

  12. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0032 TITLE: Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0032 5c. PROGRAM ELEMENT...cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach. During the first

  13. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  14. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    Science.gov (United States)

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

  15. A systems biology-based classifier for hepatocellular carcinoma diagnosis.

    Directory of Open Access Journals (Sweden)

    Yanqiong Zhang

    Full Text Available AIM: The diagnosis of hepatocellular carcinoma (HCC in the early stage is crucial to the application of curative treatments which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However, those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we developed a systems biology based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC diagnosis. METHODS AND RESULTS: In the Oncomine platform, genes differentially expressed in HCC tissues relative to their corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.88∼92.71% and area under ROC curve (approximating 1.0, and that the network topological features integrated into this classifier contribute greatly to improving the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to HCC, but also to other cancers. CONCLUSION: Our analysis suggests that the systems biology-based classifier that combines the differential gene expression and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier.

  16. Topic modeling for cluster analysis of large biological and medical datasets.

    Science.gov (United States)

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting

  17. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  18. What it takes to understand and cure a living system: computational systems biology and a systems biology-driven pharmacokinetics-pharmacodynamics platform

    NARCIS (Netherlands)

    Swat, Maciej; Kiełbasa, Szymon M.; Polak, Sebastian; Olivier, Brett; Bruggeman, Frank J.; Tulloch, Mark Quinton; Snoep, Jacky L.; Verhoeven, Arthur J.; Westerhoff, Hans V.

    2011-01-01

    The utility of model repositories is discussed in the context of systems biology (SB). It is shown how such repositories, and in particular their live versions, can be used for computational SB: we calculate the robustness of the yeast glycolytic network with respect to perturbations of one of its

  19. Standards, Data Exchange and Intellectual Property Rights in Systems Biology

    DEFF Research Database (Denmark)

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-01-01

    ” of scientists. In 2015, Biotechnology Journal published a report from an expert meeting on “Synthetic Biology & Intellectual Property Rights” organized by the Danish Agency for Science, Technology and Innovation sponsored by the European Research Area Network (ERA-Net) in Synthetic Biology (ERASynBio), in which...... we provided a number of recommendations for a variety of stakeholders. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in Systems Biology resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought...... together experts and stakeholders (e.g. scientists, company representatives, officials from public funding organizations) in systems biology (SysBio) from different countries.  Despite the different profiles of the stakeholders at the meeting and the variety of interests, many concerns and opinions were...

  20. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    Science.gov (United States)

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  1. Converting differential-equation models of biological systems to membrane computing.

    Science.gov (United States)

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Science.gov (United States)

    Magalhães, Teresa; Dinis-Oliveira, Ricardo Jorge; Silva, Benedita; Corte-Real, Francisco; Nuno Vieira, Duarte

    2015-01-01

    Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody). Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis. PMID:26587562

  3. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Directory of Open Access Journals (Sweden)

    Teresa Magalhães

    2015-01-01

    Full Text Available Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody. Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis.

  4. Quantum mechanical simulation methods for studying biological systems

    International Nuclear Information System (INIS)

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  5. ABOUT SYSTEM MAPPING OF BIOLOGICAL RESOURCES FOR SUBSTANTIATION OF ENVIRONMENTAL MANAGEMENT OF THE ADMINISTRATED UNIT ON THE EXAMPLE OF NOVOSIBIRSK REGION

    Directory of Open Access Journals (Sweden)

    O. N. Nikolaeva

    2017-01-01

    Full Text Available The article considers the issues of systematization, modeling and presentation of regional biological resources data. The problem of providing regional state authorities with actual biological resources data and an analysis tool has been stated. The necessity of complex analysis of heterogeneous biological resources data in connection with the landscape factors has been articulated. The system of biological resources’ cartographic models (BRCM is proposed as tools for the regional authorities to develop the BRCM for practical appliances. The goal and the target audience of the system are named. The principles of cartographic visualization of information in the BRCM are formulated. The main sources of biological resources data are listed. These sources include state cadastres, monitoring and statistics. The scales for regional and topical biological resources’ cartographic models are stated. These scales comprise two scale groups for depicting the region itself and its units of internal administrative division. The specifics of cartographic modeling and visualization of relief according to legal requirements to public cartographic data are described. Various options of presentation of biological resources’ cartographic models, such as digital maps, 3Dmodels and cartographic animation are described. Examples of maps and cartographic 3D-models of Novosibirsk Region forests are shown. The conclusion about practical challenges solved with BRCM has been made.

  6. Analysis of arsenical metabolites in biological samples.

    Science.gov (United States)

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  7. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  8. Knowledge Enrichment Analysis for Human Tissue- Specific Genes Uncover New Biological Insights

    Directory of Open Access Journals (Sweden)

    Gong Xiu-Jun

    2012-06-01

    Full Text Available The expression and regulation of genes in different tissues are fundamental questions to be answered in biology. Knowledge enrichment analysis for tissue specific (TS and housekeeping (HK genes may help identify their roles in biological process or diseases and gain new biological insights.In this paper, we performed the knowledge enrichment analysis for 17,343 genes in 84 human tissues using Gene Set Enrichment Analysis (GSEA and Hypergeometric Analysis (HA against three biological ontologies: Gene Ontology (GO, KEGG pathways and Disease Ontology (DO respectively.The analyses results demonstrated that the functions of most gene groups are consistent with their tissue origins. Meanwhile three interesting new associations for HK genes and the skeletal muscle tissuegenes are found. Firstly, Hypergeometric analysis against KEGG database for HK genes disclosed that three disease terms (Parkinson’s disease, Huntington’s disease, Alzheimer’s disease are intensively enriched.Secondly, Hypergeometric analysis against the KEGG database for Skeletal Muscle tissue genes shows that two cardiac diseases of “Hypertrophic cardiomyopathy (HCM” and “Arrhythmogenic right ventricular cardiomyopathy (ARVC” are heavily enriched, which are also considered as no relationship with skeletal functions.Thirdly, “Prostate cancer” is intensively enriched in Hypergeometric analysis against the disease ontology (DO for the Skeletal Muscle tissue genes, which is a much unexpected phenomenon.

  9. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Silvia Sookoian

    Full Text Available The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD. Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein-protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a

  10. System Biology Approach: Gene Network Analysis for Muscular Dystrophy.

    Science.gov (United States)

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro

    2018-01-01

    Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.

  11. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  12. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  13. Breeding system and pollination biology of the semidomesticated ...

