WorldWideScience

Sample records for biological stress

  1. BIological Psychology, Exercise, and Stress.

    Science.gov (United States)

    Dishman, Rod K.

    1994-01-01

    Reviews theory and methods used by the field of biological psychology to study stress that have potential for understanding how behavioral and biological adaptations to the stress of exercise are integrated. The overview focuses on anxiety, depression, and physiological responsiveness to nonexercise stressors from the perspective of biological…

  2. Teaching evolutionary biology: Pressures, stress, and coping

    Science.gov (United States)

    Griffith, Joyce A.; Brem, Sarah K.

    2004-10-01

    Understanding what teachers need to be more comfortable and confident in their profession is crucial to the future of effective teachers and scientific literacy in public schools. This study focuses on the experiences of Arizona biology teachers in teaching evolution, using a clinical model of stress to identify sources of pressure, the resulting stresses, and coping strategies they employ to alleviate these stresses. We conducted focus groups, one-on-one interviews, and written surveys with 15 biology teachers from the Phoenix area. On the basis of their responses, teachers were clustered into three categories: Conflicted, who struggle with their own beliefs and the possible impact of their teaching, Selective, who carefully avoid difficult topics and situations, and Scientists, who see no place for controversial social issues in their science classroom. Teachers from each group felt that they could be more effective in teaching evolution if they possessed the most up-to-date information about evolution and genomics, a safe space in which to reflect on the possible social and personal implications with their peers, and access to richer lesson plans for teaching evolution that include not only science but personal stories regarding how the lessons arose, and what problems and opportunities they created.

  3. Effects of abiotic stress on plants: a systems biology perspective

    OpenAIRE

    Cramer Grant R; Urano Kaoru; Delrot Serge; Pezzotti Mario; Shinozaki Kazuo

    2011-01-01

    Abstract The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynam...

  4. Stress and Telomere Biology: A Lifespan Perspective

    OpenAIRE

    Shalev, Idan; Entringer, Sonja; Pathik D Wadhwa; Wolkowitz, Owen M.; Puterman, Eli; Lin, Jue; Epel, Elissa S.

    2013-01-01

    In the past decade, the growing field of telomere science has opened exciting new avenues for understanding the cellular and molecular substrates of stress and stress-related aging processes ver the lifespan. Shorter telomere length is associated with advancing chronological age and also increased disease morbidity and mortality. Emerging studies suggest that stress accelerates the erosion of telomeres from very early in life and possibly even influences the initial (newborn) setting of telom...

  5. Stress and the biology of inequality.

    OpenAIRE

    Brunner, E

    1997-01-01

    It is well established that health depends on socioeconomic circumstances, but the biology of this relation is not well described. Psychosocial factors operating throughout the life course, beginning in early life, influence a variety of biological variables. Research with non-human primates shows the effects of dominance hierarchy on biology, and similar metabolic differentials are evident in a hierarchy of white collar civil servants. The neuroendocrine "fight or flight" response produces p...

  6. Use of biological indicators to evaluate environmental stress

    International Nuclear Information System (INIS)

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present usage in Canada of biological indicators for evaluating environmental stress

  7. Use of biological indicators for evaluating environmental stress

    International Nuclear Information System (INIS)

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present use in Canada of biological indicators for evaluating environmental stress

  8. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    OpenAIRE

    Epel, Elissa S.; Lithgow, Gordon J.

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the str...

  9. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  10. Understanding freeze stress in biological tissues: Thermodynamics of interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Olien, C. Robert [USDA-ARS (retired), Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325 (United States); Livingston, David P. [USDA and North Carolina State University, Crop Science, 840 Method Road, Unit 3, Raleigh, NC 27502 (United States)]. E-mail: dpl@unity.ncsu.edu

    2006-12-01

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biological systems depends on identification of a specific form of stress, just as control of a disease depends on identification of the pathogen causing the disease. The forms of energy that stress hydrated systems as temperature decreases begin with disruption of biological function from chill injury that occurs above freezing. Initiation of non-equilibrium freezing with sufficient free energy to drive disruptive effects can occur in a supercooled system. As the temperature continues to decrease and freezing occurs in an equilibrium manner, adhesion at hydrated interfaces contributes to disruptive effects as protoplasts contract by freeze-dehydration. If protective systems are able to prevent injury from direct interactions with ice, passive effects of freeze-dehydration may cause injury at lower temperatures. The temperature range in which an injury occurs is an indicator of the form of energy causing stress. The form of energy is thus a primary guide for selection of a protective mechanism. An interatomic force model whose response to temperature change corresponds with the enthalpy pattern might help define freeze stress from a unique perspective.

  11. Stress in biology and medicine, role in aging.

    Science.gov (United States)

    Robert, L; Labat-Robert, J

    2015-09-01

    In this review, we present a short description of the history of stress in the medical literature followed by a recapitulation of its mechanisms, from the cellular to the organismal level and its role in aging. The medical importance of stress was first taken up as a subject of experimental medicine by physiologists, starting from Claude Bernard's concept of the stability of the "milieu intérieur", altered by stress, followed by others, culminating recently by the elucidation of its mechanisms at the cellular and molecular level. These studies showed that oxidative stress is one of the most important and most frequent form of biological aggression. Its accumulation over time is important for the burnout syndrome and for neuronal aging. There is however a positive side to it also, redox signaling plays an important role in the functional coordination of cellular activities. These mechanisms, still to be more completely evaluated, have to be taken in account for planning efficient protective therapeutic interventions. PMID:26321500

  12. Biological studies of post-traumatic stress disorder.

    Science.gov (United States)

    Pitman, Roger K; Rasmusson, Ann M; Koenen, Karestan C; Shin, Lisa M; Orr, Scott P; Gilbertson, Mark W; Milad, Mohammed R; Liberzon, Israel

    2012-11-01

    Post-traumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known: that is, an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular and molecular levels. This Review attempts to present the current state of this understanding on the basis of psychophysiological, structural and functional neuroimaging, and endocrinological, genetic and molecular biological studies in humans and in animal models. PMID:23047775

  13. Fungal stress biology: a preface to the Fungal Stress Responses special edition.

    Science.gov (United States)

    Rangel, Drauzio E N; Alder-Rangel, Alene; Dadachova, Ekaterina; Finlay, Roger D; Kupiec, Martin; Dijksterhuis, Jan; Braga, Gilberto U L; Corrochano, Luis M; Hallsworth, John E

    2015-08-01

    There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology. PMID:26116075

  14. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  15. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

    OpenAIRE

    Heckmann, L. H.; Sibly, R.M; Connon, R.; Hooper, H. L.; Hutchinson, T H; Maund, S.J.; Hill, C. J.; Bouetard, A.; Callaghan, A

    2008-01-01

    Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and inv...

  16. Biological Adsorption and Accumulation Analysis of Hizikia fusiforme Response to Copper Stress Conditions

    Directory of Open Access Journals (Sweden)

    Lidong LIN

    2015-04-01

    Full Text Available Coastal water pollution is an important environmental problem now days. Hizikia fusiforme is cultivated in coastal water, being considered as a healthy food. However, little information exists concerning on this species responses to copper stress conditions. Experiments were conducted to distinguish biological adsorption and biological accumulation of H. fusiforme in regard to copper stress; it was determined the long-term stress with lower concentrations of copper (0.25 mg/L and 0.50 mg/L and short-term stress with higher concentrations of copper (1.5 mg/L and 3.0 mg/L on H. fusiforme. Results suggested that H. fusiforme has different response to various copper stresses; lower concentration stress could significantly enhance the growth of H. fusiforme, while H. fusiforme growth was inhibited and mitigated injured by 0.25-0.50 mg/L copper stress. Under the highest stress, H. fusiforme was extremely harmed, the biomass loss was significant and dry weight/fresh weight was also significantly decreased. Results suggested that lower and higher concentrations of copper stress have different impacts on H. fusiforme; the biological adsorption amount is lower than that of biological accumulation amount under low copper stress conditions, but the biological adsorption amount is much higher under high concentration copper stress. A better understanding of H. fusiforme responses to heavy metal stress should bring more data about its physiological adaptation mechanism under such conditions.

  17. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era.

    Science.gov (United States)

    Hagiwara, Daisuke; Sakamoto, Kazutoshi; Abe, Keietsu; Gomi, Katsuya

    2016-09-01

    Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era." PMID:27007956

  18. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  19. The Relationship between Stress Levels and Biological Responses in a Clinical Nursing Practicum

    OpenAIRE

    Chikamura, Chiho; Iida, Tadayuki; Ishizaki, Fumiko; Aoi, Satomi; Kobayashi, Toshio; Kataoka, Tsuyoshi

    2008-01-01

    We evaluated the association between the stress levels and biological responses of nursing students in a clinical practicum. The subjects consisted of 28 third-year nursing students at the nursing department of College A. The degree of stress was evaluated using the Japanese version of the State Trait Anxiety Inventory (STAI). As parameters of biological responses, serum estrogen, salivary cortisol, and salivary IgA were measured. These measurements were performed twice (before and during the...

  20. Introduction to Oxidative Stress in Biomedical and Biological Research

    OpenAIRE

    Michael Breitenbach; Peter Eckl

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field.

  1. Maternal postnatal depression predicts altered offspring biological stress reactivity in adulthood

    OpenAIRE

    Barry, Tom J.; Murray, Lynne; Fearon, R. M. Pasco; Moutsiana, Christina; Cooper, Peter; Goodyer, Ian M.; Herbert, Joe; Halligan, Sarah L.

    2015-01-01

    Summary The offspring of depressed parents have been found to show elevated basal levels of the stress hormone cortisol. Whether heightened cortisol stress reactivity is also present in this group has yet to be clearly demonstrated. We tested whether postnatal maternal depression predicts subsequent increases in offspring biological sensitivity to social stress, as indexed by elevated cortisol reactivity. Participants (mean age 22.4-years) derived from a 22-year prospective longitudinal study...

  2. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  3. Gender differences in stress response: Role of developmental and biological determinants

    Directory of Open Access Journals (Sweden)

    Rohit Verma

    2011-01-01

    Full Text Available Stress response is associated with manifestations of various psychosomatic and psychiatric disorders. Hence, it is important to understand the underlying mechanisms that influence this association. Moreover, men and women tend to react differently with stress-both psychologically and biologically. These differences also need to be studied in order to have a better understanding in the gender difference observed for many disorders, which are likely to be contributed by the gender difference in stress reactivity and responses. Such an understanding would have a significant impact on our understanding about how adult health is set during early life and how adult disease could be prevented in men and women.

  4. Childhood exposure to violence and lifelong health: Clinical intervention science and stress biology research join forces

    Science.gov (United States)

    Moffitt, Terrie E.

    2013-01-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child’s body, alterations which may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  5. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.

  6. MORPHOMETRIC CHARACTERISTIC OF RATS LIVER UNDER PRE-SLAUGHTER STRESS AND USAGE OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    Grabovskyi S. S.; Grabovska O. S.

    2015-01-01

    We have studied morphometric parameters of rats’ liver under stress conditions using the biologically active substances of plant and animal origin: spleen, Echinacea and Chinese lemon extracts, sprouted grain. Aerosol introduction of spleen extract to the rats feed for five days before slaughter was caused to liver morphological state moderate deviation, indicating the antistressors properties of polyamines contained in this extract. The results of model experiment on rats can be used ...

  7. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Pan, Chongle [ORNL; Tschaplinski, Timothy J [ORNL; Hurst, Gregory {Greg} B [ORNL; Engle, Nancy L [ORNL; Zhou, Wen [University of Georgia, Athens, GA; Dam, Phuongan [ORNL; Xu, Ying [University of Georgia, Athens, GA; Dice, Lezlee T [ORNL; Davison, Brian H [ORNL; Brown, Steven D [ORNL

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to

  8. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    Science.gov (United States)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  9. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae.

    Directory of Open Access Journals (Sweden)

    Margarita Villar

    Full Text Available BACKGROUND: Dermacentor reticulatus (Fabricius, 1794 is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. PRINCIPAL FINDINGS: The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. SIGNIFICANCE: The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing

  10. Victimization and Biological Stress Responses in Urban Adolescents: Emotion Regulation as a Moderator.

    Science.gov (United States)

    Kliewer, Wendy

    2016-09-01

    Associations between urban adolescents' victimization experiences and biological stress responses were examined, as well as emotion regulation as a moderator of these associations. Data from a 4-wave longitudinal study with a low-income, community-based sample (n = 242; 91 % African American; 57 % female; M = 11.98, SD = 1.56 years at baseline) revealed that victimization, assessed over 3 study waves, was associated with an attenuated cortisol response to a stress interview at the final study wave, indicating that responses of the Hypothalamus-Pituitary-Adrenal (HPA) axis were dysregulated. Cortisol responses were moderated by caregiver-reported adolescent emotion regulation, suggesting that this modifiable protective factor that is taught in many school-based prevention programs could help reduce harm associated with HPA axis dysregulation linked to victimization. PMID:26676938

  11. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  12. Victimization and Biological Stress Responses in Urban Adolescents: Emotion Regulation as a Moderator.

    Science.gov (United States)

    Kliewer, Wendy

    2016-09-01

    Associations between urban adolescents' victimization experiences and biological stress responses were examined, as well as emotion regulation as a moderator of these associations. Data from a 4-wave longitudinal study with a low-income, community-based sample (n = 242; 91 % African American; 57 % female; M = 11.98, SD = 1.56 years at baseline) revealed that victimization, assessed over 3 study waves, was associated with an attenuated cortisol response to a stress interview at the final study wave, indicating that responses of the Hypothalamus-Pituitary-Adrenal (HPA) axis were dysregulated. Cortisol responses were moderated by caregiver-reported adolescent emotion regulation, suggesting that this modifiable protective factor that is taught in many school-based prevention programs could help reduce harm associated with HPA axis dysregulation linked to victimization.

  13. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas;

    In the Baltic Sea Action Plan the urgent need to develop biological effects monitoring of hazardous substances and the assessment of ecosystem health has been clearly indicated. These goals will be tackled in the newly launched BEAST project (Biological Effects of Anthropogenic Chemical Stress......: Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies and...... experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf of...

  14. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  15. A systems biology approach to heat stress, heat injury, and heat stroke

    Science.gov (United States)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  16. Biological correlates of complex posttraumatic stress disorder—state of research and future directions

    Directory of Open Access Journals (Sweden)

    Zoya Marinova

    2015-04-01

    Full Text Available Complex posttraumatic stress disorder (PTSD presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations. Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review current knowledge regarding the biological correlates of complex PTSD and compare it to the relevant findings in PTSD. Recent studies provide support to the validity of complex PTSD as a separate diagnostic entity; however, data regarding the biological basis of the disorder are still very limited at this time. Further studies focused on complex PTSD biological correlates and replication of the initial findings are needed, including neuroimaging, neurobiochemical, genetic, and epigenetic investigations. Identification of altered biological pathways in complex PTSD may be critical to further understand the pathophysiology and optimize treatment strategies.

  17. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  18. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking?

    Science.gov (United States)

    Cotgreave, Ian A

    2005-03-01

    Cells phenotypically adapt to alterations in their intra- and extracellular environment via organised alterations to gene and protein expression. Many chemical and physical stimuli are known to drive such responses, including the induction of oxidative stress and heat shock. Increasing use of mobile telephones in our society, has brought focus on the potential for radio frequency (microwave) electromagnetic radiation to elicit biological stress responses, in association with potentially detrimental effects of this to human health. Here we review evidence suggesting altered gene and protein expression in response to such emissions, with particular focus on heat shock proteins. Non-thermal induction of heat shock proteins has been claimed by a number of investigations in in vitro cellular systems, and appears pleiotropic for many other regulatory events. However, many of these studies are flawed by inconsistencies in exposure models, cell types used and the independent reproducibility of the findings. Further, the paucity of evidence from in vivo experimentation is largely contradictory. Therefore, the validity of these effects in human health risk assessment remain unsubstantiated. Where possible, suggestions for further experimental clarification have been provided.

  19. Biological stress regulation in female adolescents: a key role for confiding.

    Science.gov (United States)

    Oskis, Andrea; Clow, Angela; Loveday, Catherine; Hucklebridge, Frank; Sbarra, David A

    2015-05-01

    Attachment behaviors play a critical role in regulating emotion within the context of close relationships, and attachment theory is currently used to inform evidence-based practice in the areas of adolescent health and social care. This study investigated the association between female adolescents' interview-based attachment behaviors and two markers of hypothalamic-pituitary-adrenal axis activity: cortisol and dehydroepiandrosterone (DHEA). Unlike the classic stress hormone cortisol, there is very limited investigation of DHEA-a quintessential developmental hormone-in relation to attachment, especially in adolescents. Fifty-five healthy females mean age 14.36 (±2.41) years participated in the attachment style interview. A smaller cortisol awakening response was related to anxious attachment attitudes, including more fear of rejection, whereas greater morning basal DHEA secretion was only predicted by lower levels of reported confiding in one's mother. These attachment-hormone relationships may be developmental markers in females, as they were independent of menarche status. These findings highlight that the normative shifts occurring in attachment to caregivers around adolescence are reflected in adolescents' biological stress regulation. We discuss how studying these shifts can be informed by evolutionary-developmental theory.

  20. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

    Science.gov (United States)

    Szebeni, Janos

    2014-10-01

    Intravenous injection of a variety of nanotechnology enhanced (liposomal, micellar, polymer-conjugated) and protein-based (antibodies, enzymes) drugs can lead to hypersensitivity reactions (HSRs), also known as infusion, or anaphylactoid reactions. The molecular mechanism of mild to severe allergy symptoms may differ from case to case and is mostly not known, however, in many cases a major cause, or contributing factor is activation of the complement (C) system. The clinical relevance of C activation-related HSRs, a non-IgE-mediated pseudoallergy (CARPA), lies in its unpredictability and occasional lethal outcome. Accordingly, there is an unmet medical need to develop laboratory assays and animal models that quantitate CARPA. This review provides basic information on CARPA; a short history, issues of nomenclature, incidence, classification of reactogenic drugs and symptoms, and the mechanisms of C activation via different pathways. It is pointed out that anaphylatoxin-induced mast cell release may not entirely explain the severe reactions; a "second hit" on allergy mediating cells may also contribute. In addressing the increasing requirements for CARPA testing, the review evaluates the available assays and animal models, and proposes a possible algorithm for the screening of reactogenic drugs and hypersensitive patients. Finally, an analogy is proposed between CARPA and the classic stress reaction, suggesting that CARPA represents a "blood stress" reaction, a systemic fight of the body against harmful biological and chemical agents via the anaphylatoxin/mast-cell/circulatory system axis, in analogy to the body's fight of physical and emotional stress via the hypothalamo/pituitary/adrenal axis. In both cases the response to a broad variety of noxious effects are funneled into a uniform pattern of physiological changes. PMID:25124145

  1. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes.

    Science.gov (United States)

    Levy, Dorainne J; Heissel, Jennifer A; Richeson, Jennifer A; Adam, Emma K

    2016-09-01

    We present the race-based disparities in stress and sleep in context model (RDSSC), which argues that racial/ethnic disparities in educational achievement and attainment are partially explained by the effects of race-based stressors, such as stereotype threat and perceived discrimination, on psychological and biological responses to stress, which, in turn, impact cognitive functioning and academic performance. Whereas the roles of psychological coping responses, such as devaluation and disidentification, have been theorized in previous work, the present model integrates the roles of biological stress responses, such as changes in stress hormones and sleep hours and quality, to this rich literature. We situate our model of the impact of race-based stress in the broader contexts of other stressors [e.g., stressors associated with socioeconomic status (SES)], developmental histories of stress, and individual and group differences in access to resources, opportunity and employment structures. Considering both psychological and biological responses to race-based stressors, in social contexts, will yield a more comprehensive understanding of the emergence of academic disparities between Whites and racial/ethnic minorities. (PsycINFO Database Record PMID:27571526

  2. Biological stress responses induced by alpha radiation exposure in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, A.; Horemans, N.; Van Hees, M.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Knapen, D.; Blust, R. [University of Antwerp (Belgium)

    2014-07-01

    To enhance the robustness of radiation protection criteria for biota, additional information on the biological impact of radionuclides on non-human biota is needed. In particular the effects of alpha emitting isotopes have been poorly studied within a radioecological contextual though they exhibit a high linear energy transfer which can cause significant biological damage when taken up by organisms. Therefore, it is not only essential to measure alpha radiation toxicity, but also try to understand the underlying mechanisms of this stressor. The current study aimed to contribute to a better knowledge of the fundamental processes regulating alpha radiation stress response mechanisms in higher plants. {sup 241}Am was primarily selected as it is an almost pure alpha emitter and, as a daughter nuclide of {sup 241}Pu, it will become one of the dominant pollutants in plutonium affected areas. The aquatic macrophyte Lemna minor has proven its value in eco-toxicological research as representative of higher aquatic plants (OECD guideline nr. 221) and will be used to analyze alpha radiation stress in plant systems. An individual growth inhibition test was set up by means of single dose-response curve in order to identify the Effective Dose Rates (EDR-values) for frond size and biomass. As the mean path length is small for alpha particles, the accumulation of the radionuclide inside species represents almost exclusively the dosimetry. Therefore, quantification of {sup 241}Am uptake and {sup 241}Am distribution were evaluated separately for roots and fronds taking the activity concentrations of growth medium into account. Taken together with the respective dose conversion coefficients from the ERICA tool, this allowed to construct an accurate dosimetric model to determine internal and external dose rates. Different standard media were tested on growth rate and biomass to analyse the amount of {sup 241}Am taken up by the plants exposed from 2.5 to 100 kBq/L. From these

  3. An increase in salivary interleukin-6 level following acute psychosocial stress and its biological correlates in healthy young adults.

    Science.gov (United States)

    Izawa, Shuhei; Sugaya, Nagisa; Kimura, Kenta; Ogawa, Namiko; Yamada, Kosuke C; Shirotsuki, Kentaro; Mikami, Ikuyo; Hirata, Kanako; Nagano, Yuichiro; Nomura, Shinobu

    2013-10-01

    Although interleukin-6 (IL-6) has been investigated frequently in stress research, knowledge regarding the biological processes of IL-6 in association with psychosocial stress remains incomplete. This study focused on salivary IL-6 and reports its temporal variation and biological correlates following acute psychosocial stress. Fifty healthy young adults (39 male and 11 female students) were subjected to the psychosocial stress test 'Trier Social Stress Test' (TSST), wherein the participants were asked to deliver a speech and perform a mental arithmetic task in front of 2 audiences. Collection of saliva samples, measurement of heart rate, and assessment of negative moods by visual analogue scales were conducted before, during, and after TSST. Salivary IL-6 levels increased by approximately 50% in response to the TSST and remained elevated for 20 min after the stress tasks were completed. Cluster analyses revealed that individuals with sustained elevation of IL-6 levels following the TSST exhibited a lower cortisol response compared to individuals with lower IL-6 levels. In the correlation analyses, a greater IL-6 response was associated with a higher heart rate during the mental arithmetic task (r=.351, ppsychosocial stress, and suggests that sympathetic activity and cortisol secretion are involved in elevation of salivary IL-6 levels.

  4. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  5. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  6. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  7. Childhood exposure to violence and lifelong health: clinical intervention science and stress-biology research join forces.

    Science.gov (United States)

    Moffitt, Terrie E

    2013-11-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child's body, alterations that may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  8. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    International Nuclear Information System (INIS)

    This series of symposia in life sciences was initiated for the purpose of facilitating strong interactions among the national research fraternity working in the areas of bio-medical and agricultural sciences of relevance and interest for the Department of Atomic Energy, Government of India. Dedicated research efforts in the Bhabha Atomic Research Centre and other DAE institutions for nearly four decades have not only resulted in the development of technologies and products to improve the quality of human life, but have made impactful contributions in several contemporary areas in basic biological sciences. It is natural that keep visiting certain themes more than once. Biology of stress response is one such theme. The first symposium in the series was devoted to this field. And six years is long enough a time for catching up with the new developments. Stress to a system at equilibrium induces homeostatic mechanisms that ameliorate the stress. Entire living world, from microbes to man, have evolved such response mechanisms. Often a given battery of responsive genes may take care of more than one stresses and there may also be some redundancy in signalling or effector pathways to a response. Oxidative stress in one of the most common stresses that most living systems have to endure. Such a stress could be induced by a wide variety of insults including ionizing radiation, visible light, antibiotics, xenobiotics, metal ions, environmental pollutants, carcinogens, infectious agents etc. It may contribute to some inflammatory and autoimmune diseases. It also plays an important role in killing of intracellular pathogens. In recent years mechanistic details of body's antioxidant defences are being increasingly revealed. Even more interesting are the new findings that suggest that prooxidants may induce an adaptive response to help cells survive against death induced by higher levels of reactive oxygen species (ROS). The role of prosurvival transcription factors like NRF-2

  9. Cell biological mechanism for triggering of ABA accumula-tion under water stress in Vicia faba leaves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol· kg-1 osmotic concentration induced an increase of more than 5 times in ABA concentra-tion in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentra-tion in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol·kg-1 concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca2+-che- lating agent EGTA nor Ca2+ channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cyto-chalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-perme- able sulfhy-dryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma pro-tein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  10. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  11. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond

  12. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  13. Biological seed priming mitigates the effects of water stress in sunflower seedlings.

    Science.gov (United States)

    Singh, Narsingh Bahadur; Singh, Deepmala; Singh, Amit

    2015-04-01

    The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pigments and protein contents decreased under water stress, but higher amount of the same was observed in stressed AB+ seedlings. Enhanced activity of nitrate reductase was recorded in AB+ seedlings with maximum in control. Water stress significantly decreased the nitrate reductase activity. A significant increase in the activity of superoxide dismutase (SOD) in leaves was recorded under water stress except in B+ with maximum increase in non-inoculated seedlings. Catalase (CAT) activity decreased in stressed non-inoculated seedlings while increased in the leaves of A+ and AB+ seedlings. Almost similar trends were recorded for both leaves and cotyledons. PGPR improved the water status in stressed seedlings and thereby physiological and biochemical parameters and thus ameliorated the severe effects of water stress. PMID:25964714

  14. Morphological and biological alteration of maize root architectures on drought stress

    Science.gov (United States)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  15. Stress-sensitive neurosignalling in depression: an integrated network biology approach to candidate gene selection for genetic association analysis

    Directory of Open Access Journals (Sweden)

    J. Anke M. van Eekelen

    2012-07-01

    Full Text Available Genetic risk for depressive disorders is poorly understood despite consistent suggestions of a high heritable component. Most genetic studies have focused on risk associated with single variants, a strategy which has so far only yielded small (often non-replicable risks for depressive disorders. In this paper we argue that more substantial risks are likely to emerge from genetic variants acting in synergy within and across larger neurobiological systems (polygenic risk factors. We show how knowledge of major integrated neurobiological systems provides a robust basis for defining and testing theoretically defensible polygenic risk factors. We do this by describing the architecture of the overall stress response. Maladaptation via impaired stress responsiveness is central to the aetiology of depression and anxiety and provides a framework for a systems biology approach to candidate gene selection. We propose principles for identifying genes and gene networks within the neurosystems involved in the stress response and for defining polygenic risk factors based on the neurobiology of stress-related behaviour. We conclude that knowledge of the neurobiology of the stress response system is likely to play a central role in future efforts to improve genetic prediction of depression and related disorders.

  16. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones.

    Science.gov (United States)

    Stephens, Mary Ann C; Mahon, Pamela B; McCaul, Mary E; Wand, Gary S

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the

  17. [Biological function prediction of mir-210 in the liver of acute cold stress rat].