    African Journals Online (AJOL)

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae ): Implications for fruit production, selective breeding, and conservation of genetic resources.

  14. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  15. Tritium isotope fractionation in biological systems and in analytical procedures

    International Nuclear Information System (INIS)

    Kim, M.A.; Baumgaertner, Franz

    1989-01-01

    The organically bound tritium (OBT) is evaluated in biological systems by determining the tritium distribution ratio (R-value), i.e. tritium concentrations in organic substance to cell water. The determination of the R-value always involves isotope fractionation is applied analytical procedures and hence the evaluation of the true OBT -value in a given biological system appears more complicated than hitherto known in the literature. The present work concentrates on the tritium isotope fractionation in the cell water separation and on the resulting effects on the R-value. The analytical procedures examined are vacuum freeze drying under equilibrium and non-equilibrium conditions and azeotropic distillation. The vaporization isotope effects are determined separately in the phase transition of solid or liquid to gas in pure tritium water systems as well as in real biological systems, e.g. corn plant. The results are systematically analyzed and the influence of isotope effects on the R-value is rigorously quantified

  16. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Czech Academy of Sciences Publication Activity Database

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  17. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  18. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  19. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.

    Science.gov (United States)

    D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia

    2017-01-01

    Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

  20. A Generic Language for Biological Systems based on Bigraphs

    DEFF Research Database (Denmark)

    Damgaard, Troels Christoffer; Krivine, Jean

    Several efforts have shown that process calculi developed for reasoning about concurrent and mobile systems may be employed for modelling biological systems at the molecular level. In this paper, we initiate investigation of the meta-language framework bigraphical reactive systems, due to Milner et...

  1. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  3. Data management and data enrichment for systems biology projects.

    Science.gov (United States)

    Wittig, Ulrike; Rey, Maja; Weidemann, Andreas; Müller, Wolfgang

    2017-11-10

    Collecting, curating, interlinking, and sharing high quality data are central to de.NBI-SysBio, the systems biology data management service center within the de.NBI network (German Network for Bioinformatics Infrastructure). The work of the center is guided by the FAIR principles for scientific data management and stewardship. FAIR stands for the four foundational principles Findability, Accessibility, Interoperability, and Reusability which were established to enhance the ability of machines to automatically find, access, exchange and use data. Within this overview paper we describe three tools (SABIO-RK, Excemplify, SEEK) that exemplify the contribution of de.NBI-SysBio services to FAIR data, models, and experimental methods storage and exchange. The interconnectivity of the tools and the data workflow within systems biology projects will be explained. For many years we are the German partner in the FAIRDOM initiative (http://fair-dom.org) to establish a European data and model management service facility for systems biology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. PHIDIAS: a pathogen-host interaction data integration and analysis system

    OpenAIRE

    Xiang, Zuoshuang; Tian, Yuying; He, Yongqun

    2007-01-01

    The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated ...

  5. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  6. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  7. Transport phenomena and kinetic theory applications to gases, semiconductors, photons, and biological systems

    CERN Document Server

    Gabetta, Ester

    2007-01-01

    The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...

  8. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  9. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  10. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. Optical sensors and their applications for probing biological systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina

    There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant and mammal......There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant...... of a trapped cell. The project could provide new insights into the desired biosensor for future membrane-protein cell studies....

  12. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy.

    Science.gov (United States)

    Shanmugam, Akshaya; Usmani, Mohammad; Mayberry, Addison; Perkins, David L; Holcomb, Daniel E

    2018-01-01

    Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples.

  13. Gradient matching methods for computational inference in mechanistic models for systems biology: a review and comparative analysis

    Directory of Open Access Journals (Sweden)

    Benn eMacdonald

    2015-11-01

    Full Text Available Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs, is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimised so as to minimise some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data.

  14. MEDICAL DIAGNOSTICS BY MICROSTRUCTURAL ANALYSIS OF BIOLOGICAL LIQUID DRIED PATTERNS AS A PROBLEM OF BIOINFORMATICS

    Directory of Open Access Journals (Sweden)

    Petr Vladimirovich Lebedev-Stepanov, Dr.

    2018-02-01

    Full Text Available Motivation: It is important to develop the high-precision computerized methods for medical rapid diagnostic which is generalizing the unique clinical experience obtained in the past decade as specialized solutions for diagnostic problems of control of specific diseases and, potentially, for a wide health monitoring of virtually healthy population, identify the reserves of human health and take the actions to prevent of these reserves depletion. In this work we present one of the new directions in bioinformatics, i.e. medical diagnostics by automated expert system on basis of morphology analysis of digital image of biological liquid dried pattern. Results: Proposed method is combination of bioinformatics and biochemistry approaches for obtaining diagnostic information from a morphological analysis of standardized dried patterns of biological liquid sessile drop. We have carried out own research in collaboration with medical diagnostic centers and formed the electronic database for recognition the following types of diseases: candidiasis; neoplasms; diabetes mellitus; diseases of the circulatory system; cerebrovascular disease; diseases of the digestive system; diseases of the genitourinary system; infectious diseases; factors relevant to the work; factors associated with environmental pollution; factors related to lifestyle. The laboratory setup for diagnostics of the human body in pathology states is developed. The diagnostic results are considered. Availability: Access to testing the software can be obtained on request to the contact email below.

  15. Request for Travel Funds for Systems Radiation Biology Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [NYU School of Medicine

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  16. DATE analysis: A general theory of biological change applied to microarray data.

    Science.gov (United States)

    Rasnick, David

    2009-01-01

    In contrast to conventional data mining, which searches for specific subsets of genes (extensive variables) to correlate with specific phenotypes, DATE analysis correlates intensive state variables calculated from the same datasets. At the heart of DATE analysis are two biological equations of state not dependent on genetic pathways. This result distinguishes DATE analysis from other bioinformatics approaches. The dimensionless state variable F quantifies the relative overall cellular activity of test cells compared to well-chosen reference cells. The variable pi(i) is the fold-change in the expression of the ith gene of test cells relative to reference. It is the fraction phi of the genome undergoing differential expression-not the magnitude pi-that controls biological change. The state variable phi is equivalent to the control strength of metabolic control analysis. For tractability, DATE analysis assumes a linear system of enzyme-connected networks and exploits the small average contribution of each cellular component. This approach was validated by reproducible values of the state variables F, RNA index, and phi calculated from random subsets of transcript microarray data. Using published microarray data, F, RNA index, and phi were correlated with: (1) the blood-feeding cycle of the malaria parasite, (2) embryonic development of the fruit fly, (3) temperature adaptation of Killifish, (4) exponential growth of cultured S. pneumoniae, and (5) human cancers. DATE analysis was applied to aCGH data from the great apes. A good example of the power of DATE analysis is its application to genomically unstable cancers, which have been refractory to data mining strategies. 2009 American Institute of Chemical Engineers Biotechnol.

  17. High sensitivity neutron activation analysis of environmental and biological standard reference materials

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Fleming, R.F.; Zeisler, R.

    1984-01-01

    Neutron activation analysis is a sensitive method with unique capabilities for the analysis of environmental and biological samples. Since it is based upon the nuclear properties of the elements, it does not suffer from many of the chemical effects that plague other methods of analysis. Analyses can be performed either with no chemical treatment of the sample (instrumentally), or with separations of the elements of interest after neutron irradiation (radiochemically). Typical examples of both types of analysis are discussed, and data obtained for a number of environmental and biological SRMs are presented. (author)

  18. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  19. BETAview: a digital {beta}-imaging system for dynamic studies of biological phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bertolucci, E.; Conti, M.; Mettivier, G.; Montesi, M.C. E-mail: montesi@na.infn.it; Russo, P

    2002-02-01

    We present a digital autoradiography (DAR) system, named BETAview, based on semiconductor pixel detectors and a single particle counting chip, for quantitative analysis of {beta}-emitting radioactive tracers in biological samples. The system is able to perform a real time monitoring of time-dependent biological phenomena. BETAview could be equipped either with GaAs or with Si semiconductor pixellated detectors. In this paper, we describe the results obtained with an assembly based on a Si detector, 300 {mu}m thick, segmented into 64x64 170 {mu}m size square pixels. The detector is bump-bonded to the low threshold, single particle counting chip named Medipix1, developed by a CERN-based European collaboration. The sensitive area is about 1 cm{sup 2}. Studies of background noise and detection efficiency have been performed. Moreover, time-resolved cellular uptake studies with radiolabelled molecules have been monitored. Specifically, we have followed in vivo and in real time, the [{sup 14}C]L-leucine amino acid uptake by eggs of Octopus vulgaris confirming the preliminary results of a previous paper. This opens the field of biomolecular kynetic studies with this new class of semiconductor DAR systems, whose evolution (using the Medipix2 chip, 256x256 pixels, 55 {mu}m pixel size) is soon to come.

  20. BETAview: a digital β-imaging system for dynamic studies of biological phenomena

    International Nuclear Information System (INIS)

    Bertolucci, E.; Conti, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We present a digital autoradiography (DAR) system, named BETAview, based on semiconductor pixel detectors and a single particle counting chip, for quantitative analysis of β-emitting radioactive tracers in biological samples. The system is able to perform a real time monitoring of time-dependent biological phenomena. BETAview could be equipped either with GaAs or with Si semiconductor pixellated detectors. In this paper, we describe the results obtained with an assembly based on a Si detector, 300 μm thick, segmented into 64x64 170 μm size square pixels. The detector is bump-bonded to the low threshold, single particle counting chip named Medipix1, developed by a CERN-based European collaboration. The sensitive area is about 1 cm 2 . Studies of background noise and detection efficiency have been performed. Moreover, time-resolved cellular uptake studies with radiolabelled molecules have been monitored. Specifically, we have followed in vivo and in real time, the [ 14 C]L-leucine amino acid uptake by eggs of Octopus vulgaris confirming the preliminary results of a previous paper. This opens the field of biomolecular kynetic studies with this new class of semiconductor DAR systems, whose evolution (using the Medipix2 chip, 256x256 pixels, 55 μm pixel size) is soon to come

  1. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  2. BSPS Program (ESI-Mass Spectrometry) Biological Sample Data Analysis; Disruption of Bacteria Spores

    National Research Council Canada - National Science Library

    Lall, Ravi P

    2005-01-01

    The various biological processing technologies and biological identification approaches are essential for support of the mission to develop and demonstrate an advanced Biological Sample Preparation System...

  3. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    Science.gov (United States)

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  4. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  5. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  6. System as metaphor in the psychology and biology of shame.

    Science.gov (United States)

    Maunder, R

    1996-01-01

    Biological theories of brain and psychological theories of mind are two systems of explanation that seem related to one another. The nature of the relationship is problematic and constitutes the age-old mind-body problem. The most prominent solutions currently are variations of materialism. While psychological theories can be consistent with materialism, there remains a difficulty in comprehending nonphysical (social, psychological) causes of physical effects. This difficulty is an obstacle to integration in psychiatry, where we routinely assume that illnesses that include or depend on biological dysfunction are caused multifactorially by causal agents such as perceived parental warmth, parental loss, stressful life events, genetics, and personality (Hammen et al. 1992; Kendler et al. 1993). Unity theory adopts the stance that neurobiological theories and psychological theories are essentially disparate explanations of the same psychobiological events; thus the relationship of mind to brain is one of shared reference (Goodman 1991; Maunder 1995). In Goodman's model the gap between biological and psychological systems is not bridgeable. Different conceptual categories refer to the same referents but cannot interact with each other. Stepping into the breach, systems theory has been presented as offering a language that can bridge the gap between psychological and biological theories of causation (Schwartz 1981; Weiner 1989). Thus, there is a controversy about the applicability of systems theory for integration in psychiatry.

  7. Engagement and Skill Development in Biology Students through Analysis of Art

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates’ curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students’ higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, firsthand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material. PMID:24297295

  8. Engagement and skill development in biology students through analysis of art.

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates' curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students' higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, first-hand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material.

  9. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  10. Networks as a Privileged Way to Develop Mesoscopic Level Approaches in Systems Biology

    OpenAIRE

    Alessandro Giuliani

    2014-01-01

    The methodologies advocated in computational biology are in many cases proper system-level approaches. These methodologies are variously connected to the notion of “mesosystem” and thus on the focus on relational structures that are at the basis of biological regulation. Here, I describe how the formalization of biological systems by means of graph theory constitutes an extremely fruitful approach to biology. I suggest the epistemological relevance of the notion of graph resides in its multil...