    Science.gov (United States)

    Guo, Wen-Jin; Lian, Shuai; Guo, Jing-Ru; Zhai, Jun-Fei; Zhang, Yu-Chen; Li, Yue; Zhen, Li; Ji, Hong; Yang, Huan-Min

    2016-04-25

    The study was aimed to observe mir-210 expression in liver tissue of acute cold stress rat and predict the function of mir-210 in cold stress. Thirty SPF Wistar male rats which were 12-week-old and weighed (340 ± 20) g were used. The rats were pre-fed in normal room temperature for one week, and then were randomly divided into acute cold stress group at (4 ± 0.1) °C and normal control group at (24 ± 0.1) °C. After the rats were treated with cold stress for 12 h, the liver tissue was extracted and the gene expression of mir-210 was assayed using qRT-PCR. The results demonstrated that the gene expression of mir-210 was significantly enhanced in acute cold stress group compared with that in normal control group (n = 3, P kinds of target genes such as E2F3, RAD52, ISCU and Ephrin-A3 are more relative with liver cold stress. ISCU regulates the cell respiratory metabolism and Ephrin-A3 is related with cell proliferation and apoptosis. On the other hand, up-regulated mir-210 affects the DNA repairing mechanism which usually leads to genetic instabilities. Our results suggest that cold stress-induced up-regulation of mir-210 in liver harmfully influences cell growth, energy metabolism and hereditary.

  18. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Directory of Open Access Journals (Sweden)

    Klára Kosová

    2015-09-01

    Full Text Available Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum, durum wheat (Triticum durum, barley (Hordeum vulgare, maize (Zea mays; leguminous plants: alfalfa (Medicago sativa, soybean (Glycine max, common bean (Phaseolus vulgaris, pea (Pisum sativum; oilseed rape (Brassica napus; potato (Solanum tuberosum; tobacco (Nicotiana tabaccum; tomato (Lycopersicon esculentum; and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  19. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells.

    Directory of Open Access Journals (Sweden)

    Joanna eŚlusarczyk

    2015-03-01

    Full Text Available Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test, the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive in 3 month old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4 and beneficial (IGF-1, BDNF phenotypes in cultures of microglia obtained from the cortices of 1-2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats.Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.

  20. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  1. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  2. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  3. Parenting Stress, Perceived Child Regard, and Depressive Symptoms among Stepmothers and Biological Mothers

    Science.gov (United States)

    Shapiro, Danielle N.; Stewart, Abigail J.

    2011-01-01

    Although stepmothering is a common undertaking in American families, little research has investigated the mental health consequences, and their correlates, associated with adopting a stepmother role. To help fill this gap, the current study examines parenting stress and participants' perceptions of their (step)children's regard toward them and the…

  4. Biological effects of dynamic shear stress in cardiovascular pathologies and devices

    OpenAIRE

    Girdhar, Gaurav; Bluestein, Danny

    2008-01-01

    Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations ...

  5. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    Science.gov (United States)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems. PMID:26024959

  6. Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory.

    Science.gov (United States)

    Meng, Jun; Zhang, Jing; Luan, Yushi

    2015-01-01

    Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well.

  7. Application of manual control theory to the study of biological stress

    Science.gov (United States)

    Replogle, C. R.; Holden, F. M.; Iay, C. N.

    1972-01-01

    A study was run using both a stable, third-order task and an adaptive first-order unstable task singly and in combination to test the effects of 2 min hypoxia (22000 ft) on human operator. The results indicate that the RMS error in the stable task does not change as a function of hypoxic stress whereas the error in an unstable task changes significantly. Models involving human operator parameter changes and noise injection are discussed.

  8. Biological correlates of complex posttraumatic stress disorder*state of research and future directions

    OpenAIRE

    Marinova, Zoya; Maercker, Andreas

    2015-01-01

    Complex posttraumatic stress disorder (PTSD) presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal) together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations). Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review cu...

  9. Stress

    Science.gov (United States)

    ... Some people experience digestive symptoms. Others may have headaches, sleeplessness, depressed mood, anger, and irritability. People under chronic stress get more frequent and severe viral infections, such ...

  10. Biological effects and oxidative stress responses in Arabidopsis thaliana following exposure to uranium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H.; Vanhoudt, N.; Wannijn, J.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Vangronsveld, J.; Cuypers, A. [Hasselt University (Belgium)

    2014-07-01

    leaves, no inductions of the NADPH oxidases or LOX were observed. This possibly indicates that the oxidative stress in the leaves is generated via root-to-shoot signalling since U and Cu are almost completely retained in the roots. Under both U and Cu stress and both in roots and shoots, microRNA398b/c is involved in the post-transcriptional regulation of the superoxide dismutase (SOD) response. As expected from previous research, the expression levels of MIR398b/c increased under U stress while they decreased under Cu stress. This led to a decreased expression of the Cu-requiring Cu/Zn SODs when Cu is below a critical threshold, while their expression will increase under Cu excess. In the multi-pollution setup, the response is comparable to the response observed under Cu stress. In conclusion, it seems that there is an enhanced production of ROS after exposure to U+Cu as compared to the single stressor conditions. However, additional experiments, e.g. with different U and Cu concentrations, are needed to further elucidate the interactions between U and Cu. Document available in abstract form only. (authors)

  11. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.

    Science.gov (United States)

    Caputo, Michele; Carcione, José M; Cavallini, Fabio

    2011-06-01

    The acoustic behavior of biologic media can be described more realistically using a stress-strain relation based on fractional time derivatives of the strain, since the fractional exponent is an additional fitting parameter. We consider a generalization of the Kelvin-Voigt rheology to the case of rational orders of differentiation, the so-called Kelvin-Voigt fractional-derivative (KVFD) constitutive equation, and introduce a novel modeling method to solve the wave equation by means of the Grünwald-Letnikov approximation and the staggered Fourier pseudospectral method to compute the spatial derivatives. The algorithm can handle complex geometries and general material-property variability. We verify the results by comparison with the analytical solution obtained for wave propagation in homogeneous media. Moreover, we illustrate the use of the algorithm by simulation of wave propagation in normal and cancerous breast tissue. PMID:21601139

  12. Stressing biological samples with pulsed magnetic fields: physical aspects and experimental results

    Science.gov (United States)

    Delle Side, D.; Specchia, V.; D'Attis, S.; Giuffreda, E.; Quarta, G.; Calcagnile, L.; Bozzetti, M. P.; Nassisi, V.

    2016-05-01

    Magnetic field effects are diffused among living organisms. They are mainly studied with static or extremely low frequency fields, while scarce information is available for pulsed fields. This work is devoted to the study of the interaction between Drosophila melanogaster, both adults and larvae, and pulsed magnetic fields. We exposed the organisms to a peak field of 0.4 T, lasting for about 2 μ s, within an ad hoc designed copper coil. Adult individuals didn't present any deregulation of repetitive sequences in the germ line of Drosophila. Instead, we noticed a marked magnetic field effect in larvae. Polytene chromosomes coming from treated individuals showed the presence of heat shock puffs; the same organisms revealed also an upregulation of the genes encoding for the Hsp70 protein. These observations suggest that the larvae underwent an oxidative stress caused by the modulation of free radicals' yield induced by the magnetic field through a radical pair mechanism.

  13. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  14. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    Science.gov (United States)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  15. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Directory of Open Access Journals (Sweden)

    Kathleen Thomaes

    2016-03-01

    Full Text Available Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS. The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses.

  16. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Science.gov (United States)

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS). The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses. PMID:26996535

  17. Markers of Biological Stress and Mucosal Immunity during a Week Leading to Competition in Adolescent Swimmers

    Directory of Open Access Journals (Sweden)

    E. Papadopoulos

    2014-01-01

    Full Text Available In this study we examined changes in the salivary concentrations of immunoglobulin A (sIgA, cortisol (sC, testosterone (sT, and testosterone-to-cortisol ratio (T/C in 21 competitive swimmers, 11–15 years old, during a week leading to competition as compared to a control (noncompetition week. No day-to-day changes or significant differences between weeks were observed for sIgA (47.9±4.4 versus 54.9±5.2 μg/mL for control versus competition week, resp., sC (2.7±0.2 versus 2.5±0.2 ng/mL for control versus competition week, resp., and T/C ratio (83.4±7.0 versus 77.9±7.7 for control versus competition week, resp.. In contrast, sT was significantly lower during the week of competition (154.5±11.3 pg/mL as compared to the control week (181.3±11.5 pg/mL suggesting that the swimmers were in a catabolic state, although this did not have a negative effect on their performance. In conclusion, salivary cortisol did not change between the two weeks, and thus competition stress was relatively low, and mucosal immunity was unaffected in these young athletes prior to competition.

  18. Biological costs of economic transition: Stress levels during the transition from communism to capitalism in Poland.

    Science.gov (United States)

    Lipowicz, Anna; Szklarska, Alicja; Mitas, Andrzej W

    2016-05-01

    At the end of the 1980s, Poland began the transformation from an essentially one-party communist system to a politically pluralistic democratic system. These political and economic changes had major social consequences, among others unemployment and a sharp decrease in real personal income. The aim of the study was to investigate the possible relationship between stress in adult men, measured by the Allostatic Load, and the socio-economic deterioration during the first part of the economic transition. The Allostatic Load included eleven markers assessing adverse nutritional intake, cardiovascular activity, inflammatory processes, and lung, hepatic and renal functions. The results indicate a significantly higher risk of metabolic dysregulation in men examined after 1990, compared to men from previous years. After adjustment for socioeconomic variables and lifestyle variables, men examined in 1991 had a 31% greater risk of higher Allostatic Load compared with men examined in 1985 (OR=1.31; p=0.0541), in 1992, this risk was 50% greater (OR=1.50; p<0.01), and in 1993, the risk was 66% greater (OR=1.66; p<0.05). The conclusion is drawn that significantly more stressogenic factors for men were those directly connected with the financial situation of their families, than a sudden but short increase of prices for goods and services.

  19. Biological costs of economic transition: Stress levels during the transition from communism to capitalism in Poland.

    Science.gov (United States)

    Lipowicz, Anna; Szklarska, Alicja; Mitas, Andrzej W

    2016-05-01

    At the end of the 1980s, Poland began the transformation from an essentially one-party communist system to a politically pluralistic democratic system. These political and economic changes had major social consequences, among others unemployment and a sharp decrease in real personal income. The aim of the study was to investigate the possible relationship between stress in adult men, measured by the Allostatic Load, and the socio-economic deterioration during the first part of the economic transition. The Allostatic Load included eleven markers assessing adverse nutritional intake, cardiovascular activity, inflammatory processes, and lung, hepatic and renal functions. The results indicate a significantly higher risk of metabolic dysregulation in men examined after 1990, compared to men from previous years. After adjustment for socioeconomic variables and lifestyle variables, men examined in 1991 had a 31% greater risk of higher Allostatic Load compared with men examined in 1985 (OR=1.31; p=0.0541), in 1992, this risk was 50% greater (OR=1.50; p<0.01), and in 1993, the risk was 66% greater (OR=1.66; p<0.05). The conclusion is drawn that significantly more stressogenic factors for men were those directly connected with the financial situation of their families, than a sudden but short increase of prices for goods and services. PMID:26799229

  20. Effects on DNA Damage and/or Repair Processes as Biological Mechanisms Linking Psychological Stress to Cancer Risk

    OpenAIRE

    Jenkins, Frank J; Van Houten, Bennett; Bovbjerg, Dana H

    2014-01-01

    Considerable research effort in the past several decades has focused on the impact of psychological stress, and stress hormones, on cancer progression. Numerous studies have reported that stress hormone treatment or in vivo stress exposure can enhance the growth of tumor cell lines in vitro, as well as tumors in animal models, and have begun to explore molecular mechanisms. Comparatively little research has focused on the impact of psychological stress and stress hormones on cancer initiation...

  1. Psychopathological, biological, and neuroimaging characterization of posttraumatic stress disorder in survivors of a severe coalmining disaster in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.H.; Zhang, Z.J.; Tan, Q.R.; Yin, H.; Chen, Y.C.; Wang, H.N.; Zhang, R.G.; Wang, Z.Z.; Guo, L.; Tang, L.H.; Li, L.J. [University of Hong Kong, Hong Kong (China). School of Chinese Medicine

    2010-04-15

    On July 29, 2007, a severe coalmine-flooded disaster occurred in central China and 69 miners were trapped in an about 1400 m underground coal pit. Fortunately, all of them were rescued after 75 h of the ordeal. At 3 and 6 months after the disaster, psychopathological profiles, plasma levels of cortisol and adrenocorticotropic hormone (ACTH) were evaluated in 48 survivors for posttraumatic stress disorder (PTSD) and comorbid symptoms. Magnetic resonance imaging (MRI) study was performed at 6 months. The prevalence of PTSD was 35.4% (17/48) at 3 months and 31.3% (15/48) at 6 months post-disaster, with high rates of comorbid symptoms. Risk factors for PTSD included previous traumatic experience, less than 5 years of being a miner, in an extremely exhausted or sick during the disaster, poor interpersonal relationship and poor sleep quality experienced before the disaster. Mean plasma cortisol levels at 6 months, but not at 3 months, were significantly higher in PTSD-positive subjects than the negative, and positively correlated with the severity of several comorbid symptoms. Either whole or regional brain volumes of PTSD-positive subjects were not significantly different from PTSD-negative subjects, but PTSD subjects had significantly reduced fractional anisotropy values in the right posterior cingulum and bilateral hippocampal body compared to subjects without PTSD. These results suggest that traumatic exposure in severe coalmining disasters results in considerable psychological consequences, with highly prevalent PTSD and comorbid symptoms, which are associated with previous traumatic experience, shorter-length underground services, and poor interpersonal relationships and sleep quality experienced before the disaster. Baseline cortisol level may be a useful biological predictor for different phases of the development of PTSD. The aberrant connectivity of the hippocampus and the cingulum may represent an early pathological response to trauma exposure.

  2. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior.

    Science.gov (United States)

    Babizhayev, Mark A; Savel'yeva, Ekaterina L; Moskvina, Svetlana N; Yegorov, Yegor E

    2011-11-01

    Globally, tobacco use is associated with 5 million deaths per annum and is regarded as one of the leading causes of premature death. Major chronic disorders associated with smoking include cardiovascular diseases, several types of cancer, and chronic obstructive pulmonary disease (lung problems). Cigarette smoking (CS) generates a cumulative oxidative stress, which may contribute to the pathogenesis of chronic diseases. Mainstream and side stream gas-phase smoke each have about the same concentration of reactive free radical species, about 1 × 10(16) radicals per cigarette (or 5 × 10(14) per puff). This effect is critical in understanding the biologic effects of smoke. Several lines of evidence suggest that cigarette smoke constituents can directly activate vascular reactive oxygen species production. In this work we present multiple evidence that CS provide the important risk factors in many age-related diseases, and is associated with increased cumulative and systemic oxidative stress and inflammation. The cited processes are marked by increased white blood cell (leucocytes, WBCs) turnover. The data suggest an alteration of the circulating WBCs by CS, resulting in increased adherence to endothelial cells. Telomeres are complex DNA-protein structures located at the end of eukaryotic chromosomes. Telomere length shortens with biologic age in all replicating somatic cells. It has been shown that tobacco smoking enhances telomere shortening in circulating human WBCs. Telomere attrition (expressed in WBCs) can serve as a biomarker of the cumulative oxidative stress and inflammation induced by smoking and, consequently, show the pace of biologic aging. We originally propose that patented specific oral formulations of nonhydrolized carnosine and carcinine provide a powerful tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection of telomere attrition associated with smoking. The longitudinal studies of the clinical

  3. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior.

    Science.gov (United States)

    Babizhayev, Mark A; Savel'yeva, Ekaterina L; Moskvina, Svetlana N; Yegorov, Yegor E

    2011-11-01

    Globally, tobacco use is associated with 5 million deaths per annum and is regarded as one of the leading causes of premature death. Major chronic disorders associated with smoking include cardiovascular diseases, several types of cancer, and chronic obstructive pulmonary disease (lung problems). Cigarette smoking (CS) generates a cumulative oxidative stress, which may contribute to the pathogenesis of chronic diseases. Mainstream and side stream gas-phase smoke each have about the same concentration of reactive free radical species, about 1 × 10(16) radicals per cigarette (or 5 × 10(14) per puff). This effect is critical in understanding the biologic effects of smoke. Several lines of evidence suggest that cigarette smoke constituents can directly activate vascular reactive oxygen species production. In this work we present multiple evidence that CS provide the important risk factors in many age-related diseases, and is associated with increased cumulative and systemic oxidative stress and inflammation. The cited processes are marked by increased white blood cell (leucocytes, WBCs) turnover. The data suggest an alteration of the circulating WBCs by CS, resulting in increased adherence to endothelial cells. Telomeres are complex DNA-protein structures located at the end of eukaryotic chromosomes. Telomere length shortens with biologic age in all replicating somatic cells. It has been shown that tobacco smoking enhances telomere shortening in circulating human WBCs. Telomere attrition (expressed in WBCs) can serve as a biomarker of the cumulative oxidative stress and inflammation induced by smoking and, consequently, show the pace of biologic aging. We originally propose that patented specific oral formulations of nonhydrolized carnosine and carcinine provide a powerful tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection of telomere attrition associated with smoking. The longitudinal studies of the clinical

  4. Alterations in glucocorticoid negative feedback following maternal Pb, prenatal stress and the combination: A potential biological unifying mechanism for their corresponding disease profiles

    International Nuclear Information System (INIS)

    Combined exposures to maternal lead (Pb) and prenatal stress (PS) can act synergistically to enhance behavioral and neurochemical toxicity in offspring. Maternal Pb itself causes permanent dysfunction of the body's major stress system, the hypothalamic pituitary adrenal (HPA) axis. The current study sought to determine the potential involvement of altered negative glucocorticoid feedback as a mechanistic basis of the effects in rats of maternal Pb (0, 50 or 150 ppm in drinking water beginning 2 mo prior to breeding), prenatal stress (PS; restraint on gestational days 16-17) and combined maternal Pb + PS in 8 mo old male and female offspring. Corticosterone changes were measured over 24 h following an i.p. injection stress containing vehicle or 100 or 300 μg/kg (females) or 100 or 150 μg/kg (males) dexamethasone (DEX). Both Pb and PS prolonged the time course of corticosterone reduction following vehicle injection stress. Pb effects were non-monotonic, with a greater impact at 50 vs. 150 ppm, particularly in males, where further enhancement occurred with PS. In accord with these findings, the efficacy of DEX in suppressing corticosterone was reduced by Pb and Pb + PS in both genders, with Pb efficacy enhanced by PS in females, over the first 6 h post-administration. A marked prolongation of DEX effects was found in males. Thus, Pb, PS and Pb + PS, sometimes additively, produced hypercortisolism in both genders, followed by hypocortisolism in males, consistent with HPA axis dysfunction. These findings may provide a plausible unifying biological mechanism for the reported links between Pb exposure and stress-associated diseases and disorders mediated via the HPA axis, including obesity, hypertension, diabetes, anxiety, schizophrenia and depression. They also suggest broadening of Pb screening programs to pregnant women in high stress environments

  5. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi

    Directory of Open Access Journals (Sweden)

    You Tao

    2012-05-01

    Full Text Available Abstract Background Saccharomyces cerevisiae senses hyperosmotic conditions via the HOG signaling network that activates the stress-activated protein kinase, Hog1, and modulates metabolic fluxes and gene expression to generate appropriate adaptive responses. The integral control mechanism by which Hog1 modulates glycerol production remains uncharacterized. An additional Hog1-independent mechanism retains intracellular glycerol for adaptation. Candida albicans also adapts to hyperosmolarity via a HOG signaling network. However, it remains unknown whether Hog1 exerts integral or proportional control over glycerol production in C. albicans. Results We combined modeling and experimental approaches to study osmotic stress responses in S. cerevisiae and C. albicans. We propose a simple ordinary differential equation (ODE model that highlights the integral control that Hog1 exerts over glycerol biosynthesis in these species. If integral control arises from a separation of time scales (i.e. rapid HOG activation of glycerol production capacity which decays slowly under hyperosmotic conditions, then the model predicts that glycerol production rates elevate upon adaptation to a first stress and this makes the cell adapts faster to a second hyperosmotic stress. It appears as if the cell is able to remember the stress history that is longer than the timescale of signal transduction. This is termed the long-term stress memory. Our experimental data verify this. Like S. cerevisiae, C. albicans mimimizes glycerol efflux during adaptation to hyperosmolarity. Also, transient activation of intermediate kinases in the HOG pathway results in a short-term memory in the signaling pathway. This determines the amplitude of Hog1 phosphorylation under a periodic sequence of stress and non-stressed intervals. Our model suggests that the long-term memory also affects the way a cell responds to periodic stress conditions. Hence, during osmohomeostasis, short-term memory is

  6. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples.

    Science.gov (United States)

    Li, Chaolan; Zhang, Hongyin; Yang, Qiya; Komla, Mahunu Gustav; Zhang, Xiaoyun; Zhu, Shuyun

    2014-07-30

    The effect of ascorbic acid (VC) on improving oxidative stress tolerance of Pichia caribbica and biocontrol efficacy against blue mold caused by Penicillium expansum on apples was investigated. P. caribbica showed susceptibility to the oxidative stress in vitro test, and 250 μg/mL VC treatment improved its oxidative stress tolerance. The higher viability exhibited by VC-treated yeast was associated with a lower intracellular ROS level. The activities of antioxidant enzymes of P. caribbica were improved by VC treatment, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Additionally, VC-treated yeast exhibited greater biocontrol activity against P. expansum and faster growth when stored at 25 and 4 °C, respectively, compared to the performance of the non-VC-treated yeast. In response to the VC treatment under oxidative stress, several differentially expressed proteins were identified in P. caribbica, and most of the poteins were confirmed to be related to basic metabolism. Therefore, the application of ascorbic acid is a useful approach to improve oxidative stress tolerance of P. caribbica and its biocontrol efficacy on apples.

  7. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress,and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake; C.Fountain; Pawan; Khera; Liming; Yang; Spurthi; N.Nayak; Brian; T.Scully; Robert; D.Lee; Zhi-Yuan; Chen; Robert; C.Kemerait; Rajeev; K.Varshney; Baozhu; Guo

    2015-01-01

    The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  8. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake C. Fountain; Baozhu Guo; Pawan Khera; Liming Yang; Spurthi N. Nayak; Brian T. Scully; Robert D. Lee; Zhi-Yuan Chen; Robert C. Kemerait; Rajeev K. Varshney

    2015-01-01

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  9. Patterns of biological effects of electromagnetic terahertz waves at frequencies of active cellular metabolites of post stressed changes in hemostasis

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available There had been studied the influence of electromagnetic waves at terahertz frequencies of active cellular metabolites (nitric oxide 150.176-150.664 GHz and 129.0 GHz atmospheric oxygen on the changed parameters of homeostasis in experimental animals. It is shown that in the 15 minute exposure mode terahertz waves at frequencies of nitric oxide 150.176-150.664 GHz observed partial recovery of the changed parameters of homeostasis in stressed animals, and at 30 minute mode, the impact of these waves there is complete recovery of homeostatic parameters of male rats in a state of acute and prolonged immobilization stress.

  10. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis.

    Science.gov (United States)

    Sun, Le; Lu, Sun-Jie; Zhang, Shuang-Shuang; Zhou, Shun-Fan; Sun, Ling; Liu, Jian-Xiang

    2013-09-01

    The membrane-associated transcription factor, bZIP28, is relocated from the endoplasmic reticulum (ER) to the Golgi and proteolytically released from the membrane mediated by two proteases, S1P and S2P, in response to ER stress in Arabidopsis. The activated N-terminal domain recruits nuclear factor Y (NF-Y) subunits in the nucleus to regulate ER stress downstream genes. Little is known about the functions of the bZIP28 C-terminal lumen-facing domain. Here, we provide novel insights into how the ER lumen-facing domain affects the biological function and organelle-to-organelle movement of bZIP28 in the ER stress response. First, we demonstrated the functional redundancy of bZIP28 and bZIP60 by generation and analysis of the bZIP28 and bZIP60 double mutant zip28zip60. Subsequent genetic complementation experiments in zip28zip60 background with deletions on bZIP28 lumen-facing domain highlighted the importance of lumen-facing domain for its in vivo function of bZIP28 in the ER stress response. The protein subcellular localization and Western blotting results further revealed that the bZIP28 lumen-facing domain contains ER retention signal which is important for the proteolytic activation of bZIP28. Thus, the bZIP28 lumen-facing C-terminus plays important roles in the ER-to-Golgi movement of bZIP28, which may contribute to the sensing of the ER stress.

  11. BIOLOGICAL SEX, SEX-ROLE ORIENTATION, MASCULINE SEX-ROLE STRESS, DISSIMULATION AND SELF-REPORTED FEARS

    NARCIS (Netherlands)

    ARRINDELL, WA; KOLK, AM; PICKERSGILL, MJ; HAGEMAN, WJJM

    1993-01-01

    Given meta-analytic findings showing females to be generally more fearful than males on multi-dimensional self-report measures of fear, an empirical attempt was made to examine whether this outcome could be explained by psychological factors such as sex role orientation and masculine sex role stress

  12. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.

    Science.gov (United States)

    Colesie, Claudia; Green, T G Allan; Haferkamp, Ilka; Büdel, Burkhard

    2014-10-01

    Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using (14)CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them. PMID:24694713

  13. Stress management in mothers of children with Autism Spectrum Disorder : psychological characteristics, coping strategies and biological correlates

    OpenAIRE

    Pattini, Elena

    2016-01-01

    Un figlio con un Disturbo dello Spettro Autistico, caratterizzato da gravi difficoltà nelle relazioni, nei comportamenti e nella comunicazione, costringe tutto il sistema familiare a gestire un notevole stress dovuto alla gestione quotidiana di una patologia così complessa. Per questi motivi, i genitori necessitano di un sostegno il più possibile personalizzato rispetto alle caratteristiche del loro contesto familiare. Per fare questo sarebbe importante individuare quali siano i parametri cor...

  14. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  15. Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress.

    Science.gov (United States)

    Nakayama, Takayuki; Yonekura, Shin-Ichiro; Yonei, Shuji; Zhang-Akiyama, Qiu-Mei

    2013-01-01

    E. coli YdbK is predicted to be a pyruvate:flavodoxin oxidoreductase (PFOR). However, enzymatic activity and the regulation of gene expression of it are not well understood. In this study, we found that E. coli cells overexpressing the ydbK gene had enhanced PFOR activity, indicating the product of ydbK to be a PFOR. The PFOR was labile to oxygen. The expression of ydbK was induced by superoxide generators such as methyl viologen (MV) in a SoxS-dependent manner after a lag period. We identified a critical element upstream of ydbK gene required for the induction by MV and proved direct binding of SoxS to the element. E. coli ydbK mutant was highly sensitive to MV, which was enhanced by additional inactivation of fpr gene encoding ferredoxin (flavodoxin):NADP(H) reductase (FPR). Aconitase activity, a superoxide sensor, was more extensively decreased by MV in the E. coli ydbK mutant than in wild-type strain. The induction level of soxS gene was higher in E. coli ydbK fpr double mutant than in wild-type strain. These results indicate that YdbK helps to protect cells from oxidative stress. It is possible that YdbK maintains the cellular redox state together with FPR and is involved in the reduction of oxidized proteins including SoxR in the late stages of the oxidative stress response in E. coli. PMID:24025246

  16. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress.