  11. PyPathway: Python Package for Biological Network Analysis and Visualization.

    Science.gov (United States)

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  12. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  13. Applied research and development of neutron activation analysis - The study on human health and environment by neutron activation analysis of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Yoo, Jong Ik; Lee, Jae Kwang; Lee, Sung Jun; Lee, Sang Sun; Jeon, Ki Hong; Na, Kyung Won; Kang, Sang Hun [Yonsei University, Seoul (Korea)

    2000-04-01

    With the development of the precise quantitative analytical method for the analysis of trace elements in the various biological samples such as hair and food, evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body was done. The trace elemental distribution in Korean total diet and representative food stuff was identified first. With the project the elemental distributions in supplemental healthy food and Korean and Chinese origin oriental medicine were identified. The amount of trace elements ingested with the hair analysis of oriental medicine takers were also estimated. The amounts of trace elements inhaled with the analysis of foundry air, blood and hair of foundry workers were also estimated. The basic estimation method in view of health and environment with the neutron activation analysis of biological samples such as foods and hair was established with the result. Nationwide usage system of the NAA facility in Hanaro in many different and important areas of biological area can be initiated with the results. The output of the project can support public heath, environment, and medical research area. The results can be applied for the process of micronutrients enhanced health food production and for the health safety and health status enhancement with the additional necessary data expansion and the development of various evaluation technique. 19 refs., 7 figs., 23 tabs. (Author)

  14. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  15. Biological Therapy in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mariana Postal

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic inflammatory autoimmune disorder characterized by multisystem involvement and fluctuating disease activity. Symptoms range from rather mild manifestations such as rash or arthritis to life-threatening end-organ manifestations. Despite new and improved therapy having positively impacted the prognosis of SLE, a subgroup of patients do not respond to conventional therapy. Moreover, the risk of fatal outcomes and the damaging side effects of immunosuppressive therapies in SLE call for an improvement in the current therapeutic management. New therapeutic approaches are focused on B-cell targets, T-cell downregulation and costimulatory blockade, cytokine inhibition, and the modulation of complement. Several biological agents have been developed, but this encouraging news is associated with several disappointments in trials and provide a timely moment to reflect on biologic therapy in SLE.

  16. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.

    Science.gov (United States)

    Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J

    2017-07-01

    Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.

  17. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  18. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  19. The effect of cosmic rays on biological systems - an investigation during GLE events

    Science.gov (United States)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Vashenuyk, E. V.

    2012-01-01

    In this study, first direct and circumstantial evidences of the effects of cosmic rays (CR) on biological systems are presented. A direct evidence of biological effects of CR is demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA). A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. The circumstantial evidence was obtained by statistical analysis of cases of congenital malformations (CM) at two sites in the Murmansk region. The number of cases of all classes of CM reveals a significant correlation with the number of GLE events. The number of cases of CM with pronounced chromosomal abnormalities clearly correlates with the GLE events that occurred a year before the birth of a child. We have found a significant correlation between modulations of the water properties and daily background variations of CR intensity. We believe that the effects of CR on biological systems can be also mediated by fluctuations in water properties, considered as one of possible mechanisms controlling the effects of CRs on biological systems.

  20. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  1. Biological Detection System Technologies Technology and Industrial Base Study. A Primer on Biological Detection Technologies

    National Research Council Canada - National Science Library

    2001-01-01

    .... and Canadian military personnel. In light of these concerns both defense departments have increased efforts to develop and field biological agent detection systems to help protect their military forces and fixed assets...

  2. Enabling a systems biology knowledgebase with gaggle and firegoose

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Nitin S. [Institute for Systems Biology, Seattle, WA (United States)

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and

  3. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  4. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  5. Notions of radiation chemistry in biological systems

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-10-01

    The present paper examines some aspects of the direct and indirect biological radiation effects: pair formation, free radicals, superoxide ion, hydrogen peroxide, hydroxyl radical, oxygen singlet together with the endogen radioprotector mechanisms of organisms and the ways in which an improved radioresistance of biochemical systems can be achieved. (author) [pt

  6. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    Science.gov (United States)

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  7. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  8. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  9. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  10. Data publication with the structural biology data grid supports live analysis

    NARCIS (Netherlands)

    Meyer, Peter A.; Socias, Stephanie; Key, Jason; Ransey, Elizabeth; Tjon, Emily C.; Buschiazzo, Alejandro; Lei, Ming; Botka, Chris; Withrow, James; Neau, David; Rajashankar, Kanagalaghatta; Anderson, Karen S.; Baxter, Richard H.; Blacklow, Stephen C.; Boggon, Titus J.; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238; Borek, Dominika; Brett, Tom J.; Caflisch, Amedeo; Chang, Chung I.; Chazin, Walter J.; Corbett, Kevin D.; Cosgrove, Michael S.; Crosson, Sean; Dhe-Paganon, Sirano; Di Cera, Enrico; Drennan, Catherine L.; Eck, Michael J.; Eichman, Brandt F.; Fan, Qing R.; Ferré-D'Amaré, Adrian R.; Fromme, J. Christopher; Garcia, K. Christopher; Gaudet, Rachelle; Gong, Peng; Harrison, Stephen C.; Heldwein, Ekaterina E.; Jia, Zongchao; Keenan, Robert J.; Kruse, Andrew C.; Kvansakul, Marc; McLellan, Jason S.; Modis, Yorgo; Nam, Yunsun; Otwinowski, Zbyszek; Pai, Emil F.; Pereira, Pedro José Barbosa; Petosa, Carlo; Raman, C. S.; Rapoport, Tom A.; Roll-Mecak, Antonina; Rosen, Michael K.; Rudenko, Gabby; Schlessinger, Joseph; Schwartz, Thomas U.; Shamoo, Yousif; Sondermann, Holger; Tao, Yizhi J.; Tolia, Niraj H.; Tsodikov, Oleg V.; Westover, Kenneth D.; Wu, Hao; Foster, Ian; Fraser, James S.; Maia, Filipe R N C; Gonen, Tamir; Kirchhausen, Tom; Diederichs, Kay; Crosas, Mercé; Sliz, Piotr

    2016-01-01

    Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology

  11. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  12. When one model is not enough: combining epistemic tools in systems biology.

    Science.gov (United States)

    Green, Sara

    2013-06-01

    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Leonelli, 2007; Levins, 2006). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger's practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger's historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple representational means is an essential part of the dynamic of knowledge generation. It is because of-rather than in spite of-the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A systems biology approach for miRNA-mRNA expression patterns analysis in non-small cell lung cancer.

    Science.gov (United States)

    Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa

    2016-01-01

    Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.

  14. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design.

    Science.gov (United States)

    Raman, Ritu; Bashir, Rashid

    2017-10-01

    The discipline of biological design has a relatively short history, but has undergone very rapid expansion and development over that time. This Progress Report outlines the evolution of this field from biomimicry to biofabrication to biohybrid systems' design, showcasing how each subfield incorporates bioinspired dynamic adaptation into engineered systems. Ethical implications of biological design are discussed, with an emphasis on establishing responsible practices for engineering non-natural or hypernatural functional behaviors in biohybrid systems. This report concludes with recommendations for implementing biological design into educational curricula, ensuring effective and responsible practices for the next generation of engineers and scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Creation of computer system for simulation nanoparticles interaction with biological objects concept

    International Nuclear Information System (INIS)

    Sarana, Yu.V.; Smol'nik, N.S.; Mel'nov, S.B.

    2014-01-01

    Main problem of nanotoxicology is that biological effects of most nanoparticles are unknown. So creation of system predictioning nanoparticles biological activity spectra is a great challenge. Here we give a concept of such system creation; it includes 6 stages realization of which help to implement nanotechnology most safely and effectively. (authors)

  16. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  17. Network Expansion and Pathway Enrichment Analysis towards Biologically Significant Findings from Microarrays

    Directory of Open Access Journals (Sweden)

    Wu Xiaogang

    2012-06-01

    Full Text Available In many cases, crucial genes show relatively slight changes between groups of samples (e.g. normal vs. disease, and many genes selected from microarray differential analysis by measuring the expression level statistically are also poorly annotated and lack of biological significance. In this paper, we present an innovative approach - network expansion and pathway enrichment analysis (NEPEA for integrative microarray analysis. We assume that organized knowledge will help microarray data analysis in significant ways, and the organized knowledge could be represented as molecular interaction networks or biological pathways. Based on this hypothesis, we develop the NEPEA framework based on network expansion from the human annotated and predicted protein interaction (HAPPI database, and pathway enrichment from the human pathway database (HPD. We use a recently-published microarray dataset (GSE24215 related to insulin resistance and type 2 diabetes (T2D as case study, since this study provided a thorough experimental validation for both genes and pathways identified computationally from classical microarray analysis and pathway analysis. We perform our NEPEA analysis for this dataset based on the results from the classical microarray analysis to identify biologically significant genes and pathways. Our findings are not only consistent with the original findings mostly, but also obtained more supports from other literatures.

  18. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  19. Applications of membrane computing in systems and synthetic biology

    CERN Document Server

    Gheorghe, Marian; Pérez-Jiménez, Mario

    2014-01-01

    Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying th...

  20. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering.

    Science.gov (United States)

    Menolascina, Filippo; Bellomo, Domenico; Maiwald, Thomas; Bevilacqua, Vitoantonio; Ciminelli, Caterina; Paradiso, Angelo; Tommasi, Stefania

    2009-10-15

    Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments. We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification. We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated

  1. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JingLi, E-mail: jinglizhangczp@126.com [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Cao, ZhanPing; Zhang, HongWei [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, LianMei [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Sun, XuDong; Mei, Feng [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-11-15

    Highlights: • The 2,4-D reductive degradation was studied in an electro-biological system. • The electric auxiliary accelerates 2,4-D microbial degradation. • A electron transfer is achieved between the electrode, bacteria and the pollutants. • The paper provides a promising way for the degradation of persistent organics. -- Abstract: The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10{sup −2} h{sup −1}, 19.73 × 10{sup −2} h{sup −1} and 3.54 × 10{sup −2} h{sup −1}, respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants.

  2. Toxicological Analysis of Some Drugs of Abuse in Biological Samples

    Directory of Open Access Journals (Sweden)

    Anne Marie Ciobanu

    2015-10-01

    Full Text Available Consumption of drugs of abuse is a scourge of modern world. Abuse, drug addiction and their consequences are one of the major current problems of European society because of the significant repercussions in individual, family, social and economic level. In this context, toxicological analysis of the drugs of abuse in biological samples is a useful tool for: diagnosis of drug addiction, checking an auto-response, mandatory screening in some treatment programs, identification of a substance in the case of an overdose, determining compliance of the treatment. The present paper aims to address the needs of healthcare professionals involved in drugs addiction treatment through systematic presentation of information regarding their toxicological analysis. Basically, it is a tool that help you to select the suitable biological sample and the right collecting time, as well as the proper analysis technique, depending on the purpose of analysis, pharmacokinetic characteristics of the drugs of abuse, available equipment and staff expertise.

  3. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  4. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  5. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Sarah R. [J. Craig Venter Inst., Rockville, MD (United States); Rodemeyer, Michael [Univ. of Virginia, Charlottesville, VA (United States); Garfinkel, Michele S. [EMBO, Heidelberg (Germany); Friedman, Robert M. [J. Craig Venter Inst., Rockville, MD (United States)

    2014-05-01

    engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPA’s resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology indus¬try, and non-governmental organiza¬tions. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/

  6. BIOLOGICAL FEATURES OF TARAN (RUTILUS HECKELII OF THE DNIEPER-BUG ESTUARY SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Geina

    2016-03-01

    Full Text Available Purpose. To analyze morphological variability and basic biological features of the modern stock of taran of the Dnieper-Bug estuary system in the conditions of the transformed Dnieper flow. Methodology. Morphological variability was determined based on the comparison of morphological features of roach Rutilus rutilus (Linnaeus, 1758 of the Kakhovka reservoir and semi-migratory taran Rutilus rutilus heckelii (Nordmann, 1840 of the Dnieper-Bug estuary system. As a main criterion of the evaluation of the taran stock biological state, we used age, sex structure, growth characteristics, fecundity and condition factor. Fish sampling was carried out at stationary monitoring-observation stations of the Institute of Fisheries NAAS of Ukraine. Field and cameral processing of the collected materials were performed based on conventional methods and guidelines. Findings. Morphological variability analysis demonstrated significant differences between Dnieper and Bug taran. The highest differences were observed for antroventral distance (td=11.19. Significant differences were also observed for antenanal and ventroanal distances td=4.05-4.14. No significant differences were found for meristic features. There were also significant differences between Dnieper-Bug taran and Kakhovka reservoir roach, which had formed a resident form after regulating the Dnieper River flow. Kakhovka reservoir roach is more deep-bodied with Н=32.79%, t-test value was 5.65. Pelvic fins were more shifted to the caudal fin (td=5.28 that resulted in significant difference (p<0.05 in ventroanal distance (td=4.26. Taran also had somewhat smaller length of the anal fin base (td=4.73 but its height was higher – td=5.78. The main peculiarity of the current biological state of taran stock is the domination of young age groups. The small number of fish in the boundary groups of the age series right wing with relative stability of growth features indicate on intensive pressure on the

  7. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  8. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bovenkamp, Gudrun Lisa

    2013-05-15

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L{sub 3}- and Ag L{sub 3}-XANES spectra with regard to their chemical environment. It was shown that Pb L{sub 3}- and Ag L{sub 3}-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  9. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    International Nuclear Information System (INIS)

    Bovenkamp, Gudrun Lisa

    2013-05-01

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L 3 - and Ag L 3 -XANES spectra with regard to their chemical environment. It was shown that Pb L 3 - and Ag L 3 -XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  10. Development of capillary electrophoresis methods for quantitative determination of taurine in vehicle system and biological media.