    Science.gov (United States)

    Martín, Roberto; Menchón, Cristina; Apostolova, Nadezda; Victor, Victor M; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-11-23

    Diamond nanoparticles (DNPs) obtained by explosive detonation have become commercially available. These commercial DNPs can be treated under Fenton conditions (FeSO(4) and H(2)O(2) at acidic pH) to obtain purer DNP samples with a small average particle size (4 nm) and a large population of surface OH groups (HO-DNPs). These Fenton-treated HO-DNPs have been used as a support of gold and platinum nanoparticles (≤2 nm average size). The resulting materials (Au/HO-DNP and Pt/HO-DNP) exhibit a high antioxidant activity against reactive oxygen species induced in a hepatoma cell line. In addition to presenting good biocompatibility, Au/HO- and Pt/HO-DNP exhibit about a two-fold higher antioxidant activity than glutathione, one of the reference antioxidant systems. The most active material against cellular oxidative stress was Au/HO-DNP. PMID:20939514

  17. Biological mechanisms of disease and death in Moscow: rationale and design of the survey on Stress Aging and Health in Russia (SAHR

    Directory of Open Access Journals (Sweden)

    Deev Alexander

    2009-08-01

    Full Text Available Abstract Background Prior research has revealed large differences in health and mortality across countries, socioeconomic groups, and individuals. Russia experiences one of the world's highest levels of all-cause and cardiovascular mortality, great mortality differences within the population, and a heavy burden of ill health. Psychological stress has been suggested as a likely explanation of health loss and premature death in Russia and Eastern Europe. However, physiological mechanisms connecting stress with health in Russia remain unclear since existing epidemiological data are scarce and limited to conventional risk factors. Method and Design The survey on Stress Aging and Health in Russia (SAHR is addressing this knowledge gap by collecting an unusually rich database that includes a wide range of reported information, physical and cognitive health outcomes, and biomarkers in a sample of Muscovite men and women aged 55 and older. The total planned sample size is 2,000 individuals. The sample was randomly selected from epidemiological cohorts formed in Moscow between the mid-1970s and the 1990s and from medical population registers. The baseline data collection was carried out from December 2006 to June 2009. Interviews and medical tests were administered at hospital or at home according to standardized protocol. Questionnaire information includes health, socio-demographic characteristics, economic well-being, cognitive functioning, and batteries on stress and depression. Biomarkers include anthropometry, grip strength, resting ECG, conventional cardiovascular factors of risk such as lipid profile and blood pressure, and other biochemical parameters such as those related to inflammation, glucose and insulin resistance, coagulation, fibrinolysis, and stress hormones. In addition to these measurements, SAHR includes dynamic biomarkers provided by 24-hour ECG (Holter monitoring. This method continuously registers the beat-to-beat heart rate in

  18. Biology Research of posttraumatic stress disorder%创伤后应激障碍(PTSD)的生物学研究概述

    Institute of Scientific and Technical Information of China (English)

    张娅玲; 白艳秋; 彭正午; 颜志鹏; 谭庆荣

    2011-01-01

    创伤后应激障碍(posttraumatic stress disorder,PTSD)是灾害后精神及行为障碍的一种重要表现形式,具有发病率及患病率高、病程长、疗效差等特点,严重影响了临床救治.对于创伤后应激障碍发病机制及其防治的研究日益受到关注.致力于PTSD研究的研究者,从行为学、神经内分泌等宏观研究,到形态学、细胞分子生物学等功能研究,再到临床实验研究,做了大量的工作,得到了许多具有实际指导意义的结果.本文针对国内外研究者近年来在这方面的研究现状进行综述,从宏观上为PTSD后续的研究提供一些循证的证据.%Posttraumatic stress disorder (PTSD) is an important represatation of psychiatric and behavior disorder after stress,and it characterized by high incidence, high rate of sicken, long course of diseases, and can not well curative effect.There were more attention to the mechanism, prevention and cure of PTSD.Researchers devoted themselves to PTSD study have got many practise directive signification results from there study, including macroscopic research such as behivior, endocrinology; structural and functional research based on morphology and cell-molecular biology; clinical trial.Here, we briefly review the recent basic research of PTSD, in order to give a glance to the research in PTSD.

  19. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.b [Belgian Nuclear Research Centre (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Centre (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2010-11-15

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 {mu}M uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  20. A Molecular Biology Database Digest

    OpenAIRE

    Bry, François; Kröger, Peer

    2000-01-01

    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration...

  1. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas

    2015-01-13

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  2. 植物DNA甲基化变异对生物和非生物胁迫的响应机制%DNA Methylation Variation of Biological and Abiotic Stress Response Mechanism in Plant

    Institute of Scientific and Technical Information of China (English)

    王晓凤; 曾凡锁; 詹亚光

    2011-01-01

    高等植物具有复杂的机制使其对环境的变化做出响应,这种机制是通过长期进化建立起来的.它们能够对出现的生物和非生物胁迫产生响应.在分子水平上,植物对各种胁迫的响应是受多基因表达变化调控的,包括植物激素水杨酸、脱落酸等信号途径在整合、协调植物胁迫过程中起关键作用.近年来的研究表明,在植物响应胁迫这一过程中还进行着表观遗传调控这一进程.我们简要综述了生物胁迫和非生物胁迫对表观遗传的影响以及胁迫印记的产生,并讨论了植物响应胁迫的表观遗传调控机制.%Plants have complex mechanisms to respond to environmental changes, such a mechanism is established through long-term evolution. They can response to biological and abiotic stress. At the molecular level, plants of various stress response are regulated by multiple gene expression, including the plant hormone salicylic acid, ABA signaling pathways in the integration, coordination of plant stress play a key role in the process. Recent studies showed that plant responses to stress are also engaged in the process of epigenetic regulation in this process. In this paper we reviewed the biological stress and abiotic stress on the impact of epigenetic imprint stress generation,and discussed the plant response to stress epigenetic mechanisms.

  3. Some Effects of Abiotic Stress on Infection of Dyer's Woad (Isatis tinctoria L. by Puccinia thlaspeos C. Schub.: Implications for Biological Control

    Directory of Open Access Journals (Sweden)

    Elizabeth Thomas

    2011-01-01

    Full Text Available Problem statement: The rust pathogen, Puccinia thlaspeos, is being studied as a potential biocontrol agent for the noxious weed dyer’s woad. Although its disease etiology is well understood, very little has been learned about the effect of environmental stresses on infection. Approach: Dyer’s woad plants were exposed to different levels of oxidative stress, salinity stress, osmotic stress, dehydration, and cold stress before being inoculated with the rust pathogen. Rust infections were subsequently detected in asymptomatic tissue using rust-selective primers with the polymerase chain reaction. Results: Mild abiotic stress appears to enable dyer’s woad plants to develop cross-tolerance to the rust pathogen. Plants exposed to the mildest level of salinity were only 60% infected. Those exposed to the lowest osmotic stress were only 50% infected while plants exposed to the shortest period of dehydration, or cold stress were both only 70% infected. Control plants were 100% infected for all experiments. On the other hand, exposing plants to mild oxidative stress did not lower infection while the highest level of oxidative stress significantly lowered infection to 55%. Conclusion: Crosstolerance to multiple stresses often a desirable trait for plants of economic importance, is a cause for concern in biocontrol of weeds because of its potential to adversely impact the efficacy of mycoherbicides.

  4. 严重创伤后应激反应的调控机理%Molecular biological responses to severe posttraumatic stress

    Institute of Scientific and Technical Information of China (English)

    刘都户; 粟永萍; 程天民

    2001-01-01

    Traumatic stress in the normal individual results in activationof the sympatho-adrenal system causing a rise in noradrenaline and adrenaline, acute phase response in liver ,and activation of the hypothalamic-pituitary-adrenocortical(HPA)system resulting in elevated levels of cortisol. Studies in animals and in humans with posttraumatic stress disorder indicate that successful adaptation to stress is a prerequisite for the survival of all organisms living in an enviroment in which noxious stimuli are constantly present.

  5. Evidências biológicas do treino de controle do stress em pacientes com hipertensão Biological evidences of the stress management training in patients with hypertension

    Directory of Open Access Journals (Sweden)

    Lucia Emmanoel Novaes Malagris

    2009-01-01

    Full Text Available O presente estudo objetivou avaliar o efeito do treino de controle de stress (TCS em um grupo de pacientes hipertensas. Utilizou-se como critério para avaliação alterações na via L-arginina-óxido nítrico (NO. Participaram do estudo mulheres hipertensas (n=44 e normotensas (n=25, sendo que o TCS em grupo foi administrado em 14 hipertensas, observando-se as mudanças no nível de stress e no transporte da L-arginina. Em hipertensão, o transporte de L-arginina, através do sistema y+L, mostrou-se reduzido, assim como o transporte de L-arginina pelos sistemas y+L e y+ em pacientes hipertensas estressadas quando comparadas com normotensas estressadas. A redução do stress pelo TCS em hipertensas estressadas, restaurou o transporte de L-arginina através do sistema y+ em níveis observados em pacientes hipertensas não-estressadas.The objective of the present study was to evaluate the effect of stress management training in a group of hypertensive patients. Alterations of L-arginine-nitric oxide (NO pathway were used as an evaluation criterion. Hypertensive (n=44 and normotensive (n=25 women participated in this study, and the stress management training was performed with a group of 14 hypertensive patients, observing the changes in the stress level and in L-arginine transport. In hypertension, the transport of L-arginine, via system y+, was reduced. Moreover, stressed hypertensive patients had a reduction of L-arginine transport by both systems, y+ and y+L, compared to stressed normotensive patients. The reduction of stress with stress management training in stressed hypertensive patients restored the transport of L-arginine via system y+ to the same levels of non-stressed hypertensive patients.

  6. Risk-factors for stress-related absence among health care employees: a bio-psychosocial perspective. Associations between self-rated health, working conditions and biological stress hormones

    Directory of Open Access Journals (Sweden)

    Ann-Sophie Hansson

    2006-12-01

    Full Text Available

    Background: Stress is a major cause of sickness absence and the health care sector appears to be especially at risk. This cross sectional study aimed to identify the risk factors for absence due to self-reported stress among health care employees. Methods: 225 health care employees were categorized into two groups based on presence or not of self-rated sickness absence for stress. Questionnaire data and stress sensitive hormones measurements were used.

    Results: Employees with stress related sick leave experienced worse health, poorer work satisfaction as well as worse social and home situations than those employees without stress-related sick leave. No-significant differences were identified regarding stress-sensitive hormones. The risk for employees, not satisfied at work, of becoming absent due to stress was approximately three fold compared to those who reported being satisfied (OR 2.8, 95% confidence interval; (CI 1.3 - 5.9. For those not satisfied with their social situation, the risk for sickness absence appeared to be somewhat higher (OR 3.2; CI 1.2 - 8.6. Individual factors such as recovery potential and meaning of life as well as work related factors such as skill development and work tempo predicted employee’ s work satisfaction.

    Conclusions: Based on cross sectional data, work-site and individual factors as well as social situations appear to increase the risk for absence due to stress among health care employees. Lower recovery potential, higher work tempo and poor leadership appeared to be related to the high degree of work related exhaustion experienced by employees.

  7. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  8. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  9. Proceedings of the thirty sixth all India cell biology conference and international symposium on stress adaptive response and genome integrity: book of abstracts

    International Nuclear Information System (INIS)

    The perturbation in cellular genome and different presentations highlight the myriad indicators of response to the change. The investigations related to the impact of genotoxic stresses like ionizing radiation, carcinogens and that of infections, oxidative stress and osmotic changes in a large number of model systems from bacteria to cyanobacteria, yeast, insects, mammalian cells and plants are made. The progress in the understanding of the mechanisms of DNA damage response, resistance to radiation, chromosome remodelling, pathogen-induced immune response, regulation of cell cycle and proliferation, microRNA mediated regulation of gene expression etc are presented. Papers relevant to INIS are indexed separately

  10. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  11. Imaging stress.

    Science.gov (United States)

    Brielle, Shlomi; Gura, Rotem; Kaganovich, Daniel

    2015-11-01

    Recent innovations in cell biology and imaging approaches are changing the way we study cellular stress, protein misfolding, and aggregation. Studies have begun to show that stress responses are even more variegated and dynamic than previously thought, encompassing nano-scale reorganization of cytosolic machinery that occurs almost instantaneously, much faster than transcriptional responses. Moreover, protein and mRNA quality control is often organized into highly dynamic macromolecular assemblies, or dynamic droplets, which could easily be mistaken for dysfunctional "aggregates," but which are, in fact, regulated functional compartments. The nano-scale architecture of stress-response ranges from diffraction-limited structures like stress granules, P-bodies, and stress foci to slightly larger quality control inclusions like juxta nuclear quality control compartment (JUNQ) and insoluble protein deposit compartment (IPOD), as well as others. Examining the biochemical and physical properties of these dynamic structures necessitates live cell imaging at high spatial and temporal resolution, and techniques to make quantitative measurements with respect to movement, localization, and mobility. Hence, it is important to note some of the most recent observations, while casting an eye towards new imaging approaches that offer the possibility of collecting entirely new kinds of data from living cells.

  12. The Influence of Low-P Stress on Maize Biological Characteristics and Bleeding Traits%低磷胁迫对玉米生物学特性及伤流性状的影响

    Institute of Scientific and Technical Information of China (English)

    张燕; 陈波; 陶琴君; 高世斌; 荣廷昭

    2014-01-01

    Maize inbred lines 511(HT),178(HT),492(HS) and 9782(HS) were potted in sand to study the low-P stress effect on shoot biological characteristics and bleeding traits .The results showed that ,the tolerance to low-P stress was 178>511>>492>9782.Under low-P stress,maize bleeding intensity ,concentration and transport speed of phosphorus ,free amino acid and soluble sugar in xylem sap all decreased ,and the transport speed of the ingredients decreased sharper than corresponding concentration .The influence of low-P stress on the HT lines was less than that of HS lines.The relative bleeding intensity ,relative transport speed of phosphorus ,free amino acid and soluble sugar were all highly significantly correlated with relative values of shoot biological characteristics ,therefore ,these bleeding traits could be taken as physiological index for maize tolerance to low -P stress identification .%以2份高耐低磷和2份对低磷胁迫高度敏感的自交系为材料,采用河沙盆栽的方法,研究低磷胁迫对玉米地上部生物学性状及伤流性状的影响。结果表明,自交系的总体耐低磷能力为178>511>>492>9782。低磷胁迫下,植株伤流强度减小,伤流液中的磷、游离氨基酸和可溶性糖的浓度和转运速度都下降,且低磷胁迫对伤流成分转运速度的影响大于对浓度的影响。耐性自交系各性状受低磷胁迫的影响小于敏感自交系。相对伤流强度、伤流液中磷、游离氨基酸和可溶糖的相对转运速度与地上部生物学性状相对值极显著正相关,可以作为玉米耐低磷特性鉴定的生理指标。

  13. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    Science.gov (United States)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  14. Stress Influences on Anoikis

    OpenAIRE

    Sood, Anil K; Lutgendorf, Susan K.

    2011-01-01

    It long has been suspected that psychosocial factors affect cancer development and progression. Although the connections between stress and cancer causation are not strong, epidemiological and clinical studies have provided strong links between cancer progression and several stress-related factors including chronic stress, depression, and social isolation. Recent molecular and biological studies have identified specific signaling pathways that influence cancer growth and metastasis. In partic...

  15. Biology at Lord Mayor Treloar College.

    Science.gov (United States)

    Lones, Jane

    1985-01-01

    The benefits of participating in biology instruction (with a stress on human biology) for physically handicapped students are noted. Risks in the laboratory are considered and balanced with the advantages of direct contact with the natural world. (CL)

  16. Bases biológicas do transtorno de estresse pós-traumático Biological basis of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Frederico G Graeff

    2003-06-01

    Full Text Available A pesquisa neuroendocrinológica dos sistemas fisiológicos envolvidos no estresse evidencia hiper função do eixo simpato-adrenal em conjunto com uma redução da atividade do eixo hipotálamo-hipófise-adrenal (HHA em pacientes com estresse pós-traumático (TEPT. Uma resposta prejudicada do cortisol aos estressores parece estar associada com um aumento da vulnerabilidade ao desenvolvimento do TEPT. O excesso de catecolaminas, sem o pareamento do aumento dos corticóides promoveria uma consolidação excessiva das memórias traumáticas e a indevida generalização para outras situações estressantes. Sintomas como o entorpecimento e flashbacks têm sido relacionados com o aumento de opióides endógenos. Estudos de neuroimagem evidenciam uma redução do volume hipocampal no TEPT, que tem sido relacionada a alterações cognitivas e anormalidades do eixo HHA encontrados no TEPT.Neuroendocrinological research on the physiological systems involved in stress evidenced hyper functioning of the sympatho-adrenal axis together with reduced activity of the hypothalamic-pituitary-adrenal axis in patients with posttraumatic stress disorder (PTSD. An impaired corticoid response to stressors seems to be associated with enhanced vulnerability to PTSD. Excess catecholamines, unchecked by corticoids would promote over consolidation of traumatic memories and undue generalization to other stressful situations. Symptoms such as numbing and flashbacks have been related to endogenous opioids. Neuroimaging studies evidenced a reduction of hippocampal volume in PTSD patients, which has been related to both cognitive changes and abnormalities of the HPA axis that are found in PTSD.

  17. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.

    2011-01-01

    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant m

  18. Progress of the Biological Roles of Toxin-Antitoxin System in the Stress Response%毒素-抗毒素系统在应激环境下的生物学作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    熊鸣; 李明; 郑丹阳; 黄伟

    2013-01-01

    毒素-抗毒素系统(toxin-antitoxin system,TAS)广泛存在于细菌染色体及质粒上,是细菌中含量丰富的小型遗传元件.TAS通常由两个紧密相连的基因组成,分别编码毒素(toxin)和抗毒素(antitoxin),稳定的毒素能够损伤宿主细胞,不稳定的抗毒素能够保护宿主细胞免于毒素的损伤作用.依据其性质和作用方式,目前已经发现三种型别的TAS.TAS具有多种生物学作用,如诱导程序性细胞死亡(programmed cell death,PCD),应激条件下介导持留菌形成(persistence),稳定基因大片段等.本文就近几年TAS在应激条件下的生物学作用的研究进展做一综述.%Toxin-antitoxin (TA) systems are small genetic modules that are widespread and abundant in bacterial chromosomes and plasmids. TA systems are usually composed of two closely linked genes that encode a stable toxin and a labile antitoxin, respectively. The toxin can harm the host cell, while the cognate antitoxin protects the host cell from the toxin's damage. So far, three types of TA system have been described based on their nature and mode of action. Several biological functions of the TA systems have been proposed, such as inducing programmed cell death (PCD), mediating arrest under stress conditions (persistence), promoting stability of large genomic fragments, etc. This review summarizes recent findings on the biological roles of TA systems under stress conditions.

  19. Childhood Stress

    Science.gov (United States)

    ... 5 Things to Know About Zika & Pregnancy Childhood Stress KidsHealth > For Parents > Childhood Stress Print A A ... and feel stress to some degree. Sources of Stress Stress is a function of the demands placed ...

  20. Stress Management

    Science.gov (United States)

    ... Awards Healthy Workplace Food and Beverage Toolkit Stress Management Banner 1 - To Stress or Not to Stress - ... Decide But We Can Help What Is Stress Management? Banner 2 - Stress Continuum Graphic Banner Live life ...

  1. Characterization of the effects of heat stress on the DNA-intercalating dye EvaGreen for potential use with the joint biological agent identification and diagnostic system.

    Science.gov (United States)

    Nowadly, Craig D; David, Jason W; Grogger, Melanie L M; Demkowicz, Erik R; Atchley, Daniel H; Veverka, Donald V

    2014-06-01

    Although advances in real-time polymerase chain reaction (PCR) technology and equipment have facilitated field research, only a limited selection of reagents do not require cold storage. This study explored the temperature stability of the commercially available DNA-intercalating dye EvaGreen after exposure to a spectrum of temperatures for 176 days by analyzing quantification cycle (Cq) and end fluorescence levels during amplification of the invA gene of Salmonella typhimurium. To further characterize potential dye stability, the effects of small differences in dye volume were examined and dye samples were subjected to an Air Force deployment to the Middle East. Significant differences in Cq and end fluorescence were found; however, the magnitude of mean Cq differences was less than one cycle and the magnitude of mean fluorescence differences was less than that attributable to a difference of 0.25 μL of dye per 25 μL reaction. Liquid EvaGreen dye may thus be stable at temperatures as high as 65°C for up to 6 months for use in real-time PCR. These results warrant further investigation by using liquid EvaGreen dye to adapt traditional lab-based real-time PCR assays for Joint Biological Agent Identification and Diagnostic System use and testing the assays in the field.

  2. Use of in situ biological indicators of pollution stress by the Venezuelan Petroleum Corporation (PDVSA): Bases for their industrial applications in Latin America

    International Nuclear Information System (INIS)

    Because Industry requires answers in a time-effective manner, PDVSA is promoting the use of biological indicators in an ecotoxicological context, replacing the classical view of species inventory or whole community structure analyses, widely used for ecological assessment studies. When the classical approach is followed, tropical ecosystem complexity consumes a great deal of effort just describing or identifying species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced species, not to mention establishing trophic-structure relationships. If, on the contrary, key species or even communities of reduced complexity belonging to a given ecological assessment could be simplified, allowing for an efficient response to the clients needs. Throughout this paper, in situ methods developed for these purposes will be discussed, showing the successful application of a large scale assessment through tissue level analyses of a ''sentinel'' mussel (Polymesoda arctata). In addition, when environmental assessment areas are of smaller scale, so that temporal and spatial variations are minimized, the application of community changes by the use of fouling communities will be shown as a novel means for reducing structural complexity. Methods herein proposed, are highly comprehensive, and could serve as basis for future environmental industrial monitoring throughout Latin America and many other regions of the world

  3. Telemetry System of Biological Parameters

    OpenAIRE

    2005-01-01

    The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consum...

  4. The 2013 Discovery Award from the Society for Free Radical Biology and Medicine: Selected Discoveries from the Butterfield Laboratory of Oxidative Stress and Its Sequelae in Brain in Cognitive Disorders Exemplified by Alzheimer Disease and Chemotherapy Induced Cognitive Impairment

    Science.gov (United States)

    Butterfield, D. Allan

    2014-01-01

    This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of: protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called “chemobrain” by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, Apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a pro-inflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent

  5. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  6. Manage Stress

    Science.gov (United States)

    ... Manage Stress Print This Topic En español Manage Stress Browse Sections The Basics Overview Signs and Health ... and Health Effects What are the signs of stress? When people are under stress, they may feel: ...

  7. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  8. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  9. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  10. Stress and Child Development

    Science.gov (United States)

    Thompson, Ross A.

    2014-01-01

    Children's early social experiences shape their developing neurological and biological systems for good or for ill, writes Ross Thompson, and the kinds of stressful experiences that are endemic to families living in poverty can alter children's neurobiology in ways that undermine their health, their social competence, and their ability…

  11. Endoplasmic Reticulum Stress, Genome Damage, and Cancer

    OpenAIRE

    Dicks, Naomi; Gutierrez, Karina; Michalak, Marek; Bordignon, Vilceu; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ac...

  12. Endoplasmic reticulum stress, genome damage and cancer

    OpenAIRE

    Naomi eDicks; Karina eGutierrez; Marek eMichalak; Vilceu eBordignon; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth, however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses ...

  13. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  14. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  15. Investigation of biological partners by ESI Q-TOF mass spectrometry of Saccharomyces cerevisiae cytosolic thioredoxin peroxidase I (cTpxI ) and III (cTpxIII) by oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, L.M.; Oliveira, M.A. [Universidade Estadual Paulista Julio de Mesquita Fillho (UNESP), Assis, SP (Brazil); Ishikawa, A.K. [Universidade Estadual Paulista Julio de Mesquita Fillho (UNESP), Sao Vicente, SP (Brazil)

    2012-07-01

    Full text: One of the oxidative protective mechanisms present in the cell is the peroxiredoxin family. This class of enzymes, present in prokaryotes and eukaryotes, promotes the elimination of H{sub 2}O{sub 2} and alkyl hydrogen peroxides using reactive cysteines named peroxidatic cysteine (Cys{sub p}) and resolving cysteine (Cys{sub r}). Five peroxiredoxins have been discovered in Saccharomyces cerevisiae, three are cytosolic, one is mitochondrial, and another is nuclear. The present work aims the identification of cTPxI{sup c170S} and cTPxIII{sup c120S} biological partners linked by mixed disulfide bonds in response to H{sub 2}O{sub 2} and t-BOOH oxidative stress. We generated mutant cTPxI{sup c170S} and cTPxIII{sup c120S}, purified by IMAC, treated with DTT, incubated with crude protein extracts of yeast {Delta}cTPxI/{Delta}cTPxII or {Delta}AHPI and challenge to H{sub 2}O{sub 2} or t-BOOH to promote complexes formation. After the complexes were submitted to analysis by ESI Q-TOF mass spectrometry and processed using MASCOT MS/MS Ion Search. At present our results indicate interactions between cTPxI{sup c170S} and GSF2, a membrane protein that provides the secretion of hexose transporters; OMS1, a mitochondrial protein with a conserved methyltransferase motif; the hypothetical protein YGR031WP; TDH3p, a triose-phosphate dehydrogenase protein and RPS18ap, protein component of the small (40S) ribosomal subunit. Attached to cTPxIII{sup c120S} it was identified Crn1p an protein that binds actin filaments (F-actin) and cross-links F-actin to form long actin filament bundles and identified its own isoform cTPxI. (author)

  16. Biological effects of soaking rapeseeds in light rare earth metals under Cd and Cr stress%轻稀土浸种对油菜镉铬胁迫的生物学效应

    Institute of Scientific and Technical Information of China (English)

    任学军; 任艳军; 杜彬; 马建军

    2011-01-01

    [目的]研究轻稀土抗油菜镉(Cd)铬(Cr)重金属胁迫下的生物学效应,为重金属污染土壤中稀土农用提供理论参考.[方法]采用单一轻稀土(La、Ce、Nd、Pr)浸种处理,通过盆栽试验,研究重金属Cd和Cr胁迫条件下油菜生长发育对Cd、Cr元素吸收累积的影响.[结果]土壤Cd、Cr胁迫未对油菜生长发育产生明显影响,但增加了Cd、Cr含量和累积量,以重金属Cd累积幅度最明显;La、Ce、Nd、Pr浸种处理均抑制土壤中重金属Cd和Cr向油菜茎叶转移与吸收,抑制效果因油菜发育状况、土壤污染程度及稀土元素种类不同而存在差异,随重金属污染程度的加重,其抑制重金属毒害能力增强,以Ce浸种处理效果最佳,同时促进了油菜茎叶中干物质积累.[结论]稀土浸种处理是一种抑制和减少蔬菜重金属吸收和积累的有效途径.%[Objective]The present experiment was conducted to find out the biological effects of soaking rapeseeds in light rare-earth metals (La, Ce, Nd, Pr) on resistance of rapeseed plants to Cd and Cr stress in order to provide a theo-retical reference for agricultural application of rare earth metals in soils polluted with heavy metals. [Method]The growth and development of rapeseed plants and Cd and Cr uptake and accumulation in rape plant was investigated under Cd and Cr stress by soaking rapeseeds in single light rare earth metals, viz., La, Ce, Nd, Pr in pot culture. [Result]The results showed that the Cd and Cr stress in soil had no significant effects on the growth and development of rapeseed plants, rather it increased Cd and Cr content and their accumulation. La, Ce, Nd and Pr seed-soaking treatments inhibited the uptake and translocation of Cd and Cr from soil to stem and leaf of rapeseed plant, and the inhibitory effects differed with respect to growth and development stage, soil pollution extent and rare earth element type. At higher heavy metal pollu-tion , the ability of rape to

  17. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  18. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  19. Why stress is BAD for cancer patients

    OpenAIRE

    Nagaraja, Archana S; Armaiz-Pena, Guillermo N.; Lutgendorf, Susan K.; Sood, Anil K

    2013-01-01

    Behavioral stress is known to promote tumor progression in experimental models, but the role of behavioral stress in cancer initiation is less clear. In this issue, Hassan et al. focus on the signaling and biological effects induced by stress hormones that lead to tumor cell evasion from apoptosis, resulting in prostate cancer progression.

  20. Stress and atherosclerotic cardiovascular disease.

    Science.gov (United States)

    Inoue, Nobutaka

    2014-01-01

    Recent major advances in medical science have introduced a wide variety of treatments against atherosclerosis-based cardiovascular diseases, which has led to a significant reduction in mortality associated with these diseases. However, atherosclerosis-based cardiovascular disease remains a leading cause of death. Furthermore, progress in medical science has demonstrated the pathogenesis of cardiovascular disease to be complicated, with a wide variety of underlying factors. Among these factors, stress is thought to be pivotal. Several types of stress are involved in the development of cardiovascular disease, including oxidative stress, mental stress, hemodynamic stress and social stress. Accumulating evidence indicates that traditional risk factors for atherosclerosis, including diabetes, hyperlipidemia, hypertension and smoking, induce oxidative stress in the vasculature. Oxidative stress is implicated in the pathogenesis of endothelial dysfunction, atherogenesis, hypertension and remodeling of blood vessels. Meanwhile, mental stress is a well-known major contributor to the development of cardiovascular disease. The cardiovascular system is constantly exposed to hemodynamic stress by the blood flow and/or pulsation, and hemodynamic stress exerts profound effects on the biology of vascular cells and cardiomyocytes. In addition, social stress, such as that due to a lack of social support, poverty or living alone, has a negative impact on the incidence of cardiovascular disease. Furthermore, there are interactions between mental, oxidative and hemodynamic stress. The production of reactive oxygen species is increased under high levels of mental stress in close association with oxidative stress. These stress responses and their interactions play central roles in the pathogenesis of atherosclerosis-based cardiovascular disease. Accordingly, the pathophysiological and clinical implications of stress are discussed in this article.