    Science.gov (United States)

    da Silva, Dayse L P; Rüttinger, Hans H; Mrestani, Yahia; Baum, Walter F; Neubert, Reinhard H H

    2006-06-01

    CE methods have been developed for the determination of taurine in pharmaceutical formulation (microemulsion) and in biological media such as sweat. The CE system with end-column pulsed amperometric detection has been found to be an interesting method in comparison with UV and fluorescence detection for its simplicity and rapidity. A gold-disk electrode of 100 mm diameter was used as the working electrode. The effects of a field decoupler at the end of the capillary, separation voltage, injection and pressure times were investigated. A detection limit of 4 x 10(-5) mol/L was reached using integrated pulsed amperometric detection, a method successfully applied to taurine analysis of the biological samples such as sweat. For taurine analysis of oil-in-water microemulsion, fluorescence detector was the favored method, the detection limit of which was 4 x 10(-11) mol/L.

  11. A critical analysis of the new biology and the biological revolution: their impact - from medicine to evolution.

    Science.gov (United States)

    Dev, Sukhendu B

    2010-01-01

    In this article, I critically analyze the impact of the new biology and the biological revolution. I argue that indiscriminate use of the words such as 'interdisciplinary,' 'integrative,' and 'revolution' has caused only confusion when applied to biology. The recent debate, especially after the exploding field of systems biology, has brought back the controversy whether molecular biology is reductionist or holistic. I look at the issues involved critically. I discuss the problem of defining the word 'gene' and argue that recent attempts to redefine the central dogma of molecular biology about the information flow from DNA to RNA to protein are not justified. I support my view with comments from the scientist who discovered RNA splicing. Several aspects of evo-devo, a new branch of biology, are discussed. I give examples from this evolution-developmental biology to show how some of Darwin's inspired guesses have had resounding victory when it was found that specific genes during embryonic development of the Galapagos finches decided the size and shape of their beaks. I discuss the recent publications which show that the conditions in the island, such as wet to dry to wet season, can bring about evolutionary changes from year to year. Thus it is essential to monitor both short and long-term evolutionary changes to get the full picture of evolution.

  12. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  13. Analysis of the biological spectrum of vascular flora of Ravni Srem flood forests

    Directory of Open Access Journals (Sweden)

    Jurišić Branislav

    2011-01-01

    Full Text Available One of the essential analyses performed during the floristic study of a region is the analysis of the biological spectrum. The analysis of the biological spectrum of the flora includes the determination of the type of life form for each taxon described in the flora of the study region. If it is considered that life form is a specific structural-functional response to the environmental effects and the result of the adaptation during the species evolution, it is clear that the basic characteristics of the site are more or less reflected in any life form. This fact is confirmed by the analysis of the biological spectrum of the flora of Ravni Srem. The analysis of the Ravni Srem flora shows the domination of the hemicryptophytes and the subdomination of the phanerophytes with a considerable participation of the therophytes.

  14. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  15. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

    KAUST Repository

    Klingbeil, G.

    2011-02-25

    Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user\\'s models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.

  16. Half dozen of one, six billion of the other: What can small- and large-scale molecular systems biology learn from one another?

    Science.gov (United States)

    Mellis, Ian A; Raj, Arjun

    2015-10-01

    Small-scale molecular systems biology, by which we mean the understanding of a how a few parts work together to control a particular biological process, is predicated on the assumption that cellular regulation is arranged in a circuit-like structure. Results from the omics revolution have upset this vision to varying degrees by revealing a high degree of interconnectivity, making it difficult to develop a simple, circuit-like understanding of regulatory processes. We here outline the limitations of the small-scale systems biology approach with examples from research into genetic algorithms, genetics, transcriptional network analysis, and genomics. We also discuss the difficulties associated with deriving true understanding from the analysis of large data sets and propose that the development of new, intelligent, computational tools may point to a way forward. Throughout, we intentionally oversimplify and talk about things in which we have little expertise, and it is likely that many of our arguments are wrong on one level or another. We do believe, however, that developing a true understanding via molecular systems biology will require a fundamental rethinking of our approach, and our goal is to provoke thought along these lines. © 2015 Mellis and Raj; Published by Cold Spring Harbor Laboratory Press.

  17. Mutagenic potential scale developed for relative evaluation of biological system response to environments presenting different gamma exposure rates

    International Nuclear Information System (INIS)

    Nouailhetas, Yannick; Almeida, Carlos E. Bonacossa de; Mezrahi, Arnaldo; Shu, Jane; Xavier, Ana Maria

    1999-01-01

    The elaboration of a mutagenic potential scale (MPS) will be accomplished through the evaluation of the frequency of induced mutations in a plant biological system in different sites. The selection of these sites will be based on general public perception of risk to health. In this selection, it will include areas such ecological paradises and also neighborhoods of nuclear reactors and uranium mining and milling industry with potential radiological impact. The developed project foresees the contribution of other research groups that will also provide data from different sites. The referred scale will be built based on the response of the genetic system that gives color to the cells of Tradescantia (BNL 4430) stamen hair to mutagenic agents. Methodological improvements has been developed aiming the computerization of mutagenic events evaluation and statistical analysis of data that will significantly increase the efficiency of the system and obtention of results. Other biological systems of environmental quality are being added to the project, for future use. MPS should facilitate the general public and professionals of the nuclear area to understand risks, on a biological basis, of exposure from radiologically impacted environments. (author)

  18. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  19. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

    KAUST Repository

    Klingbeil, G.; Erban, R.; Giles, M.; Maini, P. K.

    2011-01-01

    Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new

  20. An Error Analysis of Structured Light Scanning of Biological Tissue

    DEFF Research Database (Denmark)

    Jensen, Sebastian Hoppe Nesgaard; Wilm, Jakob; Aanæs, Henrik

    2017-01-01

    This paper presents an error analysis and correction model for four structured light methods applied to three common types of biological tissue; skin, fat and muscle. Despite its many advantages, structured light is based on the assumption of direct reflection at the object surface only......, statistical linear model based on the scan geometry. As such, scans can be corrected without introducing any specially designed pattern strategy or hardware. We can effectively reduce the error in a structured light scanner applied to biological tissue by as much as factor of two or three........ This assumption is violated by most biological material e.g. human skin, which exhibits subsurface scattering. In this study, we find that in general, structured light scans of biological tissue deviate significantly from the ground truth. We show that a large portion of this error can be predicted with a simple...

  1. Quantum Dynamics in Biological Systems

    Science.gov (United States)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  2. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  3. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  4. Systems of organic farming in spring vetch II: Biological response of Aeolothrips intermedius Bagnall and Coccinella septempunctata L.

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-09-01

    Full Text Available The effects of four systems of organic farming of spring vetsch on Aeolothrips intermedius Bagnall (Thysanoptera: Aeolothripidae and Coccinella septempunctata L. (Coleoptera: Coccinellidae population density and the toxicity of several products on predatory insects were studied. The variants were: Control (without using any biological products; combined treatment with Polyversum (biological foliar fertilizer and Biofa (biological plant growth regulator; treatment with NeemAzal T/S (biological insecticide, a.i. azadirachtin and treatment with a combination of NeemAzal with Polyversum and Biofa. Variant V was a conventional farming system in which a combination of Nurelle D (synthetic insecticide, Masterblend (foliar fertilizer and Flordimex 420 (growth regulator was used as a standard treatment. In the organic farming system that included treatment of plants with the biological insecticide NeemAzal (azadirachtin, the reduction in A. intermedius abundance was 20.7% when it was applied alone and 24.6 % in combination with the organic products Polyversum and Biofa. NeemAzal achieved a lower reduction in the counts of predatory ladybirds C. septempunctata, from 14.9% (alone to 21.9% (combination. The biological insecticide, applied alone or in combination, was mostly harmless and rarely harmful to A. intermedius. NeemAzal manifested harmlessness to C. septempunctata as its toxic action did not exceed 25%. An analysis of variance regarding product toxicity to A. intermedius and C. septempunctata demonstrated that the type of treatment (the application of insecticides alone or in combination had the strongest effect on product toxicity. Тhe use of neem-based insecticides can be a substantial contribution towards preservation of biodiversity in ecosystems.

  5. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    Directory of Open Access Journals (Sweden)

    Laurent Nottale

    2013-12-01

    Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

  6. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  7. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Multi-element analysis of small biological samples

    International Nuclear Information System (INIS)

    Rokita, E.; Cafmeyer, J.; Maenhaut, W.

    1983-01-01

    A method combining PIXE and INAA was developed to determine the elemental composition of small biological samples. The method needs virtually no sample preparation and less than 1 mg is sufficient for the analysis. The method was used for determining up to 18 elements in leaves taken from Cracow Herbaceous. The factors which influence the elemental composition of leaves and the possible use of leaves as an environmental pollution indicator are discussed

  9. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  10. PHIDIAS: a pathogen-host interaction data integration and analysis system.

    Science.gov (United States)

    Xiang, Zuoshuang; Tian, Yuying; He, Yongqun

    2007-01-01

    The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated from peer-reviewed literature. PHIDIAS is publicly available at http://www.phidias.us.

  11. Growing trend of CE at the omics level: the frontier of systems biology.

    Science.gov (United States)

    Oh, Eulsik; Hasan, Md Nabiul; Jamshed, Muhammad; Park, Soo Hyun; Hong, Hye-Min; Song, Eun Joo; Yoo, Young Sook

    2010-01-01

    In a novel attempt to comprehend the complexity of life, systems biology has recently emerged as a state-of-the-art approach for biological research in contrast to the reductionist approaches that have been used in molecular cell biology since the 1950s. Because a massive amount of information is required in many systems biology studies of life processes, we have increasingly come to depend on techniques that provide high-throughput omics data. CE and CE coupled to MS have served as powerful analytical tools for providing qualitative and quantitative omics data. Recent systems biology studies have focused strongly on the diagnosis and treatment of diseases. The increasing number of clinical research papers on drug discovery and disease therapies reflects this growing interest among scientists. Since such clinical research reflects one of the ultimate purposes of bioscience, these trends will be sustained for a long time. Thus, this review mainly focuses on the application of CE and CE-MS in diagnosis as well as on the latest CE methods developed. Furthermore, we outline the new challenges that arose in 2008 and later in elucidating the system-level functions of the bioconstituents of living organisms.

  12. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  13. Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific.

    Science.gov (United States)

    Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R

    2017-01-01

    Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in

  14. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.

    Science.gov (United States)

    Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni

    2017-01-01

    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post

  15. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  16. Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.

    Science.gov (United States)

    Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana

    2015-10-01

    Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.

  17. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  18. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  19. [Habitability and biological life support systems for man].

    Science.gov (United States)

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  20. Newton, Laplace, and The Epistemology of Systems Biology

    Science.gov (United States)

    Bittner, Michael L.; Dougherty, Edward R.

    2012-01-01

    For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical methods. A century and a half elapsed between Newton’s development of the calculus and Laplace’s development of celestial mechanics. One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of systems biology and its application to complex regulatory diseases such as cancer. PMID:23170064

  1. Compatibility analysis of 3D printer resin for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-08-30

    The salient features of microfluidics such as reduced cost, handling small sample and reagent volumes and less time required to fabricate the devices has inspired the present work. The incompatibility of three-dimensional printer resins in their native form and the method to improve their compatibility to many biological processes via surface modification are reported. The compatibility of the material to build microfluidic devices was evaluated in three different ways: (i) determining if the ultraviolet (UV) cured resin inhibits the polymerase chain reaction (PCR), i.e. testing devices for PCR compatibility; (ii) observing agglutination complex formed on the surface of the UV cured resin when anti-C-reactive protein (CRP) antibodies and CRP proteins were allowed to agglutinate; and (iii) by culturing human embryonic kidney cell line cells and testing for its attachment and viability. It is shown that only a few among four in its native form could be used for fabrication of microchannels and that had the least effect on biological molecules that could be used for PCR and protein interactions and cells, whereas the others were used after treating the surface. Importance in building lab-on-chip/micrototal analysis systems and organ-on-chip devices is found.

  2. Roles of Nicotinamide Adenine Dinucleotide (NAD+ in Biological Systems

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2018-01-01

    Full Text Available NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A and oligoadenylates (oligo2′-5′A, two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.