  1. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  2. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW Criteria ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  3. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  4. Caregiver Stress

    Science.gov (United States)

    ... current/fahc.html/ Search Share Embed Caregiver stress Caregivers care for someone with an illness, injury, ... be rewarding, but it can also be challenging. Stress from caregiving is common. Women especially are at ...

  5. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  6. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  7. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  8. Feeling Stressed

    Science.gov (United States)

    ... of depression, which needs treatment. Learn more about depression and how to get help. How does my body act when stressed? top Your body has a ... stress doesn't feel very good. When your body is hit by stress, try to calm it down. Taking some deep ... anxiety disorders , alcohol and drug abuse , smoking , and ...

  9. A luminescent nanocrystal stress gauge

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  10. [Biologics and mycobacterial diseases].

    Science.gov (United States)

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige

    2013-03-01

    developing TB. Lastly, Dr. Matsumoto stressed the risk of discontinuing TNF-alpha inhibitor during treatment for tuberculosis. He showed from his clinical experience that TNF-alpha inhibitor can be safely used in active TB patient receiving effective antituberculosis chemotherapy and it is even more effective for prevention of paradoxical response. Active discussion was done about the four topics, including the matter beyond present guidelines. We hope these discussions will form the basis for the establishment of new guideline for the management of mycobacterial disease when using immunosuppressive agents including biologics. 1. The risk of developing tuberculosis (TB) and situations of screening for TB risk at administration of biologics-the case of rheumatoid arthritis: Shigeto TOHMA (Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital) We calculated the standardized incidence ratio (SIR) of TB from the clinical data on National Database of Rheumatic Diseases by iR-net in Japan (NinJa) and compared with the SIR of TB from the data of the post-marketing surveillances of five biologics. Among 43584 patient-years, forty patients developed TB. The SIR of TB in NinJa was 4.34 (95%CI: 3.00-5.69). According to the post-marketing surveillances of 5 biologics, the SIR of TB were 3.62-34.4. The incidence of TB in patients with RA was higher than general population in Japan, and was increased more by some biologics. We have to recognize the risk of TB when we start biologics therapy to patients with RA. Although the frequency of implementation of QuantiFERON test (QFT) had gradually increased, it was still limited to 41%. In order to predict the risk of developing TB and to prevent TB, it might be better to check all RA patients by QFT at time time of biologics administration. 2. Biologics and nontuberculous mycobacterial diseases: Hitoshi TOKUDA (Social Insurance Central General Hospital) Several topics about the

  11. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  12. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  13. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  14. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  15. Fiber networks amplify active stress

    OpenAIRE

    Ronceray, Pierre; Broedersz, Chase; Lenz, Martin

    2015-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in th...

  16. Stress from electricity and radiation

    International Nuclear Information System (INIS)

    The author, a journalist and a free expert in constructional biology, discusses the origins of electricity and radiation and their effects on human health. The emphasis is on the causes and measurement of stress-inducing or stress-enhancing factors. Preventive measures are pointed out. The book goes into detail about a.c. electric and magnetic fields, electromagnetic waves, d.c. electric and magnetic fields, natural radioactivity, terrestrial radiation, vibration, and airborne pollutants. (uhe)

  17. 研究剪应力生物效应时难以回避压力的联合效应∗%The Unavoidable Combined Effect of Shear Stress and Normal Pressure in Investigation of Biological Effects induced by Shear Stress

    Institute of Scientific and Technical Information of China (English)

    郝杨阳; 曹军; 殷小杰; 贡磊磊; 原会俊; 王岚; 梁日欣; 廖福龙

    2016-01-01

    Objective:In biomechanopharmacological research,flow chamber or blood vessel segment are fre-quently applied to study the biological effects of shear stress (SS).Flowing was driven by pressure difference,so the normal pressure is possibly involved in inducing the biological effects.So in attempt to investigate whether pres-sure could affect the biological effects,the effects of different levels of shear stress and pressure on cyclooxygenase-1(COX-1)mRNA and tissue type plasminogen activator enzyme(t-PA)mRNA in rabbit artery vessels was ex vivo observed.Method:By employing ex vivo arterial perfusion system,the rabbit artery perfusion model was estab-lished under different flow conditions of SS (1.5-20dyn/cm2 )and mean normal pressure (< 50 000dyn/cm2 ). And the expression of COX-1 mRNA and t-PA mRNA was measured by real-time PCR method.Results:When con-sidering the effect of SS on COX-1 mRNA and t-PA mRNA expression separately,under flow oondition of SS(1 .5-20dyn/cm2 )the detection results of real-time PCR of COX-1 mRNA and t-PA mRNA expression (y)showed increased and a significant positive correlation with SS(x),respectively,the linear equation was described:y=0.0261x+0.0886 (P<0.01)and y=0.2033x+1.2082 (P<0.01)accordingly.And we also found that SS(x)and pressure(y)had a significant combined effect on expression of COX-1 mRNA and t-PA mRNA,the binary quadratic equations were established :COX-1 mRNA = 0.3619-0.0389x+8.8645×10-7 y+0.0015x2+1.515×10-6 xy-3. 1759×10-10y2(P<0.01);t-PA mRNA = 2.9572-0.047x-6.5219×10-5y+0.01x2+2.2973×10-6xy+6.9716 ×10-10 y2 (P<0.01).Conclusion:The combined effects of SS and normal pressure should be considered in biomech-anopharmacological research.Our result demonstrates that binary quadratic equation is an effective description quan-titatively.%目的:生物力药理学研究常用流动小室或血管段观察剪应力的生物学效应;法向压力可能参与其中。本文探讨不同剪应力和压力对家兔离体

  18. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  19. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  20. Oxidative stress by inorganic nanoparticles.

    Science.gov (United States)

    Tee, Jie Kai; Ong, Choon Nam; Bay, Boon Huat; Ho, Han Kiat; Leong, David Tai

    2016-05-01

    Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website. PMID:26359790

  1. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  2. Cell biology and EMF safety standards.

    Science.gov (United States)

    Blank, Martin

    2015-01-01

    Living cells react defensively and start to synthesize stress proteins when exposed to potentially harmful stimuli. Electromagnetic fields (EMF) are among the many different environmental stimuli that initiate stress protein synthesis. Although there is greater energy transfer and heating due to EMF at higher frequencies, there is no greater stress response. The cellular stress response is far more sensitive to EMF than to an increase in temperature. It should be obvious that an EMF safety standard should be based on the more sensitive, natural biological response.

  3. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  4. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress

    OpenAIRE

    Zimmer, C; Spencer, K A

    2015-01-01

    This study was funded by a BBSRC David Phillips Research Fellowship to K.A. Spencer. Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underly...

  5. Biological Extinction in Earth History

    Science.gov (United States)

    Raup, David M.

    1986-03-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  6. FAMILY STRUCTURE TRANSITIONS AND MATERNAL PARENTING STRESS

    OpenAIRE

    Cooper, Carey E.; McLanahan, Sara S.; Meadows, Sarah O.; Brooks-Gunn, Jeanne

    2009-01-01

    Data from the Fragile Families and Child Wellbeing Study (N = 4,176) are used to examine family structure transitions and maternal parenting stress. Using multilevel modeling, we find that mothers who exit coresidential relationships with biological fathers or enter coresidential relationships with nonbiological fathers report higher levels of parenting stress than mothers in stable coresidential relationships. Mothers who enter coresidential relationships with biological fathers report lower...

  7. Stress responses and pre-eclampsia.

    Science.gov (United States)

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  8. Debriefing Stress.

    Science.gov (United States)

    Hill, Jonnie L.; Lance, Cynthia G.

    2002-01-01

    Discussion pf the stress associated with the educational use of games and simulations focuses on a study of graduate students that used the Myers-Briggs Type Indicator to determine that people with certain personality types experience stress at different intensities. Also found that all participants, regardless of personality type, needed…

  9. Geopotential Stress

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Density heterogeneity in the Earth’s lithosphere causes lateral pressure variations. Horizontal gradients of the vertically integrated lithostatic pressure, the Geopotential Energy (GPE), are a source of stresses (Geopotential Stress) that contribute to the Earth’s Stress Field. In theory the GPE...... is linearly related to the lithospheric part of the Geoid. The Geopotential Stress can be calculated if either the density structure and as a consequence the GPE or the lithospheric contribution to the Geoid is known. The lithospheric Geoid is usually obtained by short pass filtering of satellite Geoid...... are not entirely suitable for the stress calculations but can be compiled and adjusted. We present an approach in which a global lithospheric density model based on CRUST2.0 is obtained by simultaneously fitting topography and surface heat flow in the presence of isostatic compensation and long-wavelength lateral...

  10. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  11. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  12. Soil microbiology under drought stress

    Science.gov (United States)

    he severity of the 2012 drought affecting much of the Midwestern U.S. is readily observed in the extremely stressed conditions of crops and natural vegetation. However, we may not realize that the extent of drought effects is just as severe on the biology below the soil surface. Detrimental effects ...

  13. Psychiatry Today : Biology vs. Psychology.

    Science.gov (United States)

    Berman, I; Fried, W; Berman, S M; Lengua, J A; Alpert, M

    1995-06-01

    This research addresses preferences and theoretical leanings of present-day psychiatrists along the continuum defined at one end by biology and at the other by psychology. A questionnaire was devised and sent to 5,702 randomly selected members of the American Psychiatric Association in 1990. The response rate was 307%. The results were analyzed for two groups: psychiatrists with fewer than 15 years of practice since residency and psychiatrists with more than 15 years of practice since graduation. Although the great majority of psychiatrists in both groups equally valued psychology and biology, the senior group attributed a greater importance to psychological methods, whereas the younger group stressed equally the importance of biology and psychology. This suggests that psychiatry has evolved over the years from a predominantly psychological practice to one with a more equal emphasis on psychology and biology. Recent advances in neuroscience may have shifted the pendulum toward a more balanced willingness of clinicians to consider the broad armamentarium of psychosocial and biological treatments. The results point to the need for further conceptualization into the relationship between biology and psychology and its incorporation into the psychiatric residency curriculum. PMID:24442524

  14. The Darkness Within: Individual Differences in Stress

    OpenAIRE

    Koob, George F.

    2015-01-01

    Editor’s Note: Numerous factors make us react to situations differently: age, gender, education, relationships, socioeconomic status, environment, cultural background, life experience. But as our author describes, biological bases, such as the way genetics and neurochemicals affect our brains, are providing insight into addiction, posttraumatic stress disorder, and other stresses that he calls “an intimate part of modern life.”

  15. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  16. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  17. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  18. Biological Literacy in a College Biology Classroom.

    Science.gov (United States)

    Demastes, Sherry; Wandersee, James H.

    1992-01-01

    Examines the proposed definition of biological literacy as the understanding of a small number of pervasive biological principles appropriate to making informed personal and societal decisions. Utilizes the content of a major daily newspaper to adjust biology instruction to focus on this notion of biological literacy. Discusses benefits and…

  19. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  20. Longevity factor klotho and chronic psychological stress

    OpenAIRE

    Prather, A A; Epel, E S; Arenander, J; Broestl, L; Garay, B I; Wang, D; Dubal, D B

    2015-01-01

    Chronic psychological stress is associated with accelerated aging and premature morbidity and mortality; however, the biology linking chronic psychological stress and its maladaptive effects remains largely unknown. Klotho is a pleiotropic hormone that regulates the aging process and promotes better brain and body health. Whether klotho is linked to psychosocial stress or its negative impact in humans has not been investigated. To address this gap, we recruited 178 healthy women who were eith...

  1. Cost-utility and biological underpinnings of Mindfulness-Based Stress Reduction (MBSR) versus a psychoeducational programme (FibroQoL) for fibromyalgia: a 12-month randomised controlled trial (EUDAIMON study)

    OpenAIRE

    Feliu-Soler, Albert; Borràs, Xavier; Peñarrubia-María, María T.; Rozadilla-Sacanell, Antoni; d'Amico, Francesco; Moss-Morris, Rona; Howard, Matthew A; Fayed, Nicolás; Soriano-Mas, Carles; Puebla-Guedea, Marta; Serrano-Blanco, Antoni; Pérez-Aranda, Adrián; Tuccillo, Raffaele; Luciano, Juan V

    2016-01-01

    Background: The EUDAIMON study focuses on fibromyalgia syndrome (FMS), a prevalent chronic condition characterized by pain, fatigue, cognitive problems and distress. According to recent reviews and meta-analyses, Mindfulness-Based Stress Reduction (MBSR) is a promising therapeutic approach for patients with FMS. The measurement of biomarkers as part of the analysis of MBSR effects would help to identify the neurobiological underpinnings of MBSR and increase our knowledge of FMS pathophysiolog...

  2. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  3. Stress in medical students.

    Science.gov (United States)

    Nechita, Florina; Nechita, Dan; Pîrlog, Mihail Cristian; Rogoveanu, Ion

    2014-01-01

    Stress has been defined as the state of a body threatened by imbalance under the influence of agents or conditions endangering its homeostatic mechanisms but the concept have multiple meanings in correlation with the origin and biological support of its effects. Also, stressors are multiple, recording one of the highest levels during the academic studies. For the medical students, stress represents an important challenge, especially during the first year of medical school, caused by the absence of a learning strategy, the sleepless night before the exam and also an unhealthy food intake during the exams. The coping strategies are important, their background being represented by the social support, especially within the family, and emotional, the passions of the medicine students being the most important stress-combating factor. Gender represents also an important factor for the stress vulnerability, manifested through medical and psychiatric symptoms. In order to train good doctors, fair and above all healthy, it is important to consider not only the information we want to transmit, but also the context in which we educate. PMID:25607418

  4. Stressing academia?

    DEFF Research Database (Denmark)

    Opstrup, Niels; Pihl-Thingvad, Signe

    short of individual need while high degrees of fit will mitigate stress. The analysis is based on a stratified random sample including 2127 researchers at 64 Danish university departments and covering all main areas of research and all academic staff categories. The results show that fit with regard......Incongruences between the individual and the organizational work context are potential stressors. The present study focuses on the relationship between a complementary need-supply fit and Danish researchers’ self-perceived job stress. Strain is expected to increase as organizational supplies fall...... to “soft” dimensions as freedom and independence in the job, personal and professional development at work, and receiving peer recognition is highly significant for the researchers’ self-perceived stress-level. The better the fit is the lower stress-levels the researchers’ on average report. On the other...

  5. Subjective stress in female elite athletes and non-athletes: Evidence from cortisol analyses

    OpenAIRE

    Verner, Martin; Conzelmann, Achim; Lehnert, Katrin; Seiler, Roland; Wassmer, Anina; Rammsayer, Thomas

    2010-01-01

    Stress response can be considered a consequence of psychological or physiological threats to the human organism. Elevated cortisol secretion represents a biological indicator of subjective stress. The extent of subjectively experienced stress depends on individual coping strategies or self-regulation skills. Because of their experience with competitive pressure, athletes might show less pronounced biological stress responses during stressful events compared to non-athletes. In the present stu...

  6. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  7. Non-targeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations

    International Nuclear Information System (INIS)

    The induction of non targeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/μm] or 600 MeV/u silicon ions (LET ∼50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1-3% of the cells were targeted through the nucleus by a primary particle. Within 24 h post-irradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV a particles (LET ∼109 keV/μm) that targets ∼1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ∼13 keV/μm) by which, on average, ∼13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise ≤1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. (authors)

  8. [Woman and race biology].

    Science.gov (United States)

    Hanson, H

    1993-01-01

    Early 20th century race biology takes a special interest in woman as part of the "intra-racial" project of bringing forth healthy and competitive individuals. But there are other motives as well for the race biologist to take an interest in woman. She is believed to develop fewer individual characteristics and is therefore a more typical representative of her race than man. The development level of the race is also presupposed to be discernible by the degree of "gender diformism": a race of higher standing would exhibit a greater difference between the sexes. The anthropologist, anatomist, gynaecologist--or whatever guise the race biologist may adopt-- will, in principle, stress that the relation between the sexes is not a matter of "more or less", but one of differences in kind. In reality, the "more-or-less of comparison is the very cornerstone of the issue. Quantitative differences, directly observed or obtained from statistics, are construed as signs of difference in kind. 18th century medical philosophy and sex-linked anthropology laid the theoretical foundation of the 19th century essentialist conception of woman, which is also that adopted by race biology. Eugenics of social Darwinist inspiration regarded prophylactic health care and social welfare programs with scepticism. A race biology founded on the man-woman dualism could sustain altogether different conclusions. An advanced culture calls for extensive division of labour. An extended childhood renders possible higher development but will also impose higher demands on woman. The protection of the female organism is thus an exigency for any people or race striving to survive and evolve. From society's care for the female organism health care for women and preventive maternity care will emerge. Race biology has been a preeminently German concern, as indicated by the selection of works taken to represent this perspective on woman: Bartels-Ploss' Das Weib, C.H. Stratz' Die Rassenschönheit des Weibes and

  9. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (peustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage.

  10. Research advances of biological mechanisms underlying post-traumatic stress disorder%创伤后应激障碍神经生物学机制研究进展

    Institute of Scientific and Technical Information of China (English)

    杨娇娇; 贾敏; 纪木火; 杨建军

    2015-01-01

    Background A variety of factors can lead to post-traumatic stress disorder (PTSD),however the underlying neurobiological mechanisms remain unclear.Objective To review the research advances of neurobiological mechanisms of PTSD.Content This paper elucidated the neurobiological mechanisms of PTSD based on animal models and different stages of fear memory formation.Trend A variety of neurobiological changes contribute to the pathogenesis of PTSD,however,how these changes lead to PTSD needs to be further studied.%背景 已知多种因素可引起创伤后应激障碍(post-traumatic stress disorder,PTSD),然而其发生的神经生物学机制尚不明确. 目的 综述目前PTSD神经生物学机制的研究进展. 内容 从动物模型和恐惧记忆形成的不同阶段出发,阐述PTSD的神经生物学机制. 趋向 PTSD形成涉及多种神经生物学改变,然而这些改变如何引起PTSD尚需进一步研究.

  11. What Is Stress Management?

    Science.gov (United States)

    ... Workplace Food and Beverage Toolkit What Is Stress Management? Updated:Jul 7,2016 What is Stress Management? ... FAQs About Stress Last reviewed - 6/2014 Stress Management • Home • How Does Stress Affect You? Introduction FAQs ...

  12. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  13. Arbejdslivet - Stress

    OpenAIRE

    Abrahamian, Natalie; Bøgh Johansen, Katrine; Strand Henriksen, Nicoline; Schmidt, Cecilie; Møller, Michael; Atke Jakobsen, Simone; Fulgsig Simonsen, Mia My; Ceran, Gülcan

    2016-01-01

    The following report will evolve around the theme of stress. Our focus will be the work conditions for midwives based on the empirical data compiled by our interviews and an observation at the maternity ward at Nordsjællands Hospital in Hillerød. The academics of this report will be centered around the psychological theory by Richard S. Lazarus combined with other relevant theories regarding psychology, stress and the work conditions of the post-modernity. The purpose of this report is to exa...

  14. Stress Analysis

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)......The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)...

  15. Update on the genomics and basic biology of Brachypodium

    DEFF Research Database (Denmark)

    Catalan, Pilar; Chalhoub, Boulos; Chochois, Vincent;

    2014-01-01

    , abiotic and biotic stress, comparative genomics, natural diversity, and cell walls) demonstrates that the Brachypodium research community has achieved a critical mass of tools and has transitioned from resource development to addressing biological questions, particularly those unique to grasses...

  16. STRESS ECHOCARDIOGRAPHY

    OpenAIRE

    Salustri, Alessandro

    1994-01-01

    textabstractIn the studies reported in this thesis, stress echocardiography (either with exercise or with pharmacological agents) and myocardial perfusion scintigraphy have been performed in different groups of patients and in different clinical conditions. Some practical aspects on the protocols of echocardiographic tests are briefly reported

  17. Oxidative Stress in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Gábor Csányi

    2014-04-01

    Full Text Available In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine.

  18. Nanocantilever Beam as Biological Sensors

    CERN Document Server

    Jain, Ankit

    2013-01-01

    In this review article, we focus on nanocantilever based biological sensors and discuss the response of nanocantilevers towards bio-molecules capture. The article guides the reader through various modes of operation (e.g., static or dynamic) to detect the change in characteristics (e.g., mass, stiffness, and/or surface stress) of cantilever due to adsorption of bio-molecules on cantilever surface. First, we explain the classical linear resonant mode mass sensors and static stress based sensors. The effect of operating the cantilever in nonlinear regime is then illustrated through examples of bifurcation based mass sensors and electromechanical coupling based Flexure-FET biosensors. We believe that a new class of nonlinear sensors, with their extraordinary sensitivity towards bio-molecules capture, could be the potential candidate for low cost point-of-care applications.

  19. Stress and personality.

    Science.gov (United States)

    Lecic-Tosevski, D; Vukovic, O; Stepanovic, J

    2011-01-01

    Stress is an adaptation reaction of living organisms in response to internal or external threats to homeostasis. It is considered as a complex defence mechanism representing the final endpoint of numerous dynamic and interconnected factors of biological, psychological and social nature. Stress is not a simple, stimulus-response reaction, but the interaction between an individual and the environment, involving subjective perception and assessment of stressors, thus constituting a highly personalized process. Specific inherited characteristics, early experience in life, and particular, learned cognitive predispositions make individuals more or less susceptible to the effects of stressors. Resilience and vulnerability to stressors as well as intensity of stress response are greatly dependable on age, gender, intelligence, and numerous characteristics of personality, such as hardiness,locus of control, self-efficacy, self-esteem, optimism, hostility (component of type A personality)and type D traits (negative affectivity and social inhibition). To understand the relation between personality and stress, it is essential to recognize the impact of individual differences in the following four aspects: (1) choice or avoidance of environments that are associated with specific stressors, challenges or benefits, (2) way of interpreting a stressful situation and evaluating one's own abilities and capacities for proactive behaviour so as to confront or avoid it, (3) intensity of response to a stressor,and (4) coping strategies employed by the individual facing a stressful situation. Studies have recorded considerable consistency in coping strategies employed to confront stressful situations, independentlyof situational factors and in connection with permanent personality and temperamental traits,such as neuroticism, extraversion, sense of humour, persistence, fatalism, conscientiousness, andopenness to experience. Positive affect has been associated with positive reappraisal

  20. Stress and personality.

    Science.gov (United States)

    Lecic-Tosevski, D; Vukovic, O; Stepanovic, J

    2011-01-01

    Stress is an adaptation reaction of living organisms in response to internal or external threats to homeostasis. It is considered as a complex defence mechanism representing the final endpoint of numerous dynamic and interconnected factors of biological, psychological and social nature. Stress is not a simple, stimulus-response reaction, but the interaction between an individual and the environment, involving subjective perception and assessment of stressors, thus constituting a highly personalized process. Specific inherited characteristics, early experience in life, and particular, learned cognitive predispositions make individuals more or less susceptible to the effects of stressors. Resilience and vulnerability to stressors as well as intensity of stress response are greatly dependable on age, gender, intelligence, and numerous characteristics of personality, such as hardiness,locus of control, self-efficacy, self-esteem, optimism, hostility (component of type A personality)and type D traits (negative affectivity and social inhibition). To understand the relation between personality and stress, it is essential to recognize the impact of individual differences in the following four aspects: (1) choice or avoidance of environments that are associated with specific stressors, challenges or benefits, (2) way of interpreting a stressful situation and evaluating one's own abilities and capacities for proactive behaviour so as to confront or avoid it, (3) intensity of response to a stressor,and (4) coping strategies employed by the individual facing a stressful situation. Studies have recorded considerable consistency in coping strategies employed to confront stressful situations, independentlyof situational factors and in connection with permanent personality and temperamental traits,such as neuroticism, extraversion, sense of humour, persistence, fatalism, conscientiousness, andopenness to experience. Positive affect has been associated with positive reappraisal

  1. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.

  2. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  3. Molecular approaches to improve rice abiotic stress tolerance.

    Science.gov (United States)

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  4. Stress Transmission within the Cell

    OpenAIRE

    Stamenović, Dimitrije; Wang, Ning

    2011-01-01

    An outstanding problem in cell biology is how cells sense mechanical forces and how those forces affect cellular functions. During past decades, it has become evident that the deformable cytoskeleton (CSK), an intracellular network of various filamentous biopolymers, provides a physical basis for transducing mechanical signals into biochemical responses. To understand how mechanical forces regulate cellular functions, it is necessary to first understand how the CSK develops mechanical stresse...

  5. The Stress Reaction: A Historical Perspective.

    Science.gov (United States)

    Rom, Oren; Reznick, Abraham Z

    2016-01-01

    The history of stress research - milestones and people. Definitions and modern concepts of stress as well as the conflict between Hans Selye and the psychologists are described in this review. The molecular and physiological mechanisms of stress and their possible pharmacological intervention are introduced. The cycle of stress is presented as a new concept of the stress reaction, trying to bridge the gap between physiology and psychology. The cycle is a circular event in life, composed of 4 phases: (1) the resting ground phase, (2) the tension phase, (3) the response phase, and (4) the relief phase. In each phase, both physiological and psychological components can be assessed. These components are the basis for the proper handling of each phase and provide a unified model for the psycho-biological response to stress. In addition, parameters of the cycle such as frequency, duration, and intensity can be measured, providing an effective tool for stress management. Finally, modern techniques and mechanisms for coping with stress are discussed like the Norwegian Gate Theory and Lazarus Dichotomy Model for the Stress Reaction. In the above models, specific examples of how people respond to the first time encounter of stressful events and how soldiers cope with stress are presented.

  6. The Biology and Evolution of Music: A Comparative Perspective

    Science.gov (United States)

    Fitch, W. Tecumseh

    2006-01-01

    Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally…

  7. Research on Bacteria in the Mainstream of Biology.

    Science.gov (United States)

    Magasanik, Boris

    1988-01-01

    Stresses the importance of investigating bacterial mechanisms to discover clues for a greater understanding of cells. Cites examples of study areas of biological significance which may reveal information about the evolution of prokaryotes and eukaryotes and lead to a comprehensive theory of cell biology. (RT)

  8. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  9. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  10. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  11. 等渗透势干旱、盐、碱胁迫下5个枣品种及酸枣的生物学响应与抗逆性%Biological responses and resistances of five cultivars of Chinese jujube and sour date under iso-osmotic drought, salt and alkaline stresses

    Institute of Scientific and Technical Information of China (English)

    徐呈祥

    2012-01-01

    试验研究等渗透势干旱、盐、碱胁迫下枣和酸枣的生物学响应,鉴评它们对这3种主要的非生物胁迫的抗性差异.以2年生金丝小枣等5个枣品种及砧木—酸枣苗为试材,在-0.30 MPa、-1.15 MPa 2种渗透势下,设计干旱胁迫(用PEG-6 000模拟)、盐(NaCl)胁迫、碱(NaHCO3)胁迫3种逆境,以浇灌1/2Hoagland溶液、不加PEG-6000或NaCl或NaHCO3的处理为对照.生物量较生长量更能准确反映枣和酸枣对干旱、盐、碱胁迫的响应,但其中各个指标的响应存在显著差异:在植株生长量诸指标中,株高特别是冠幅的差异性很小,对胁迫种类及强度敏感度低,而枣头枝长度和基部直径对胁迫种类及强度的敏感度明显为高,是以生长量反映对胁迫响应的合适指标;在生物量诸指标中,植株叶生物量、脱落性枝生物量的响应最敏感,其次是全株生物量,茎生物量、根生物量的响应最不敏感, (叶+脱落性枝)生物量/全株生物量的响应与全株生物量的响应相似.以(叶+脱落性枝)生物量、全株生物量及(叶+脱落性枝)生物量/全株生物量3项关键指标综合评价,参试的5个枣品种及酸枣对前述逆境的抗性差异显著.其中:耐旱性最强的是大瓜枣和梨枣,耐盐性最强的是大瓜枣,耐碱性最强的是酸枣和大瓜枣.同时,5个枣品种及酸枣各自对3种逆境的响应也有明显差异:大瓜枣是一个对3种非生物逆境抗性都很优良的枣品种;冬枣既不耐干旱,也不耐盐碱,但相对而言,其耐盐性>抗旱性>耐碱性.枣属植物对干旱、盐、碱胁迫的抗性实际上存在很大差异.枣树引种栽培应重视品种的生理生态特性.枣优良新品种培育应关注亲本品种本身对主要逆境的抗性.%The biological responses of five Chineses jujube cultivars and sour date mainly grown in East China to iso-osmotic drought, salt and alkaline stresses were investigated and the resistant

  12. Pictures of Synthetic Biology

    OpenAIRE

    Cserer, Amelie; Seiringer, Alexandra

    2009-01-01

    This article is concerned with the representation of Synthetic Biology in the media and by biotechnology experts. An analysis was made of German-language media articles published between 2004 and 2008, and interviews with biotechnology-experts at the Synthetic Biology conference SB 3.0 in Zurich 2007. The results have been reflected in terms of the definition of Synthetic Biology, applications of Synthetic Biology and the perspectives of opportunities and risks. In the media, Synthetic Biolog...

  13. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  14. Repetitive Stress Injuries

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Repetitive Stress Injuries KidsHealth > For Teens > Repetitive Stress Injuries Print ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  15. Stress and Mood

    Science.gov (United States)

    ... Relaxation Emotions & Relationships HealthyYouTXT Tools Home » Stress & Mood Stress & Mood Many people who go back to smoking ... story: Time Out Times 10 >> share What Causes Stress? Read full story: What Causes Stress? >> share The ...

  16. Stress and your heart

    Science.gov (United States)

    Coronary heart disease - stress; Coronary artery disease - stress ... Your body responds to stress on many levels. First, it releases stress hormones that make you breathe faster. Your blood pressure goes up. Your muscles ...

  17. Intergenerational Transmission of Stress in Humans.

    Science.gov (United States)

    Bowers, Mallory E; Yehuda, Rachel

    2016-01-01

    The hypothesis that offspring are affected by parental trauma or stress exposure, first noted anecdotally, is now supported empirically by data from Holocaust survivor offspring cohorts and other populations. These findings have been extended to less extreme forms of stress, where differential physical, behavioral, and cognitive outcomes are observed in affected offspring. Parental stress-mediated effects in offspring could be explained by genetics or social learning theory. Alternatively, biological variations stemming from stress exposure in parents could more directly have an impact on offspring, a concept we refer to here as 'intergenerational transmission', via changes to gametes and the gestational uterine environment. We further extend this definition to include the transmission of stress to offspring via early postnatal care, as animal studies demonstrate the importance of early maternal care of pups in affecting offsprings' long-term behavioral changes. Here, we review clinical observations in offspring, noting that offspring of stress- or trauma-exposed parents may be at greater risk for physical, behavioral, and cognitive problems, as well as psychopathology. Furthermore, we review findings concerning offspring biological correlates of parental stress, in particular, offspring neuroendocrine, epigenetic, and neuroanatomical changes, in an attempt to determine the extent of parental stress effects. Although understanding the etiology of effects in offspring is currently impeded by methodological constraints, and limitations in our knowledge, we summarize current information and conclude by presenting hypotheses that have been prompted by recent studies in the field. PMID:26279078

  18. Serotonin, cortisol, and stress-related psychopathology: from bench to bed

    OpenAIRE

    Tanke, Marit Aline Christine

    2009-01-01

    Stress has been implicated in the etiology of many psychiatric disorders, the most common stress-related disorder being major depressive disorder. However, stressful events do not automatically lead to psychopathology, important is the interaction between the stressor and someone’s vulnerability to stress and psychiatric disorders. This vulnerability is individual and likely to be determined by genetic, psychosocial, and biological factors. Two biological systems that have been related to the...

  19. Chrononutrition against Oxidative Stress in Aging

    OpenAIRE

    Garrido, M; M. P. Terrón; Rodríguez, A.B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked t...

  20. Oxidative stress action in cellular aging

    OpenAIRE

    Monique Cristine de Oliveira; João Paulo Ferreira Schoffen

    2010-01-01

    Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the fac...

  1. Formaldehyde stress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Formaldehyde,one of the most toxic organic compounds,is produced and processed in human cells.The level of human endogenous formaldehyde is maintained at a low concentration(0.01-0.08 mmol L-1 in blood) under physiological conditions,but the concentration increases during ageing(over 65 years old).Clinical trials have shown that urine formaldehyde concentrations are significantly different between elderly Alzheimer’s patients(n=91) and normal elderly volunteers(n=38)(P<0.001).Abnormally high levels of intrinsic formaldehyde lead to dysfunction in cognition such as learning decline and memory loss.Excess extracellular and intracellular formaldehyde could induce metabolic response and abnormal modifications of cellular proteins such as hydroxymethylation and hyperphosphorylation,protein misfolding,nuclear translocation and even cell death.This cellular response called formaldehyde stress is dependent upon the concentration of formaldehyde.Chronic impairments of the brain resulted from formaldehyde stress could be one of the mechanisms involved in the process of senile dementia during ageing.

  2. A Stage Model of Stress and Disease.

    Science.gov (United States)

    Cohen, Sheldon; Gianaros, Peter J; Manuck, Stephen B

    2016-07-01

    In this article, we argued that the term stress has served as a valuable heuristic, helping researchers to integrate traditions that illuminate different stages of the process linking stressful life events to disease. We provided a short history of three traditions in the study of stress: the epidemiological, psychological, and biological. The epidemiological tradition focuses on defining which circumstances and experiences are deemed stressful on the basis of consensual agreement that they constitute threats to social or physical well-being. The psychological tradition focuses on individuals' perceptions of the stress presented by life events on the basis of their appraisals of the threats posed and the availability of effective coping resources. The biological tradition focuses on brain-based perturbations of physiological systems that are otherwise essential for normal homeostatic regulation and metabolic control. The foci of these three traditions have informed elements of a stage model of disease, wherein events appraised as stressful are viewed as triggering affective states that in turn engender behavioral and biological responses having possible downstream implications for disease. PMID:27474134

  3. Field endocrinology and conservation biology.

    Science.gov (United States)

    Walker, Brian G; Boersma, P Dee; Wingfield, John C

    2005-01-01

    Field endocrinology techniques allow the collection of samples (i.e., blood, urine, feces, tissues) from free-living animals for analysis of hormones, receptors, enzymes, etc. These data reveal mechanisms by which individuals respond to environmental challenges, breed, migrate and regulate all aspects of their life cycles. Field endocrinology techniques can also be used to address many issues in conservation biology. We briefly review past and current ways in which endocrine methods are used to monitor threatened species, identify potential stressors and record responses to environmental disturbance. We then focus on one important aspect of conservation: how free-living populations respond to human disturbance, particularly in relation to ecotourism. Breeding adult Magellanic penguins, Spheniscus magellanicus, appear to habituate well to tourists, and breed in an area where about 70,000 people visit during the season. Baseline levels of corticosterone return to normal after exposure of naïve birds to humans. However, penguin chicks appear to show a heightened adrenocortical response to handling stress in nests exposed to tourists, compared to chicks living in areas isolated from human intrusions. Given that developmental exposure to stress can have profound influences on how individuals cope with stress as adults, this potential effect of tourists on chicks could have long-term consequences. This field endocrine approach identified a stressor not observed through monitoring behavior alone. PMID:21676739

  4. Responses of signal transduction substances of Didymodon vinealis and Bryum argenteum in biological soil crust to gradual drought stress%逐渐干旱胁迫下生物土壤结皮中土生对齿藓和真藓信号转导物质的响应

    Institute of Scientific and Technical Information of China (English)

    石勇; 杨小菊; 赵昕; 李新荣

    2012-01-01

    Didymodon vinealis and Bryum argenteum were sampled from biological soil crusts to study the responses of their signal transduction substances to gradual drought stress. With increasing drought stress, the activities of TP H+-ATPase and PM H+-ATPase in D. vinealis and B. argenteum increased. As a result, the K+ content and turgor pressure increased, and the biosynthesis of drought resistance signal transduction substances were stimulated. ABA had no obvious effects on the signal Iransduction mechanisms of D. vinealis and B. argenteum. NO was involved in the signal transduction mechanisms of 6. argenteum, but had no obvious effects on D. vinealis. Ca2+ played an important role in the signal transduction mechanisms of D. vinealis, but did not for B. argenteum.%以生物土壤结皮中土生对齿藓(Didymodon vinealis)和真藓(Bryum argenteum)为材料,研究了逐渐干旱胁迫下二者的信号传导相关物质的响应.结果表明:随干旱胁迫的增强,2种苔藓的细胞膜与液泡膜H+-ATPase活性增强,提高了二者的K+含量,增加了二者的渗透压,促进了二者的抗旱信号转导物质的合成;ABA对二者的信号转导作用都不明显,NO对土生对齿藓的抗旱作用不明显,但能提高真藓的抗旱性,而Ca2+只对土生对齿藓有明显信号转导作用,对真藓作用不明显.

  5. Stress intensity and performance capabilities of law enforcement officers

    Directory of Open Access Journals (Sweden)

    Nikolaeva N.V.

    2014-09-01

    Full Text Available We discuss the problem of the stress influence on the performance of law enforcement officers. The importance of the stress connection with psychological and psychophysical functioning is caused by the fact that many professional tasks solving is possible only in case of effective adaptation to the difficult conditions of work. The concepts such as stress and performance, as well as the mechanisms of biological adaptation to stress and the effects of stress on the individual police officer, are considered. Attention is paid to the differences between male and female stress and causes of stress in occupations with a large amount of communication activity. We conducted an empirical study in which we investigated the relationship of stress severity and the performance of law enforcement officers, as well as the differences in law enforcement employees performance depending on stress presence, its level, and gender.

  6. A biologically inspired MANET architecture

    Science.gov (United States)

    Kershenbaum, Aaron; Pappas, Vasileios; Lee, Kang-Won; Lio, Pietro; Sadler, Brian; Verma, Dinesh

    2008-04-01

    Mobile Ad-Hoc Networks (MANETs), that do not rely on pre-existing infrastructure and that can adapt rapidly to changes in their environment, are coming into increasingly wide use in military applications. At the same time, the large computing power and memory available today even for small, mobile devices, allows us to build extremely large, sophisticated and complex networks. Such networks, however, and the software controlling them are potentially vulnerable to catastrophic failures because of their size and complexity. Biological networks have many of these same characteristics and are potentially subject to the same problems. But in successful organisms, these biological networks do in fact function well so that the organism can survive. In this paper, we present a MANET architecture developed based on a feature, called homeostasis, widely observed in biological networks but not ordinarily seen in computer networks. This feature allows the network to switch to an alternate mode of operation under stress or attack and then return to the original mode of operation after the problem has been resolved. We explore the potential benefits such an architecture has, principally in terms of the ability to survive radical changes in its environment using an illustrative example.

  7. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the...

  8. About the stress biological indicators changes of bunker using awareness to simulate combat-taking Nanjing Forest Police College as an example%掩体利用意识模拟实战训练的应激生物学指标变化--以南京森林警察学院为例

    Institute of Scientific and Technical Information of China (English)

    刘昱欣

    2015-01-01

    In order to make the theoretical police tactical training into practical combat from both the physiological and psychological aspects,the tactical instructors design a training scheme in which the tactical training is conducted under the real situation pressure. This design scheme tries to make the police traineesˊreceive their training with the tactical consciousness of Cover-Using. And,with the testing of the traineesˊphysiological and psychological sensitive indexes that conducted in the laboratory,it aims to explore the biological mechanism that stimulates the generation of stress.The results suggest that compared with the control group ,the saliva cortisol level of the trainees’of the experiment group has a great increase(P<0.05),the average heart rate rises significantly(P<0.01),and the subjective stress levels also elevate greatly(P<0.01). Thus,the tactical instructorsˊinnovation of the training scheme with the Cover-Using tactical consciousness has a real combat stress in physiological and psychological aspects.%从心理和生理方面设计了现实情境压力训练方案进行“掩体利用”战术意识训练,并借助实验室对应激压力下警察战术训练学员的生理心理学敏感指标进行测试,旨在探索应激压力发生的生物学机制。结果表明:实验组与对照组相比,应激压力训练后唾液中皮质醇水平相对训练前显著升高(P<0.05),平均心率显著升高(P<0.01),主观紧张程度显著提高(P<0.01)。可见战术教官创新设计的“掩体利用”战术意识压力训练模式在生理和心理反应层面达到了实战应激。

  9. Biology of Blood

    Science.gov (United States)

    ... Mail Facebook TwitterTitle Google+ LinkedIn Home Blood Disorders Biology of Blood Overview of Blood Medical Dictionary Also ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  10. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  11. Biology is simple.

    Science.gov (United States)

    Newman, Tim

    2015-12-30

    This paper explores the potential for simplicity to reveal new biological understanding. Borrowing selectively from physics thinking, and contrasting with Crick's reductionist philosophy, the author argues that greater emphasis on simplicity is necessary to advance biology and its applications.

  12. Engineering scalable biological systems

    OpenAIRE

    Lu, Timothy K.

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic, and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast, and mammal...

  13. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  14. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  15. Upgrading Undergraduate Biology Education

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  16. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  17. Allelic polymorphism of glucocorticoid receptor NR3C1 (GR: from molecular biology to clinical implications

    Directory of Open Access Journals (Sweden)

    Orlovsky M. A.

    2012-09-01

    Full Text Available Polymorphism of stress-related genes is a key factor determining difference in the stress reactivity and resistance among humans. Glucocorticoid receptors are important actors of stress responses. This review is focused on the molecular biology and clinical implications of glucocorticoid receptor gene polymorphism.

  18. Experimental stress analysis for materials and structures stress analysis models for developing design methodologies

    CERN Document Server

    Freddi, Alessandro; Cristofolini, Luca

    2015-01-01

    This book summarizes the main methods of experimental stress analysis and examines their application to various states of stress of major technical interest, highlighting aspects not always covered in the classic literature. It is explained how experimental stress analysis assists in the verification and completion of analytical and numerical models, the development of phenomenological theories, the measurement and control of system parameters under operating conditions, and identification of causes of failure or malfunction. Cases addressed include measurement of the state of stress in models, measurement of actual loads on structures, verification of stress states in circumstances of complex numerical modeling, assessment of stress-related material damage, and reliability analysis of artifacts (e.g. prostheses) that interact with biological systems. The book will serve graduate students and professionals as a valuable tool for finding solutions when analytical solutions do not exist.

  19. Effect of Electrical Stimulation and Biological Feedback Treatment with Pelvic Floor Muscle on Postpartum Stress Urinary Incontinence (SUI)%盆底肌电刺激生物反馈治疗对产后压力性尿失禁的疗效观察

    Institute of Scientific and Technical Information of China (English)

    李雯华; 王小婕; 张秀清

    2014-01-01

    Objective To compare the effect of the electrical stimulation biological feedback treatment with pelvic floor muscle on postpartum stress urinary incontinence (SUI). Methods The data of 102 patients with mild or moderate postpartum stress urinary incontinence was retrospectively analysed. The primary outcome was a comparison of the therapeutic efficacy between the electrical stimulation biological feedback therapy (ESBFT) and Kegel pelvic floor muscle training (KPFMT). Results The effecive rate and the curative rate of ESBFT of the moderate patients was higher (75% and 50% respectively) than those of the KPFMT (54.6% and 36.4%respectively). The curative rate of ESBFT of the mild patients was 73.8%, higher than that of the KPFMT (45.5%). Conclusions ESBFT is effective for patients with mild or moderate SUI and significantly improves the therapeutic efficacy of postpartum SUI, especially for the patients who suffer from SUI after one child delivery with no complications of metroptosis and BMI index less than 25.%目的:比较盆底肌电刺激生物反馈治疗与单纯的盆底肌训练(Kegel运动)对产后压力性尿失禁(stress urinary in-continence,SUI)的治疗效果。方法回顾性分析在我院妇科门诊102例轻中度产后压力性尿失禁患者的临床资料,比较盆底肌电刺激生物反馈治疗与单纯的Kegel盆底肌训练的疗效。结果中度尿失禁盆底肌电刺激生物反馈治疗的有效率及治愈率(75%和50%)高于Kegel盆底肌训练(54.6%和36.4%),轻度尿失禁盆底肌电刺激生物反馈治疗治愈率(73.8%)高于Kegel盆底肌训练(45.5%)。结论盆底肌电刺激生物反馈治疗对产后中度压力性尿失禁的疗效更确切,与单纯的Kegal盆底肌训练比较,能明显改善产后压力性尿失禁的治疗效果,尤其对一胎分娩后、无合并子宫脱垂、体高体重指数(BMI)小于25的患者疗效更为明显。

  20. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  1. Managing Leadership Stress

    CERN Document Server

    Bal, Vidula; McDowell-Larsen, Sharon

    2011-01-01

    Everyone experiences stress, and leaders face the additional stress brought about by the unique demands of leadership: having to make decisions with limited information, to manage conflict, to do more with less . . . and faster! The consequences of stress can include health problems and deteriorating relationships. Knowing what signs of stress to look for and having a strategy for increasing your resources will help you manage leadership stress and be more effective over a long career.Table of ContentsThe Stress of Leadership 7Why Is Leadership Stressful? 8Stress Assessment 13When Stress Is Wh

  2. Computational systems chemical biology.

    Science.gov (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  3. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  4. Glucose Suppresses Biological Ferroelectricity in Aortic Elastin

    OpenAIRE

    Liu, Yuanming; WANG, YUNJIE; Chow, Ming-Jay; Chen, Nataly Q.; Ma, Feiyue; Zhang, Yanhang; Li, Jiangyu

    2013-01-01

    Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is la...

  5. Stress and Heart Health

    Science.gov (United States)

    ... Recognition & Awards Healthy Workplace Food and Beverage Toolkit Stress and Heart Health Updated:Jun 13,2014 When ... Health and Heart Health Last reviewed 6/2014 Stress Management • Home • How Does Stress Affect You? Introduction ...

  6. Stress urinary incontinence

    Science.gov (United States)

    ... of urine - stress incontinence; Urinary leakage - stress incontinence; Pelvic floor - stress incontinence ... The bladder and urethra are supported by the pelvic floor muscles. Urine flows from your bladder through your ...

  7. Stress and Migraine

    Science.gov (United States)

    ... disabling headaches . Home > Stress and Migraine Print Email Stress and Migraine ACHE Newsletter Sign up for our newsletter by entering your e-mail address below. Stress and Migraine Mia Minen, MD MPH Key Points: ...

  8. Stress and Coping with Stress in Adolescence

    OpenAIRE

    Petra Dolenc

    2015-01-01

    Because of the many developmental changes in adolescence, young people are exposed to greater likelihood of experiencing stress. On the other hand, this period is critical for developing effective and constructive coping strategies. In the contribution, we summarize part of what is known about stress, stress responses and coping. Throughout, we focus on common stressful events among adolescents and emphasize the importance of dealing successfully with stressors in their daily lives. Finally, ...

  9. Biological Markers and Salivary Cortisol

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Gunnarsson, Lars-Gunnar; Harris, Anette;

    2011-01-01

    This chapter focuses on salivary cortisol in relation to biological markers. Specifically, associations with conventional cardiovascular risk factors and metabolic abnormalities (body mass index, waist circumference, waist/hip ratio, lipid status, glucose, blood pressure, heart rate and heart rate...... variations and pharmacological interventions were also excluded. After meeting all exclusion criteria, 42 papers remained. In total, 273 associations between salivary cortisol and any of the markers mentioned were studied, comprising 241 associations on metabolic abnormalities, 30 on inflammation, and 2...... on stress hormones. Of the salivary cortisol measures reported for evaluations of all markers tested were 136 (49%) single time points, 100 (37%) deviations, 36 (13%) AUC, and 1 (1%) dexamethasone test. Of these, 72 (26%) were statistically significant, and 201 (74%) indicated non-significant findings...

  10. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven;

    2015-01-01

    acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...... using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers...... still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others...

  11. Salubrious effects of oxytocin on social stress-induced deficits

    OpenAIRE

    Smith, Adam S.; Wang, Zuoxin

    2011-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to m...

  12. Stress Management

    OpenAIRE

    Prof.Univ. Dr. Paul Marinescu

    2007-01-01

    Η παρούσα διατριβή ασχολείται με το stress management και κατ’ επέκταση με το ρόλο που αναλαμβάνει να παίξει το τμήμα της Διοίκησης Ανθρωπίνων Πόρων (HRM), το πλέον υπεύθυνο τμήμα για την διεκπεραίωση τέτοιων καταστάσεων, όταν διάφοροι παράγοντες, εντός και εκτός εργασιακού χώρου, προκαλούν stress στους εργαζόμενους μιας επιχείρησης / ενός οργανισμού. Επικεντρώνει την προσοχή στην συμβολή του τμήματος HR σε μια επιχείρηση, ενώ γίνεται μια αναφορά στους διάφορους ρόλους που καλείται να αναλάβ...

  13. Teacher Wellness: Too Stressed for Stress Management?

    Science.gov (United States)

    Kipps-Vaughan, Debi; Ponsart, Tyler; Gilligan, Tammy

    2012-01-01

    Healthier, happier teachers promote healthier, happier, and more effective learning environments. Yet, many teachers experience considerable stress. Studies have found that between one fifth and one fourth of teachers frequently experience a great deal of stress (Kyriacou, 1998). Stress in teaching appears to be universal across nations and…

  14. Prenatal Maternal Stress Programs Infant Stress Regulation

    Science.gov (United States)

    Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

    2011-01-01

    Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

  15. Stress Management in Organizations

    OpenAIRE

    Roxana Capotescu

    2008-01-01

    Employee stress has increasingly become a concern for many organizations. Although it is not possible to eliminate stress entirely, people can learn to manage it. Many organizations have adopted occupational stress management programs to try and reduce the stress levels of their workforce. The high cost of work stress related problems highlights the need to spend more time evaluating work stress interventions and publishing the findings so that other organizations can gain insight into progra...

  16. Stress and distress.

    Science.gov (United States)

    Selye, H

    1975-12-01

    I must ask the reader's indulgence for this article's concern with applications of the stress concept, which are distinct from, although related to clinical medicine. It has not been my object to deal with the way physicians have been aided by stress research in the practice of medicine--that information is already widely available. Rather, I have attempted to sketch briefly the history of the stress theory and to demonstrate how this information can help anyone, physician or layman, lead a more complete and satisfying life. The applications of the stress theory have been dealt with at length elsewhere. I believe that we can find within scientifically verified observations the basis of a code of behavior suited to our century. The great laws of nature that regulate the defenses of living beings against stress of any kind are essentially the same at all levels of life, from individual cells to entire complex human organisms and societies. It helps a great deal to understand the fundamental advantages and disadvantages of catatoxic and syntoxic attitudes by studying the biologic basis of self-preservation as reflected in syntoxic and catatoxic chemical mechanisms. When applied to everyday problems, this understanding should lead to choices most likely to provide us the pleasant eustress (from the Greek eu meaning good, as in euphoria) involved in achieving fulfillment and victory, thereby avoiding the self-destructive distress of frustration and failure. So the translation of the laws governing resistance of cells and organs to a code of behavior comes down to three basic precepts: 1. Find your own natural stress level. People differ with regard to the amount and kind of work they consider worth doing to meet the exigencies of daily life and to assure their future security and happiness. In this respect, all of us are influenced by hereditary predispositions and the expectations of our society. Only through planned self-analysis can we establish what we really want

  17. [Stress reactions--stress fracture of the upper femoral neck in endurance sports].

    Science.gov (United States)

    Schultz, W; Stinus, H; Schleicher, W; Hess, T

    1991-06-01

    Stress reactions of the musculoskeletal system may be interpreted as possible precursors of stress fractures. Biological material, in contrast to artificial products, can react in numerous and complex ways. This can not only lead to a continual weakening of the tissue, but also to adaptation phenomena in response to overuse. The causes of such stress reactions are still unclear in many respects. For example, it is unknown to what extent a predisposition to these stress symptoms is created by mechanical stress alone or whether other factors such as physical condition, nutrition or even hormone balance come into play. Early diagnosis considerably reduces the healing process and, the later the diagnosis of the stress reaction, the more drawn out is the healing process and the extent of the athlete's absence from training. In this connection may be discussed whether the stress reaction can be the represent as the precursor of the stress fracture. In light of the need for taking special care in obtaining anamnestic data and determining the predisposition of an athlete, it appears to be justified to perform whole body bone scanning in the initial stages and particularly after an innocuous radiological finding. To what extent more current methods (e. g. MRI) can be applied without exposing the athlete to undue radiation cannot be conclusively judged at present. The treatment of a stress reaction should, at least at the beginning, be the same as for a diagnosed stress fracture.

  18. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  19. The stress and underground environment

    Science.gov (United States)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  20. Understanding freeze stress in biological tissues: thermodynamics of interfacial water

    Science.gov (United States)

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biolo...

  1. Foundations of biology

    OpenAIRE

    Sikorav, Jean-Louis; Braslau, Alan; Goldar, Arach

    2014-01-01

    It is often stated that there are no laws in biology, where everything is contingent and could have been otherwise, being solely the result of historical accidents. Furthermore, the customary introduction of fundamental biological entities such as individual organisms, cells, genes, catalysts and motors remains largely descriptive; constructive approaches involving deductive reasoning appear, in comparison, almost absent. As a consequence, both the logical content and principles of biology ne...

  2. Introducing Aquatic Biology

    OpenAIRE

    Kinne, Otto; Browman, Howard I.; Seaman, Matthias

    2007-01-01

    The Inter-Research Science Center (IR) journals Marine Ecology Progress Series (MEPS) and Aquatic Microbial Ecology (AME) have been receiving increasing numbers of high-quality manuscripts that are principally biological, rather than ecological. With regret, we have had to turn these submissions away. Also, leading limnologists have for many years suggested that IR should provide an outlet for top quality articles on freshwater biology and ecology. Aquatic Biology (...

  3. Glycobiology Current Molecular Biology

    OpenAIRE

    Sabire KARAÇALI

    2003-01-01

    Carbohydrate chemistry evolved into carbohydrate biochemistry and gradually into the biology of carbohydrates, or glycobiology, at the end of the last century. Glycobiology is the new research area of modern molecular biology, and it investigates the structure, biosynthesis and biological functions of glycans. The numbers, linkage types (a or b), positions, binding points and functional group differences of monosaccharides create microheterogeneity. Thus, numerous glycoforms with precise stru...

  4. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  5. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  6. Response to Jerome Kagan's Essay on Stress (2016).

    Science.gov (United States)

    McEwen, Bruce S; McEwen, Craig A

    2016-07-01

    To be useful, the concept of stress needs to be defined in biological terms linked to a broader framework of allostasis and its role in the adaptation of brain and body to positive and negative life experiences. A clear biological framework helps connect and organize animal and human research on stress. In particular, the concepts of "toxic stress" and "allostatic load and overload" highlight those experiences and situations that, as Kagan says, "compromise an organism's health and capacity to cope with daily challenges" (p. 442). A deeper understanding is needed of the epigenetic influences throughout the life course that contribute both to these negative outcomes and to positive ones. PMID:27474133

  7. The effect of academic stress and attachment stress on stress-eaters and stress-undereaters.

    Science.gov (United States)

    Emond, Michael; Ten Eycke, Kayla; Kosmerly, Stacey; Robinson, Adele Lafrance; Stillar, Amanda; Van Blyderveen, Sherry

    2016-05-01

    It is well established that stress is related to changes in eating patterns. Some individuals are more likely to increase their overall food intake under conditions of stress, whereas others are more likely to consume less food when stressed. Attachment style has been linked to disordered eating and eating disorders; however, comparisons of eating behaviors under attachment versus other types of stress have yet to be explored. The present laboratory study examined the eating patterns in self-identified stress-undereaters and stress-eaters under various types of stress. More specifically, the study examined the effects of academic and attachment stress on calorie, carbohydrate and sugar consumption within these two groups. Under the guise of critiquing student films, university students viewed either one of two stress-inducing videos (academic stress or attachment stress, both designed to be emotionally arousing) or a control video (designed to be emotionally neutral), and their food intake was recorded. Results demonstrated that the video manipulations were effective in inducing stress. Differential patterns of eating were noted based on group and stress condition. Specifically, stress-undereaters ate fewer calories, carbohydrates and sugars than stress-eaters in the academic stress condition, but not in the attachment stress or control condition. Findings suggest that specific types of stressors may influence eating behaviors differently.

  8. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...

  9. Fact Sheet on Stress

    Science.gov (United States)

    ... items) NIMH (7 items) Share Fact Sheet on Stress Download PDF Download ePub Q&A on Stress for Adults: How it affects your health and ... to avoid more serious health effects. What is stress? Stress can be defined as the brain's response ...

  10. STRESS MANAGEMENT PRACTICES & TIPS

    OpenAIRE

    UDAYSINH MANEPATIL

    2013-01-01

    Everyday, in every walk of life, We come across stress. As much as people wishfor stress free life. Such a task would be impossible to achieve. Stress is part and parcel ofour lives. Contemporary stress tends to be even more pervasive, persistence andinsidious.

  11. Stress in Bangladeshi Bengoli.

    Science.gov (United States)

    Alam, Samsul

    This report discusses the stress patterns of Bengali as spoken in Bangladesh. One of the findings indicate that every word has stress in the first syllable, with additional stress in the first syllable of the first word of the phrase. The Bengali language does not have penultimate and antepenultimate stress. Because there is no rule for changing…

  12. Stress and eating behavior

    OpenAIRE

    Peters, Achim; Langemann, Dirk

    2010-01-01

    How stress, the stress response, and the adaptation of the stress response influence our eating behavior is a central question in brain research and medicine. In this report, we highlight recent advances showing the close links between eating behavior, the stress system, and neurometabolism.

  13. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  14. Biological pretreatment sewages water

    OpenAIRE

    Veselý, Václav

    2009-01-01

    Bachelor's thesis deals with waste water purification at the stage of pre-inflow of water into the biological waste water treatment plants. It is divided into two parts, a theoretical and calculation. The theoretical part deals about sewage water and the method of biological treatment. Design proposal is part of the activation tank for quantity EO.

  15. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  16. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  17. Bioinformatics and School Biology

    Science.gov (United States)

    Dalpech, Roger

    2006-01-01

    The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…

  18. Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    OpenAIRE

    Cheng Ji

    2012-01-01

    Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential...

  19. Optics of Biological Particles

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  20. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  1. Activation of c-Jun N-terminal Kinases by Ribotoxic Stresses

    Institute of Scientific and Technical Information of China (English)

    Dong-Yun Ouyang; Yuan-Yuan Wang; Yong-Tang Zheng

    2005-01-01

    The c-Jun N-terminal kinases (JNKs) are classic stress-activated protein kinases. Many cellular stresses have been shown to stimulate JNK activation. In this review, we focus on ribotoxic stresses based on their multiple biological potencies including anti-HIV-1 activity. Some of the functions of ribotoxins and the signaling transduction pathway that mediated are mentioned. Different from other stimulators, ribotoxic stresses act on special motifs of 28S rRNA in translationally active mammal ribosomes. Binding and damaging on the motif leads to JNK activation and subsequently biological response to the signal initiator, which is named ribotoxic stress response.

  2. Stress Management in Organizations

    Directory of Open Access Journals (Sweden)

    Roxana Capotescu

    2008-01-01

    Full Text Available Employee stress has increasingly become a concern for many organizations. Although it is not possible to eliminate stress entirely, people can learn to manage it. Many organizations have adopted occupational stress management programs to try and reduce the stress levels of their workforce. The high cost of work stress related problems highlights the need to spend more time evaluating work stress interventions and publishing the findings so that other organizations can gain insight into programs of merit. This article explore the three major approaches in stress management – primary, secondary and tertiary prevention and outline the importance of an evidence-based approach to stress management interventions. It is argued that an evidencebased approach will lead to advances in intervention practices. We also outline recommendations regarding planning and interpreting occupational stress management research in order to improve stress management interventions.

  3. Pattern Driven Stress Localization

    Science.gov (United States)

    Croll, Andrew; Crosby, Alfred

    2010-03-01

    The self-assembly of patterns from isotropic initial states is a major driver of modern soft-matter research. This avenue of study is directed by the desire to understand the complex physics of the varied structures found in Nature, and by technological interest in functional materials that may be derived through biomimicry. In this work we show how a simple striped phase can respond with significant complexity to an appropriately chosen perturbation. In particular, we show how a buckled elastic plate transitions into a state of stress localization using a simple, self-assembled variation in surface topography. The collection of topographic boundaries act in concert to change the state from isotropic sinusoidal wrinkles, to sharp folds or creases separated by relatively flat regions. By varying the size of the imposed topographic pattern or the wavelength of the wrinkles, we construct a state diagram of the system. The localized state has implications for both biological systems, and for the control of non-linear pattern formation.

  4. Stress and work performance

    OpenAIRE

    Pajer, Zdeněk

    2011-01-01

    The thesis focuses on questions of stress and its boundless consequences on individuals and society. The theoretical part helps us to understand and to become familiar with the topic. This part is based on literature review of new studies in the field of stress , studies of coping with stress, on physiological and chemical processes during a stress situation ,on the influence of individuality of certain individual on stress load, on the society and the impact on workers' performance. Subchapt...

  5. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging....

  6. Nanoparticles, lung injury, and the role of oxidant stress.

    Science.gov (United States)

    Madl, Amy K; Plummer, Laurel E; Carosino, Christopher; Pinkerton, Kent E

    2014-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion. PMID:24215442

  7. Stress removal and stress addition in Spanish

    OpenAIRE

    Hualde, José Ignacio

    2007-01-01

    In Spanish function words and expressions can be classified as lexically stressed or unstressed. Unstressed function words are usually realized without word-level prominence. There is also a contrast between compounds with stress on all their components and compound with a single stress, on the last member. Both in the case of function words and in the case of compounds, the facts are idiosyncratic in some respects. In this paper, these facts are presented in some detail and an analysis along...

  8. A comparison of biological and cultural evolution

    Indian Academy of Sciences (India)

    Petter Portin

    2015-03-01

    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural replicator corresponding to the concept of the gene in biological evolution. Principles of cultural evolution are put forward and compared to the principles of biological evolution. Special emphasis is laid on the principle of selection in cultural evolution, including presentation of the concept of cultural fitness. The importance of language as a necessary condition for cultural evolution is stressed. Subsequently, prime differences between biological and cultural evolution are presented, followed by a discussion on interaction of our genome and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors specific for it. The paper ends with the notion of the still ongoing coevolution of genes and culture.

  9. A comparison of biological and cultural evolution.

    Science.gov (United States)

    Portin, Petter

    2015-03-01

    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural replicator corresponding to the concept of the gene in biological evolution. Principles of cultural evolution are put forward and compared to the principles of biological evolution. Special emphasis is laid on the principle of selection in cultural evolution, including presentation of the concept of cultural fitness. The importance of language as a necessary condition for cultural evolution is stressed. Subsequently, prime differences between biological and cultural evolution are presented, followed by a discussion on interaction of our genome and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors specific for it. The paper ends with the notion of the still ongoing coevolution of genes and culture.

  10. Stress and Coping with Stress in Adolescence

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2015-12-01

    Full Text Available Because of the many developmental changes in adolescence, young people are exposed to greater likelihood of experiencing stress. On the other hand, this period is critical for developing effective and constructive coping strategies. In the contribution, we summarize part of what is known about stress, stress responses and coping. Throughout, we focus on common stressful events among adolescents and emphasize the importance of dealing successfully with stressors in their daily lives. Finally, we highlight the most frequently used instruments to measure coping behaviour in youth and present an overview of the research findings on differences in coping among adolescents according to age and gender.

  11. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  12. Biology and Mathematics

    Directory of Open Access Journals (Sweden)

    Bascompte, Jordi

    2007-06-01

    Full Text Available Biology has become the new “physics” of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, I summarize some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions.La biología se ha convertido en la nueva “física” de las matemáticas, una de las áreas con mayores aplicaciones. Las matemáticas, por su parte, han proporcionado herramientas y metáforas muy poderosas para abordar la increíble complejidad de los sistemas biológicos. Esto ha permitido la génesis de marcos conceptuales sólidos. En este artículo resumo algunas de las aplicaciones más exitosas de las matemáticas a la biología que van desde la genética de poblaciones a la biología del desarrollo y las redes de interacciones ecológicas.

  13. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  14. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  15. Psychosocial stress and inflammation in cancer.

    Science.gov (United States)

    Powell, N D; Tarr, A J; Sheridan, J F

    2013-03-01

    Stress-induced immune dysregulation results in significant health consequences for immune related disorders including viral infections, chronic autoimmune disease, and tumor growth and metastasis. In this mini-review we discuss the sympathetic, neuroendocrine and immunologic mechanisms by which psychosocial stress can impact cancer biology. Both human and animal studies have shown the sympathetic and neuroendocrine responses to psychosocial stress significantly impacts cancer, in part, through regulation of inflammatory mediators. Psychosocial stressors stimulate neuroendocrine, sympathetic, and immune responses that result in the activation of the hypothalamic-pituitary-adrenal (HPA)-axis, sympathetic nervous system (SNS), and the subsequent regulation of inflammatory responses by immune cells. Social disruption (SDR) stress, a murine model of psychosocial stress and repeated social defeat, provides a novel and powerful tool to probe the mechanisms leading to stress-induced alterations in inflammation, tumor growth, progression, and metastasis. In this review, we will focus on SDR as an important model of psychosocial stress in understanding neural-immune mechanisms in cancer.

  16. Stress exposure, food intake and emotional state.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions. PMID:26303312

  17. Biology-inspired AMO physics

    Science.gov (United States)

    Mathur, Deepak

    2015-01-01

    invoking dissociative attachment in quantification of stress levels in humans. The prognosis is extremely good for more intense interaction of AMO physics and biology; by way of future predictions attention is drawn to only two of very many opportunities for such interactions: application of attosecond techniques and tunnelling experiments to biological problems.

  18. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  19. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  20. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  1. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  2. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to...

  3. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  4. Chemistry and biology data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical monitoring data and biological data from field collected samples. This dataset is associated with the following publication: Biales , A., D. Denton , D....

  5. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  6. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  7. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean....

  8. Precision Measurement in Biology

    Science.gov (United States)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  9. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  10. [Systems biology of cancer].

    Science.gov (United States)

    Barillot, Emmanuel; Calzone, Laurence; Zinovyev, Andrei

    2009-01-01

    Cancer Systems Biology is now accepted and recognized as a promising field both in biological and clinical research. It relies on a rigorous formalization of regulation networks into precise and unambiguous languages. It provides both detailed and modular views of the complex biological system of interest (which in cancer research is typically an interaction network governing essential cellular events such as proliferation, differentiation, cell death...) in order to facilitate the interpretation of molecular profiles of tumors. The translation of these networks into mathematical models allows prediction of the evolution of the system in time and under certain perturbations. As a result, it can not only propose specific target points for pharmaceutical purposes, but also anticipate the evolution of tumors as well as their classifications. These characteristics emphasize the important role of Systems Biology of Cancer in the future of biomedical research.

  11. Thermodynamics of Biological Processes

    Science.gov (United States)

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  12. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F

    2013-01-01

    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  13. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  14. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  15. Stress at Work Place

    OpenAIRE

    Mohammad A. Shahrour

    2010-01-01

    One of hardest forms of stresses to avoid is that work place or job stress Job stress refers to stress experienced by an individual at or because of issues at their work place The term work related stress has many meanings and it causes different levels of anxiety. Not all challenges at work can be called stress as some of these challenges drive employees upward, and empower them to learn new skills or push them to work harder to achieve a certain goal. So, this type of challenges cannot be c...

  16. Synthetic biology: A foundation for multi-scale molecular biology

    OpenAIRE

    Bower, Adam G; McClintock, Maria K; Stephen S. Fong

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Bu...

  17. Noise in Biology

    OpenAIRE

    Tsimring, Lev S

    2014-01-01

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms, and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evol...

  18. Synthetic biology and biosecurity.

    Science.gov (United States)

    Robienski, Jürgen; Simon, Jürgen

    2014-01-01

    This article discusses the conflict fields and legal questions of synthetic biology, esp. concerning biosecurity. A respective jurisprudential discussion has not taken place yet in Germany apart from few statements and recommendations. But in Germany, Europe and the USA, it is generally accepted that a broad discussion is necessary. This is esp. true for the question of biosecurity and the possible dangers arising from Synthetic Biology. PMID:25845204

  19. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  20. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions.

    Science.gov (United States)

    Lemieux, Andrine; al'Absi, Mustafa

    2016-01-01

    In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process.

  1. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions.

    Science.gov (United States)

    Lemieux, Andrine; al'Absi, Mustafa

    2016-01-01

    In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process. PMID:26806770

  2. Biological Psychiatry, Research And Industry

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2007-01-01

    Psychiatry, neuro-physiology and neuro-pathology, is not just the commitment of a dedicated band of researchers out to reach the truth of psychiatric diseases. That is there, of course, and is laudable. Equally important is the fact that Biological approaches get industry sponsorship and furthering it legitimizes industry's role and serves its interests. Biological approaches find neuro-physiological and biochemical correlates of behaviour and abnormalities and strengthen the case for psychopharmacological approaches as the mainstay of treatment. This is not to deride the legitimate growth of Biological approaches, it is only to understand why it is preferred over other approaches for funding and has occupied center-stage in research today. And this state of affairs obtains in other branches of medicine too. If the psychotherapeutic approach is neglected because there is no possibility of benefit to industry, the psychosomatic approach to medicine is neglected because it is equally of little benefit to industry growth. So findings, for example, of heightened stress and hostility as aetiologic in coronary heart disease get token mention, whilst sophisticated investigative and therapeutic procedures and related medications get highlighted. What makes for sound ethical practice hardly makes for sound business sense for both the researcher and industry. [No abstract avbailable.

  3. The biology of hair diversity.

    Science.gov (United States)

    Westgate, Gillian E; Botchkareva, Natalia V; Tobin, Desmond J

    2013-08-01

    Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics.

  4. Understanding the responses of rice to environmental stress using proteomics.

    Science.gov (United States)

    Singh, Raksha; Jwa, Nam-Soo

    2013-11-01

    Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stresses--including cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone--are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the

  5. Modeling stress and drug craving in the laboratory: implications for addiction treatment development

    OpenAIRE

    Sinha, Rajita

    2008-01-01

    Addition is a chronic relapsing illness affected by multiple social, individual and biological factors that significantly impact course and recovery of the illness. Stress interacts with these factors and increases addiction vulnerability and relapse risk, thereby playing a significant role in the course of the illness. This paper reviews our efforts in developing and validating laboratory models of stress and drug cue-related provocation to assess stress responses and stress-related adaptati...

  6. Stressful Experiences in Children and Adolescents: Initial Report from the PSEI-NCPV Honolulu Study

    OpenAIRE

    Bracha, Dr. Stefan; Ralston, Tyler; Yamashita, Jennifer; Nelson, Gretchen; Lopez, Dr. Hassen H.; Cummings, Dr. Tomas

    2003-01-01

    As part of a federal study of the biology of stress and resilience, a comprehensive, structured stress-history interview (PSEI-NCPV) was administered to 307 participants recruited in Honolulu. A moderate correlation between childhood stress and current depression was found. A relatively high rate of "severe bullying/hazing," and a high mean stress-intensity reating for "blood-drawing induced anxiety" call for further research.

  7. Xenohormesis: health benefits from an eon of plant stress response evolution

    OpenAIRE

    Hooper, Philip L.; Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo

    2010-01-01

    Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compoun...

  8. Stress in childhood

    Science.gov (United States)

    ... for children. Medical treatments produce even greater stress. Recognition of parental stress (such as divorce or financial ... ask questions) Anger Crying Whining Inability to control emotions Aggressive behavior Stubborn behavior Regression to behaviors that ...

  9. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000553.htm Metatarsal stress fractures - aftercare To use the sharing features on ... that connect your ankle to your toes. A stress fracture is a break in the bone that ...

  10. Understanding Child Traumatic Stress

    Science.gov (United States)

    ... Public Awareness Sustainability Policy Issues Understanding Child Traumatic Stress Page Contents: Responding to Danger When Danger Turns ... malevolence, and human accountability. Back to Top Posttraumatic Stress Responses For reasons that are basic to survival, ...

  11. Coping with College Stress

    Science.gov (United States)

    ... gov/news/fullstory_160792.html Coping With College Stress Parents can help make the transition easier for ... 5, 2016 MONDAY, Sept. 5, 2016 (HealthDay News) -- Stress and anxiety are common among new college students, ...

  12. Cultural Stress Revisited

    Institute of Scientific and Technical Information of China (English)

    Hastings; K; Shula; Aizhong; Liu

    2011-01-01

    Cultural stress is no longer a rare phenomenon because the world has been reduced to the size of a village due to modern technology and advancements. It is a concept that grows in magnitude each year. More and more people are affected. In this paper, we discuss the assessment of cultural stress by combining some instruments like the Perceived Stress Scale, the Depression Anxiety, and Stress Scale with the Cultural Stress Scale. They appear to be valid and can be used across different cultures. We discuss the need to come up with a standard instrument for measuring cultural stress as opposed to having so many. We also outline ways of coping with cultural stress as it occurs at different stages. There is need for more research to counter the negative effects of cultural stress.

  13. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  14. Analysis and Design of Biological Materials and Structures

    CERN Document Server

    Öchsner, Andreas; Altenbach, Holm

    2012-01-01

    This collection provides researchers and scientists with advanced analyses and materials design techniques in Biomaterials and presents mechanical studies of biological structures. In 16 contributions well known experts present their research on Stress and Strain Analysis, Material Properties, Fluid and Gas mechanics and they show related problems.

  15. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    OpenAIRE

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2014-01-01

    Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidativ...

  16. Roles of TRPM2 in oxidative stress.

    Science.gov (United States)

    Takahashi, Nobuaki; Kozai, Daisuke; Kobayashi, Ryohei; Ebert, Maximilian; Mori, Yasuo

    2011-09-01

    Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca(2+)-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H(2)O(2)), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca(2+) influx via TRPM2 regulates H(2)O(2)-induced cell death. Recently, we have demonstrated that Ca(2+) influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.

  17. The Nucleolus under Stress

    OpenAIRE

    Boulon, Séverine; Westman, Belinda J.; Hutten, Saskia; Boisvert, François-Michel; Lamond, Angus I

    2010-01-01

    Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In thi...

  18. Prenatal stress in pigs

    OpenAIRE

    Kranendonk, Godelieve

    2006-01-01

    Studies in many species, including humans, have demonstrated that stress during gestation can have long-term developmental, neuroendocrine, and behavioural effects on the offspring. Because pregnant sows can be subjected to regular stressful situations, it is relevant to study whether prenatal stress also affects their piglets. Glucocorticoids play an important role in affecting the fetus during prenatal stress, and therefore, a model to elevate maternal cortisol concentrations during gestati...

  19. Stress, Inflammation and Aging

    OpenAIRE

    Lavretsky, Helen; Newhouse, Paul A.

    2012-01-01

    This editorial provides a summary of the state of research on stress-related changes associated with aging and discuss how factors such as inflammation and sex steroid alterations may interact with psychosocial stress to affect the risk for mood and cognitive disturbance in older individuals. The authors provide an integrated summary of four studies reported in this issue of the journal and views on future direction in stress and aging research and interventions targeting resilience to stress.

  20. Stress og insomni

    DEFF Research Database (Denmark)

    Jennum, Poul; Zachariae, Bobby

    2012-01-01

    Insomnia and stress are two conditions, which are strongly associated and appear to be pathophysiologically integrated: the occurrence of stress increases the risk of insomnia, insomnia exacerbates stress, and coexistence of both factors has a negative influence on their prognosis. Stress...... and insomnia thus share complex interactions and the mechanisms involved are insufficiently understood but involve both psychological and physiological processes. First choice interventions involve behavioural and cognitive strategies and, to a lesser extent, pharmacological treatment....

  1. Stress, norepinephrine and depression.

    OpenAIRE

    Leonard, B E

    2001-01-01

    Stress is an important precipitant factor in depression, and the changes in various body systems that occur in depression are similar to those observed in response to stress. This paper discusses the interactions among the immune, endocrine and norepinephrine systems that are evident in patients with depression, as well as those affected by stress. Many of the stress-induced changes can be reversed by antidepressants, particularly norepinephrine reuptake inhibitors.

  2. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. PMID:27365178

  3. Fungal stress biology: a preface to the Fungal Stress Responses special edition

    NARCIS (Netherlands)

    Rangel, Drauzio E. N.; Alder-Rangel, Alene; Dadachova, Ekaterina; Finlay, Roger D.; Kupiec, Martin; Dijksterhuis, Jan; Braga, Gilberto U. L.; Corrochano, Luis M.; Hallsworth, John E.

    2015-01-01

    There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage

  4. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...

  5. The price of stress

    NARCIS (Netherlands)

    Groot, W.; Maassen, van den H.

    1999-01-01

    In this paper an economic approach is taken to the analysis of work-related stress. This economic approach not only allows us to infer the monetary equivalent of stress, it also enables us to test some of the psychological theories on stress, such as the demand/control theory. Evidence is found that

  6. Increased Risk Taking in Relation to Chronic Stress in Adults

    Science.gov (United States)

    Ceccato, Smarandita; Kudielka, Brigitte M.; Schwieren, Christiane

    2016-01-01

    Chronic stress is a public health problem that affects a significant part of the population. While the physiological damage it causes is under ongoing scrutiny, its behavioral effects have been overlooked. This is one of the first studies to examine the relation between chronic stress and decision-making, using a standard lottery paradigm. We measured risk taking in the gain domain through binary choices between financially incentivized lotteries. We then measured self-reported chronic stress with the Trier Inventory for the Assessment of Chronic Stress (TICS). We additionally collected hair samples in a subsample of volunteers, in order to quantify accumulation of the stress hormone cortisol. We discovered a significant positive, though modest, correlation between self-reported chronic stress and risk taking that is stronger for women than for men. This confirms part of the findings in acute stress research that show a connection between higher stress and increased risk taking. However, unlike the biologically-based results from acute stress research, we did not identify a significant relation between hair cortisol and behavior. In line with previous literature, we found a clear gender difference in risk taking and self-reports: women generally take less risk and report slightly higher stress levels than men. We conclude that perceived chronic stress can impact behavior in risky situations. PMID:26858663

  7. Global biological diversity, forests and ecosystem approach

    Directory of Open Access Journals (Sweden)

    Corona P

    2010-07-01

    Full Text Available Recent international reports and a paper published on Science stresses the lack of evidence about the reduction in the rate of biodiversity decline as expected as a consequence of political agreements on global environment. This decline is of particular concern not only with respect to the intrinsic value of the nature as such but also because it involves the reduction or loss of ecosystem services. This issue is distinctively relevant for forest ecosystems. The Ecosystem Approach proposed by the United Nations Convention on Biological Diversity might be a strategy to reverse the negative trend, promoting a fair conservation and sustainable use of natural resources on an operational level.

  8. Autism: is there a biological cause?

    Science.gov (United States)

    Stewart, J E

    1994-12-01

    1. Autism is the term used to describe certain characteristics observed in some children, including a preference for aloneness, and sameness. 2. The condition was thought for some time to be caused by a psychological disturbance resulting from a combination of stress and poor parental upbringing. 3. Recently emerging data suggests the symptoms are related to a cognitive deficit associated with a biological cause. 4. As research progresses, it is hoped it will become possible to improve the quality of life for people suffering from or looking after those with, autism. PMID:7862687

  9. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  10. Biological races in humans.

    Science.gov (United States)

    Templeton, Alan R

    2013-09-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two most commonly used biological concepts of race, chimpanzees are indeed subdivided into races but humans are not. Adaptive traits, such as skin color, have frequently been used to define races in humans, but such adaptive traits reflect the underlying environmental factor to which they are adaptive and not overall genetic differentiation, and different adaptive traits define discordant groups. There are no objective criteria for choosing one adaptive trait over another to define race. As a consequence, adaptive traits do not define races in humans. Much of the recent scientific literature on human evolution portrays human populations as separate branches on an evolutionary tree. A tree-like structure among humans has been falsified whenever tested, so this practice is scientifically indefensible. It is also socially irresponsible as these pictorial representations of human evolution have more impact on the general public than nuanced phrases in the text of a scientific paper. Humans have much genetic diversity, but the vast majority of this diversity reflects individual uniqueness and not race. PMID:23684745

  11. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam

    2010-01-01

    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  12. Assessment of Response to Drought Stress of Chickpea (Cicer arietinumL.) Lines Under Rainfed Conditions

    OpenAIRE

    TOKER, Cengiz; ÇAĞIRGAN, M. İlhan

    1998-01-01

    Totally sixty four chickpea lines were grown for assesment of response to drought stress in the stress and non-stress environments under rainfed conditions. The seed yield of the lines when grown under the non-stress condition increased at a rate of 53% over the in stress condition. The line, FLIP 92-154C, was determinated as the best tolerant line to drought stress environment under the field condition. Also, seed yield strongly correlated with biological yield, harvest index, mean produc...

  13. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heran Ma

    2016-09-01

    Full Text Available The antioxidant properties of l-arginine (l-Arg in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.

  14. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  15. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja

    2010-01-01

    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  16. Epigenetics: Biology's Quantum Mechanics.

    Science.gov (United States)

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  17. Epigenetics: Biology's Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2011-04-01

    Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  18. The biology of personality.

    Science.gov (United States)

    Mulder, R

    1992-09-01

    Historically, models of personality have generally postulated, or assumed, a link with biology. This century has witnessed a major revision of these ideas with both behavioural and psychoanalytic theorists emphasising life experiences as being largely responsible for behaviour as adults. Challenges to this assumption of the overwhelming importance of life experiences are reviewed. An extensive body of data now exists suggesting that biology contributes significantly to individual variability. This biological contribution occurs at a relatively low level in the central nervous system, best defined as temperament. Further research has suffered from the lack of a cohesive psychobiological model. Cloninger's tridimensional theory of personality is presented as a model which attempts to bridge the gap between theoretical temperamental traits, neurotransmitter function and clinical psychiatry. It is to be hoped that new theoretical models will be formulated which will focus on the importance of temperamental variables in psychiatric disorders.

  19. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  20. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  1. [Biological review of completed suicide].

    Science.gov (United States)

    Otsuka, Ikuo; Sora, Ichiro; Hishimoto, Akitoyo

    2016-06-01

    Family, twin and adoption studies have revealed genetic factors involved in suicide, while the accumulation of stress and mental illnesses are major contributing factors of suicide. Since higher lethality of suicidal behavior is considered to increase familial liability to suicidal behavior, we believe biological research of completed suicide is most important for a better understanding of the pathophysiology in suicide. Dysregulated hypothalamic-pituitary-adrenal axis has gained a special interest in the neurobiology of suicide, mostly because of the findings using a dexamethasone suppression test (DST), in which DST non-suppressors show a nearly 10-fold higher risk of completed suicide than DST suppressors in a depressed cohort. Other data mainly from postmortem brain studies indicate abnormalities of the noradrenergic-locus coeruleus system, serotonergic system, endogenous opioid system, brain-derived neurotrophic factor, inflammatory cytokines and omega-3 fatty acid in completed suicide. However, genetic research of complete suicide is behind other mental problems because it is extremely difficult to obtain tissue samples of completed suicide. Under the difficult situation, we now retain over 800 blood samples of suicide completers thanks to bereaved families' cooperation. We are actively working on the research of suicide, for instance, by performing a GWAS using 500 samples of suicide completers.

  2. [Biological review of completed suicide].

    Science.gov (United States)

    Otsuka, Ikuo; Sora, Ichiro; Hishimoto, Akitoyo

    2016-06-01

    Family, twin and adoption studies have revealed genetic factors involved in suicide, while the accumulation of stress and mental illnesses are major contributing factors of suicide. Since higher lethality of suicidal behavior is considered to increase familial liability to suicidal behavior, we believe biological research of completed suicide is most important for a better understanding of the pathophysiology in suicide. Dysregulated hypothalamic-pituitary-adrenal axis has gained a special interest in the neurobiology of suicide, mostly because of the findings using a dexamethasone suppression test (DST), in which DST non-suppressors show a nearly 10-fold higher risk of completed suicide than DST suppressors in a depressed cohort. Other data mainly from postmortem brain studies indicate abnormalities of the noradrenergic-locus coeruleus system, serotonergic system, endogenous opioid system, brain-derived neurotrophic factor, inflammatory cytokines and omega-3 fatty acid in completed suicide. However, genetic research of complete suicide is behind other mental problems because it is extremely difficult to obtain tissue samples of completed suicide. Under the difficult situation, we now retain over 800 blood samples of suicide completers thanks to bereaved families' cooperation. We are actively working on the research of suicide, for instance, by performing a GWAS using 500 samples of suicide completers. PMID:27506081

  3. Stress proteins are induced by space environment

    Science.gov (United States)

    Takahashi, Akihisa; Ohnishi, Takeo

    The space environment contains two major biologically significant influences such as space radiations and microgravity. Almost all organisms possess essential recognition and response systems for environmental changes. The famous one of cellular stress responses is the gene induction of heat shock protein (HSP). HSP expression is increased under elevated temperatures, and also increased by other sources of cellular stress, including ionizing radiation, oxidative injury, osmotic stress and the unfolded protein response. HSPs assist in the folding and maintenance of newly translated proteins, the refolding of denatured proteins and the further unfolding of misfolded or destabilized proteins to protect the cell from crisis. Based on our space experiment, we report the results and discussion from the viewpoint of HSP expression after exposure to space environment.

  4. Biological and Pharmaceutical Nanomaterials

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2006-01-01

    This first comprehensive yet concise overview of all important classes of biological and pharmaceutical nanomaterials presents in one volume the different kinds of natural biological compounds that form nanomaterials or that may be used to purposefully create them. This unique single source of information brings together the many articles published in specialized journals, which often remain unseen by members of other, related disciplines. Covering pharmaceutical, nucleic acid, peptide and DNA-Chitosan nanoparticles, the book focuses on those innovative materials and technologies needed for the continued growth of medicine, healthcare, pharmaceuticals and human wellness. For chemists, biochemists, cell biologists, materials scientists, biologists, and those working in the pharmaceutical and chemical industries.

  5. Neutron structural biology

    International Nuclear Information System (INIS)

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  6. Chemical and Biological Kinetics

    Science.gov (United States)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  7. Neuropeptide Y and Stress

    Directory of Open Access Journals (Sweden)

    Murat Gulsun

    2012-03-01

    Full Text Available The neurobiological aspects of stress and coping skills has been the focus of interest for many researchers. Some of the studies has shown that there is a significant relationship among genetically variables, stress response and life events. Neuropeptide Y is one of the systems regulating the stress response. Under the prolonged or repeated trauma neuropeptide Y is released from the brain's key areas. This system shows different levels of functioning in individuals with different levels of resilience. There is particular interest in the variations of genes that encode stress-sensitive signaling molecules during gene-environment interaction. This condition may contribute to susceptibility of stress or stress resilience. Neuropeptide Y system plays a key role in the adaptation to behavioral stress. The reduced levels of neuropeptide Y have also been observed in treatment-resistant depression and posttraumatic stress disorder. Lower level of neuropeptide Y expression and dysfunctional neuropeptide Y system in response to stress and resulting decreased stress resilience could increase susceptibility to stress-related disorders.

  8. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  9. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  10. Biology of ageing

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Living systems owe their survival and health to a series of complex biochemical pathways of maintenance and repair. These defense systems create the homeodynamic space of an individual, which is characterized by stress tolerance, molecular damage control and continuous remodeling. Ageing, age-rel...

  11. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes an

  12. Developing a Biological Condition Gradient for the Protection of Puerto Rico's Coral Reefs

    Science.gov (United States)

    We introduce the application of the Biological Condition Gradient (BCG) to coral reefs: a conceptual model that describes how biological attributes of coral reef ecosystems might change along a gradient of increasing anthropogenic stress. Under authority of the Clean Water Act, t...

  13. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Gao; Dai-Yin Chao; Hong-Xuan Lin

    2007-01-01

    Abiotic stress is the main factor negatively affecting crop growth and productivity worldwide. The advances in physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stresses. Rice plants are sensitive to various abiotic stresses. In this short review, we present recent progresses in adaptation of rice to salinity, water deficit and submergence. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads NaMrom xylem, plasma membrane NaVHTantiporter SOS1 excludes sodium out of cytosol and tonoplast Na+/H+antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Overexpression of some transcription factors, including DREB/CBF and MAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses.

  14. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2006-01-01

    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  15. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  16. Biology Curriculum Support Document.

    Science.gov (United States)

    North Carolina Dept. of Public Instruction, Raleigh.

    This biology curriculum supplement includes the North Carolina Standard Course of Study Goals, helpful resources, and suggested activities supported by inquiry-based laboratory activities. Contents include a detailed description of content which provides the goals and standards being sough), a materials list for inquiry support labs and…

  17. Molecular Biology of Medulloblastoma

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  18. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available.

  19. Openers for Biology Classes.

    Science.gov (United States)

    Gridley, C. Robert R.

    This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…

  20. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  1. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Gonçalo Espregueira;

    2016-01-01

    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  2. Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Dev Vrat Kamboj

    2006-10-01

    Full Text Available There is a long historic record of use of biological warfare (BW agents by warring countriesagainst their enemies. However, the frequency of their use has increased since the beginningof the twentieth century. World war I witnessed the use of anthrax agent against human beingsand animals by Germans, followed by large-scale field trials by Japanese against war prisonersand Chinese population during world war II. Ironically, research and development in biologicalwarfare agents increased tremendously after the Geneva Protocol, signed in 1925, because ofits drawbacks which were overcome by Biological and Toxin Weapons Convention (BTWC in1972. Biological warfare programme took back seat after the 1972 convention but biologicalagents regained their importance after the bioterrorist attacks of anthrax powder in 2001. In thelight of these attacks, many of which turned out to be hoax, general awareness is required aboutbiological warfare agents that can be used against them. This review has been written highlightingimportant biological warfare agents, diseases caused by them, possible therapies and otherprotection measures.

  3. Nuclear physics and biology

    International Nuclear Information System (INIS)

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  4. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  5. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  6. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  7. Stress Literacy in Australian Adolescents

    Science.gov (United States)

    Varlow, Megan; Wuthrich, Viviana; Murrihy, Rachael; Remond, Louise; Tuqiri, Rebekka; van Kessel, Jacobine; Wheatley, Anna; Dedousis-Wallace, Anna; Kidman, Antony

    2009-01-01

    Stress literacy is a term that refers to knowledge about stress and stress management techniques. Levels of stress literacy were examined in more than nine hundred Australian adolescents by providing a short stress-management education session and assessing stress literacy using a pre-post survey design. It was found that while adolescents had a…

  8. Stress Management and Gifted Children

    Science.gov (United States)

    Patel, Vidisha A.

    2009-01-01

    Stress can affect anyone, and gifted children are no exception. Giftedness can sometimes be the cause of the stress. Perfectionism, sensitivity, and intensity are characteristics of gifted children that may exacerbate stress. Stress can be constructive. Prolonged stress, however, with no time to recover becomes detrimental. Continued stress upsets…

  9. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-01

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  10. Biological trade and markets

    Science.gov (United States)

    2016-01-01

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other ‘commodities’. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten ‘terms of contract’ that ‘self-stabilize’ trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models—often called ‘Walrasian’ markets—are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying ‘principal–agent’ problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists

  11. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-01

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  12. Interoception and Stress

    Directory of Open Access Journals (Sweden)

    André eSchulz

    2015-07-01

    Full Text Available Afferent neural signals are continuously transmitted from visceral organs to the brain. Interoception refers to the processing of visceral-afferent neural signals by the central nervous system, which can finally result in the conscious perception of bodily processes. Interoception can, therefore, be described as a prominent example of information processing on the ascending branch of the brain-body axis. Stress responses involve a complex neuro-behavioral cascade, which is elicited when the organism is confronted with a potentially harmful stimulus. As this stress cascade comprises a range of neural and endocrine pathways, stress can be conceptualized as a communication process on the descending branch of the brain-body axis. Interoception and stress are, therefore, associated via the bi-directional transmission of information on the brain-body axis. It could be argued that excessive and/or enduring activation (e.g. by acute or chronic stress of neural circuits, which are responsible for successful communication on the brain-body axis, induces malfunction and dysregulation of these information processes. As a consequence, interoceptive signal processing may be altered, resulting in physical symptoms contributing to the development and/or maintenance of body-related mental disorders, which are associated with stress. In the current paper, we summarize findings on psychobiological processes underlying acute and chronic stress and their interaction with interoception. While focusing on the role of the physiological stress axes (HPA axis and autonomic nervous system, psychological factors in acute and chronic stress are also discussed. We propose a feed-forward model involving stress (in particular early life or chronic stress, as well as major adverse events, the dysregulation of physiological stress axes, altered perception of bodily sensations, and the generation of physical symptoms, which may in turn facilitate stress.

  13. Epigenetic and immune function profiles associated with posttraumatic stress disorder

    OpenAIRE

    Uddin, Monica; Aiello, Allison E.; Wildman, Derek E.; Koenen, Karestan C.; Pawelec, Graham; de los Santos, Regina; Goldmann, Emily; Galea, Sandro

    2010-01-01

    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, ...

  14. Predicting Performance Under Stressful Conditions Using Galvanic Skin Response

    OpenAIRE

    Mundell, Carter; Vielma, Juan Pablo; Zaman, Tauhid

    2016-01-01

    The rapid growth of the availability of wearable biosensors has created the opportunity for using biological signals to measure worker performance. An important question is how to use such signals to not just measure, but actually predict worker performance on a task under stressful and potentially high risk conditions. Here we show that the biological signal known as galvanic skin response (GSR) allows such a prediction. We conduct an experiment where subjects answer arithmetic questions und...

  15. New reagents for detecting free radicals and oxidative stress.

    Science.gov (United States)

    Barzegar Amiri Olia, Mina; Schiesser, Carl H; Taylor, Michelle K

    2014-09-21

    Free radicals and oxidative stress play important roles in the deterioration of materials, and free radicals are important intermediates in many biological processes. The ability to detect these reactive species is a key step on the road to their understanding and ultimate control. This short review highlights recent progress in the development of reagents for the detection of free radicals and reactive oxygen species with broad application to materials science as well as biology.

  16. Systems biology, emergence and antireductionism.

    Science.gov (United States)

    Kesić, Srdjan

    2016-09-01

    This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed. Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist-antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.

  17. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    OpenAIRE

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that...

  18. Chronic pain, perceived stress, and cellular aging: an exploratory study

    Directory of Open Access Journals (Sweden)

    Sibille Kimberly T

    2012-02-01

    Full Text Available Abstract Background Chronic pain conditions are characterized by significant individual variability complicating the identification of pathophysiological markers. Leukocyte telomere length (TL, a measure of cellular aging, is associated with age-related disease onset, psychosocial stress, and health-related functional decline. Psychosocial stress has been associated with the onset of chronic pain and chronic pain is experienced as a physical and psychosocial stressor. However, the utility of TL as a biological marker reflecting the burden of chronic pain and psychosocial stress has not yet been explored. Findings The relationship between chronic pain, stress, and TL was analyzed in 36 ethnically diverse, older adults, half of whom reported no chronic pain and the other half had chronic knee osteoarthritis (OA pain. Subjects completed a physical exam, radiographs, health history, and psychosocial questionnaires. Blood samples were collected and TL was measured by quantitative polymerase chain reaction (qPCR. Four groups were identified characterized by pain status and the Perceived Stress Scale scores: 1 no pain/low stress, 2 no pain/high stress, chronic pain/low stress, and 4 chronic pain/high stress. TL differed between the pain/stress groups (p = 0.01, controlling for relevant covariates. Specifically, the chronic pain/high stress group had significantly shorter TL compared to the no pain/low stress group. Age was negatively correlated with TL, particularly in the chronic pain/high stress group (p = 0.03. Conclusions Although preliminary in nature and based on a modest sample size, these findings indicate that cellular aging may be more pronounced in older adults experiencing high levels of perceived stress and chronic pain.

  19. Effects of Long-Term Stress and Recovery on the Prefrontal Cortex and Dentate Gyrus in Male and Female Rats

    NARCIS (Netherlands)

    Lin, Yanhua; Westenbroek, Christel; Bakker, Petra; Termeer, Joan; Liu, Aihua; Li, Xuejun; Ter Horst, Gert J.

    2008-01-01

    Women show a higher prevalence for depression than men. However, the biological basis of gender differences in stress response and recovery still remain poorly understood. Therefore, the aim of the study was to assess the gender differences in response to acute stress, chronic stress and recovery in

  20. Quercetin's protective effect against oxidative stress in and impact on biological activity of B10BR, an immortal mouse melanocyte cell line%槲皮素对鼠黑素细胞株B10BR细胞的抗氧化保护效应及对其生物学活性的影响

    Institute of Scientific and Technical Information of China (English)

    孙学成; 关翠萍; 洪为松; 林福全; 许爱娥

    2010-01-01

    Objective To investigate quercetin's protective effect against oxidative stress in and impact on the biological activity of mouse B10BR melanocytes. Methods B10BR cells were cultured and treated with different concentrations of quercetin followed by additional culture. Then, cell viability was measured by using MTT assay, hydrogen peroxide-induced cell apoptosis by flow cytometry, and cell morphological changes by microscopy. The tyrosinase activity in and melanin synthesis by B10BR cells were measured by dopa oxidation assay and sodium hydroxide (NaOH)-lysis method, respectively. Results After treatment with quercetin of 33.33 μmol/L for 24 hours, the survival rate of B10BR cells reached (94.22 ± 3.36)%, tyrosinase activity (107.15 ± 10.96)%, and melanin content (111.85 ± 9.49)%. A significant difference was observed in tyrosinase activity and melanin content between hydrogen peroxide-induced and 33.33 μmol/L quercetin-treated B10BR cells and those only induced by hydrogen peroxide (both P < 0.01). Flow cytometry revealed that quercetin inhibited hydrogen peroxide-induced apoptosis in melanocytes. Conclusion The protective effect of quercetin against hydrogen peroxide-induced apoptosis in melanocytes may provide a new idea for the treatment of vitiligo.%目的 探讨槲皮素保护鼠永生化黑素细胞(B10BR)对抗氧化应激的有效性及其对B10BR细胞生物学活性影响.方法 MTT法测定B10BR细胞存活率,流式细胞仪检测细胞凋亡率,倒置显微镜下观察细胞形态改变,并检测槲皮素对酪氨酸酶活性及黑素合成的影响.结果 经33.33μmol/L槲皮素预处理24 h后细胞活性增高至(94.22±3.36)%,此外黑素细胞的酪氨酸酶活性及黑素含量可分别增高至(107.15±10.96)%和(111.85±9.49)%,与过氧化氢处理组相比,差异均有统计学意义(P<0.01).流式细胞仪检测结果表明,槲皮素可抑制过氧化氢诱导的黑素细胞凋亡.结论 槲皮素抑制过氧化氢诱导黑素细胞

  1. An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-01-01

    Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (β-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the

  2. Stress transmission in soil

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    the principle behind the elasticity theory. However, if fitting the Söhne model to stress measurements in all three depths, the stresses were underestimated at 0.3 and 0.6 m depth, and overestimated at 0.9 m depth. A fit of the model based on data only at 0.3 m depth indicated that stresses were transmitted......We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals......). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil in each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative to the transducers was recorded using a laser sensor. Finally, the vertical stresses near...

  3. The World Stress Map

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Knowledge of the stress field in the Earth's crust is a key issue for the understanding of geodynamic processes,seismic hazard assessment, and stability of underground openings such as waste disposals, tunnels, mines or wells, and reservoir management. The World Stress Map project is a collaborative project of academia,industry and governmental organizations that aims to understand the states and sources of tectonic stresses in the Earth's crust. We present the Worm Stress Map at 1:46,000,000 scale as a result of more than two decades of international collaboration. The map reveals that the first-order pattern of stress is of plate-wide scale, indicating that plate boundary forces are the major control of the stress orientations and the tectonic regime.

  4. [Psychosocial stress and cardiology].

    Science.gov (United States)

    Houppe, Jean-Pierre

    2013-06-01

    Psychosocial stress is a major independent risk and prognostic factor of cardiovascular events. It includes psychological, sociological and socioeconomic factors. Cardiovascular diseases are important providers of psychosocial stress. The knowledge of the cerebral development throughout the time allows to a better understanding of the relationship between psychosocial stress and cardiovascular risk. Psychosocial stress leads, on top of traditional cardiovascular risk factors, to the development or to the worsening of an endothelial dysfunction, of an inflammatory response and prothrombotic phenomenon. Anxiolytics and antidepressors are not very effective against psychosocial stress. Physical activity and psychotherapy are much more indicated, particularly cognitve-behavioral therapy. The ESC recommends an evaluation of psychosocial stress through a short questionnaire.

  5. Stresses in Dolosse

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou; Howell, Gary L.;

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structu......Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams...... for structural integrity. The paper presents the results and the analyses of model tests with 200 kg and 200 g load-cell instrumented Dolosse. Static stresses and wave generated stresses were studied as well as model and scale effects. A preliminary design diagram for Dolosse is presented as well....

  6. Thermal stresses in pipes

    OpenAIRE

    Al-Zaharnah, Iyad

    2002-01-01

    This study presents results about thermal stresses in externally heated pipes that are subjected to different flow types: laminar flow, turbulent flow, and pulsating flow. The effect o f flow Reynolds number on thermal stresses in the pipe is studied. To investigate the influence o f fluid and solid properties on the resulting thermal stresses in pipes, two solids namely; steel and cooper and three fluids namely; water, coolanol-25, and mercury are used in the study. Pipes with different diam...

  7. Pediatric stress fractures

    OpenAIRE

    de la Cuadra, P.; Albiñana, J.

    2000-01-01

    Stress fractures in children are uncommon. This report describes the findings of 8 cases in 6 children. One patient had 3 stress fractures: 2 consecutive midshaft stress fractures of the same tibia associated with one of the fibula. Signs and symptoms may be misdiagnosed as malignant tumors or osteomyelitis. Serial radiographs and computed tomography scans are the key to the diagnosis, although bone scan and magnetic resonance imaging can be helpful. Biopsy is unnecessary and might even be mi...

  8. The teacher under stress

    OpenAIRE

    Krnjajić Stevan B.

    2003-01-01

    Empirical records consistently point to the fact that the phenomenon of stress is characteristic of service professions, especially of teacher’s. Although stress in teachers is a problem of public interest, it is still a relatively new field of empirical investigations. Data available show that stress in teachers can have negative effects on school as an organization teacher professional achievement, his/her and his/her family psychosocial status. The most frequent symptoms of a prolonged pro...

  9. Neuropeptide Y and Stress

    OpenAIRE

    Murat Gulsun; Lut Tamam; Fatih Ozcelik

    2012-01-01

    The neurobiological aspects of stress and coping skills has been the focus of interest for many researchers. Some of the studies has shown that there is a significant relationship among genetically variables, stress response and life events. Neuropeptide Y is one of the systems regulating the stress response. Under the prolonged or repeated trauma neuropeptide Y is released from the brain's key areas. This system shows different levels of functioning in individuals with different levels of re...

  10. Stress and childhood epilepsy

    OpenAIRE

    Campen, J.S. van

    2015-01-01

    Epilepsy is one of the most common chronic diseases in childhood, characterized by the enduring predisposition to generate epileptic seizures. Children with epilepsy and their parents often report seizures precipitated by stress. In order to increase our understanding of the pathophysiological mechanisms underlying the effects of stress on seizures in childhood epilepsy, we performed a variety of studies, which are described in this thesis. In part I we evaluate the extent of stress sensitivi...

  11. Stress Among Dental Students

    OpenAIRE

    Alzahem, Abdullah

    2015-01-01

    markdownabstractAbstract Dental students are facing many stressors in dental education, causing many negative outcomes. The most common are the exams and the clinical requirements. We suggest exposing the dental students to patient care as early as possible in their curriculum. This can help to balance stress across the different years of the curriculum, and maybe reduce the stress levels in the later years of the curriculum. A study into the new Dental Education Stress Management (DESM) prog...

  12. Stress, Sleep, and Allergy

    OpenAIRE

    Jernelöv, Susanna

    2010-01-01

    Allergic diseases have recently increased dramatically in the western world, now affecting about 30% of the Swedish population. The reasons for this increase are unclear, but some of the suspects are behavioral factors, such as stress and sleep. Problems with stress are also common today, and stress may change the set-points for the functioning of the body, for instance in the immune system. Sleep, on the other hand, is important for recuperation, and disturbed sleep acts a ...

  13. Autophagy in cardiovascular biology

    OpenAIRE

    Lavandero, Sergio; Chiong, Mario; Rothermel, Beverly A.; Hill, Joseph A.

    2015-01-01

    Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the mai...

  14. De novo assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in Lilium lancifolium.

    Science.gov (United States)

    Wang, Jingmao; Wang, Qing; Yang, Yang; Liu, Xiaohua; Gu, Jiahui; Li, Wenqi; Ma, Suliya; Lu, Yingmin

    2014-12-01

    Plants have continually confrontation with different abiotic stresses, including salt, low temperature, drought or hormone stress. The plants acclimate to the environmental stresses relating with the falls of the molecular mesh including the stress signal receiver, signal transcriptional regulation and the expression of functional and structure genes. Using the RNA-seq, we carried out a transcriptional analysis under cold treatment for investigating a profound comprehension of the signal network and molecular metabolisms reaction included in abiotic stress reaction for Lilium lancifolium. Our study identified 18,722 unigenes had demonstrated the resemblance to the known exact proteins in the Swiss-Prot protein database and classified them by Gene ontology into three primary kinds: cellular component, biological process, and molecular function, and then 15,898 unigenes aligned to existing sequences in the KEGG databases. Based on the transcriptome results of cold stress, more stress-related genes were identified and analyzed of their expressions in other abiotic stress treatments as 37 °C, ABA, JA and Na. Meanwhile, bioinformatics qRT-PCR analyses of stress genes as LlDREB1, LlAP2, LlNAC1, LlHOT, LlR2R3-MYB and LlCDPK revealed that novel candidate genes encoding ethylene responsive transporters and serine/threonine receptor-like kinases, which contributed to speculate the signal regulation pathway during the abiotic stresses; engineering genes could also boost the tolerance to stress, as protected and maintained the function and structure of cellular components. Our research conjectured the abiotic stress signal transduction pathway and identified the expected key ingredients regulating the stress tolerance in Lilium lancifolium, which would enable the in-depth molecular exploration of stress-tolerance mechanisms in lily.

  15. The teacher under stress

    Directory of Open Access Journals (Sweden)

    Krnjajić Stevan B.

    2003-01-01

    Full Text Available Empirical records consistently point to the fact that the phenomenon of stress is characteristic of service professions, especially of teacher’s. Although stress in teachers is a problem of public interest, it is still a relatively new field of empirical investigations. Data available show that stress in teachers can have negative effects on school as an organization teacher professional achievement, his/her and his/her family psychosocial status. The most frequent symptoms of a prolonged professional stress are anxiety, depression, frustration, unfriendly behavior towards students and colleagues, emotional weariness, and extreme tension. Health and psychological problems cause, most frequently, the reduction of self-esteem job dissatisfaction, job resignation, absenteeism, and wrong decision-making. In an attempt to call professional public attention to negative effects of stress on the outcomes of teacher work, we have analyzed four important aspects of stress teachers experience in their everyday work (a definition and measurement of stress, (b distribution and sources of stress (problem behaviors in students, poor working conditions, lack of time, poor school ethos, (c teacher personality traits (sex, age, work experience, locus of control, job satisfaction, intention to resign absenteeism, (d strategies for overcoming and reducing negative effects of stress (direct action techniques, palliative techniques.

  16. Stress: Concepts and applications

    International Nuclear Information System (INIS)

    The stress theorem determines the stress from the electronic ground state of any quantum system with arbitrary strains and atomic displacements. We derive this theorem in reciprocal space, within the local-density-functional approximation. The evaluation of stress, force and total energy permits, among other things, the determination of complete stress-strain relations including all microscopic internal strains. We describe results of ab-initio calculations for Si, Ge, and GaAs, giving the equilibrium lattice constant, all linear elastic constants cij and the internal strain parameter ζ. (orig.)

  17. Stress and hormones

    Directory of Open Access Journals (Sweden)

    Salam Ranabir

    2011-01-01

    Full Text Available In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves′ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm.

  18. Kant on biological teleology: Towards a two-level interpretation.

    Science.gov (United States)

    Quarfood, Marcel

    2006-12-01

    According to Kant's Critique of the power of judgment, teleological considerations are unavoidable for conceptualizing organisms. Does this mean that teleology is more than merely heuristic? Kant stresses the regulative status of teleological attributions, but sometimes he seems to treat teleology as a constitutive condition for biology. To clarify this issue, the concept of natural purpose and its role for biology are examined. I suggest that the concept serves an identificatory function: it singles out objects as natural purposes, whereby the special science of biology is constituted. This relative constitutivity of teleology is explicated by means of a distinction of levels: on the object level of biological science, teleology is taken as constitutive, though it is merely regulative on the philosophical meta level. This distinction also concerns the place of Aristotelian teleology in Kant: on the object level, the Aristotelian view is accepted, whereas on the meta level, an agnostic stance is taken concerning teleology. PMID:17157769

  19. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    Science.gov (United States)

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  20. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  1. Ontogeny of the cortisol stress response in channel catfish (Ictalurus punctatus)

    Science.gov (United States)

    Cortisol is a glucocorticoid hormone which is an endocrine signaling molecule in all vertebrates and acts through intracellular glucocorticoid receptors (GR). Cortisol affects many biological functions including immunity, stress, growth, ion homeostasis, and reproduction. The objective of this stu...

  2. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  3. Introduction to radiation biology

    International Nuclear Information System (INIS)

    This book is arranged in a logical sequence, starting from radiation physics and radiation chemistry, followed by molecular, subcellular and cellular effects and going on to the level of organism. Topics covered include applied radiobiology like modifiers of radiosensitivity, predictive assay, health physics, human genetics and radiopharmaceuticals. The topics covered are : 1. Radiation Physics, 2. Detection and Measurement of Radiation, 3. Radiation Chemistry, 4. DNA Damage and Repair, 5. Chromosomal Aberrations and Gene Mutations, 6. Cellular Radiobiology 7. Acute Radiation Effects, 8. Delayed Effects of Radiation, 9. Biological Basis of Radiotherapy, 10. Chemical Modifiers of Radiosensitivity, 11. Hyperthermia, 12. High LET Radiations in Cancer, Therapy, 13. Predictive Assays, 14. Radiation Effects on Embryos, 15. Human Radiation Genetics, 16. Radiolabelled Compounds in Biology and Medicine and 17. Radiological Health

  4. Radiation biology for environment

    International Nuclear Information System (INIS)

    Environmental pollution problems such as the green-house effect by increase of CO2, acid rain caused by flue gases, and contamination of chemicals and pesticides in foods and water, have become serious in the world with the rapid development of industry and agriculture. To solve some of these problems, radiation treatment has being applied for the removal of the contaminants from flue gases and waste water from industrial plants. On the other hand, the contribution of radiation biology for these environmental pollution problems is not direct but it has contributed indirectly in many fields. This paper describes the contributions of radiation biology for environment in the following two topics: 1) control of insects and microorganisms, and 2) application of radiation for agricultural wastes

  5. Traceability of biologicals

    DEFF Research Database (Denmark)

    Vermeer, Niels S; Spierings, Irina; Mantel-Teeuwisse, Aukje K;

    2015-01-01

    . Efforts to improve the traceability should, in the short term, be focused toward encouraging health professionals and patients to systematically record and report detailed exposure information. Long-term solutions lie in expanding the accessibility to, and increasing the electronic exchange of exposure......INTRODUCTION: Traceability is important in the postmarketing surveillance of biologicals, since changes in the manufacturing process may give rise to product- or batch-specific risks. With the expected expansion of the biosimilar market, there have been concerns about the ability to trace...... individual products within pharmacovigilance databases. AREAS COVERED: The authors discuss the present challenges in the traceability of biologicals in relation to pharmacovigilance, by exploring the processes involved in ensuring traceability. They explore both the existing systems that are in place...

  6. Biological scaling and physics

    Indian Academy of Sciences (India)

    A R P Rau

    2002-09-01

    Kleiber’s law in biology states that the specific metabolic rate (metabolic rate per unit mass) scales as -1/4 in terms of the mass of the organism. A long-standing puzzle is the (- 1/4) power in place of the usual expectation of (- 1/3) based on the surface to volume ratio in three-dimensions. While recent papers by physicists have focused exclusively on geometry in attempting to explain the puzzle, we consider here a specific law of physics that governs fluid flow to show how the (- 1/4) power arises under certain conditions. More generally, such a line of approach that identifies a specific physical law as involved and then examines the implications of a power law may illuminate better the role of physics in biology.

  7. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  8. Biological scaling and physics.

    Science.gov (United States)

    Rau, A R P

    2002-09-01

    Kleiber's law in biology states that the specific metabolic rate (metabolic rate per unit mass) scales as M- 1/4 in terms of the mass M of the organism. A long-standing puzzle is the (- 1/4) power in place of the usual expectation of (- 1/3) based on the surface to volume ratio in three-dimensions. While recent papers by physicists have focused exclusively on geometry in attempting to explain the puzzle, we consider here a specific law of physics that governs fluid flow to show how the (- 1/4) power arises under certain conditions. More generally, such a line of approach that identifies a specific physical law as involved and then examines the implications of a power law may illuminate better the role of physics in biology.

  9. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  10. Lagrangians for biological models

    CERN Document Server

    Nucci, M C

    2011-01-01

    We show that a method presented in [S.L. Trubatch and A. Franco, Canonical Procedures for Population Dynamics, J. Theor. Biol. 48 (1974), 299-324] and later in [G.H. Paine, The development of Lagrangians for biological models, Bull. Math. Biol. 44 (1982) 749-760] for finding Lagrangians of classic models in biology, is actually based on finding the Jacobi Last Multiplier of such models. Using known properties of Jacobi Last Multiplier we show how to obtain linear Lagrangians of those first-order systems and nonlinear Lagrangian of the corresponding single second-order equations that can be derived from them, even in the case where those authors failed such as the host-parasite model.

  11. Heritability and biological explanation.

    Science.gov (United States)

    Turkheimer, E

    1998-10-01

    Modern neuroscientific and genetic technologies have provoked intense disagreement between scientists who envision a future in which biogenetic theories will enrich or even replace psychological theories, and others who consider biogenetic theories exaggerated, dehumanizing, and dangerous. Both sides of the debate about the role of genes and brains in the genesis of human behavior have missed an important point: All human behavior that varies among individuals is partially heritable and correlated with measurable aspects of brains, but the very ubiquity of these findings makes them a poor basis for reformulating scientists' conceptions of human behavior. Materialism requires psychological processes to be physically instantiated, but more crucial for psychology is the occasional empirical discovery of behavioral phenomena that are specific manifestations of low-level biological variables. Heritability and psychobiological association cannot be the basis for establishing whether behavior is genetic or biological, because to do so leads only to the banal tautology that all behavior is ultimately based in the genotype and brain.

  12. Male mating biology

    OpenAIRE

    Howell Paul I; Knols Bart GJ

    2009-01-01

    Abstract Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes...

  13. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  14. Integrative radiation systems biology.

    Science.gov (United States)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  15. [Biological etiologies of transsexualism].

    Science.gov (United States)

    Butty, Anne-Virginie; Bianchi-Demicheli, Francesco

    2016-03-16

    Transsexualism or gender dysphoria is a disorder of sexual identity of unknown etiology. At the biological level, one assumes atypical brain development during certain periods of its formation (genesis) notably during embryogenesis, as a result of altered hormonal influence and a particular genetic polymorphism. This article summarizes the research conducted to date in these three areas only, excluding psycho-social and environmental factors. PMID:27149713

  16. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  17. Biology of infantile hemangioma.

    Science.gov (United States)

    Itinteang, Tinte; Withers, Aaron H J; Davis, Paul F; Tan, Swee T

    2014-01-01

    Infantile hemangioma (IH), the most common tumor of infancy, is characterized by an initial proliferation during infancy followed by spontaneous involution over the next 5-10 years, often leaving a fibro-fatty residuum. IH is traditionally considered a tumor of the microvasculature. However, recent data show the critical role of stem cells in the biology of IH with emerging evidence suggesting an embryonic developmental anomaly due to aberrant proliferation and differentiation of a hemogenic endothelium with a neural crest phenotype that possesses the capacity for endothelial, hematopoietic, mesenchymal, and neuronal differentiation. Current evidence suggests a putative placental chorionic mesenchymal core cell embolic origin of IH during the first trimester. This review outlines the emerging role of stem cells and their interplay with the cytokine niche that promotes a post-natal environment conducive for vasculogenesis involving VEGFR-2 and its ligand VEGF-A and the IGF-2 ligand in promoting cellular proliferation, and the TRAIL-OPG anti-apoptotic pathway in preventing cellular apoptosis in IH. The discovery of the role of the renin-angiotensin system in the biology of IH provides a plausible explanation for the programed biologic behavior and the β-blocker-induced accelerated involution of this enigmatic condition. This crucially involves the vasoactive peptide, angiotensin II, that promotes cellular proliferation in IH predominantly via its action on the ATIIR2 isoform. The role of the RAS in the biology of IH is further supported by the effect of captopril, an ACE inhibitor, in inducing accelerated involution of IH. The discovery of the critical role of RAS in IH represents a novel and fascinating paradigm shift in the understanding of human development, IH, and other tumors in general. PMID:25593962

  18. Biology of Infantile Hemangioma

    OpenAIRE

    Itinteang, Tinte; Withers, Aaron H. J.; Davis, Paul F.; Tan, Swee T.

    2014-01-01

    Infantile hemangioma (IH), the most common tumor of infancy, is characterized by an initial proliferation during infancy followed by spontaneous involution over the next 5–10 years, often leaving a fibro-fatty residuum. IH is traditionally considered a tumor of the microvasculature. However, recent data show the critical role of stem cells in the biology of IH with emerging evidence suggesting an embryonic developmental anomaly due to aberrant proliferation and differentiation of a hemogenic ...

  19. Biological Correlates of Empathy

    Directory of Open Access Journals (Sweden)

    E. Timucin Oral

    2010-04-01

    Full Text Available Empathy can be defined as the capacity to know emotionally what another is experiencing from within the frame of reference of that other person and the capacity to sample the feelings of another or it can be metaphorized as to put oneself in another’s shoes. Although the concept of empathy was firstly described in psychological theories, researches studying the biological correlates of psychological theories have been increasing recently. Not suprisingly, dinamically oriented psychotherapists Freud, Kohut, Basch and Fenichel had suggested theories about the biological correlates of empathy concept and established the basis of this modality decades ago. Some other theorists emphasized the importance of empathy in the early years of lifetime regarding mother-child attachment in terms of developmental psychology and investigated its role in explanation of psychopathology. The data coming from some of the recent brain imaging and animal model studies also seem to support these theories. Although increased activity in different brain regions was shown in many of the brain imaging studies, the role of cingulate cortex for understanding mother-child relationship was constantly emphasized in nearly all of the studies. In addition to these studies, a group of Italian scientists has defined a group of neurons as “mirror neurons” in their studies observing rhesus macaque monkeys. Later, they also defined mirror neurons in human studies, and suggested them as “empathy neurons”. After the discovery of mirror neurons, the hopes of finding the missing part of the puzzle for understanding the biological correlates of empathy raised again. Although the roles of different biological parameters such as skin conductance and pupil diameter for defining empathy have not been certain yet, they are going to give us the opportunity to revise the inconsistent basis of structural validity in psychiatry and to stabilize descriptive validity. In this review, the

  20. Biological Rhythms and Preeclampsia

    OpenAIRE

    Ditisheim, Agnès J.; Dibner, Charna; Philippe, Jacques; Pechère-Bertschi, Antoinette

    2013-01-01

    The impact of impaired circadian rhythm on health has been widely studied in shift workers and trans-meridian travelers. A part from its correlation with sleep and mood disorders, biological rhythm impairment is a recognized risk factor for cardiovascular diseases and breast cancer. Preeclampsia is a major public health issue, associated with a significant maternal and fetal morbidity and mortality worldwide. While the risks factors for this condition such as obesity, diabetes, pre-existing h...

  1. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  2. Elements in biological AMS

    International Nuclear Information System (INIS)

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  3. Neutrons in biology

    International Nuclear Information System (INIS)

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  4. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  5. Synthetic biology: advancing biological frontiers by building synthetic systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E.; Smolke, Christina D.

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  6. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular...

  7. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress

    DEFF Research Database (Denmark)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes;

    2013-01-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including ge....... The results highlight the extreme complexity of environmental stress adaptation and the difficulty of extrapolating and interpreting responses across levels of biological organization.......We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene...... expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic (1)H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led...

  8. Synthetic biology: Understanding biological design from synthetic circuits

    OpenAIRE

    Mukherji, Shankar; van Oudenaarden, Alexander

    2009-01-01

    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple...

  9. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

    OpenAIRE

    Chen, Z. X.; Dickson, D. W.

    1998-01-01

    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other P...

  10. Bridging the gap between systems biology and synthetic biology

    OpenAIRE

    Liu, Di; Hoynes-O’Connor, Allison; Zhang, Fuzhong

    2013-01-01

    Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, syst...

  11. Stress at Work Place

    Directory of Open Access Journals (Sweden)

    Mohammad A. Shahrour

    2010-06-01

    Full Text Available One of hardest forms of stresses to avoid is that work place or job stress Job stress refers to stress experienced by an individual at or because of issues at their work place The term work related stress has many meanings and it causes different levels of anxiety. Not all challenges at work can be called stress as some of these challenges drive employees upward, and empower them to learn new skills or push them to work harder to achieve a certain goal. So, this type of challenges cannot be considered as true stress True job stress is a condition that not only destroys employee desire to work, but also his or her energy, getting them to suffer both emotionally and physically. Warning signs of stress at work when people feel overwhelmed they feel lacking confidence, become irritated or withdrawn, less productive, less effective and their work less rewarding if these warning passed unnoticed then signs and symptoms of stress will appear. Signs and Symptoms of Excessive 4. Personal conflicts with supervisors Workplace Stress or other employees 5. Feeling insecure at work ( 1. Feeling anxious, agitated, constantly threatened with criticism depressed or apathetic or job loss 2. Loss of interest at work 6. Discrimination ( race, sex or age 3. Difficulty in attention and 7. Discouragement (to feel concentration incompetent and worthless 4. Insomnia and sleep problems 8. Sexual harassment 5. Feeling fatigue 9. Lack of flexibility in work hours 6. Muscle tension and headaches 10. Poor work environment 7. Stomach problems or different 11. Developments in technology body aches 8. Social withdrawal How to Deal with Work Place Stress 9. Loss of sex drive 10. Using alcohol or drugs to cope Fortunately, there is a lot that you can do to manage and reduce stress at work. Different Causes of Job Stress General Guidelines: 1. Poor work conditions and having no say over such conditions A. Taking responsibility for 2. Unreasonable demands from improving your

  12. STRESS IN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Maria-Elena, GHEORDUNESCU

    2014-11-01

    Full Text Available Taking into account the changes that are currently taking place in our country, it is clear that these changes, which occur in almost all companies, lead to new stress factors for both employees and the organization. Occupational stress is a major problem for employees and managers, but also for the whole society. The issue of stress in organizations has given birth to many debates and studies. It is a common theme that is addressed by managers, employees and consultants from different perspectives. According to a study by the European Agency for Safety and Health at Work, in the European Union, work-related stress is the second work-related health issue after dorsal disorders. It affects 28% of EU employees. The European Parliament is fully involved in addressing issues related to the psychological support of the staff. Preventing work-related stress is one of the objectives set out in the Communique of the European Commission for Employment and Social Affairs regarding their new health and safety at work strategy. Manifestations of stress in organizations are easily observable, being manifested by behaviors such as: difficulties in adapting to the changes required to work or the dramatic drop in labor productivity. Also a double action is met: both the person who passes through the stressful situation and at the organization level on which it is reflected the existence of a stressful environment. This paper aims to address the implications of workplace stress, symptoms of stress in the workplace and strategies to eliminate and prevent stress at work This paper represents an exploratory research based on qualitative methods, being consulted various sources of information: the literature, case studies, media articles, reports of relevant organizations, etc.

  13. Biological surface science

    Science.gov (United States)

    Kasemo, Bengt

    2002-03-01

    Biological surface science (BioSS), as defined here is the broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and biofunctional surfaces are fabricated. Six examples are used to introduce and discuss the subject: Medical implants in the human body, biosensors and biochips for diagnostics, tissue engineering, bioelectronics, artificial photosynthesis, and biomimetic materials. They are areas of varying maturity, together constituting a strong driving force for the current rapid development of BioSS. The second driving force is the purely scientific challenges and opportunities to explore the mutual interaction between biological components and surfaces. Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and kinetics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue. Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems. Specifically this requires combined topographic, chemical and visco-elastic patterns on surfaces to match proteins at the nm scale and cells at the micrometer scale. Essentially all methods of surface science are useful. High-resolution (e.g. scanning probe) microscopies, spatially resolved and high sensitivity, non-invasive optical spectroscopies, self-organizing monolayers, and nano- and microfabrication

  14. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice

    OpenAIRE

    Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander

    2013-01-01

    Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCN...

  15. Differential effects of stress and glucocorticoids on adult neurogenesis.

    Science.gov (United States)

    Schoenfeld, Timothy J; Gould, Elizabeth

    2013-01-01

    Stress is known to inhibit neuronal growth in the hippocampus. In addition to reducing the size and complexity of the dendritic tree, stress and elevated glucocorticoid levels are known to inhibit adult neurogenesis. Despite the negative effects of stress hormones on progenitor cell proliferation in the hippocampus, some experiences which produce robust increases in glucocorticoid levels actually promote neuronal growth. These experiences, including running, mating, enriched environment living, and intracranial self-stimulation, all share in common a strong hedonic component. Taken together, the findings suggest that rewarding experiences buffer progenitor cells in the dentate gyrus from the negative effects of elevated stress hormones. This chapter considers the evidence that stress and glucocorticoids inhibit neuronal growth along with the paradoxical findings of enhanced neuronal growth under rewarding conditions with a view toward understanding the underlying biological mechanisms.

  16. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  17. Understanding Plant Development and Stress Responses through Integrative Approaches

    Institute of Scientific and Technical Information of China (English)

    Katie Dehesh; Chun-Ming Liu

    2010-01-01

    @@ As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12,2009 (Figure 1). The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.

  18. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  19. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  20. Stress of stoicism

    DEFF Research Database (Denmark)

    Doan, Stacey N.; Dich, Nadya; Evans, Gary W.

    2016-01-01

    The present longitudinal study examined the combined effects of task persistence and negative emotionality (NE) on allostatic load (AL), a physiological indicator of chronic stress. In line with John Henryism theory, we hypothesized that high persistence combined with low NE may be indicative...... persistence was associated with higher physiological stress. Our results have implications for both clinical and intervention contexts....

  1. Foster Parent Stress.

    Science.gov (United States)

    Jones, Graham; Morrissette, Patrick J.

    1999-01-01

    Research findings regarding foster-parent stress and implications for counselors and counselor educators are discussed. Eleven significant themes are reported from a qualitative and quantitative study of rural foster parents (N=156). Stressful events that affect the well-being of foster parents and their relationships with children and…

  2. Videnarbejde og stress

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke; Sørensen, Ole Henning

    . Videnarbejde kan for den enkelte være vejen til selvrealisering og begejstring, men rummer også i sig kimen til stress og udbrændthed. Og det er netop i spændingsfeltet - i kampen - mellem begejstring og belastning, at bogen ser stress i det moderne arbejdsliv, som en uoverensstemmelse mellem ydre krav og...

  3. Reynolds Stress Turbulence Model

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    1995-01-01

    the Reynolds stress in the inner wall region is substantially diminished due to the inner core movement, resulting in a decrease in the heat transfer performance, and (iii an increase in the velocity ratio of the moving inner core of the fluid flow induces a decrease in the Nusselt number as well as the Reynolds stress in the region near the inner core.

  4. Stress and Your Health

    Science.gov (United States)

    ... releasing stress hormones . These hormones make blood pressure, heart rate, and blood sugar levels go up. Long-term stress can help cause a variety of health problems, including: Mental health disorders, like depression and anxiety Obesity Heart disease High blood pressure Abnormal heart beats ...

  5. Neuropathology of stress

    NARCIS (Netherlands)

    P.J. Lucassen; J. Pruessner; N. Sousa; O.F.X. Almeida; A.M. van Dam; G. Rajkowska; D.F. Swaab; B. Czéh

    2014-01-01

    Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerf

  6. Leveraging Stress Level

    OpenAIRE

    Mitali PATHAK

    2011-01-01

    Stress is a costly business expense that affects both employee health and company profits. At the backdrop of this, the present research study is an attempt to explore and analysis the findings of the research studies which have been concluded in resolving and managing conflict arising through variances in stress level at the organizational hierarchy.

  7. Prenatal stress in pigs

    NARCIS (Netherlands)

    Kranendonk, Godelieve

    2006-01-01

    Studies in many species, including humans, have demonstrated that stress during gestation can have long-term developmental, neuroendocrine, and behavioural effects on the offspring. Because pregnant sows can be subjected to regular stressful situations, it is relevant to study whether prenatal stres

  8. Leveraging Stress Level

    Directory of Open Access Journals (Sweden)

    Mitali PATHAK

    2011-01-01

    Full Text Available Stress is a costly business expense that affects both employee health and company profits. At the backdrop of this, the present research study is an attempt to explore and analysis the findings of the research studies which have been concluded in resolving and managing conflict arising through variances in stress level at the organizational hierarchy.

  9. Stress, arousal, and sleep

    NARCIS (Netherlands)

    Sanford, Larry D.; Suchecki, Deborah; Meerlo, Peter; Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with

  10. Hvad er Stress?

    DEFF Research Database (Denmark)

    Strøbæk, Pernille Solveig

    2007-01-01

    I artiklen gennemgås de mest centrale historiske udviklinger inden for stressforskning og stressforståelse. Ad den historiske vej vises der frem imod stress som et righoldigt begreb med mange betydninger. Men måske har stress udviklet sig til i dag at udtrykke alt det, der opleves som galt med...

  11. Reassess the stress.

    Science.gov (United States)

    Wright, Stephen; Sayre-Adams, Jean

    The second article in our series on leadership examines stress and burnout. Nurses who are burnt out need to reassess work and relationships. Stress will pass when its cause is removed, but burnout is a 'spiritual crisis'. Self-aware, contemplative leaders are able to prevent burnout and recognise it in others.

  12. Voice Stress Analysis

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.; Wiggers, P.; Wees, J.W.A. van; Vark, R.J. van

    2005-01-01

    The non-verbal content of speech carries information about the physiological and psychological condition of the speaker. Psychological stress is a pathological element of this condition, of which one of the causes is accepted to be workload. Objective, quantifiable correlates of stress are searched

  13. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  14. Is Our Biology to Blame?

    Science.gov (United States)

    Schneider, Scott

    1977-01-01

    Brief analyses of three recent examples of biological determinism: sex roles, overpopulation, and sociobiology, are presented in this article. Also a brief discussion of biological determinism and education is presented. (MR)

  15. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict;

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...

  16. American Institute of Biological Sciences

    Science.gov (United States)

    ... About | Newsroom | Contact Us The American Institute of Biological Sciences is the national scientific organization that promotes the ... Education Research AIBS Education is dedicated to improving biological science literacy at all levels of formal and informal ...

  17. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    Science.gov (United States)

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation.

  18. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut...... change to the bolt head and the nut has the positive indirect effect of increasing the member stiffness, all leading to a smaller joint stiffness factor....

  19. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... of developing improved yeast cell factories....

  20. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  1. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  2. Biology of Applied Digital Ecosystems

    OpenAIRE

    Briscoe, G.; Sadedin, S.; Paperin, G.

    2007-01-01

    A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystem...

  3. Synthetic Biology for Therapeutic Applications

    OpenAIRE

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2014-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug d...

  4. Logical impossibilities in biological networks

    Directory of Open Access Journals (Sweden)

    Monendra Grover

    2011-10-01

    Full Text Available Biological networks are complex and involve several kinds of molecules. For proper biological function it is important for these biomolecules to act at an individual level and act at the level of interaction of these molecules. In this paper some of the logical impossibilities that may arise in the biological networks and their possible solutions are discussed. It may be important to understand these paradoxes and their possible solutions in order to develop a holistic view of biological function.

  5. Attitude of teenagers towards biology

    OpenAIRE

    Lavtižar, Teja

    2016-01-01

    ROSE project is a comprehensive study in which students' attitudes towards Science and Technology affected by many factors have been examined. In our study, only some aspects have been focused due to a narrower field of biology which has been interested in, and the direction of the attitude between Biology to elementary school students has been checked. The purpose of the master's work has been to determine the attitude of the teenagers to Biology as science and Biology as a school subjec...

  6. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Claudia Consales

    2012-01-01

    Full Text Available Electromagnetic fields (EMFs originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

  7. A Brief Review of the Biology of Anorexia Nervosa

    DEFF Research Database (Denmark)

    Sjögren, Magnus

    2015-01-01

    Background: The etiology of Anorexia Nervosa (AN) is unknown. A stress model for AN and other Eating Disorders, has been proposed by Connan and depicts risk factors and precipitating events, including biological, but several steps in this have yet to be evidenced. In order to elucidate the biology...... PUBMED and the following search terms: “Anorexia Nervosa” and “biomarker” revealed 180 articles (8th of May 2015). Additional searches included the search terms “gene”, “genetic”, “epigenetic”, “appetite”, “hormone”, and a specific search on “biology” and “review”. Furthermore, articles of interest were...

  8. Third eye, the biological effects; 3. oeil, les effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The discovery of a third kind of photo-receptor cell in the human eye has permitted to better understand the biological effects of lighting, not only on the vision, but also on some nervous processes, like emotion, mood, stress, biological clock, etc.. This additional dimension has led the engineers of Philips Lighting company to launch a new indoor lighting concept named 'Carpe Diem'. This concept adapts both the illuminance and the color of a lighting system according to the type of work and to the expected stimulating effect. (J.S.)

  9. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  10. Semiconductor nanostructures in biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexson, Dimitri [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Chen Hongfeng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Cho, Michael [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Dutta, Mitra [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Li Yang [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Shi, Peng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Raichura, Amit [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ramadurai, Dinakar [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Parikh, Shaunak [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Stroscio, Michael A [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Vasudev, Milana [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2005-07-06

    Semiconductor nanostructures in biological applications are discussed. Results are presented on the use of colloidal semiconductor quantum dots both as biological tags and as structures that interact with and influence biomolecules. Results are presented on the use of semiconducting carbon nanotubes in biological applications. (topical review)

  11. Biological Computing Fundamentals and Futures

    CERN Document Server

    Akula, Balaji

    2009-01-01

    The fields of computing and biology have begun to cross paths in new ways. In this paper a review of the current research in biological computing is presented. Fundamental concepts are introduced and these foundational elements are explored to discuss the possibilities of a new computing paradigm. We assume the reader to possess a basic knowledge of Biology and Computer Science

  12. ECO-BIOLOGICAL SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    T. I. Burak

    2015-01-01

    Full Text Available The methodology for computer modeling of complex eco-biological models is presented in this paper. It is based on system approach of J. Forrester. Developed methodology is universal for complex ecological and biological systems. Modeling algorithm considers specialties of eco-biological systems and shows adequate and accurate results in practice. 

  13. Allometric Scaling in Biology

    Science.gov (United States)

    Banavar, Jayanth

    2009-03-01

    The unity of life is expressed not only in the universal basis of inheritance and energetics at the molecular level, but also in the pervasive scaling of traits with body size at the whole-organism level. More than 75 years ago, Kleiber and Brody and Proctor independently showed that the metabolic rates, B, of mammals and birds scale as the three-quarter power of their mass, M. Subsequent studies showed that most biological rates and times scale as M-1/4 and M^1/4 respectively, and that these so called quarter-power scaling relations hold for a variety of organisms, from unicellular prokaryotes and eukaryotes to trees and mammals. The wide applicability of Kleiber's law, across the 22 orders of magnitude of body mass from minute bacteria to giant whales and sequoias, raises the hope that there is some simple general explanation that underlies the incredible diversity of form and function. We will present a general theoretical framework for understanding the relationship between metabolic rate, B, and body mass, M. We show how the pervasive quarter-power biological scaling relations arise naturally from optimal directed resource supply systems. This framework robustly predicts that: 1) whole organism power and resource supply rate, B, scale as M^3/4; 2) most other rates, such as heart rate and maximal population growth rate scale as M-1/4; 3) most biological times, such as blood circulation time and lifespan, scale as M^1/4; and 4) the average velocity of flow through the network, v, such as the speed of blood and oxygen delivery, scales as M^1/12. Our framework is valid even when there is no underlying network. Our theory is applicable to unicellular organisms as well as to large animals and plants. This work was carried out in collaboration with Amos Maritan along with Jim Brown, John Damuth, Melanie Moses, Andrea Rinaldo, and Geoff West.

  14. Biology Reflective Assessment Curriculum

    Science.gov (United States)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  15. Antidepressant and anti-stress effects of curcumin inmice

    Institute of Scientific and Technical Information of China (English)

    YingXU; Bao-shanKU; Hai-yanYAO; Yong-heZHANG; Xue-junLI

    2004-01-01

    Curcumin (diferuloylmethane), a yellow colouring agent contained in the rhizome of Curcuma Longa (turmeric), has a wide array of pharmacological and biological activities, such as antioxidant, anti-inflammatory, immunomodulating and anticarcinogenic effects. In this study, curcumin was examined for the antidepressant and anti-stress effects in forced swimming,

  16. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  17. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  18. Biology Attitude Scale

    OpenAIRE

    YEŞİLYURT, Selami; GÜL, Şeyda

    2009-01-01

    The aim of this study is to develop a scale determining secondary school stu- dent’s attitude towards biology. For this aim, at first, totally 92 scale items were prepared by reviewing relevant literature. 88 items in this scale were a five-point Likert type scale. 4 of 92 items consisted of demographic variables. The scale was applied to a sample of 109 students randomly selected from two secondary schools in Erzurum. At the end of this application, SPSS 12.0 Statistical Program was used to ...

  19. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  20. Biology of Nanobots

    Science.gov (United States)

    Duan, Wentao; Pavlick, Ryan; Sen, Ayusman

    2013-12-01

    One of the more interesting recent discoveries has been the ability to design nano/microbots which catalytically harness the chemical energy in their environment to move autonomously. Their potential applications include delivery of materials, self-assembly of superstructures, and roving sensors. One emergent area of research is the study of their collective behavior and how they emulate living systems. The aim of this chapter is to describe the "biology" of nanobots, summarizing the fundamentals physics behind their motion and how the bots interact with each other to initiate complex emergent behavior.