  3. Comparison of the efficacy of biologics versus conventional systemic therapies in the treatment of psoriasis at a comprehensive psoriasis care center.

    Science.gov (United States)

    Au, Shiu-Chung; Madani, Abdulaziz; Alhaddad, Marwan; Alkofide, Maha; Gottlieb, Alice B

    2013-08-01

    The efficacy of biologic treatment for psoriasis has not been compared to that of conventional systemic therapies and phototherapy outside of clinical trial settings. Retrospective, cross-sectional. All patient visits with a code for psoriasis (ICD-9 696.1) in the clinical practice of two dermatologists with a high percentage (over 70% of chief complaints) of psoriasis patients from Jan 1, 2008 to Jan 4, 2012 inclusive were included in this retrospective data analysis. Patients were excluded if the baseline Physician's Global Assessment (PGA) at start of treatment was unknown, or less than 3 (moderate). The practice is a comprehensive psoriasis care center in the Northeastern United States serving a metropolitan population of over 4 million people. Patients were divided by treatment type (biologic, conventional systemic or both) and history of previous treatments. Patients were evaluated by Body Surface Area (BSA), PGA, Simple-Measure for Assessing Psoriasis Activity (S-MAPA, calculated by BSA multiplied by PGA). Patients were evaluated at baseline, 8, 12, 16, and 24 weeks after start of treatment. Patients must have completed at least 8 weeks on a single treatment in order to be included. 46 courses of biologics, 12 courses of conventional systemic therapies, and 18 courses of both together were identified with PGA 3 or greater at baseline. Baseline S-MAPA for biologics was 74, for non-biologic systemics was 62.25. At week 24, S-MAPA improved 70.2% over baseline in patients treated with biologics, patients treated with non-biologic systemics improved by only 40.4% (PMAPA (PGA multiplied by BSA) at week 24. These results were observed despite the fact that patients on biologics had a greater baseline severity and had a greater number of previous treatments.

  4. Solid-phase microextraction for the analysis of biological samples

    NARCIS (Netherlands)

    Theodoridis, G; Koster, EHM; de Jong, GJ

    2000-01-01

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a

  5. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  6. BicPAMS: software for biological data analysis with pattern-based biclustering.

    Science.gov (United States)

    Henriques, Rui; Ferreira, Francisco L; Madeira, Sara C

    2017-02-02

    Biclustering has been largely applied for the unsupervised analysis of biological data, being recognised today as a key technique to discover putative modules in both expression data (subsets of genes correlated in subsets of conditions) and network data (groups of coherently interconnected biological entities). However, given its computational complexity, only recent breakthroughs on pattern-based biclustering enabled efficient searches without the restrictions that state-of-the-art biclustering algorithms place on the structure and homogeneity of biclusters. As a result, pattern-based biclustering provides the unprecedented opportunity to discover non-trivial yet meaningful biological modules with putative functions, whose coherency and tolerance to noise can be tuned and made problem-specific. To enable the effective use of pattern-based biclustering by the scientific community, we developed BicPAMS (Biclustering based on PAttern Mining Software), a software that: 1) makes available state-of-the-art pattern-based biclustering algorithms (BicPAM (Henriques and Madeira, Alg Mol Biol 9:27, 2014), BicNET (Henriques and Madeira, Alg Mol Biol 11:23, 2016), BicSPAM (Henriques and Madeira, BMC Bioinforma 15:130, 2014), BiC2PAM (Henriques and Madeira, Alg Mol Biol 11:1-30, 2016), BiP (Henriques and Madeira, IEEE/ACM Trans Comput Biol Bioinforma, 2015), DeBi (Serin and Vingron, AMB 6:1-12, 2011) and BiModule (Okada et al., IPSJ Trans Bioinf 48(SIG5):39-48, 2007)); 2) consistently integrates their dispersed contributions; 3) further explores additional accuracy and efficiency gains; and 4) makes available graphical and application programming interfaces. Results on both synthetic and real data confirm the relevance of BicPAMS for biological data analysis, highlighting its essential role for the discovery of putative modules with non-trivial yet biologically significant functions from expression and network data. BicPAMS is the first biclustering tool offering the

  7. Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Chang, Roger L.; Andrews, Kathleen; Kim, Donghyuk

    2013-01-01

    Improve the System A "systems biology" approach may clarify, for example, how particular proteins determine sensitivity of bacteria to extremes of temperature. Chang et al. (p. 1220) integrated information on protein structure with a model of metabolism, thus associating the protein structure of ...

  8. Automated GC-MS analysis of free amino acids in biological fluids.

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Gronwald, Wolfram; Oefner, Peter J

    2008-07-15

    A gas chromatography-mass spectrometry (GC-MS) method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate is carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acids, thereby allowing automation of the entire procedure, including addition of reagents, extraction and injection into the GC-MS. The total analysis time was 30 min and 30 amino acids could be reliably quantified using 19 stable isotope-labeled amino acids as internal standards. Limits of detection (LOD) and lower limits of quantification (LLOQ) were in the range of 0.03-12 microM and 0.3-30 microM, respectively. The method was validated using a certified amino acid standard and reference plasma, and its applicability to different biological fluids was shown. Intra-day precision for the analysis of human urine, blood plasma, and cell culture medium was 2.0-8.8%, 0.9-8.3%, and 2.0-14.3%, respectively, while the inter-day precision for human urine was 1.5-14.1%.

  9. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    Science.gov (United States)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  10. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  11. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    Science.gov (United States)

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016. © 2016 American Institute of Chemical Engineers.

  12. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    Science.gov (United States)

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  14. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  15. A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells.

    Science.gov (United States)

    Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara

    2014-01-01

    Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.

  16. The Systems Biology Research Tool: evolvable open-source software

    OpenAIRE

    Wright, J; Wagner, A

    2008-01-01

    Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput) experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform calle...

  17. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  18. Biological indicators for monitoring water quality of MTF canals system

    Science.gov (United States)

    Sethi, S. L.

    1975-01-01

    Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.

  19. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  20. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma.

    Science.gov (United States)

    Zecena, Helma; Tveit, Daniel; Wang, Zi; Farhat, Ahmed; Panchal, Parvita; Liu, Jing; Singh, Simar J; Sanghera, Amandeep; Bainiwal, Ajay; Teo, Shuan Y; Meyskens, Frank L; Liu-Smith, Feng; Filipp, Fabian V

    2018-04-04

    Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance